Language and Statistics II

Lecture 12: Modern Parsing

Noah Smith

Lecture Outline

- PCFGs
 - Final comments about Collins parser
 - Charniak Parsers, in brief
 - Klein and Manning (2003)
- Probabilistic automata for parsing – Ratnaparkhi (1998)
- Dependency parsing: models, algorithms
- Reranking
- Other topics: up & down the Chomsky hierarchy

Other Details

- Smoothing: deleted interpolation.
- Unknown words: every type with count ≤ 5 became UNK
- Tagging is not a separate stage; it is just part of the parse.

Further Refinements

- Base noun phrases
 - Labeled "NPB"
 - First-order Markov model for children of head!
- Coordinators ("and") predicted **together** with the later argument.
- Punctuation treated similarly (see the 2003 paper)

Charniak (1997)

- Similar setup.
 - Lexicalized PCFG, factored model for rules
 - Tags don't travel up the tree as in Collins
 - Tagging part of parsing
 - Deleted interpolation for smoothing
- Used an additional 30 million words of unannotated data.

Charniak (1997)

Charniak (2000)

- The 2000 parser is "maximum entropy inspired."
- Uses grandparents.
- It is closer to Collins' model (Markovized children), but the estimation is bizarre.
 - Smoothed, backed-off probabilities are multiplied together - almost like a product of experts.

Comparison

		labeled recall	labeled precision	average crossing brackets
Collins	Model 1	87.5	87.7	1.09
	Model 2	88.1	88.3	1.06
	Model 3	88.0	88.3	1.05
Charniak	1997	86.7	86.6	1.20
	2000	89.6	89.5	0.88

Klein and Manning (2003)

- By now, lexicalization was kind of controversial
- Goal: reasonable unlexicalized baseline
 - What tree transformations make sense?
 - Markovization (what order?)
 - Add all kinds of information to each node in the treebank
- Performance close to Collins model, much better than earlier unlexicalized models

Markovization

- More vertical Markovization is better
 Consistent with Johnson (1998)
- Horizontal 1 or 2 beats 0 or ∞
- Used (2, 2), but if sparse "back off" to 1

Other Annotations

- Mark nodes with only 1 child as UNARY
- Mark DTs (determiners), RBs (adverbs) when they are only children
- Annotate POS tags with their parents
- Split IN (prepositions; 6 ways), AUX, CC, %
- NPs: temporal, possessive, base
- VPs annotated with head tag (finite vs. others)
- DOMINATES-V
- RIGHT-RECURSIVE NP

Comparison

		labeled recall	labeled precision	average crossing brackets
Collins	Model 1	87.5	87.7	1.09
	Model 2	88.1	88.3	1.06
	Model 3	88.0	88.3	1.05
Charniak	1997	86.7	86.6	1.20
	2000	89.6	89.5	0.88
K&M	2003	86.3	85.1	1.31

Probabilistic Automata

- FSA is to regular grammar as is to context-free grammar
- Nondeterministic PDAs are more expressive than deterministic ones.
- Can define **probabilistic** PDAs, too.
- The correspondence isn't as direct as for WFSAs, and the theoretical construct isn't a perfect fit to the models, but the idea is related.

Parsers as Automata

- Move left to right.
- Eat words as you go, deciding what to do with them.
 - Think of "scan," "predict," and "complete" actions in an Earley parser.
 - Think of "shift" and "reduce" actions.
 - Actions modeled empirically!
- No dynamic programming; use generalized search instead.
 - Greedy methods often called "deterministic" parsing.

- Tagging, then chunking, then parsing (3 passes)
- Log-linear model: p(next action | history)
 - Features include lots of context, the CFG rule, words, tags, etc.
- Beam search
- Results:
 - O(n) observed runtime!
 - A little worse on performance than Collins Model 1.
- See also: Magerman (1995; decision trees); Chelba & Jelinek (1998; MLE); Sagae & Lavie (2005, SVMs); Nivre et al. (2006; SVMs)

Dependencies

Dependency Parsing

- Very influential in structural and European linguistics
 - Tesniere (1959); Mel'cuk (1988), inter alia
 - Captures lexical relationships easily
 - Projective dependency grammar is context-free (Gaifman, 1965)
- Link Grammar (Sleator and Temperley, 1992); later made probabilistic
 - Syntax is an **undirected** planar graph, possibly cyclic!
 - Cubic-time parsing
- Evaluation: Lin (1995) attachment accuracy
- Generative model: Eisner (1996)
 - Simple, projective dependency grammars parseable in cubic time
 - Several models presented, most notably the recursive generation model, which arguably inspired the generative model in Collins (1997)
- 2006: CoNLL shared task (13 languages!)

Nonprojective Dependencies

Nonprojective Dependency Parsing

- Arguably really important for some languages
 - Free word order (Czech)
 - Crossing dependencies (Dutch?)
- McDonald et al., 2005: nonprojective parsing is a minimum-cost spanning tree problem!
 - Need to generalize to directed trees.
- Cost of a tree = sum of edge costs
- Independence assumptions?
- State-of-the-art for many languages when trained discriminatively. (We'll come back to this!)
- Later added second-order features (two edges) and approximate search algorithm (optimal is NP-hard).

(Mild) Context Sensitivity

Many more expressive formalisms have been made probabilistic:

- Tree Adjoining Grammar (Resnik, inter alia)
- Lexical-Functional Grammar (Riezler, *inter alia*)
- Tree Insertion Grammar (Hwa)
- Combinatory Categorial Grammar (Curran and Clark)
- Head-driven Phrase Structure Grammar (Tsuji'i)

Lots of emphasis on speed; sometimes **stochastic process** not possible (one solution: log-linear models).

Finite-State Parsing

Yes, really!

- Imagine an FST that inserts brackets. Apply it repeatedly. (Basic idea motivated and described in Roche, 1997.)
- Lots of theoretical work on approximating (P)CFGs with (W)FSAs (see Nederhof, 2001).
- Abney (2000) partial parsing
- Eisner & Smith (2005) dependency length constraints → regular language

Reranking

Really want non-local features to influence parsing decisions.

– Hard to get this into PCFGs, as we've seen.

- Collins (2000): re-rank the top *n* parses from a standard parser (>89%)
- Huang and Chiang (2005): exact *n*-best parses from CKY (or similar) parser
- Charniak & Johnson (2005): log-linear model for reranking, using Huang & Chiang's method for *n*-best list → even better!

Wait, I'm Confused!

- We will come back to all this "discriminative" training stuff.
- For now, the key message is:
 - Parsing is harder than anyone thought it would be.
 - All kinds of tradeoffs: sparseness, independence assumptions, speed