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Lecture Overview
• Quick review
• Maximum margin training

– Nonseparable data
– Hinge loss
– Training

• Dual
• Sparsity and support vectors
• Factored structure prediction with SVMs

– Kernels
– MIRA

• Discriminative methods in general:
– Bringing in “global” features
– Reranking

Note:  Much
material was
adapted from
the Klein &
Taskar ACL
2005 tutorial.
Highly
recommended
reading!



Quick Review

• Motivation:  only model/discriminate what is
necessary.

• Perceptron:  find a linear separator.
• Exp-loss and boosting
• Log-loss

= conditional estimation of a log-linear model
= maximum “softmax” margin

• Maximum margin, arbitrary loss function
A QP with way too many constraints!



(Multiclass) Support Vector
Machines

First form:
Note constraint on w.  This

prevents us from cheating
by using really big weights.
(Can think of it as built-in
regularization.)

Second form: change of
variable.

Note that the objective is
quadratic (indeed, psd!),
and the constraints are
linear.   

! 

min
w

1

2
w "w

s.t.#i,#y $ GEN xi( ),

w " f xi,yi( ) %w " f xi,y( ) & l y,yi;xi( )

  

! 
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w " f xi,yi( ) 'w " f xi,y( ) ( $l y,yi;xi( )



(Multiclass) Support Vector
Machines

Intuition:  find weights that make alternative,
incorrect y “as far away as they are bad.”

badness = loss
far-away-ness = margin
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w "w
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w " f xi,yi( ) %w " f xi,y( ) & l y,yi;xi( )



(Multiclass) Support Vector
Machines

Bad news:  one constraint for every wrong y for
every example!

(Think about parsing or sequences …
exponentially bad!)

Bad news:  what if the data aren’t separable?
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w "w
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Slack Variable for Non-Separability

“Cut the constraints some slack” - loss on ith example
diminished by ξi.

Objective pays proportional to the amount of slack.
C is “capacity.”  Larger C = more smoothing.
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Solving for ξi

  

! 

"i,"y # GEN xi( ),

w $ f xi,yi( ) %w $ f xi,y( ) & l y,yi;xi( ) %' i
' i & l y,yi;xi( ) %w $ f xi,yi( ) + w $ f xi,y( )

"i, ' i = max
y#GEN xi( )

l y,yi;xi( ) + w $ f xi,y( )[ ] %w $ f xi,yi( )
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Having solved for the slack variable, we can substitute for it!

“Min-max” formulation …



Compare with Log-loss (again)
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“Min-max” formulation of the SVM objective.
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Conditional training for log-linear models (with
quadratic regularizer/Gaussian prior)



Loss Functions for Binary
Classificationloss

p(yi | xi)

continuous?
differentiable?
convex?

hinge loss
once yi
wins by
“enough,”
objective
stops
pushing
for greater
separation



Making Training Tractable

• Let’s use the slack variable formulation for
now.

• To get rid of the exponentially many
constraints, we must use Lagrange
multipliers.
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min
w,"

1

2
w #w+ C " i

i

$

s.t.%i,%y & GEN xi( ),
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Mini-course on Lagrange
Multipliers

• These shouldn’t be too new to you.
• We have used them twice before!

– To prove that relative frequencies maximize
likelihood for multinomials.

– To derive (unconstrained) maximum likelihood
from (constrained) maximum entropy.

• This should not be scary!



Lagrange Duality

f

w

! 

f w
*( ) = min

w:g w( )"0
f w( )

g



Lagrange Duality
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w
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Inside the feasible
region, the
maximizing α is 0.
Λ(w) tracks f(w).

Outside the feasible
region, the
maximizing α goes to
∞.  So does Λ(w)!

primal
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What do we know
about the α that
maximizes Λ(α)?

dual
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If the constraint is
inactive (g > 0) at the
minimum, then the
solution is α = 0.

dual
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If the constraint is
active (g = 0) at the
minimum, then …

dual
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" #( ) =min
w

f w( ) $# % g w( )[ ]

α

dual



Gradient of f(w) is never
0 when g(w) ≥ 0

But for some α,
gradient of Λ(α) is 0
and the minimizing w is
such that g(w) = 0!

w

dual



Primal and Dual
Primal:
• Infinite penalty for not

meeting the
constraints.

• Optimizing α* will
always be zero in
feasible region.

Dual:
• Solve analytically for w

in terms of α.
• Gradient of constraint

“makes up for” nonzero
gradient of f, if
necessary … pushing
w to feasible boundary.

• Maximizing w.r.t. α
gives a feasible,
optimal solution.

• Then go back and
solve for w.



Back to SVMs

• Just like in the example, the max margin
objective has primal and dual forms.

• Slack variable version:

• Primal:

• Dual:

  

! 

min
w,"

1

2
w #w+ C " i

i

$

s.t.%i,%y & GEN xi( ),w # f xi,yi( ) 'w # f xi,y( ) ( l y,yi;xi( ) '" i
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max
":"#0
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2
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(
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y'GEN xi( )

(
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The Key Trick
• Think of the Lagrange multipliers (αi,y) as

constants.
• Solve for w and ξ analytically in terms of the αi,y.

(How?)
• Then optimize over values of αi,y only.
• You should be able to then show that:

  

! 

" i,y

y#GEN xi( )

$
i

$ = C

w = " i,y f xi,yi( ) % f xi,y( )( )
y#GEN xi( )

$
i

$

& "( ) =min
w,'

& w,',"( ) = %
1

2
" i,y f xi,yi( ) % f xi,y( )( )

y#GEN xi( )

$
i

$
2

+ " i,yl y,yi;xi( )
y#GEN xi( )

$
i

$



The Dual Problem
• So solve for the αs and then compute w.
• Each αi,y corresponds to a constraint

– αi,y is only positive if the (i, y) constraint is active; then y
is a support vector.

• Now only have nonnegativity constraints on αi,y.
• But for exponential-sized GEN, still too many

variables!

  

! 

w = " i,y f xi,yi( ) # f xi,y( )( )
y$GEN xi( )

%
i

%

& "( ) =min
w,'

& w,',"( ) = #
1

2
" i,y f xi,yi( ) # f xi,y( )( )

y$GEN xi( )

%
i

%
2

+ " i,yl y,yi;xi( )
y$GEN xi( )

%
i
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Factored Models

• Recall that features become more expensive
as they become less local.
– Bigram vs. trigram HMM
– Vanilla PCFG vs. parent-annotated PCFG

• Very common assumptions:
factored features factored loss

! 

f x,y( ) = fp xp,yp( )
p

"

w # f x,y( ) = w # fp xp,yp( )
p

"
  

! 

l " y ,y;x( ) = " y p # yp[ ][ ]
p

$



Factored Models

• Are we giving anything up?
(The question returns in assignment 4!)

! 

f x,y( ) = fp xp,yp( )
p

"

w # f x,y( ) = w # fp xp,yp( )
p

"
  

! 

l " y ,y;x( ) = " y p # yp[ ][ ]
p

$



Back to Min-Max
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Back to Min-Max
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Convert Inner “Max” to a Linear
Program

  

! 
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w

1

2
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Notation

  

! 

Fi = fp1
xi,y z( )( ) fp2

xi,y z( )( ) L fpm
xi,y z( )( )[ ]

  

! 

r 
l i =

yip
1

" y z( )
p
1

[ ][ ]
M

yipm " y z( )
pm

[ ][ ]

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
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A
i
,b

i
,z are defined problem-specifically



Duality Returns!
• Primal LP • Dual LP

! 

max
z

c " z

s.t. Az # b

z $ 0
  

! 

min
"

b #
r 
" 

s.t. A
T
r 
" $ c

r 
" $ 0

  

! 

c " z = b "
r 
# at optimum:



Convert Inner “Max” to a
Tractable Linear Program

  

! 

min
w

1

2
w "w # C w " f xi ,yi( ) # max

y$GEN xi( )
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% 

& 
' 

( 
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i

+
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i

%
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Taskar et al. (2004):
polynomial # of
constraints
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Take the Dual®

  

! 

min
w,

r 
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1

2
w #w$C w # f xi,yi( ) $bi #

r 
" i( )

i

%

s.t. &i,A i

T
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T
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µ 
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l i "

r 
µ i #

1

2
Cf xi,yi( ) #Fi

r 
µ i

i

$
2

s.t. %i,A i

T r 
µ i & Cbi

r 
µ i ' 0

How many variables?



What I’ve Skipped

• Training technique:  Sequential minimal
optimization (SMO; Platt 1998)
– Breaks big optimization problem into a bunch of

smaller ones.
• Exactly how to express labeling, parsing, and

other NLP problems as LPs.
– Homework problem!



A Word About Kernels
• So far, everything has been linear.

– Dot-products of various things with weight and feature
vectors.

• You can think of the dot-product a⋅b as a similarity
measure between a and b.
– The greater a dot-product is, the more similar.

• Kernels generalize this into more dimensions.
– Still a dot product, but now between φ(a) and φ(b)
– In higher-dimensional spaces, may be possible to find a

separating hyperplane.
• Kernel trick:  efficient computation of the new dot

product permits non-linear classification.



Some Kernels

  

! 

k a,b( ) = a "b+1( )
d

= 1+ a
i
b
i

i

#
$ 

% 
& 

' 

( 
) 

d

= a "b+ a
1
b
1
a "b( ) +L+ a

n
b
n
a "b( ) +L

polynomial:

! 

k a,b( ) = exp "# a "b
2( )

radial basis function:

! 

k a,b( ) = tanh "a #b+ c( )

sigmoid:



Kernels

• Not widely used in NLP, but a few
specialized kernels have been developed for
trees, sequences, etc.

• Central ideas:
– Maximizing the margin
– Neat math tricks to make it tractable when ported

to NLP problems



Next Time

• MIRA, a useful online training algorithm
• When the features get big, the tough get to

reranking!


