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Lecture 16: Going Discriminative
(part two)

Noah Smith



Lecture Overview

e Quick review

« Maximum margin training
— Nonseparable data
— Hinge loss
— Training
* Dual

« Sparsity and support vectors
» Factored structure prediction with SVMs

— Kernels
— MIRA

« Discriminative methods in general:
— Bringing in “global” features
— Reranking

Note: Much
material was
adapted from
the Klein &
Taskar ACL
2005 tutorial.
Highly
recommended
reading!




Quick Review

Motivation: only model/discriminate what is
necessary.

Perceptron: find a linear separator.
Exp-loss and boosting

Log-loss

= conditional estimation of a log-linear model
= maximum “softmax” margin

Maximum margin, arbitrary loss function
A QP with way too many constraints!



(Multiclass) Support Vector
Machines

First form: max y

Note constraint on w. This  wowwsl
prevents us from cheating .
by using really big weights. 77 € GEN(x,),
(Can think of it as built-in wef(x,y,)-w-f(x,y)=yl(y,y;x;)
regularization.)

Second form: change of i
variable. min—w- w
Note that the objective is ) ,
quadratic (indeed, psd!), - Vi-Vy € GEN(x,)
Ia'r?gat:]e constraints are w-f(x,y,)-w-f(x,y) = (y,y:x,)
| .



(Multiclass) Support Vector
Machines

Intuition: find weights that make alternative,
incorrect y “as far away as they are bad.”

badness = loss
far-away-ness = margin

!
min—w - w

w

5.t.Vi,¥y € GEN(x,),
wot(x,y,) - wE(x,y) = 0(y.y;:x)



(Multiclass) Support Vector
Machines

Bad news: one constraint for every wrong y for
every example!

(Think about parsing or sequences ...
exponentially bad!)

Bad news: what if the data aren’t separable?

!
min—w - w

w

5.t.Vi,¥y € GEN(x,),
wot(x,y,) - wE(x,y) = 0(y.y;:x)



Slack Variable for Non-Separability

“Cut the constraints some slack” - loss on ith example
diminished by &,.

Objective pays proportional to the amount of slack.
C is “capacity.” Larger C = more smoothing.

!
min—w - w

minlw-w+ ngi s.t.Yi¥'y € GEN(x,),

v l' — f (x;9) = (v y5x)
. ) ) — . ) = < X.

5.t.Vi,¥'y € GEN(x,), W By = weBl.y) 2 Ay,

W-f(xi,yl.)—W°f(xi,y) > f(y,yi;xi)@




Solving for &,

Vi,Vy € GEN(x,),
wef(x,y,)-w-f(x,y)=(y,y;x,)-&
§; = f(y,yi;xi) - W'f(xiayi) + W°f(xi’y)

Vi, § = max )[Z(y,yl.;xi)+W-f(xi,y)]—W'f(xia)’i)

yEGEN(x;
Having solved for the slack variable, we can substitute for it!

mingw~ w— Z(W f(x,,y;) - max )[W' f(x,y)+ é(y,yi;xi)])

w yEGEN(x,

*“Min-max” formulation ...



Compare with Log-loss (again)

min%W° A\ E(W f<xi’yi) - log EeXP[W° f(xi,y)])

w
yEGEN(x;)

Conditional training for log-linear models (with
quadratic regularizer/Gaussian prior)

mingw- w— Z(W f(x,,y;) - max )[W' f(x,y)+ €(y,yi;xl.)])

w yEGEN(x,

“‘Min-max” formulation of the SVM objective.



Loss Functions for Binary

0

0.4

joss Classification
hinge loss |
continuous? once y;
differentiable? wins by
convex? “enough,”
| objective
" stops
pushing
for greater
separation




Making Training Tractable

e Let’'s use the slack variable formulation for
NOW.

* To get rid of the exponentially many
constraints, we must use Lagrange
multipliers.

1
1 C |
I£V1’1§n2W W + Zgl

s.t.Vi,¥y € GEN(x,),
we f(xl.,yl.) - W f(xl.,y) = E(y,y,-;xi) -5



Mini-course on Lagrange
Multipliers

* These shouldn’t be too new to you.

 \We have used them twice before!

— To prove that relative frequencies maximize
likelihood for multinomials.

— To derive (unconstrained) maximum likelihood
from (constrained) maximum entropy.

* This should not be scary!




Lagrange Duality

= min _f(w)



Lagrange Duality




%k o .
f(W ) = minmax A(w,a) = max min A(w,a)




f(w*) = minmax A(W,a) = maxminA(W,a)

w a.a=0 oa.o0=0 w

f(w ) = mvjnA(W) = minmax A(w,a)

AR




f(w*) = mvjng:loi% A(w,a) = IO}?aaZ)gmvjnA(W,a)

f(w ) = mvjnA(W) = minmax A(w,a)




w a.a=0

Inside the feasible
region, the
maximizing o is 0.
A(w) tracks f(w).

/()= - psmin Al
f(w*) = minA(W) = minmax A(W,a)

Outside the feasible
region, the
maximizing o goes to
o, S0 does A(w)!

f(w*) = minof(w)

w:g(w)=

A(W,(x) = f(W) - g(W) A(w) = max[f(w) —a- g(w)]



o.a=0 a.o=0 w

%) . .
f(W') = minmax A(w.c) = maxmin A(w.c:)
f [w*) = max A(a) = maxmin A(w,a)




\

o.a=0 a.o=0 w

/()= A~ psmin Al
f(W*) = maxA(a) = maxminA(W,a)

What do we know
about the o that
maximizes A(a)?




f(w*/ = minmax A(W,a) = maxminA(W,a)
w o.o=0 o.a=0 w
([ * .
f(w') = magAle) = magmin A(w.c)

If the constraint is
inactive (g > 0) at the
minimum, then the
solution is a = 0.




\

a:.o0=0 a.o=0 w

%) . .
/()=o) pmin Al
f(W*) = maxA(a) = maxminA(W,a)

If the constraint is
active (g = 0) at the
minimum, then ...
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d

. | ua
Gradient of f(w) is n%‘/

0 when g(w) =0

But for some q,
gradient of A(a) is O

and the minimizing w is
such that g(w) = 0!




Primal and Dual

Dual:

Primal:

* Infinite penalty for not
meeting the
constraints.

* Optimizing o™ will
always be zero in
feasible region.

Solve analytically for w
In terms of a.

Gradient of constraint
“makes up for” nonzero
gradient of f, if
necessary ... pushing
w to feasible boundary.

Maximizing w.r.t. a
gives a feasible,
optimal solution.

Then go back and
solve for w.



Back to SVMs

Just like in the example, the max margin
objective has primal and dual forms.

Slack variable version:
mm W- W+CE§

s.t. Vl,Vy e GEN( l.), W'f(xl.,yl-) - W- f(x,-,y) = f(y,yl-;x,-) -&,

Primal'

mmmax W - W+CE§ E Ea wfx y W'f(xi,)’)—f()’,yiéxi)"'gi]

ws a: oc>0
i yEGEN(x

Dual:

maxmln W - W+CE§ E Ea W fx y W'f(xi,)’)—g()’,yﬁxi)"‘gi]

oa:a=0 w
5 i yEGEN



The Key Trick

Think of the Lagrange multipliers (c; ) as
constants.

Solve for w and g analytically in terms of the o,
(How?)

Then optimize over values of o, , only.

You should be able to then show that:

LYy

E Eafyyx

i yEGEN(x



The Dual Problem

So solve for the as and then compute w.

Each a;, corresponds to a constraint

— o, Is only positive if the (/, y) constraint is active; then y
IS a support vector.

Now only have nonnegativity constraints on o;

But for exponential-sized GEN, still too many
variables!

we2 () -tx)

i yEGEN(x

Ly"

A( ) nvelgn/\(w?ga =——

+E Ea Eyyx

i yEGEN(x

xy

i yEGEN(x )



Factored Models

» Recall that features become more expensive
as they become less local.
— Bigram vs. trigram HMM
— Vanilla PCFG vs. parent-annotated PCFG

* Very common assumptions:
factored features factored loss

f(x.y)= D, (x,,) 0y.yix) = 2| [vh =, ]]

p
W-f(x,y)=zw-fp(xp,yp)
p



Factored Models

* Are we giving anything up?
(The question returns in assignment 4!)

f(xy) = D, (4,03, ) (yyix) =3[l =,



Back to Min-Max

mmlzw W — CE(W fx y)— max )[W f(x y)+€(yy x)])

yEGEN(x

assumptions

f(xy) = D, (4,03, ) (yyix) =3[l =,



Back to Min-Max

mmlzw W — CE(W fx y)— max )[W f(x y)+€(yy x)])

yEGEN(x

1
m1n2W W — CE

wof(x,y,) - max [Ew £, (x,.5,) +|[5, ;«syl-p]]D

assumptions

f(xy) = D, (4,03, ) (yyix) =3[l =,

p P



Convert Inner “Max” to a Linear
Program

1
H;IHEW'W—CE(WT(%%)‘ max [W'f(xi’y)‘*f(y’yi;xi)])

yEGEN(x; )

|
rrgngw-w—CZ

W f(x,-,y,-) _yEIgEEll\T)((xZ)[;W' fp(xip’yp) + [[yp = Yip]]D

mwin%W° W — CZ(W-f(xi,yi) T max (x,.)[(FiTW-I_ 2,) z])

Z)EGEN

|
rrgngw-w—CZ

w-f(x;.y;) - max ,[(FiTW ' _éi). Z]]

l l
z=0



Notation

[ 0, ]
o, v, ]|

A b,z are defined problem-specifically

o~
|




Duality Returns!

 Primal LP

max ¢z
Z
st. Az<b

z =0

at optimum:

e Dual LP
n%n b-i
S.t Ajizc
ZZO



Convert Inner "Max” to a
Tractable Linear Program

1
H;IHEW'W—CZ(WT(%%)‘ max [W-f(xi,y)+€(y,yi;xi)])

yEGEN(x;)

1
mm—w-w—CE
w2 ) iZ=b;,
i z=0

w-f(x,y;)- max I:(Fl.TW+ 2@) z]]

min - w3 (w-tlx.y,) -

” Vl-,A.T)_;. P wa T Taskar e.t al. (2004):
o ’ polynomial # of

=0 constraints



Take the Dual®

mipg W w=C3wfx.5) b, 4

st. Yi,ATA =F'w+ 7,
):l. =0

2

-~ 1 .
m[?X o, ) ZCf(xi’yi)_Fitui

st. Vi,Alu <Cb,
i, =0

How many variables?




What I've Skipped

* Training technique: Sequential minimal
optimization (SMO; Platt 1998)

— Breaks big optimization problem into a bunch of
smaller ones.

« Exactly how to express labeling, parsing, and
other NLP problems as LPs.

— Homework problem!



A Word About Kernels

So far, everything has been linear.

— Dot-products of various things with weight and feature
vectors.

You can think of the dot-product a-b as a similarity
measure between a and b.

— The greater a dot-product is, the more similar.

Kernels generalize this into more dimensions.

— Still a dot product, but now between ¢(a) and ¢(b)

— In higher-dimensional spaces, may be possible to find a
separating hyperplane.

Kernel trick: efficient computation of the new dot
product permits non-linear classification.



Some Kernels

polynomial:
d
k(a,b) =(a°b+1)d =(l+ Eaibi) =a-b+ab(a-b)+--+ab,(a-b)+-

radial basis function: sigmoid:

k(a,b) = GXp(_yHa _ bHZ) k(a,b) = tanh(xa b + ¢)



Kernels

* Not widely used in NLP, but a few
specialized kernels have been developed for

trees, sequences, efc.

* Central ideas:
— Maximizing the margin
— Neat math tricks to make it tractable when ported
to NLP problems



Next Time

 MIRA, a useful online training algorithm

* When the features get big, the tough get to
reranking!



