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ABSTRACT
Inferring movement trajectories can be a challenging task,
in particular when detailed tracking information is not avail-
able due to privacy and data collection constraints. In this
paper we present a complete and computationally tractable
model for estimating and predicting trajectories based on
sparsely sampled, anonymous GPS land-marks that we call
GPS snippets. To combat data sparsity we use mapping
data as side information to constrain the inference process.
We show the efficacy of our approach on a set of prediction
tasks over data collected from different cities in the US.
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1. INTRODUCTION
Smart mobile devices are becoming ubiquitous due to ready

availability of bandwidth and low entry cost. By now most
mobile phones and many tablets carry a Global Position-
ing System (GPS) or equivalent sensor that can be used
to locate the devices in high accuracy, even without using
the mobile network. This allows app-designers and web-
site developers to provide hyper-localized services, e.g. for
shopping, restaurant recommendation (Yelp, Urban Spoon,
. . . ), context-aware assistance (Square, Siri), device location
(Find My Friends, Foursquare), and contextual metadata for
user generated content (Twitter, Facebook).

Unfortunately, continuous logging of location data is very
costly in terms of energy, hence it is inadvisable to use
GPS location information beyond need, especially on de-
vices that are as energy-constrained as mobile phones. As a
result, GPS location records are only available in the form of
GPS trajectory snippets and sporadically, e.g. when a nav-
igation software is activated (e.g. Bing Maps, Apple Maps,
Mapquest), or whenever there is abundant power (e.g. while
plugged into a car charger). While this data is obviously
biased, it provides us with valuable observations regarding
travel times, and it allows us to infer properties of individual
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road segments at a spatial resolution exceeding that offered
by the GPS itself.

Modeling trajectories is a highly desirable task since it al-
lows one to improve the prediction of future locations, that
is, to extrapolate future behavior. This is crucial for sav-
ing battery on mobile phones, and to establish geofences
that can be exploited by location based services (Square,
Remember the Milk). Moreover, it allows us to fill in the
blanks between intermittent observations, that is, to inter-
polate between past actions. Note that the second task is
considerably easier since we know both approximate start
and endpoints of the trajectory. Both of these tools are im-
portant to assess the popularity of places and to establish
the preferred trajectory between two locations. Numerous
challenges arise when working with such GPS snippet data:

• The data collected is sampled non-uniformly, based on
a number of decisions influenced by power constraints,
business logic, and context.
• The data available to such algorithms needs to respect

appropriate privacy policies to retain the trust of the
users of the location based service. This may affect
e.g. distribution, length, accuracy, location, identity
and quantity.
• The data is often noisy, in particular when recording

it in cities, where urban canyons may bias the inferred
locations generated by the GPS.
• People are not always rational in their path planning.

That is, given a GPS snippet of observed locations,
they do not always follow the shortest or quickest path
between them for numerous reasons. At a minimum,
the latent motivations of leisure, convenience, bounded
knowledge are poorly understood and unobserved.
• The travel speeds are highly variable, depending on

time, roads, driving style, and context. Moreover,
waiting times on road intersections also fluctuate widely.
• The inference framework needs to be scalable to large

collections of trajectories, many locations, and many
GPS snippets. It helps if the problem decomposes hi-
erarchically and if there is only a need to share param-
eters locally (i.e. for adjacent observations), besides a
succinct set of global parameters.

Outline: We begin by a description of the model in Sec-
tion 2 and details on an efficient inference algorithm in Sec-
tion 3. We then give experimental results in Section 6 and
a summary. Finally we give an overview of related work in
Section 7 and contrast those approaches to ours and then
conclude in Section 8.



2. MODEL
Modeling movement trajectories requires a rather delicate

compromise between computational efficiency and fidelity of
the model. On one hand, a fair amount of details is required
for the model to be truthful. On the other hand, this can
lead to considerable expense in the dynamic programs ex-
ecuted for inference. In the following we describe a model
that, as we believe, offers a balanced compromise between
these two aims.

2.1 Trajectory Data
Observations are in the form of sets of sequences of GPS

location snippets with an approximate level of accuracy and
a timestamp added to each such observation. The diagram
below depicts the relationship between reported locations oi,
also referred-to as observations, true device locations, si, and
possible paths ξ taken between the latter. We assume that
the paths are constrained by roads, i.e. the GPS snippet will
only follow paths that are considered fit for this purpose.

observed locations

s1o1

o2

o3

s2

s3

states paths

We assume that the data have the following structure:

• A GPS observation o consists of a (latitude, longitude)
pair, a direction heading, and a timestamp.
• We denote by O = (o1, . . . , on) a GPS snippet of a

given length n
• O = {O1, O2, . . .} contains all GPS snippets.
• The state s is a location on a road segment. Its po-

sition can be determined by which segment it lies in
and the offset to the segment beginning. A state shares
properties of the road segment, such as direction head-
ing, and also properties of the observation it maps to,
such as the timestamp.
• S = (s1, . . . , sn) denotes a sequence of states.
• The index variables i, j usually indicate road segments.
• The index variable k is an indicator for points in a

trajectory and segments in a path.
• The variable ξ denotes a path between locations si, si+1

that the GPS snippet might have taken. Note that ξ
is typically the composition of several road segments.

Denote by θ the parameters, then p(O,S|θ) is the proba-
bility of mapping a observed trajectory snippet O into a
sequence of states S. Our goal is to maximize the following
log-likelihood

log p(O|θ) =
∑
O∈O

log
∑
S

p(O,S|θ), (1)

where the summations are over all available trajectory snip-
pets and all possible state sequences, respectively.

We make a first order Markov assumption to simplify the
inference. More specifically, we assume that p(O,S|θ) is a
product of observation models and motion models, each of
which only depends on the previous observation.

p(O,S|θ) =

n∏
k=1

p(ok|sk, θ)p(sk+1|sk, θ) (2)

where p(sn+1|sn, θ) = 1 for the virtual state sn+1.
Given this data our goal is to map the observations to

an actual path that a GPS snippet might have taken and
to infer future propensities of following a given path. This
will allow us to infer actual travel times on road segments.
In other words, we aim to infer a distribution over paths ξ
that is consistent with the locations, timings and direction
headings observed via a sequence of GPS records.

2.2 Observation Model
We assume that observed locations and directions are drawn

independently. This is reasonable, when taking into account
that direction inference on the device may involve not only
past locations but also additional observables such as accel-
eration and magnetic field.

Observed locations are assumed to be normally distributed
around the true locations. Moreover, since directions are
constrained to [0, 2π] we cannot model directional data as
explicitly Gaussian. However, we assume that the log-likelihood
is a quadratic function of the deviation between observed
and true heading. As a result, the observation model is
given by

p(o|s) ∝ exp

(
− 1

2σ2
d

∥∥∥oloc− sloc∥∥∥2 − 1

2σ2
l

∥∥∥odir− sdir∥∥∥2) , (3)

where
∥∥odir − sdir∥∥ is meant to denote the angle on the ring

[0, 2π], i.e. we assume that we have an approximately Gaus-
sian distribution over relative headings.

To ground observations we assume that true locations and
true directions are predominantly constrained by the direc-
tions and locations of the underlying road network. For this
to be feasible, we assume that we have access to underlying
mapping data. In other words, our aim is also to supplement
the mapping data with GPS snippet data, as inferred from
GPS traces.

2.3 Motion Model
The key to our analysis is a detailed motion model. We

will discuss the numerous challenges posed by an efficient in-
ference algorithm for it. It incorporates travel times and cor-
responding distributions over alternative paths that a GPS
snippet might have taken to reach a destination. Moreover,
it incorporates the aggregate probability of certain trajec-
tories by explicitly modeling the distribution over turns at
intersections.

Intuitively we capture the joint distribution as follows:
a given trajectory follows a sequence of turns at any given
time. Each of the associated road segments and intersections
take some time t to traverse. Moreover, segments need to be
consecutive in order to constitute a valid path. This yields
the following likelihood model for a sequence of observations
O and locations S:

p(O,S|θ) =
∏
k

p(ok|sk, θ)p(sk+1|sk, θ)

=
∏
k

p(ok|sk, θ)
∑
ξ

p(ξ|sk, θ)p(sk+1|sk, ξ, θ) (4)

In other words, we need to sum over all paths ξ that could
have led from sk to sk+1. The propensity of taking a cer-



tain path ξ will depend on sk, simply via direction heading,
location, speed and other context.

Furthermore, the state sk+1 is only reachable from sk via
ξ. This is encoded as follows: Let π(i, j) be the turning
probability from road segments i into j, where i and j are
adjacent. Assume that the path ξ consists of n sequential
road segments (i1, . . . , in). If ξ starts with sk, then

p(ξ|sk, θ) =

n∏
ι=1

π(iι, iι+1), (5)

and it will be 0 otherwise.
Note that our model uses a first order Markov assumption,

namely that sk+1|past follows sk+1|sk. A more advanced
model could incorporate longer sequence histories, albeit at
the expense of a significantly more expensive dynamic pro-
gram. In fact, a longer history would only be solvable by
means of sampling, hence we focus on the more directly ac-
cessible first order Markov assumption in the present paper.

2.4 The Inverse Gaussian Distribution
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Figure 1: Left: histogram of speeds reported by GPS
records; right: distribution of inverse speeds. Note that the
time distribution is distinctively non-Gaussian.

Besides requiring spatially contiguous trajectories we also
need to ensure that the travel occurs within the constraints
of available travel times. This means that the GPS snippet
needs to start and finish near well-defined locations at a
well-defined point in time.

At first glance, this would suggest that the time to travel
from s to s′ would follow a Normal distribution. However,
when analyzing road segments we do not condition on the
distance traveled but rather on the start and stop location.
Correspondingly, the distribution is over travel times which
are inversely related to speed. An empirical inspection of
speed distributions on a segment, as in Figure 1 confirms
that a Normal distribution would be a terrible fit for the
observed data. Under the assumption that the velocities
follow a Normal distribution this means that the travel times
follow an inverse Gaussian distribution. Before going into
specifics on how this is used, we briefly review its properties
here.

The inverse Gaussian distribution IG(µ, λ) is a member
of the exponential family. Hence parameter inference is
straightforward and can be solved as a convex minimization
problem. Its probability density is given by

p(x;µ, λ) =

(
λ

2πx3

) 1
2

exp
−λ(x− µ)2

2µ2x
, (6)

with µ, λ > 0. It has mean µ and variance µ3

λ
. From its

definition we can see that it has reference measure x−
3
2 and

sufficient statistics φ(x) = (x, x−1). Its normalization can
be computed efficiently by a variable transform which yields
a Gaussian integral. It captures the first passage time of
a Brownian random walk, hence it is quite appropriate for
modeling the time to reach a given location.

2.5 Modeling Travel Times
We now discuss how to model the travel times between

observations. In the following we assume that the path ξ
contains road segments i1, . . . , in. The k-th segment has
length `ik and is traversed at speed vik with variance in
travel time δik .

A straightforward way is to model the travel time on each
road segment as an inverse Gaussian distribution. However,
this is not suitable for our purpose. The issue is that we
have a sum over many segments and the inverse Gaussian
distribution is not closed under addition. This complicates
inference and leads to a potentially less faithful model.

Instead, we now make the following simplified assump-
tion: the average speed along a path ξ is given by a length-
weighted average of speeds over road segments. Moreover,
we assume that likewise, the variance is a linear combination
of per-segment variances:

vξ =
1

`ξ

n∑
k=1

`ikvik and δξ =
1

`ξ

n∑
k=1

`ikδik (7)

where `ξ =
∑n
k=1 `ik is the total length of the path.

The advantage of this approach is that we can now model
both time and variance as functions that are given by linear
combinations of per-segment attributes. An equivalent view
would be that we construct a Reproducing Kernel Hilbert
Space into which we map all segments and perform estima-
tion in this space [2].

Therefore the expected time to traverse the segment is
given by tξ = `ξ/vξ. Note that we need to scale the variance
with the total length of the segment, since it is reasonable
to assume that it should scale O(`ξ) with longer intervals.
The travel time of this path is then modeled as

T (`ξ) ∼ IG
(
v−1
ξ `ξ, (δξ`ξ)

2) (8)

As per the properties of the inverse Gaussian distribution
this amounts to a mean travel time of v−1

ξ `ξ and a variance

of v−3
ξ δ−2

ξ `ξ. This allows us to measure the probability of
reaching sk+1 if traveling from sk along ξ within a given
travel time, which is obtained by from the GPS timestamps
of the observations that adjacent steps map into.

2.6 Covariates
Both travel speed and variance of different segments are

correlated. For example, nearby road segments often share
similar values, so do roads in the same city, roads of the
same type, or traffic at different times of the day. This
challenge can be addressed by building a hierarchical model
with a broad range of covariates governing the relationship
between these parameters. We use the following attributes
in our model:

• Information regarding the type of road (e.g. highway,
major road, or residential) is highly indicative of the
travel time on a given segment.
• The number of lanes and information regarding traffic

signs convey information about travel speeds.



Algorithm 1 Inference Algorithm

1: repeat
2: Randomly sample a set of trajectories O
3: For each trajectory in O do dynamic programming

discussed in Section 3.2.
4: Update transition probability π by (13)
5: Update inverse Gaussian distribution parameters ω

and γ by (15) and (16)
6: until converged

• Information about usage type (bicycle, number of lanes,
pedestrians, speed limit).
• Location (street name, city, state, country, ZIP code).
• Traffic is highly time-varying, e.g. the time of rush-

hours may differ between days of the week and weekend
traffic patterns may be different yet. Hence it is worth
incorporating temporal information (time, week day,
holiday) into the traffic estimates.
• We control for endogenous effects.

The dataset used in the experiments is anonymous. This
means that we have no information as to whether two snip-
pets are generated by the same user. Recall that we made
the somewhat simplified assumption that speed v and dis-
persion δ are linear combinations of the per-path contribu-
tions. In this case, we define the feature vector for segment
ξ by the linear combination of per-segment features:

φξ :=
1

`ξ

n∑
k=1

`ikφik . (9)

Then the average speed and variance of this segment, which
are defined in (7), can be rewritten as

vξ = 〈φξ, ω〉 and δξ = 〈φξ, γ〉 , (10)

where both ω and γ are parameters will be learned.
Lastly, for computational convenience, we treat intersec-

tions as road segments with a fixed virtual length. This al-
lows us incorporate all parts into a common inference frame-
work without specific per-segment accounting.

3. INFERENCE
Our goal is to find a suitable set of parameters θ = {ω, γ, π}

that allow us to capture both the distribution over road seg-
ments, the probability of turns, and the variance of travel
times. One possible way is to maximize the log-likelihood
defined in (1). That is, we aim to solve the nonconvex opti-
mization problem

maximize
ω,γ,π

log p(O|ω, γ, π) (11)

subject to the positive speeds and variances constraints:

〈ω, φi〉 > 0 and 〈γ, φi〉 > 0 for all segments i.

Algorithm 1 summarizes the sketch of the inference. Specif-
ically, on each iteration, we first randomly sample a set of
GPS snippets, and then sequentially update the parameters
according to their subgradients. The constraints can be eas-
ily achieved by nonnegativity constraints on ω and γ, given
that φi has only nonnegative entries.

The key challenge is on calculating the gradients. We first
introduce auxiliary results on deriving partial derivatives,

next we explain how to calculate the conditional probabili-
ties via dynamic programming, and finally we present how
to update the parameters.

3.1 Subgradients
We have a number of observed (GPS locations) and hid-

den (true locations, paths, intersection times) variables and
joint inference is a nonconvex problem. Let us briefly con-
sider the general problem of computing gradients of a prob-
ability distribution p(x, y; θ) that consists of observed x and
unobserved y random variables. Moreover, assume that p
factorizes into terms

p(x, y; θ) =
∏
c∈C

ψc(xc, yc; θ)

where xc and yc denote the corresponding (typically overlap-
ping) subsets of (x, y) that are involved in the function ψc.
This holds for the likelihood of the sequence of observations.
In this case we have [1]:

∂θ log p(x; θ) =
∑
c∈C

Eyc|x [∂θ logψc (xc, yc; θ)] . (12)

This can be seen via

∂θ log p(x; θ)

=
1

p(x; θ)

∑
c∈C

∫
dy
∏
c′ 6=c

ψc′(xc′ , yc′ ; θ)∂θψc(xc, yc; θ)

=
1

p(x; θ)

∑
c∈C

∫
dyp(x, y; θ)

∂θψc(xc, yc; θ)

ψc(xc, yc; θ)

=
∑
c∈C

∫
dyp(y|x; θ)∂θ logψc(xc, yc; θ)

The claim follows from integrating out all hidden variables
except for yc. The advantage of this strategy is that it suf-
fices to compute expectations with respect to subsets yc of
variables at a time. For instance, in our case this involves
only variables for adjacent road segments and transition
probabilities.

3.2 Dynamic Programming
The key in computing the gradients is the ability to com-

pute the expectation in (12), which is essentially calculating
the conditional probabilities over the latent variables sk and
ξ. However, this task is potentially quite expensive. For
instance, naively we would have to take all paths from sk to
sk+1 into account, regardless of how improbable and far they
may be. Moreover, a naive application of p(ok|sk) equally
yields a near infinite number of possible latent states that
could have led to the observation ok, assuming an improb-
ably inaccurate GPS measurement. In practice, these even-
tualities need to be ignored to keep the algorithm feasible.

We do so by imposing a hard constraint on the distance
between ok and sk. Since there are typically only a relatively
modest number of streets, this limits the number of possible
locations sk to tens rather than millions. Likewise, while we
allow for arbitrarily slow movement, we limit the maximum
speed in which the trajectory will neither violate the laws of
physics nor violate the laws of traffic substantially.

Denote by Paths(sk, sk+1) the set of admissible paths.
The transition probability between states is then given by

p(sk+1|sk, θ) =
∑

ξ∈Paths(sk,sk+1)

p(ξk|sk, θ)p(sk+1|ξk, sk, θ).



Note that dynamic programming would be more appropriate
if we had a substantially larger set of Paths(sk, sk+1). How-
ever, it was computationally more efficient to perform the
above computation in a brute-force fashion in our case, since
there are relatively few admissible paths between adjacent
states.

Next consider the trajectory of a path, as observed by O.
Here we need to resort to the forward-backward algorithm to
compute the likelihoods along the trellis of admissible states.

α(sk) =
∑
sk−1

p(ok−1|sk−1)p(sk|sk−1, θ)α(sk−1)

β(sk) =
∑
sk+1

p(ok|sk)p(sk+1|sk, θ)β(sk+1)

where we define α(s1) = 1 and β(sn) = p(on|sn, θ). Hence
marginals and pairwise probabilities are given by

p(sk|O) ∝ α(sk)β(sk)

p(sk, sk+1|O) ∝ α(sk)p(sk+1|sk, θ)p(ok+1|sk+1, θ)β(sk+1).

Using these probabilities we can compute the expectation
over latent variables sk, ξ as required for the gradients. Note
that the algorithm is O(m) due to the simple recursion in the
dynamic program, where m is the number of observations.

3.3 Updating Parameters
Recall that the objective (1) is given by a sum over trace

likelihoods log
∑
S p(O,S|θ) for all available GPS snippets.

Moreover, note that p(O,S|θ) can be expanded via (4). In
turn, p(ξ|s, θ) can be expanded further via (5). Putting
everything together we obtain the objective:

log p(O|ω, γ, π) =
∑
O∈O

log
∑
S

p(O,S|θ)

=
∑
O∈O

log
∑
S

{∏
k

p(ok|sk, θ)p(sk+1|sk, θ)

}

=
∑
O∈O

log
∑
S

∏
k

p(ok|sk, θ)

∑
ξ

p(ξ|sk, θ)p(sk+1|sk, ξ, θ)


=
∑
O∈O

log
∑
S

{∏
k

p(ok|sk, θ)

×

∑
ξ

(
n∏
ι=1

π(iι, iι+1)

)
p(sk+1|sk, ξ, θ)

]
Updating Transition Probability π
Note that π(a, b) 6= 0 only if the locations (a, b) are adjacent
to another since otherwise there is quite a noticeable differ-
ence between the speeds and heading cannot be any transi-
tion between them. This simplifies computing expectations
greatly. The gradient with respect to π can be computed by
taking the expectation over adjacent states

ψ(a, b) :=
∑
O∈O

∑
oi∈O

Eξ|O

[ nξ∑
k=1

{(ik, ik+1) = (a, b)}

]

using dynamic programming. Here the sum over the se-
quence is due to the fact that we assumed that π(a, b) is

stationary and by subsequent application of the product rule
for differentiation. Consequently we can update π to

π(a, b) = ψ(a, b)/
∑
a

ψ(a, b). (13)

The normalization by ψ(a, b) is needed to ensure that π en-
codes proper conditional probabilities. An analogous result
holds if we make π(a, b) dependent on additional covariates,
such as time. Moreover, ψ(a, b) can be modified easily using
a conjugate prior.

Updating Inverse Gaussian Distribution Parameters γ, ω
To update the associated parameters recall the probability
density (6) and moreover that we model the parameters via
µ = `ξ/vξ and λ = `2ξδ

2
ξ . Plugging this into the appropriate

time distribution we obtain

− log p(t|vξ, δξ, `ξ) =
1

2
log 2π +

3

2
log t− log δξ − log `ξ

+
t

2
δ2ξv

2
ξ − `ξδ2ξvξ +

1

2t
`2ξδ

2
ξ (14)

Note that due to our specific choice of parametrization, the
problem is nonconvex in vξ and δξ. Nonetheless, it has a
unique minimum. We have

−∂γ log p(t|vξ, δξ, lξ) = φξ

[
δξ
t

(tvξ − `x)2 − 1

δξ

]
−∂ω log p(t|vξ, δξ, lξ) = φξ

[
δ2ξ(tvξ − `ξ)

]
Since the times are defined via the distance between ob-
servations ok and ok+1, it suffices if we are able to take
the expectation over segments ξ|ok, ok+1 and aggregate over
all observation pairs (ok, ok+1) to obtain proper gradients.
Finally, note that p(ξ|sk, θ) only depends on sk insofar as
segments that start too far from sk or that result in dis-
contiguous paths are omitted. Hence we need not concern
ourselves with any explicit parameters inherent to p(ξ|sk, θ).

Finally, to ensure nonnegativity of the velocity and dis-
persion, and to exploit the fact the features are typically
very sparse, we use nonnegative feature maps φξ and mul-
tiplicative updates, i.e. exponentiated gradient [6]. That is,
we perform coordinate-wise updates

ω(t+1) = ω(t). ∗ exp
(
ηt−

1
2 ∂ω log p(O|θ)

)
(15)

γ(t+1) = γ(t). ∗ exp
(
ηt−

1
2 ∂γ log p(O|θ)

)
(16)

where η is the learning rate, t is an iteration counter, and
both .∗ and exp are carried out element by element.

4. EVALUATION TASKS
Two tasks are designed to evaluate the proposed algo-

rithm. We test how well the model fits the data by esti-
mating a past location or travel time to reach an internal
point on a given trajectory (interpolation task). The second
task tests how well the model generalizes to future events by
estimating either the GPS snippet location in the future at
a given time or the time needed to reach a future location.
Future prediction is a challenging task considering that the
GPS snippet could take various paths in the future, thus the
quality of the prediction depends on how well the model es-
timates the transition probabilities and how well the model
estimates the speed of each road segment.



4.1 Inferring the Past
In this task, we are interested in predicting a point, s,

within a trajectory. Let s− and s+ be the previous and next
observed points of s respectively in the trajectory, and let
t be the travel time between s− and s+. Two tasks can be
performed.

Time inference. Assume the location of s is given, and
the goal is to estimate the travel time from s− to s.
Denote by ξ is the most likely path from s− to s+
passing through s, and by ξ− the path section from s−
to s. Then we estimate the travel time by interpolation

t− =
|ξ−|
|ξ| t, where |ξ| is the length of path ξ.

Location inference. The goal is to estimate the location
given the travel time t− from s− to s. Let ξ be the
most likely path from s− to s+. We make an as-
sumption that s lies in ξ and denote by ξ− the sub-
path. Then ξ− is determined by the interpolation
|s−| = t−

t
|ξ|.

4.2 Predicting the Future
In this section we focus on predicting a future event be-

yond the boundaries of the observed trajectory. Again, let
s be the point of interest in the future, and s− be the last
observed point in a given trajectory. Unlike the case in Sec-
tion 4.1, s+ is unknown here, so that s can not obtained
by interpolation. Instead, we will use the learned motion
model. As in Section 4.1, we consider two tasks: predicting
the travel time, given a future location and predicting the
future location after a given time period.

Predicting travel time t. Since the location of s is known,
we could find all possible paths between s− and s. Let
ξ be one of them. By the inverse Gaussian model,
the expected time reaching s via ξ is v−1

ξ `ξ. Then we
sum over all possible paths from s− to s to predict the
travel time t:∑

ξ

p(s|s−, ξ)

−1∑
ξ

p(s|s−, ξ)
`ξ
vξ
, (17)

where p(s|s−, ξ) contains both transition probability
of path ξ and the probability to arrive at location s
after time given by tξ.

Predicting future location s. Now we describe how to
predict the future location s given the travel time t. To
accomplish this, we first find all possible paths starting
from s−. Let ξ be one of such paths. Then we predict
the most likely future location after traveling along this
path for time t. We let the travel speed be vξ and the
time variance of this speed is σξ. Thus, the most likely
traveled distance ` is

t = argmax
x

p(x; v−1
ξ `, δ2ξ`

2). (18)

where p is the probability density of the inverse Gaus-
sian distribution defined in (6). This equation has a
closed form solution, usually called the mode and is
given by:

t =
`ξ
vξ

(1 +
3

2

1

`ξvξσ2
ξ

) 1
2

− 3

2

1

`ξvξσ2
ξ

 . (19)
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Figure 2: Histogram of traffic frequency. Left: weekdays,
right: weekends. Note the rather pronounced double rush
hour in NYC and Boston.

Substituting (19) back into (18) we obtain the solution:

` = tgvξ
(
1 + 3/tv2ξδ

2
ξ

) 1
2 , (20)

This solution comprises two terms, the first is the dis-
tance traveled with speed vξ and time t. The second
term takes into account the variance of the speed.

5. DATASETS
To demonstrate the efficacy of our approach we sampled

GPS trajectory data in 2013 from four US cities: San Fran-
cisco (CA), New York City (NY), Boston (MA) and Salina
(KS) and corresponding map data. The resulting dataset
comprises around 20 million trajectories, 50,000 road seg-
ments and 100,000 intersections.

SF Boston NYC Salina
segments 17,602 6,639 17,409 9,041
intersections 34,989 9,902 29,453 23,622
trajectories 8.1M 6.8M 3.8M 3.3M

Figure 2 shows temporal patterns of these trajectories. There
are clear peaks corresponding to rush hours at 8am and 6pm
during weekdays. As expected, there is a temporal shift and
smoothing on weekends when rush hours are not quite as
prominent.
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Figure 3: Left: histogram of travel speeds. Right: distribu-
tion over heading directions.

There is quite a noticeable difference between the speeds
and heading directions in different cities, as can be seen in
Figure 3. More specifically, traffic in San Francisco is much
slower than in New York and Boston. Moreover, note the
pronounced bimodality for Salina. This is likely due to the
fact that one of the highways is a major thoroughfare for
interstate transport. Also note the strong directionality of
traffic in all cities with the exception of Boston. This arises
from a grid-layout of the roads.



Figure 4: Road Segments and Intersections

The road segments and intersections are obtained from
mapping data, as represented in Figure 4. Both segments
and intersections are directional.

6. EXPERIMENTS
We present the experimental results of the two challenge

tasks described in Section 4 : inferring the past and predict-
ing the future. However, we first present the features used
to learn the speed of road segments.

6.1 Feature Sets for Learning Speeds
We constructed a set of binary features, φ for each road

segment to learn the speed of road segments as detailed in
Section 2.6. Note that φ denotes the features of a road
segment instances, i.e. the appearance of a road segment
within a given trajectory at a given time. These features
can be categorized into three sets:

Road features. These features capture several facets of
the road attributes such as road type “major road”,
”high way”, etc.

Temporal features. We sliced time into workday and week-
end hours to obtain 48 features. A given road segment
instance was assigned to an hour based on the time of
the majority of GPS points that fell into it.

Individual Speed. We used trajectory ID as the feature to
model individual speed preference along the trajectory.
This produced tens of millions of unique features.

We combined road and time features to obtain cross-features.
In other words, a feature from the road feature group was
paired with a feature from the time feature group to form
a new feature. This new feature has value 1 if and only if
the former two are both equal to 1. This allows us to model
non-linear interactions between features since we employ a
linear model as described in Section 2.6. This feature com-
bination is also equivalent to a hierarchical model. Due to
the large size of the trajectory feature group, we did not
combine it with other features.

6.2 Models Compared
To our best knowledge, most of the work in the literature

(as we will discuss in Section 7) focuses on on personalized

long term trajectory prediction with continuous GPS record-
ing [16, 17]. In contrast, our data consists of a large number
of anonymous snippets without user IDs. Hence their al-
gorithm does not apply directly. Instead, we compared the
proposed algorithm against several variants to understand
the contribution of each component in our model.

Full-Model. This model used the full set of features, and
parameters were learned by Algorithm 1.

GPS-Speed. The recorded GPS speeds was directly used
without learning ω. In other words, we modeled the
speed of a trajectory by the average of its recorded
speeds from GPS points. The remaining components
were the same as Full-Model. Probability π were mod-
eled as usual.

Common. The individual speed feature group was removed
compared to Full-Model. In this model, the speed and
time variance only depend on the location and time.

Shortest-Path. Only the shortest path between two states
was considered, the remaining components were the
same as in Full-Model. This variant has a compu-
tational advantage compared to other variants above.
However, it restricts the allowed behavior by assuming
people always choose the shortest path to the destina-
tion.

6.3 Experimental Setup
To carry out the tasks described above we randomly chose

30% of the trajectories as the test set. We held out a ran-
domly selected internal GPS point of each trajectory in this
set to accomplish the task of inferring the past. To predict
the future, we elided the last point in the trajectory. To
use these removed points for evaluation, their true location,
which is required in estimating the travel time, is chosen to
be the nearest point in a road segment.

We trained a single model on all trajectories from the four
cities. We ran the optimization algorithm for a set of itera-
tions until convergence. In each iteration, we randomly sam-
pled 1,000 trajectories from a random zip code area for pro-
cessing. The search diameter, namely the maximal distance
from possible true locations (states) to observed locations,
was limited by 50 meters. For computing expectations over
hidden paths ξ, we also limited ourselves to paths containing
at most 15 road segments, which was roughly 1.5 kilometer
long. Those paths were computed by the breadth-first search
algorithm and stored at the beginning before optimization
starts. Hence all possible paths between two locations could
be fetched during training. The running time of the training
procedure took several hours on a single machine with a par-
allel implementation. In other words, the dynamic program
on each trajectory was parallelized.

We fixed δd = 100 and δl = π
4

for the motion model.
The learning rates were chosen from the interval [1, 0.01]
by examining the convergence rate. Empirically we found
that the features constructed from the trajectory IDs (in the
Individual speed group) are much sparser than the other two
feature groups. This imbalance slows the convergence of the
stochastic gradient descent. Instead of performing feature
normalization, we placed different learning rates η1 and η2
of these two kinds of features respectively. In addition, we
only tune η1 by fixing η2 = 10η1. Lastly, we used the top 5
candidate paths when predicting future locations.



Table 1: Average errors of estimating past locations and travel times.

time error (sec.) location error (m) heading direction error (·◦)
SF NYC Boston Salina SF NYC Boston Salina SF NYC Boston Salina

Full-Model 2.27 3.23 1.21 0.82 26.9 40.1 16.0 19.2 20.8 19.3 12.6 16.8
common 2.38 3.36 1.43 0.80 25.9 38.0 17.0 18.3 17.6 16.6 11.0 15.2
GPS-speed 2.99 4.51 1.85 0.98 31.5 50.3 22.3 21.7 17.2 19.1 12.4 14.1
Shortest-path 2.28 3.27 1.25 0.81 26.1 39.7 16.2 19.2 21.8 20.0 12.9 18.3

Table 2: Average error of predicting a future location and the travel time. The top 5 locations candidates are considered.

time error (sec.) location error (m) heading direction error (·◦)
SF NYC Boston Salina SF NYC Boston Salina SF NYC Boston Salina

Full-Model 3.56 4.83 2.41 1.19 57.8 70.5 44.4 33.5 20.1 19.3 12.9 16.3
common 3.95 5.20 2.81 1.27 67.1 77.6 50.9 36.3 17.4 16.2 11.2 15.5
GPS-speed 4.71 6.62 3.41 1.42 59.8 77.8 50.7 31.2 19.8 19.4 12.9 17.0
Shortest-path 4.40 6.03 2.73 1.46 68.7 83.4 49.2 40.6 22.1 21.5 12.9 19.3
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Figure 5: Left: histogram of learned travel speeds. There is a reduction of low speeds portion comparing to the recorded GPS
speeds in Figure 3. Middle and right: travel speed as a function of the time of day on weekdays and weekend. As before, the
effect of rush hours are quite visible in their reduction of travel speeds.

6.4 Learned Travel Speeds
The learned travel speeds are demonstrated in Figure 5.

The positions of the modes in the histogram of the learned
speeds are similar to the ones from GPS which were shown in
Figure 3. However, a noticeable differences is the significant
reduction of low speeds (less than 10m/s). These speeds
might have happened near a red traffic light or a stop sign.
The proposed model has a smoothing effect because it uses
a smoothed constant speed between two locations and thus
misses these range of speeds.

There is a strong pattern of the fall and rise of the trav-
eling speed along time as shown in Figure 5. As expected,
the traveling speed decreases during the two rush hours in
weekdays in all cities. However this effect is less obvious in
Salina, whose traffic is mainly on the interstate highways.

6.5 Time and Location Prediction
We first present the results of estimating past locations

and travel times. The average test errors are summarized
in Table 1. The average test errors of travel time, location,
and heading direction are below 5 seconds, 50 meters, and
20 degrees, respectively. Several reasons contributed to the
errors, such as the complexity of city roads, e.g. frequent
turning and waiting, and the degradation of data precision
due to urban canyons. We believe that our models fit the
data reasonably well.
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Figure 6: Recorded speeds in different positions of a road
segment during the time between 7pm and 9pm.

The estimation errors differ among cities, which can be
better observed in the top of Figure 7. As expected, the
existence of major arterial highways in Boston and Salina
makes the estimation problem easier than in SF and NYC
because the speed has lest variation in highways than local
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Figure 7: Top: location and time error for different cities
when performing interpolation. Bottom: corresponding ex-
trapolation errors.

city roads. Moreover, Manhattan has a higher density of
roads and people than the San Francisco area. As expected
it has larger estimation error than the latter.

Next we turn to comparing the different variants of the
models. The best (statistically significant) results are high-
lighted via underlines in Table 1, which are also visualized
in Figure 7. As can be seen, the model GPS-speed performs
worse than the other models. We believe this happens be-
cause the infrequently sampled GPS points induce highly
variable recorded speeds which in turn increases the esti-
mation errors. To see this point, refer to to Figure 6 which
shows the recorded speeds at a particular road segment have
a large variation. In addition, the gap between GPS-speed

and the best two other models increase from Salina to NYC
(left to right in Figure 7), where the traffic environment be-
comes more complex.

Finally we show the results of predicting future locations
and travel time in Table 2 and also in the bottom of Figure 7.
Comparing to the result obtained when inferring past loca-
tions, there is an increase on both location error and time

error as expected (since we have less constraints). However,
the errors are still within reasonable ranges. The increase of
errors in time, location and heading directions are less than
2 second, 40 meters, and almost 0, respectively.

The same conclusion observed from estimating past loca-
tions are still applicable when estimating future locations.
In addition, the model Full-Model with all functionality
performs better than the slightly simplified model common

and then the model that only takes shortest paths into con-
sideration. There are two reasons for this. First, the as-
sumption that people always choose the shortest path may
be too restrictive. People take a longer path for several pos-
sible reasons: easier to drive, personal preference, or even
due to turning mistakes. Taking into account a few more
possible paths take into considerations this variation bet-
ter. Second, the travel time and location are predicted by
the motion model while in the previous task (predicting the
past) we simply interpolate the values. Hence a better mo-
tion model like Full-Model that takes into consideration
individual preference, is more likely to have better individ-
ual motion models and therefore gives better results in the
future-prediction task.

7. RELATED WORK
There is increasing interest in estimating and predicting

travel times as the GPS devices become more available on
recent years. There are mainly two research directions. The
first is mapping an observed noisy GPS location to a real
location, and recovering the trajectory from temporal data.
There is a rich of work in this topic, such as [11, 9, 3]. [8]
models the whole trajectory path by taking account of the
road speed constraint while [10] adopts a HMM model. A
related topic is inference the map from the GPS trajectories
[7].

The second direction of research is more focused on mea-
suring and predicting the travel time. Most of the work in
the literature is focused on high frequency, long sequence
of GPS data [14] or highway traffic estimation [15]. [4]
presented a probabilistic model of travel time in arterial
network based on taxi GPS data. The travel time of each
road segment is modeled independently as a Normal and log-
normal distribution. A lower-bound of the log-likelihood is
solved by an EM-like algorithm to avoid the computational
intractable integrals. [13] used a similar model but from a
Bayesian approach with an MCMC algorithm for inference.
Very recently, [12] used a tensor decomposition method on
Beijing taxi GPS data.

By observing that travel times are usually correlated be-
tween adjacent roads, [5] proposed modeling the travel times
by general features which are related to the road and tem-
poral information. However, their work assume the true
position and paths are available. [16, 17] also used general
features to modeling taxi driver preference from the inverse
reinforcement learning approach.

Our work is different on several aspects. First our model
can not only map trajectories to real locations but also mod-
eling road speed and variance, and predicting future travel
time and position. Second, we focus on noisy and sparsely
sampled anonymous GPS sequences, while most of the work
in the literature focus on long, personalized and densely
sampled GPS sequences or high precision high-wag data.
Third, we model the travel speeds and variance as a func-
tion of road, time and personal preference and we consider



non-linear models. Fourth, the travel time is modeled as
an inverse Gaussian distribution with the path speeds and
variance as parameters. During inference the gradient can
be computed in a simple close form. Thus this gives a more
faithful approximation of the data as we shown in Figure 1
and is more computationally efficient due to the existence of
a closed form solution. Fifth, we perform a joint inference
over mapping observations to true locations, discovering pos-
sible paths, and inferring travel times. We achieved this by
a probabilistic model that considers all possible mapping se-
quences, potentially paths between two locations, and road
transition probabilities. Finally, most importantly, we use
millions of trajectories from different cities to demonstrate
the scalability of the proposed algorithm. This data is an
order of magnitude larger than previous work.

8. CONCLUSION
Nowadays there are new challenges to the task of infer-

ring movement from GPS data. The data may be short
and anonymous due to increasing demand of privacy con-
trol. The limited power capacity of mobile devices places
extra constraints on the sampling frequency of locations,
inducing temporal sparse GPS recordings. The spatial cov-
erage and volume of these GPS snippets is quite high due
to increasing availability of smart phones and other mobile
GPS devices.

In this paper we presented an efficient probabilistic model
to analyze this challenging GPS snippet data to perform
the following three tasks simultaneously: location mapping,
path discovery and travel time estimation. We give an effi-
cient scalable inference algorithm and demonstrated its effi-
ciency by using tens of millions of GPS trajectories snippets
from four different cities. The experimental results showed
that this algorithm performed well on both estimating past
and predicting future locations and travel times.
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Alexandre M Bayen, Toch Iwuchukwu, and Ken
Tracton. An ensemble kalman filtering approach to
highway traffic estimation using gps enabled mobile
devices. In IEEE CDC, pages 5062–5068. IEEE, 2008.

[15] Yufei Yuan, JWC Van Lint, R Eddie Wilson, Femke
van Wageningen-Kessels, and Serge P Hoogendoorn.
Real-time lagrangian traffic state estimator for
freeways. IEEE Trasaction on Intelligent
Transportation Systems, 13(1):59–70, 2012.

[16] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell,
and Anind K Dey. Maximum entropy inverse
reinforcement learning. In AAAI, pages 1433–1438,
2008.

[17] Brian D Ziebart, Andrew L Maas, Anind K Dey, and
J Andrew Bagnell. Navigate like a cabbie:
Probabilistic reasoning from observed context-aware
behavior. In Ubiquitous Computing, pages 322–331.
ACM, 2008.


	Introduction
	Model
	Trajectory Data
	Observation Model
	Motion Model
	The Inverse Gaussian Distribution
	Modeling Travel Times
	Covariates

	Inference
	Subgradients
	Dynamic Programming
	Updating Parameters

	Evaluation Tasks
	Inferring the Past
	Predicting the Future

	Datasets
	Experiments
	Feature Sets for Learning Speeds
	Models Compared
	Experimental Setup
	Learned Travel Speeds 
	Time and Location Prediction

	Related Work
	Conclusion
	References

