Keyword Search on External Memory Data Graphs

Bhavana Bharat Dalvi*

Meghana KshirsagarT

S. Sudarshan

Computer Science and Engg. Dept., I.I.T. Bombay

bhavana.dalvi@gmail.com, meghanak@yahoo-inc.com, sudarsha@cse.iitb.ac.in

ABSTRACT

Keyword search on graph structured data has attracted a
lot of attention in recent years. Graphs are a natural “low-
est common denominator” representation which can com-
bine relational, XML and HTML data. Responses to key-
word queries are usually modeled as trees that connect nodes
matching the keywords.

In this paper we address the problem of keyword search
on graphs that may be significantly larger than memory.
We propose a graph representation technique that combines
a condensed version of the graph (the “supernode graph”)
which is always memory resident, along with whatever parts
of the detailed graph are in a cache, to form a multi-granular
graph representation. We propose two alternative approaches
which extend existing search algorithms to exploit multi-
granular graphs; both approaches attempt to minimize 10
by directing search towards areas of the graph that are likely
to give good results. We compare our algorithms with a vir-
tual memory approach on several real data sets. Our experi-
mental results show significant benefits in terms of reduction
in IO due to our algorithms.

1. INTRODUCTION

Keyword search on graph structured data has attracted a
lot of attention in recent years. Graphs are a natural “low-
est common denominator” representation which can com-
bine relational, XML and HTML data. Graph representa-
tions are particularly natural when integrating data from
multiple sources with different schemas, and when integrat-
ing information extracted from unstructured data. Personal
information networks (e.g. [7]) which combine information
from different sources available to a user, such as email, doc-
uments, organizational data and social networks, can also be
naturally represented as graphs. Keyword querying is par-
ticularly important in such scenarios.

Responses to keyword queries are usually modeled as trees

*Current affiliation: Google Inc., Bangalore

TCurrent affiliation: Yahoo! Labs, Bangalore

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

that connect nodes matching the keywords. Each answer
tree has an associated score based on node and edge weights,
and the top K answers have to be retrieved.

There has been a great deal of work on keyword query-
ing of structured and semi-structured data in recent years.
Several of these approaches are based on in-memory graph
search. This category includes the backward expanding search
[3], bidirectional search [16], dynamic programming tech-
nique DPBF [9], and BLINKS [13]. All these algorithms
assume that the graph is in-memory.

As discussed in [3, 16], since the graph representation does
not have to store actual textual data, it is fairly compact and
graphs with millions of nodes, corresponding to hundreds of
megabytes of data, can be stored in tens of megabytes of
main memory. If we have a dedicated server for search,
even larger graphs such as the English Wikipedia (which
contained over 1.4 million nodes and 34 million links (edges)
as of October 2006) can be handled. However, a graph of
the size of the Web graph, with billions of nodes, will not fit
in memory even on large servers.

More relevantly, integrated search of a users personal in-
formation, coupled with organizational and Web informa-
tion is widely viewed as an important goal (e.g. [7]). For
reasons of privacy, such search has to be performed on a
users machine, where many applications contend for avail-
able memory; it may not be feasible to dedicate hundreds of
megabytes of memory (which will be needed with multiple
data sets) for occassionally used search.

A naive use of in-memory algorithms on very large graphs
mapped to virtual memory would result in a very significant
IO cost, as can be seen from the experimental results in
Section 7. Related work is described in more detail in
Section 2. None of the earlier work has addressed the case
of keyword search on very large graphs.

In this paper we address the problem of keyword search on
graphs that may be significantly larger than memory. Our
contributions are as follows:

1. We propose (in Section 4) a multi-granular graph rep-
resentation technique, which combines a condensed ver-
sion of the graph (the “supernode graph”) which is
always memory resident, along with whatever parts

) of the detailed graph are in a cache. The supernode
graph is formed by clustering nodes in the full graph
into supernodes, with superedges created between su-

3 pernodes that contain connected nodes. The multi-

granular graph represents all information about the
part of the full graph that is currently available in
memory.

1189

The idea of multi-level hierarchical graphs formed by
clustering nodes or edges of a graph has been used
in many contexts, as outlined in Section 2, and hi-
erarchical multi-granular graph views have been used
for visualization (e.g. [6]). However, as far as we are
aware, earlier work on search (including keyword and
shortest path search search) does not exploit the cache
presence of parts of the detailed graph.

. We propose two alternative approaches which extend
existing search algorithms to exploit multi-granular
graphs; both approaches attempt to minimize 10 by
directing search towards areas of the graph that are
likely to give good results.

The first approach, the iterative approach (Section 5),
performs search on the multi-granular graph. The an-
swers generated could contain supernodes. Such super
nodes are expanded, and the search algorithm is ex-
ecuted again on the new graph state, till the top-K
answers are found. Any technique for keyword search
on graphs, such as backward expanding, bidirectional
or DPBF, that does not depend on precomputed in-
dices can be used within an iteration.

The second approach, described in Section 6, is an
incremental approach, which expands supernodes as
before, but instead of restarting search from scratch,
adjusts the in-memory data structures to reflect the
changed state of the multi-granular graph. This saves
significantly on the CPU cost, and as it turns out,
reduces 10 effort also. We present an incremental ver-
sion of the backward expanding search algorithm of [3],
although in principle it should be possible to create
incremental versions of other search algorithms such
as bidirectional search [16] or the search technique of
BLINKS [13].

. We compare our algorithms and heuristics with a vir-
tual memory approach and the “sparse” approach of
[14], on several real data sets. Our experimental re-
sults (Section 7) show significant benefits in terms of
reduction in IO due to our algorithms, and our heuris-
tics allow very efficient evaluation while giving very
good recall.

2. RELATED WORK

Work on keyword querying can be broadly classified into
two categories based on how they use schema information:

1. Schema-based approaches: In these approaches, a sch-
ema-graph'of the database is used, along with the
query keywords and text-indices to first generate “can-
didate” or probable answer trees. SQL queries cor-
responding to each candidate tree are computed and
each query is executed against the database to get
results. Only some of the original candidate answer
trees may produce results finally. DBXplorer [1], DIS-
COVER [15], [14], [20] and [21] present algorithms
based on this model.

Schema-based approaches are only applicable to query-
ing on relational data. Moreover, none of the algo-

' A graph with relations/tables as nodes, and edges between
two nodes if there exists a foreign-key to primary-key rela-
tionship between the corresponding tables.

1190

rithms listed above provides an effective way of gener-
ating top-K results in the presence of ranking functions
based on data-level node and edge weights.

Schema-free approaches: These approaches are appli-
cable to arbitrary graph data, not just to relational
data. Graph data can include node and edge weights,
and answers are ranked on these weights. The goal of
these algorithms is to generate top-k answers in rank
order. Algorithms in this category include RIU [19],
backward expanding search and bidirectional search
[3, 16], the dynamic programming algorithm DPBF
[9], and BLINKS [13]. All the above algorithms as-
sume either implicitly or explicitly that the graph is in-
memory, and would incur high random-IO overheads
if the graph (as well as the associated bi-level index in
the case of BLINKS) does not fit in memory.

A graph search technique based on merging of posting
lists coupled with graph connectivity information is out-
lined in the description of SphereSearch [10], but it is not
clear if their technique works on graphs larger than mem-
ory, since they require connectivity information for arbitrary
pairs of nodes, which would require extremely large amounts
of space. Object Rank [2] also precomputes posting lists for
each keyword, and merges them at run time, but suffers from
an impractically high blow up of index space. EKSO [25]
precomputes reachable tuples from each “root” tuple based
on schema information, and builds virtual documents that
are then indexed. This approach not only requires schema
information, but also results in high index overheads.

There has been much work on keyword search on XML
data, which is based on a tree model of data, e.g., [11]. The
tree model of data allows efficient querying based on hierar-
chical posting lists, but these techniques do not generalize
to the graph model.

Hierarchically clustered graph representations have been
used to deal with graphs that are larger than main memory
in a variety of applications, such as for relaxation algorithms
on very large graphs (e.g. Leiserson et al. [18]), and visu-
alization of external memory graphs (e.g., Buchsbaum and
Westbrook [6]), and for computation on Web graphs (e.g.
Raghavan and Garcia-Molina [23]).

Following [23], we can define a two-level graph represen-
tation, where graph nodes are clustered into supernodes,
and superedges are created between supernodes. The super-
graph, consisting of supernodes (without the corresponding
set of nodes) and the superedges, is used in [23] for PageR-
ank computation.

Nodine et al. [22] present schemes for storing graphs in
disk blocks, which allow a node to be replicated in more
than one disk block. Although efficient in terms of worst case
IO, their schemes have impractically high space overheads.
There has been a fair amount of work on external memory
graph travel, e.g. Buchsbaum et al. [5], but this body of
work concentrates on a complete traversal of a graph, not
on searching for connections on a small part of the graph,
which we address.

There has also been a good deal of work on shortest-path
computation on disk-based graphs. Several techniques in
this area, e.g. Shekhar et al. [24], and Chang and Zhang
[8], are based on partitioning graphs, and maintaining infor-
mation about boundary nodes of the partitions. Although

these algorithms are efficient for planar graphs,? where clus-
ters with a very small number of boundary nodes can be
constructed relatively easily, they can be very inefficient on
non-planar graphs, where the number of boundary nodes
can be very high.

3. BACKGROUND

In this section, we first briefly describe the graph model
for data, outline search algorithms proposed earlier for in-
memory data, and outline a two-level graph representation
and a two-phase search algorithm proposed earlier.

3.1 Graph Model

We use the directed graph model for data, and the rooted
tree model for answers, following [3], which are summarized
below. (Undirected graph models are a special case of di-
rected graph models.)

e Nodes: Every node has an associated set of keywords.
Each node in the graph has an associated node weight,
or prestige, which influences the rank of answers con-
taining the node.

Edges: Edges are directed and weighted. Higher edge
weights correspond to a weaker degree of connection.
The directed model has been shown to help avoid short-
cut answers through hub nodes which are unlikely to
be meaningful semantically [3]. An approach of defin-
ing edge scores based on in/out degrees of nodes is
presented in [3]. The search techniques we consider
are not affected by how the edge scores are defined.

Keyword Query: A keyword query consists of a set of
terms k;, i =1...n.

Answer Tree: An answer is a minimal rooted directed
tree, such that every keyword is contained in some
node of the tree.

The overall answer score is a function of the node score
and the edge score of the answer tree. The search algo-
rithms are not affected by the exact combination func-
tion, except that the combination function is assumed
to be monotonic; an additive model or a multiplica-
tive model can be used as described in [3]. The node
score is determined by the sum of the leaf/root node
weights. Several models of edge score have been pro-
posed. The model used in [3] defined the edge score of
an answer tree as the inverse of the sum of the weights
of all edges in the tree.

The answer model in [16] treats an answer tree as a set
of paths, with one path per keyword, where each path
is from the root to a node that contains the keyword;
the edge score of an answer is defined as the sum of
the path lengths. [13] also uses this model and points
out that (a) this model allows queries to be answered
in polynomial time, whereas the Steiner tree model
of [3] is NP hard, and (b) this model also avoids the
generation of a large number of similar answers with
the same root. We use the set-of-paths model in this

paper.

2The most common application for shortest-path computa-
tion is road networks, which are planar.

1191

3.2 Keyword Search

Given a set of query keywords, generating the results con-
sists of two main steps. The first step involves looking up
an inverted keyword index to get the node-ids of nodes (cor-
responding to tuples containing one/more of the keywords).
These are called the “keyword nodes”.

In the second step, a graph search algorithm is run to
find out trees connecting the keyword nodes found above.
The algorithm finds rooted answer trees, which should be
generated in ranked order. Once an answer tree is generated,
it is displayed to the user.

In this section we describe the Single-Iterator Backward
Expanding Search algorithm from [16], which is a variant of
the (multi-iterator) Backward Expanding Search algorithm
from [3]. In the rest of this paper we shall refer to this
algorithm as Backward Ezxpanding Search or BES.

BES takes as input, the set of keywords and the graph
and outputs top-k answer trees containing those keywords.
For each keyword term k;, it first finds the set of nodes S;
that are relevant to (contain) keyword k;, by using a disk
resident keyword-index built on the indexable columns of
the database. BES concurrently runs n copies of Dijkstra’s
single source shortest path algorithm; i.e., one instance per
keyword. Each instance provides an iterator interface to
incrementally retrieve the next nearest node. We call each
instance of Dijkstra’s algorithm as a Shortest Path Iterator
or SPI. The source node for SPI i is (conceptually) keyword
ki, whose neighbors are the nodes containing k; (referred to
as keyword nodes).

The iterator traverses the graph edges in reverse direction
from the keyword nodes. The idea is to find a common
vertex from which a forward path exists to at least one node
in each set S;. Such paths will define a rooted directed tree
with the common vertex as the root and the corresponding
keyword nodes as the leaves. The tree thus formed is an
answer tree. As each iterator generates more nodes, more
answer trees are found. Answers are generated roughly in
decreasing edge score order, although not exactly so.

None of the search algorithms in the literature generate
answers in (decreasing) order of score, although they output
answers in (decreasing) score order. Algorithms proposed
earlier (including BES) as well as those proposed here gen-
erate answers roughly in (decreasing) edge score order, 3
and these answers must be temporarily stored in a result
heap. However, these algorithms also provide, at any stage,
a bound Lg such that no answer of higher edge score can
be generated in future; and all answers of higher edge score
have been generated already. A bound on the overall an-
swer score L can be computed using the edge score bound
and the maximum possible node score for the given set of
keywords ([16, 13]). An answer tree can be output if its
score is greater than the bound L. The bound L decreases
as the algorithm progresses, allowing the top k answers to
be output in decreasing order of their score.

Virtual Memory Search: We can run BES (or any other
search algorithm) on an external memory graph represen-
tation which clusters nodes into disk pages, fetching nodes
from disk as required. The set of nodes in memory would
form a cache of the disk resident graph, akin to virtual mem-
ory. However, performance is significantly impacted, since

SDPBF [9] generates answers in decreasing edge score order,
although not in decreasing order of overall score.

keyword search algorithms designed for in-memory search
access a lot of nodes, and such node accesses lead to a lot of
expensive random IO when data is disk resident. (This in-
tuition is supported by our performance study in Section 7.)

3.3 2-Stage Graph Search

In earlier unpublished work Gupta and Bijay [12, 4] con-
sidered the problem of keyword search exploiting the 2-level
graph structure, and presented a 2-phase algorithm for key-
word search on 2-level graph representation.

3.3.1 2-Level Graph Construction
The 2-level graph representation is defined as follows [23]:

e SuperNode: The graph is partitioned into compo-
nents by a clustering algorithm, and each cluster is
represented by a node called the super mode in the
top-level graph. Each supernode thus contains a sub-
set of the vertex-set V'; the contained nodes are called
innernodes.

SuperEdge: The edges between the supernodes called
superedges are constructed as follows: if there is at
least one edge from an innernode of supernode sl to
an innernode of supernode s2, then there exists a su-
peredge from sl to s2.

During the supernode graph construction, the parameters
for the clustering are chosen such that the supernode graph
fits into the available amount of main memory. Each su-
pernode has a fixed number of innernodes and is stored on
disk.

In the context of [23] nodes and edges are unweighted. In
the context of keyword search, edges are weighted, and the
edge-weight of a super edge is defined as min{ edge-weight
} computed over all the edges between the innernodes com-
prising the two supernodes. Using min helps in getting an
upper bound on the score of any real answer that is a refine-
ment of a given answer that includes a superedge, although
Gupta and Bijay also consider using average in place of min.

In some contexts, the graph has a natural clustering, e.g.
based on URL prefixes for web graphs (e.g. [23]) or network
hierarchies (e.g. [6]). Several algorithms have been proposed
for hierarchical graph clustering on arbitrary graphs, e.g.
METIS [17].

Gupta and Bijay [12, 4] tried several techniques for clus-
tering, and found a technique based on edge-weight priori-
tized breadth-first-search (EBFS) to work the best. In this
technique, an unassigned node is chosen and a BFS is started
from it. During BFS, nodes are explored in the order of their
edge-weights from the parent node. The BFS is stopped
once the number of explored nodes equals the predefined
maximum supernode size. All these explored nodes are put
in a new cluster and marked as assigned.

BLINKS [13] uses clustering on the data graph to create
clusters, which it uses to reduce the size of an index structure
called the forward index.* [13] explores two techniques for
clustering the data graph, one based on breadth-first search
(BFS) and one based on the METIS clustering technique
[17], and their performance study shows that BFS works

4The forward index is used to store precomputed node-to-
keyword distances/paths, which can speed up search. The
version of the forward index with clustering is called a “bi-
level” index.

1192

well.> We note however that clustering in BLINKS is done
only to restrict the index size. BLINKS performs random
accesses on both the graph and on the bi-level index, and
thus requires the graph as well as the bi-level index to be
memory resident; BLINKS is therefore inapplicable to the
case where the graph is larger than memory.

The issue of which clustering technique works best is be-
yond the scope of this paper, but based on the above men-
tioned work, we chose to use the EBFS technique for clus-
tering.

3.3.2 2-Phase Search Algorithm

Gupta and Bijay also describe a 2-stage search algorithm,
which works as follows:

1. [Phase-1] Search only on the complete top-level super-
node-graph and generate supernode results (results con-
taining only supernodes). To generate top-k final re-

sults, a larger number N of supernode results are gen-

erated in phase-1.

[Phase-2] Expand all supernodes from each of the

phase-1 results and obtain the FEzpanded Graph Gg.

Invoke the search algorithm only on Gg, producing

innernode results (results containing only innernodes).

Gupta and Bijay [4, 12] discuss several limitations of 2-
stage search. Minimal answers at the expanded level may
correspond to non-minimal answers at the supernode level.
For example, nodes nl and n2 containing keywords k1 and
k2 may both be in one supernode, but an intermediate node
connecting nl and n2 may be in a separate supernode. Such
answers will never be generated if only minimal answers are
generated in phase-1. At the same time, it is not clear what
non-minimal results to generate in phase-1. Further, the
number N of supernode results to expand in phase-2 is de-
cided arbitrarily, and there is no way to determine what N
to use to generate the top-k answers. As a result there are no
guarantees that the top-k results are generated in phase-2,
and recall (fraction of relevant results found) in their imple-
mentation was quite poor.

4. MULTI-GRANULAR GRAPH
REPRESENTATION

The 2-phase search algorithm requires the top level of the
2-level representation to be memory resident, and fetches
parts of the lower level, corresponding to supernodes, into
memory as required. Since the lower level in its entirety
is larger than memory, parts of the lower level are cached
in a fixed size buffer. Given the size of memories today, a
substantial amount of memory may be available for caching,
and if related queries have been executed earlier, relevant
parts of the lower-level graph may already be in-memory
when a query is executed. The 2-phase search algorithm is
unable to exploit this fact.

We propose a multi-granular graph structure to exploit in-
formation present in lower-level nodes that are cache-resident
at the time a query is executed. The multi-granular or MG

SBLINKS generates a node partition using BFS, and then
modifies it to get an edge partition, where a node may occur
in more than one cluster. Although the clustering is used
for a different purpose than ours, and node partitioning is
dual to edge partitioning, the goal of keeping related nodes
in the same cluster is the same.

O - Unexpanded supernode O - Inner node

," “' - Expanded supernode so conceptually
+ not present in Multigranular graph

S

Figure 1: Multi-granular Graph

graph is a hybrid graph that has both supernodes and inner-
nodes at any instant. A supernode is present either in ez-
panded form, i.e., all its innernodes along with their adja-
cency lists are present in the cache, or in unerpanded form,
i.e., its innernodes are not in the cache. An example multi-
granular graph is shown in Figure 1.

Since supernodes and innernodes coexist in the multi-
granular graph, several types of edges can be present. Of
these, the edges between supernodes and between innern-
odes need to be stored, the other edges can be inferred.
Since graphs are weighted, edge weights have to be assigned
to each type of edge, based on the edge weights in the un-
derlying graphs.

e supernode — supernode (S — S): edge-weight of S1 —
S2 = min{ edge-weight n1 — n2 | nl € S1 and
n2 € 52}

Using min provides an upper bound on the score of
any pure answer which is a “refinement” of an answer
that includes the superedge (the term “refinement” is
defined formally shortly).

supernode — inner-node (S — I): Let supernode be
S, inner-node be 7, and supernode to which i belongs
be I such that S # I.

edge-weight S — i = min{ edge-weight s — i | s € S}

These edges need not necessarily be explicitly repre-
sented. During the graph traversal, if S1 is an unex-
panded supernode, and we find a supernode S2 in the
adjacency list of supernode S1, and S2 is expanded,
we have found one or more S — I edges. We can enu-
merate such edges by locating all innernodes

{i € S2 | the adjacency list of 4 contains some inner-
node in S1 }

inner-node — supernode (I — S):

These edges arise when the search goes from an ex-
panded supernode (to which the inner-node belongs)
to an unexpanded supernode. The edge weight is de-
fined in an analogous fashion to the previous case.

inner-node — inner-node (I — I):
The edge weight is the same as in the original graph.

When we execute search on the multi-granular graph, the
answers generated may contain supernodes; we call such an
answer a supernode answer. If an answer does not contain
any supernodes, we call it a pure answer. Only pure answers
are actually returned to the user. A pure answer a, is said

1193

ITERATIVE SEARCH ALGORITHM)()

1 Input: A multigranular graph G
2 Output: Top-k pure results
3 while stopping criteria not satisfied
4 /* EXPLORE phase */
5 Run any in-memory search algorithm on G to generate
6 the top-n results.
7 /* Fewer than n results may be generated above, if
8 there are fewer than n results on G, or if in-memory
9 stops because a node-budget is exceeded. */
10 /* EXPAND phase */
11 for each result R in top-n results
12 if R is a supernode result then
13 SNodes = all supernodes from R
14 SNodeSet «— SNodeSet U SNodes
15 Expand all supernodes in SNodeSet
16 and add them to G
17 end while
18 Output top-k pure results

Figure 2: Iterative Expansion Algorithm

to be a refinement of a supernode answer as if the tree as
can be derived from the tree a, by a sequence of steps as
follows: each step replaces a subtree of a, by a supernode S;,
provided that all nodes in the subtree belong to supernode
S;. Edges into and out of the replaced subtree are replaced
by the corresponding edges of type I — S, S — I,or S — S
to or from S;.

LEMMA 4.1. Given a multi-granular graph where super-
edge weights are computed using the min function, and any
set of supernodes expanded in cache, and given any pure
answer ap,

1. there is a unique tree as in the multi-granular graph

such that ap is a refinement of the as, and

the edge score of as is > the edge score of ap. O

5. ITERATIVE EXPANSION SEARCH

The Iterative Expansion algorithm is a multi-stage algo-
rithm which is applicable to multi-granular graphs. This
algorithm runs in multiple stages, unlike the 2-stage algo-
rithm outlined earlier, expanding some supernodes in each
stage. The iterative expansion algorithm is shown in Figure
2.

Each iteration of Iterative Expansion can be broken up
into two phases:

(a) Explore phase: Run an in-memory search algorithm
on the current state of the multi-granular graph (the multi-
granular graph is entirely in memory), and

(b) Expand phase: Expand the supernodes found in top-
n results of the (a) and add them to input graph to produce
an expanded multi-granular graph.

The graph produced at the end of Expand phase of itera-
tion ¢ acts as the graph for iteration ¢ + 1. Any in-memory
graph search algorithm can be used in step (a). The in-
memory search algorithm is used unchanged on the multi-
granular graph, and treats all nodes (whether supernode or
innernode) in the same way. Iterative Search makes use of al-
ready expanded supernodes from previous iterations in gen-
erating better results in successive iterations. The problem
of non-minimal answers faced by 2-phase search, outlined
earlier, is avoided since the search is rerun with supernodes

expanded. (An example of the execution of Iterative Search
is provided in Appendix A.)

The algorithm stops at the iteration where all top-k re-
sults are pure. So the stopping criterion in the Iterative
Algorithm (Figure 2) will just check whether top-k results
formed in current iteration are all pure. Other termination
heuristics can be used to reduce the time taken for query
execution, at the potential cost of missed results.

As shown in Figure 2, if the top-k results are to be dis-
played as the final output, then in each iteration the algo-
rithm generates the top-n results, for some n > k. Our
current implementation simply sets n = k for all iterations;
experiments to study the effect of a value of n that is ini-
tially larger, but decreases in later iterations, are planned
as part of future work.

We also observed that for some queries, generating n re-
sults (for n > k) took a long time since the lower ranked
answers were very large trees, requiring a lot of exploration
of the graph. To avoid this problem, we added a node-budget
heuristic, which stops search in a particular iteration if ei-
ther
(1) If number of nodes touched to generate the (i 4 1) an-
swer is greater than twice the number of nodes touched to
generate " answer and ¢ > k, or
(2) If the total number of nodes touched in an iteration ex-
ceeds a pre-defined maximum limit.

This heuristic trades off a potentially larger number of iter-
ations for a reduced cost within an iteration.

An implicit assumption made in the above algorithm is
that the part of graph relevant to the query fits in cache.
But this assumption fails in some cases, for example if the
algorithm explores a large number of nodes while generating
results in an iteration, or when the query has many keywords
each matching many nodes. In such a case, we have to evict
some supernodes from the cache based on a cache replace-
ment policy. Thus some parts of the multi-granular graph
may shrink after an iteration.

Such shrinkage can unfortunately cause a problem of cy-
cles in evaluation. For example, suppose a supernode S
is found in a supernode result R which is among the top-
n results of iteration 4, then it gets expanded and a refined
version of R say R’ gets generated in iteration j where j > i.
Now if in a later iteration, supernode S gets evicted from
cache, then in some iteration k > j, there is possibility that
result R gets generated again in the top-n results leading
to S being expanded again and so forth. Evaluation may
potentially not terminate unless we place some bound on
the number of iterations and stop regardless of the answers
generated.

To address this problem, we do not shrink the logical
multi-granular graph, but instead provide a “virtual memory
view” of an ever-expanding multi-granular graph. To do
so, we maintain a list, Top-n-SupernodeList, of all supern-
odes found in the top-n results of all previous iterations.
Any node present in Top-n-SupernodeList but not in cache
is transparently read into cache whenever it is accessed.

THEOREM 5.1. Iterative search (without the node-budget
heuristic) correctly computes the top k results when it ter-
minates. O

Since at least one supernode is expanded in each iteration
(except the last), the algorithm is guaranteed to terminate.
The above results also hold with the node-budget heuristic,

1194

except in the case when the heuristic terminates an iteration
because the number of nodes touched exceeds the maximum
limit, without generating any answer. Although some an-
swers may be missed as a result, such answers are likely to
be large answers with low scores.

6. INCREMENTAL EXPANSION SEARCH

Although the Iterative Expansion algorithm tries to min-
imize disk-accesses by iteratively improving the results, it
has the limitation that it restarts search every time and re-
computes results, effectively throwing away the current state
of the search algorithm each time. This can lead to signif-
icantly increased CPU time, which was borne out by our
experiments. We describe below an alternative approach,
which we call incremental expansion, which follows a differ-
ent approach.

6.1 Incremental Expansion Algorithm

As for iterative search, the incremental expansion algo-
rithm also performs keyword search on the multi-granular
graph. When a supernode answer is generated, one or more
supernodes in the answer are expanded. However, instead
of restarting search when supernodes are expanded, incre-
mental expansion updates the state of the search algorithm.
The exact way in which the state is updated depends on
the specific search algorithm. Once the state is updated
search continues from where it left off earlier, on the mod-
ified graph. Thus search done earlier does not have to be
redone if it did not pass through the expanded supernode.

Figure 3 shows the incremental expansion version of the
Backward Expanding Search algorithm described earlier in
Section 3.2. We refer to this algorithm as the Incremental
Expansion Backward search, or just Incremental Expansion
search for short.

The Incremental Expansion Backward search algorithm
runs backward search on the initial multi-granular graph.
There is one shortest path iterator (SPI) tree per keyword k;,
which contains all nodes “touched” by Dijkstra’s algorithm,
including explored nodes and fringe nodes, starting from k;.
More accurately, the SPI tree does not contain graph nodes,
rather each tree-node of an SPI tree contains a pointer to
a graph node. Each tree-node n also contains a pointer
to the its parent tree-node p in the SPI tree; the graph
node corresponding to p is the next node in the shortest
path (currently known shortest path, in the case of fringe
nodes) from the graph node of n to the keyword (or to be
more precise, to any “origin” node containing the keyword).
Although the multi-granular graph is shared, the SPI trees
are independent and do not share tree-nodes.

The backward search algorithm [3, 16] expands each SPI
tree using Dijkstra’s algorithm. When a graph node has
been reached in the SPI trees corresponding to every one of
the keywords, an answer has been found. Since answers may
be found out of order with respect to their scores, they are
accumulated in a heap and an answer is output only when
no better answer can be generated (see Section 6.2).

When an answer is output by the backward search algo-
rithm, if it contains any supernode it is not a pure answer.
In this case, one or more supernodes from the result are ex-
panded. A supernode being expanded may appear in mul-
tiple shortest path iterator (SPI) trees (one tree exists per
keyword).

To update the state of Dijkstra’s algorithm to reflect the

INCREMENTAL-SEARCH()
SPI — Treeli] : Shortest Path Tree of iterator ¢ which
contains both explored and unexplored (fringe) nodes
PQ)[i] : Priority Queue of iterator i, that contains
nodes yet to be explored (i.e fringe nodes)
while number of pure results generated < k
Result = BACKWARDSEARCH.GETRESULT()
/* getResult() returns one result */
if no result found then
exit
if Result contains a supernode then
EXPANDANDUPDATEITERATORS (Result.root)

OO0 Ulk Wi+~

=

EXPANDANDUPDATEITERATORS(ro0t)

1 for each shortest-path iterator SPI[{]
2 toDelete = first supernode on the path in SPIJi]
3 from a keyword node to root
4 toDeleteSN Set «— toDeleteSN Set U toDelete
5
6 for each shortest-path iterator SPI[i]
7 snodeHeap = min-heap of supernodes sorted on
8 their path-costs from the origin keyword-nodes
9 of iterator ¢
10 /* Sort supernodes in order of path-cost from origin
11 keyword node */
12 for each snodelD € toDeleteSN Set
13 if SPI-Treefi] contains snodelD then
14 snode = SPI-Treefi].getNode (snodelD)
15 snodeHeap.add (snode, snode.pathCost)
16 /* Delete each supernode from current iterator */
17 while not snodeHeap.isEmpty()
18 snode = snodeHeap.removeMin()
19 DELETESUPERNODEFROMITERATOR(snode, i)

Figure 3: Incremental Expansion Search

expansion of a supernode, tree-nodes representing the su-
pernode are removed from all shortest path iterators where
the supernode is present. If the supernode had been ex-
plored earlier in Dijkstra’s algorithm, its removal may cause
a change in the shortest path from some nodes to the cor-
responding keyword. Unlike in the normal Dijkstra’s algo-
rithm, the path cost of a fringe node may not just decrease,
but may actually increase when the multi-granular graph
changes. Similarly, the path cost of an explored node may
also increase when the multi-granular graph is modified.

More specifically, when a supernode is expanded, it is
deleted from the multi-granular graph and replaced by the
corresponding inner nodes. If the supernode was explored
earlier, it is present in one or more SPI trees. Deleting the
node clearly changes the shortest path for all nodes in the
SPI subtrees rooted in the supernode. Intuitively, if the path
of any node in a shortest-path iterator contains a supern-
ode, its path-cost (to the keyword) is a lower bound on its
true path-cost (assuming superedge costs are defined by the
min function). Expanding the supernode should improve
(increase) this lower bound.

The following updates need to be done after a supernode
S is expanded. For each SPI tree containing a tree-node s;
corresponding to S, the nodes in the subtree rooted at s;
are deleted from the SPI tree; these include all explored and
fringe nodes whose best path goes through s;. We then have
to recompute their best path, which is done as explained
shortly.

Further, for all inner nodes i of S, if there exists an outgo-
ing edge to 4, from any explored node in the SPI tree (after

1195

DELETESUPERNODEFROMITERATOR (S, ©)

1 /* Delete S from iterator i */

2 PQ[i].delete(S)

3 SPI-Tree[i].delete(S)

4 deletedSet = 0

5 DELETESUBTREE(S, ¢, deletedSet)

6 Read S from disk

7 /* Attach innernodes of S to SPI-Tree */
8 for each innernode in € S

9 if in is a keyword node then
10 PQ[i].add(in) with path-cost =0
11 SPI-Treefi].add(in)
12 else
13 FINDMINANDATTACH(n, ©)
14 for each node € deletedSet

15 FINDMINANDATTACH (node, i)
DELETESUBTREE(Node, i, deletedSet)

1 add Node to deletedSet

2 for each child-node chld of Node

3 SPI-Treeli].delete(chld)

4 DELETESUBTREE(chld, i, deletedSet)

FINDMINANDATTACH(node,)

/* Find best path connecting node SPI-Treefi] */

Out = {n|(node — n) is an edge &(n. isExplored
=true) & (n € SPI-Treeli])}

minCost = min{ edge-weight (node, p)+
path-cost (p) | p € Out}

minNode = argminycout{ path-cost (p)+
edge-weight (node, p)}

if minCost = co then
PQfi].delete (node)
SPI-Treefi].delete (node)

else

12 minNode. addChild (node)
13 PQfi].add (node) with path-cost = minCost
14 SPI-Treefi].add (node)

Figure 4: Functions called by Incremental Search

the subtree rooted at S is deleted), we attach (a tree-node
representing) ¢ to that node in tree. When there exist multi-
ple such nodes with edges to i, we choose to attach it to that
node p which gives the best path-cost (edge-weight(p — 1)
+ path-cost(p)) to i. We further make 7 a fringe node,
and place it in the priority queue (PQ) containing all fringe
nodes.

Note that an inner node ¢ of S may not get attached to
any node above, but may be reached at a subsequent stage
of the search. Conversely, an inner node may get attached
to some tree-node as described above, but a better path to
the keyword may be found subsequently, and it would get
reattached appropriately to the SPI tree. (An example of
the execution of Incremental Search is provided in Appendix
B.)

Updating of costs of nodes in the deleted subtree rooted at
S is done similar to the case of inner nodes: if they are con-
nected to any explored node in the SPI tree (after deletion
of the subtree), they are linked to the node that gives the
best path-cost, and placed back in the priority queue PQ.
Thus, a node that had been explored earlier and removed
from PQ may go back to PQ after this update.

The above updates ensure that the following invariants of
Dijkstra’s algorithm hold in the new state of the graph: (a)
the cost for every explored node is its best path cost, (b) for
every fringe node (in PQ) the current cost is the best cost

among paths that connect to one of the current explored
nodes, and (c) every node adjacent to an explored node is
either explored or in the fringe.

The above properties are an invariant for each step of Di-
jkstra’s algorithm. Expansion of a supernode, which deletes
a supernode, moves nodes in the corresponding deleted sub-
tree back into the fringe with their cost correctly updated.
Other nodes are not affected by the deletion since their (cur-
rent) shortest path does not pass through the deleted node.

This leaves the question of which supernodes to expand at
any point. In the Incremental Expanding search, supernodes
are expanded only when a result is generated. We tried two
schemes: (a) Expand only the closest supernode per keyword
on the path from the keyword to the root of the result. (b)
Expand all supernodes in the result. Expansion is performed
separately on each SPI tree. When multiple supernodes in
a given SPI tree have to be expanded, they are processed in
order of their path-cost (from the origin keyword nodes).

In our experiments in Section 7, we found that option
(a) (expand only closest supernode per keyword) is more
efficient than expanding all supernodes in the result.

Similar to Iterative Expansion search, Incremental Ex-
pansion search also assumes that the supernodes expanded
during evaluation of a query fit in the cache. If the numner
of expanded supernodes exceeds cache size, nodes may be
evicted, but we give a “virtual-memory” view of a multi-
granular graph that does not shrink, by re-fetching previ-
ously expanded supernodes transparently, as required.

While this ensures correctness, it can lead to thrashing
if evicted supernodes are frequently expanded again. We
address heuristics to control thrashing later.

The Dijkstra invariants mentioned earlier can be used to
show that at any state, the top k results at that state would
be generated by Backward Expanding search. Now consider
the state when the algorithm terminates, reporting the top k
results (which are all pure when the algorithm terminates).
Since the score of super-node result is an upper bound on
the score of its refinement, there cannot be any other pure
result with a higher score than the kth result. At any state
of the multi-granular graph, at least one result is generated
(assuming there is a result not generated earlier), and one
or more supernodes are expanded. Since the total number
of supernodes is finite, the algorithm will terminate. As a
result, we have the following theorem.

THEOREM 6.1. The incremental search algorithm correctly
generates the top-K results. O

At any state of the multi-granular graph, backward ex-
panding search can take at most m x (nlogn + E), where
m is the number of keywords, n the number of nodes and
E the number of edges. When an answer is found, and a
node expanded, at most m x (nlogn+ F) time is required to
delete nodes from the iterators (in practice much less time
is required if the expanded node is not near the root of the
shortest-path tree). Each node in the graph can be expanded
at most once, leading to an overall polynomial time bound.
The number of IO operations is at most equal to cache size
in the absence of thrashing. Even with thrashing, we can
show a polynomial bound on the number of IO operations.

However, these are worst case bounds, and in practice in
most cases the number of nodes expanded and 10 operations
performed is much smaller than the graph size. The only
exception is when thrashing occurs, which can be prevented

1196

heuristically.

6.2 Heuristics

We now introduce several heuristics that can improve the
performance of the Incremental Expansion algorithm.

Thrashing can be avoided by the following heuristic, which
we call stop-expansion-on-full-cache.

1. Nodes expanded during search cannot be evicted from
the cache

Once the cache is full, and there are no nodes that can
be evicted, node expansion is stopped. The top-k pure
results from the current state of the graph are out-
put (these can be computed by starting a fresh search
which ignores supernodes).

With thrashing prevention, the number of IO operations
is bounded by the cache size, at a possible loss of recall.
However, our performance results show that recall is quite
good with thrashing prevention.

We also observed that when results are generated in rank
order, most of the early results tend to be supernode results.
This happens due to two reasons: (a) the score of supernode
results ignores the fact that when a supernode is expanded,
in most cases it would get replaced by a path containing
intra-supernode edges, and (b) the min edge technique for
computing weights of S — S, I — S, and S — I often un-
derestimates the cost of the edge between the corresponding
innernodes.

To give lower priority to supernode results, we use a heuris-
tic to increase the weights of edges which connect to a su-
pernode. We define the intra-supernode weight of a su-
pernode as the average of all innernode — innernode edges
within that supernode. Supernode to supernode (S — 5)
edges have the intra-supernode weights of both their end-
points added to the edge weight, while S — I and I — S
edges have the intra-supernode weights of S added.

The above adjusted edge weights could be used only for
altering the priority for search, in a manner similar to Bidi-
rectional search [16]. However, doing so would not allow
us to output answers early, and give limited benefits. In-
stead, in our heuristic the adjusted edge weights not only
affect prioritization, but also heuristically affect the lower
bound on future answers. This approach allows answers
to be output earlier, even if there is a small chance of a
better answer not being generated yet. We call this heuris-
tic the intra-supernode-weight heuristic. Our performance
study examines the effect of this heuristic.

The minimum fringe distance across all iterators gives a
lower bound on the edge-cost of future answers [16]. This
bound can be improved upon as shown in [13], but a cheaper
alternative is to use the heuristic of [16] which computes the
minimum fringe distance on each iterator, and adds these
results to get a heuristic bound. We use only edge weights,
not node weights, when computing these bounds. We call
this heuristic the sum-lower-bound heuristic. As shown in
[16] this heuristic gave good results in terms of reduced time
while giving good recall.

7. EXPERIMENTAL EVALUATION

We implemented the algorithms described earlier on the
BANKS codebase, and compared their performance with
alternatives, under different parameter settings.

Database Size of Nodes Edges Indegree
Graph | (tuples) Avg | Max
DBLP 99 MB 1.77 M 8.5 M 2.34 784
IMDB 94 MB 1.74 M 7.94 M | 2.28 | 693
Database Supernode | Compr. | Super- | Super- Indegree
graph Ratio -nodes -edges Avg [Max
[DBLP [16.9MB [5385 17714 | 1.38 M | 38.9 767
[IMDB || 33MB [284 | 17412 | 28 M [81.1 [1686 |

Figure 5: Datasets

7.1 Search Algorithms Compared

The algorithms implemented were Iterative Expanding
search, Incremental Expanding (Backward) Search with dif-
ferent heuristics, the in-memory Backward Expanding search
run on a virtual memory view of data (described below), and
the Sparse algorithm from [14].

A naive approach to external memory search would be to
run in-memory algorithms in virtual memory. To compare
our algorithms with this approach, we have implemented
this approach on the supernode graph infrastructure, treat-
ing each supernode as a page. We call this approach VM-
Search. VM-Search runs Backward Expanding search on a
virtual memory view of the innernode graph. If the search
accesses a node that is not currently in cache, the node is
transparently fetched (evicting other pages from the cache
if required).

The Sparse algorithm of [14] is a schema-based approach
for keyword search. Although it cannot be used on arbitrary
graphs, we include it in our comparison to see how our al-
gorithms compare with schema based algorithms when the
schema is known. For this, we manually generate all relevant
“candidate networks” (CNs) for a query by examining all the
relevant answers, and compute the total SQL query execu-
tion time over relevant CNs (relevance was judged manually
by examining results). Note that no result ranking is done
in the case of Sparse. To match the cold-cache runs of our
algorithms, and to get a fair comparison of the IO times,
we restarted the (PostgreSQL) database-server and flushed
the file-system buffers (as described in Section 7.2.3) be-
fore each SQL query. Further, indices were created on all
columns used by the joins of the CNs.

7.2 Experimental Setup

We describe the data sets used, compression results and
cache management, in this section.

7.2.1 Data Sets

We used two different datasets, the entire DBLP data as
of 2003, and the Internet Movie database (IMDB) also as of
2003. The node and edge-weights for the graphs constructed
from these datasets, were set as described in [16]. We clus-
tered the datagraphs using the EBFS technique described
in Section 3.3. Our default cluster (supernode) size was
set to 100 innernodes, corresponding to an average of 7TKB
on DBLP and 6.8KB on IMDB. Supernode contents were
stored sequentially in a single file, with an index for ran-
dom access within the file to retrieve a specified supernode.
We also performed some experiments with larger supernode
sizes. Some statistics of these datasets and the properties of
their supernode graphs are summarized in Table 5.

Although these datasets can fit into main memory on to-
day’s machines, as explained in Section 1, not all of main
memory may be available for the search application. Web

1197

Nodes per S’node Compr. Edges | Vertices Indegree
’ S’node Graph ‘ Ratio ‘ Avg | Max
100 16.9 MB 5.85 1378K 17.7K 40 767
200 13 MB 7.6 1106K 8.8K 62 775
400 11 MB 9 887K 4.4K 100 867
500 9.6 MB 10.3 820K 3.56K 116 780
800 8.3 MB 11.9 687K 2.2K 155 868

Figure 6: Compression ratios for DBLP for various
Supernode sizes

graphs, as well as data graphs obtained by information ex-
traction from very large data sets may be much larger than
memory. To keep our experiments manageable with known
data sets, we used the above datasets, but allocate a corre-
spondingly small amount of memory for search.

7.2.2 Clustering Results

The data sets were clustered using the EBFS technique
described in Section 3.3, which had been found to perform
well with 2-stage search. Figure 5 shows that with 100 nodes
per supernode, we get a compression ratio of 5.85 for DBLP
and 2.84 for IMDB. A comparison of the performance of
various clustering techniques is beyond the scope of this pa-
per, but is an important area of future work.

The graph compression ratios obtained with the EBFS
algorithm for different supernode sizes (or cluster sizes) on
DBLP are shown in Figure 6 and they range from 6 to 12.

The compression ratios obtained are significant, and allow
us to handle fairly large graphs with a reasonable amount
of memory. Further compression may be required to handle
extremely large graphs, using either better clustering tech-
niques or by using a multi-level clustering technique; this is
another area of future work.

7.2.3 Cache Management

The system used for experimentation had 3GB RAM, and
a 2.4GHz Intel Core 2 processor, and ran Fedora Core 6
(linux kernel version 2.6.18). We used a total of 24MB by
default for the supernode graph and cache (combined). For
DBLP, the supernode graph with 100 innernodes per supern-
ode occupied 17MB, allowing a cache size of TMB or 1024
nodes (1/14th of the original data-graph size, or 1/17th in
terms of supernodes) for our algorithms. For VM-Search,
we used a cache of 3510 nodes (1/4th of the original data-
graph size) by default, corresponding to 24MB, since VM-
Search does not require the supernode graph. The cache
uses an LRU-based page-replacement policy. The same pol-
icy is used across caches for all algorithms compared.

All results that we present for each of the algorithms were
taken on a cold cache. To ensure that the expanded supern-
ode pages read from disk for a query do not remain in the OS
file buffer for subsequent queries, we force the linux kernel to
drop the page cache, inode and dentry caches (after restart-
ing the server) before executing each query. (On Linux ker-
nels from version 2.6.16 upwards, this can be done by execut-
ing the command echo 3 > /proc/sys/vm/drop_caches, af-
ter executing the sync command to flush dirty pages back
to disk.)

Blocks fetched and subsequently evicted from the cache
during search may however still be resident in the file system
buffers if they are refetched. This effect results in execution
times being underestimated for VM-search, as well as in the
case of thrashing. However, even with this bias, thrashing

Dataset | Query | Keywords (# Keyword
nodes) [to-
tal keyword
supernodes]
DBLP Q1 Christos Faloutsos Nick | (81, 4, 161, 3)
Roussopoulos [158]

DBLP Q2 continuous queries | (1182, 2005, 1)
widom [2252]

DBLP Q3 naughton dewitt query | (5, 8, 3236,
processing 4986) [4830]

DBLP Q4 vapnik support vector (30, 4888,
1685) [4445]

DBLP Q5 divesh jignesh jagadish | (1,4,4,7,595,

timber querying XML 1450) [1258]

DBLP Q6 sudarshan widom (6, 1) [7]

DBLP Q7 giora fernandez (5,188) [172]

IMDB Q8 steven spielberg (1248, 19)
[1136]

IMDB Q9 brosnan bond (8, 228) [126]

IMDB Q10 bruce willis john (1355, 325,
10805) [6546]

DBLP Q11 krishnamurthy paramet- | (51,585,3236,

ric query optimization 3874) [4640]

IMDB Q12 keanu matrix thomas (4,430,3670)

[2593]

Figure 7: List of Queries

results in bad performance, and VM-search performs badly,
as results presented later in the section show, and thus the
conclusion of our performance study are not significantly
affected by this bias.

7.3 Experimental Results

We use the following metrics for comparison: number of
cache misses, total time taken for the query to execute,
which is split into CPU-time and IO-time, recall (obtained
by comparison with the results produced by original in-
memory BANKS algorithms and manual examination of a
result), total number of nodes (including supernodes) touched
and explored. The total time taken to execute a query is the
time taken to output the top-k results.

We used a set of 12 queries, of which 8 were from DBLP
and 4 from IMDB, which are shown in Figure 7. The fig-
ure also shows the number of nodes that match each key-
word, and the total number of supernodes that contain these
nodes.

7.3.1 Comparing Heuristics for Incremental Search

In this set of experiments, we compare different heuris-
tic versions of Incremental search. We first implemented
Incremental search without any of the heuristics, using the
minimum of fringe distances across iterators as the bound
for outputting answers. However this approach did not per-
form well, and gave poor results, taking unreasonably long
times for many queries. We do not present results for this
case.

We next studied two versions of Incremental expansion,
one with and one without the intra-supernode-weight heuris-
tic. Both versions used the sum-lower-bound heuristic, and
neither version used thrashing control. Figure 8 compares
the performance of these alternatives in terms of the cache
misses and recall. It can be seen that the sum-lower-bound
heuristic without the intra-supernode-weight heuristic, im-
proved matters somewhat compared to using the min bound,
but performance is still quite poor, with the last three queries

1198

Query W /o Intra-Supernode Wts | W/ Intra-Supernode Wts
’ H Cache Misses | Recall || Cache Misses | Recall
Q1 453 100 130 83
Q2 641943 100 391 100
Q3 317323 100 338 100
Q4 109 100 57 100
Q5 130 70 29 100
Q6 212 100 82 60
Q7 65 100 16 100
Q8 630741 100 534 100
Q9 385 100 88 100
Q10 - - 1336 100
Q11 - - 194955 100
Q12 - - 680 100

Figure 8: Intra-Supernode Weight Heuristic

thrashing and not finishing even after quite a long time.

In contrast, with the intra-supernode-weight heuristic, the
number of cache misses comes down drastically for most
queries, except for Q11, which exhibits thrashing. In fact,
remarkably, the number of cache misses is typically much
lower than the number of supernodes that match the key-
words in the queries. This indicates that performing key-
word search on the supernode graph is very successful at
avoiding fetching parts of the graph that do not contribute to
answers. The recall (as a fraction of results that were man-
ually judged as most relevant) is 100% for all but 2 queries,
which had 83 % and 60 % recall. Thus the intra-supernode-
weight heuristic reduces the number of cache misses drasti-
cally without significantly reducing answer quality.

The next set of experiments used the intra-supernode-
heuristic, but studied the effect of using the min bound ver-
sus using the sum-lower-bound heuristic. We omit the
details due to lack of space. The results showed that com-
pared to the min-lowerbound heuristic, the sum-lowerbound
heuristic typically reduces the time taken by about 10 to
30%, while recall (as we saw earlier) is very good. We use the
sum-lowerbound heuristic for the remaining experiments.

The next set of experiments studied the effect of thrashing
control for those queries that showed thrashing in earlier
experiments (those that did not thrash would not be affected
by thrashing control). Since, among queries Q1 to Q12, only
Q11 showed thrashing we added four more queries, chosen
to exhibit thrashing behavior, to this experiment:

DBLP | Q13 | kevin statistical (474,1696) [1541]

IMDB | Q14 | zellweger jude nicole (3,119,1085) [1074]

DBLP | Q15 | yates analysis string (31,15350,639)
8582

IMDB | Q16 | al pacino diane keaton | (1623, 12, 1015, 39)
[2224]

For these experiments, we used the intra-supernode-weight
heuristic along with the sum-lowerbound heuristic. De-
tailed results are omitted for lack of space, but it was seen
that thrashing control sharply reduced the time taken for
queries that exhibited thrashing, by up to an order of magni-
tude. The recall results were unchanged for queries that do
not exhibit thrashing, but even for queries that show thrash-
ing, recall did not go down significantly due to thrashing
control. In fact, it went down for only one query, Q11, where
recall went down from 100% to 75%, and 50% at different
cache sizes. It was observed that queries where some of
the keywords matched relatively few nodes had fewer cache
misses, while those that had more keywords, each matching
many nodes, had higher cache misses.

Based on the above results, in the rest of the paper by
default we use the sum-lower-bound heuristic, coupled with

TTT 17T T1r 11 1T T1r T 1T T T T TTT TT 1717
o 10-time

m CPU-time

——————— S 20BN
Bars indicate lter, Incr, VM resp.

80

60

40

20

Query Execution Time (secs)

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Queries

Figure 9: Execution Times the 10th Result

intra-supernode weights and thrashing control, as the de-
faults for Incremental expansion.

7.3.2 Comparison With Alternatives

Figure 9 shows the execution time for for answering queries
using different search algorithms. For each query the figure
shows three bars, for Iterative, Incremental, and VM-search
respectively. For incremental, we use the sum-lower-bound
heuristic, coupled with intra-supernode weights and thrash-
ing control. In all cases, we measure the time to generate
10 answers.

For iterative, as for incremental, we used the intra-super-
node-weight heuristic, along with the sum-lower-bound heu-
ristic. We still found that performance was very poor if the
number of iterations became very large, so we use the heuris-
tic of stopping after 30 iterations. Even with this heuristic,
which can lead to reduced recall, iterative performs quite
poorly in terms of time taken. Recall was 100% for most
queries, although Q9 had 90% recall, Q7 had 80% recall,
and Q11 had 63% recall.

It can be seen that Incremental significantly outperforms
Iterative, and VM-search. Note that the timing numbers for
VM-search are an underestimate, since a node evicted dur-
ing evaluation may be in the file system buffers, and may
not require a real IO operation. VM-search has a signif-
icantly higher IO time than Incremental for most queries,
but generally has a lower CPU time. The comparison of In-
cremental with VM-search in terms of cache misses, shown
in Figure 10 shows an even greater improvement for Incre-
mental over VM-search, by a factor of 10 to 100 in most
cases.

Figure 10 compares the cache misses for Incremental with-
out thrashing control versus VM-search with 3 different amo-
unts of memory allocated to the cache. The number of su-
pernodes in the cache is shown for each cache size; for Incre-
mental, 17 MB of space was used by the supernode graph,
which was instead used for the cache in VM-search, leading
to a larger cache size for the same total amount of memory.
Note that the graph uses logscale on the y axis. It can be
seen that Incremental had far fewer misses than VM-search
even if we compare Incremental with 24 MB cache (corre-
sponding to 1024 supernodes in the cache) with VM-search
with a 31 MB cache. The cases with high cache misses indi-
cate thrashing. Although we do not show cache miss results
for Iterative, we found them to be comparable to the results

Q8 Q9 Q10Q110Q1:

1199

Cache Misses

T T T T T T T T T T T
Incr 24MB —+—
1e+06 Incr 36MB ---x--- 7
Incr 48MB ------
VM 24MB 8-
100000 VM 36MB —-m— ,,ii’-\; =
gYMABMB -0 ¥ ¥
10000 ;
1000
100 ¢
10 E
1 1 1 1 1 1 1 1 1 1 1 1
Ol 02 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Qll Q12
Queries
Figure 10: Cache Misses With Varying Cache Size
100 TTTT TTTT TTTT TTTT TTT TTTT TTTT TTTT TTTT TTTT TTT TTTT
O 10-time
m CPU-time 160 225

[0}
o

Bars indicate lter, In

(o2}
o

N
o

N
o

Query Execution Time (secs)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Qgi?nguDlnlz

Oueries

Figure 11: Execution Times for the Last Relevant
Result

for Incremental. We also tried a variant of VM-search which
stops node expansion once the cache is full, but continues
search; this variant results in very poor recall, down to 0%
for many of the queries.

To verify that the above results hold for more queries, we
ran 8 other queries, with 3 or 4 keywords each, on DBLP.
We found that the performance (runtime and recall) was
similar to that for the earlier queries. Incremental always
performed better than VM, and provided run time benefits
of 50 to 70% on most of the queries, and cache misses were
typically less by a factor of 30 to 100. We also ran VM-
Search on queries Q13 to Q16, which exhibited thrashing
behaviour on Incremental, and found it performed poorly,
and failed to report results even after a very long time.

In general, with Incremental search, queries where one or
more keywords matched relatively few nodes had the low-
est execution times, even if other keywords matched many
nodes; those that had more keywords, each matching many
nodes, had higher execution times and cache misses. In
contrast, time and cache misses for VM were more directly
related to the total number of nodes matching keywords.

The next set of experiments compare our technique with
the Sparse technique [14]. For Sparse, we do not know a-

priori how many queries are required to get 10 results, and
Sparse also does not support generating of results in the
desired score order. In order to perform as fair a comparison
as possible, for Sparse we executed all queries that could
generate answers smaller (in terms of number of edges) than
the answer which we manually judged was the last relevant
answer.

Figure 11 shows execution times for generating the last
relevant result if the number of relevant results is less than
10, or the 10th result otherwise. As was the case for the
10th result, Incremental significantly outperforms Iterative,
and also outperforms VM-search. Sparse performs much
worse than Incremental, with the sole exception being Q9.
Comparing the numbers in this graph with that in Figure 9,
we can see that it takes significantly less time to generate
the last relevant result than to generate the 10th result.

We additionally compared two versions of Incremental Ex-
pansion, approach: (a) one which expands only the closest
supernode to each keyword, and (b) one which expands all
supernodes in the result. Across all the queries we ran,
the total time taken was roughly comparable for both ap-
proaches, but approach (b) had a significantly (between 5 to
50 percent) higher cache miss rate in most cases, although
there were a few cases where it had a lower cache miss rate.
Approach (b) also explored/touched more nodes. Overall,
the approach (a) is preferable, and all our experimental re-
sults used this approach. We omit detailed results for lack
of space.

We carried out an additional experiment of measuring per-
formance with varying supernode sizes. We omit the results
for lack of space, but we observed that performance im-
proved marginally when we increased supernode size from
100 to 200, but decreased sharply when supernode size was
increased further to 400. Since our cache size was fixed at
24 MB, the number of supernodes that fit in cache reduced
from 1024 to 256, which lead to thrashing.

8. CONCLUSIONS AND FUTURE WORK

In this paper we considered the issue of keyword search
on graphs that may be larger than memory. We showed
how to create and exploit a multi-granular representation
of data. We developed the iterative and incremental ap-
proaches to extending existing search algorithms to work on
multi-granular graphs, and showed incremental expansion
search significantly outperforms alternative techniques.

We are currently developing a version of the Bidirectional
search algorithm that works on the multi-granular graph
representation. Developing clustering techniques that are
more effective than EBF'S is another important area of our
onging research. Preliminary results indicate that cluster-
ing techniques based on finding communities in graphs can
provide very good compression, allowing our techniques to
be used effectively on data sets much larger than memory.
We are also currently creating very large datasets, using
Wikipedia and Web crawl data.

An alternative to storing a large graph in external mem-
ory is to distribute it across the main-memory of multiple
nodes in a parallel environment. Keyword search in such an
environment, exploiting the multi-granular graph represen-
tation, is an ongoing area of our research.

9. REFERENCES

[1] Sanjay Agrawal, Surajit Chaudhari, and Gautam Das.

1200

)

(4]

[5]

[7

(8

[9

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

[25]

DBXplorer: A system for keyword-based search search over
relational databases. ICDE, 2002.

Andrey Balmin, Vagelis Hristidis, and Yannis
Papakonstantinou. ObjectRank: authority-based keyword
search in databases. In VLDB, 2004.

Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen
Chakrabarti, and S. Sudarshan. Keyword searching and
browsing in databases using BANKS. ICDE, 2002.

Kumar Gaurav Bijay. Towards external memory algorithms
for keyword-search in relational databases. Bachelors
Thesis, under the guidance of S. Sudarshan, 2006.

A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian,
and J. Westbrook. On external memory graph traversal. In
SODA, pages 859-860, 2000.

A. L. Buchsbaum and J. Westbrook. Maintaining
hierarchical graph views. In SODA, pages 566-575, 2000.
Soumen Chakrabarti, Jeetendra Mirchandani, and Arnab
Nandi. Spin: searching personal information networks. In
SIGIR, page 674, 2005.

Edward P. F. Chan and Ning Zhang. Finding shortest paths
in large network systems. ACM-GIS, pages 160-166, 2001.
Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao
Zhang, and Xuemin Lin. Finding top-k min-cost connected
trees in databases. ICDE, 2007.

J. Graupmann, R. Schenkel, and G. Weikum. The
SphereSearch engine for unified ranked retrieval of
heterogeneous XML and web documents. In VLDB, 2005.
Lin Guo, Feng Shao, Chavdar Botev, and Jayavel
Shanmugasundaram. Xrank: Ranked keyword search over
XML documents. In SIGMOD, 2003.

Nitin Gupta. EMBANKS: Towards disk based algorithms
for keyword-search in structured databases. Bachelors
Thesis, under the guidance of S. Sudarshan, 2006.

Hao He, Haixun Wang, Jun Yang, and Philip S. Yu.
BLINKS:ranked keyword searches on graphs. In SIGMOD,
pages 305-316, 2007.

V. Hristidis, L. Gravano, and Y. Papakonstantinou.
Efficient IR-Style keyword search in relational databases.
VLDB, 2002.

V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword search in relational databases. In VLDB, 2002.
Varun Kacholia, Shashank Pandit, Soumen Chakrabarti,
S. Sudarshan, Rushi Desai, and Hrishikesh Karambelkar.
Bidirectional expansion for keyword search on graph
databases. VLDB 2005, pages 505-516, 2005.

G. Karypis and V. Kumar. Analysis of multilevel graph
partitioning. In Supercomputing, 1995.

Charles E. Leiserson, Satish Rao, and Sivan Toledo.
Efficient out-of-core algorithms for linear relaxation using
blocking covers (extended abstract). In FOCS, pages
704-713, 1993.

W. S. Li, K. S. Candan, Q. Vu, and D. Agrawal. Query
relaxation by structure and semantics for retrieval of logical
web documents. IEEE Trans. Knowl. Data Eng., page
14(4), 2002.

F. Liu, C. T. Yu, W. Meng, and A. Chowdhury. Effective
keyword search in relational databases. In SIGMOD, 2006.
Yi Luo, Xuemin Lin, Wei Wang, and Xiaofang Zhou.
Spark: Top-k keyword query in relational databases. In
SIGMOD, 2007.

M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Blocking
for external graph searching. Algorithmica, 16:181-214,
1996.

Sriram Raghavan and Hector Garcia-Molina. Representing
Web graphs. ICDE, pages 405-416, 2003.

Shashi Shekhar, Andrew Fetterer, and Bjajesh Goyal.
Materialization trade-offs in hierarchical shortest path
algorithms. In SSD, pages 94-111, 1997.

Qi Su and Jennifer Widom. Indexing relational database
content offline for efficient keyword-based search. In
IDEAS, pages 297-306, 2005.

Multi granular Graph G, ;

Explore (generate answers)

Expand (supernodes are expanded)

Multi granular Graph G;

(B) Iterationi

(A)

@ - Inner-node O - Super-node

.. - Expanded Super-node

» - (Dashed red edges)
Answer tree edges

Explore (generate answers)

Expand (supernodes are expanded)

Multi granular Graph G, ,

(C) Iteration (i+1)

Figure 12: Iterative Search: Example

APPENDIX
A. ITERATIVE SEARCH EXAMPLE

Figure 12 shows an example of Iterative Search. In the
figure, part (A) shows G;_1, the state of a multi-granular
graph at the end of an iteration ¢ — 1. Part (B) shows
how the Explore phase of iteration ¢ takes G;_1 as input,
and runs the in-memory search algorithm on it. The result
trees generated are shown by dashed red edges. Part (B)
also shows the state after the supernodes in these results
are expanded and replaced by corresponding innernodes in
the Expand phase, creating a new graph G;. G; acts as in-
put to iteration ¢ + 1. In each iteration, the Explore phase
restarts the search on the graph generated as the output of
the Expand phase of the previous iteration.

B. INCREMENTAL SEARCH EXAMPLE

Figure 13 shows the key step in Incremental Search, where
the multi-granular graph is updated after a supernode S1
is expanded (i.e., replaced by its inner nodes). This step is
carried out by the procedure DeleteSupernodeFromlIterator()
in Figure 4).

Part (A) shows a supernode result in which S1 is the
first supernode on path from keyword K1 to the root of the

1201

result tree. Part (B) shows the part of SPI tree of K1 which
contains S1. Since nodes are not physically shared between
the SPI trees of different keywords, S1 is separately replaced
by inner nodes in each of the SPI trees where it is present.
The diagram shows the deletion from SPI tree of K1 only.
Deletion from other SPI trees is identical.

Part (C) shows the deletion of S1 from the SPI tree. Not
only is S1 deleted from the SPI tree, but also all affected
paths, i.e. the shortest paths going through S1, are deleted
(by the call to DeleteSubTree() in line 5 of Figure 4). This
implies that the entire subtree (D) of S1 will be deleted
and will get temporarily disconnected from the unaffected
part of SPI tree.

Next we replace S1 by its inner nodes. Part (D) shows
this step. Each inner node n; is attached to the unaffected
and already explored node ‘minNode;’ of the multi-granular
graph that results in the minimum path cost ‘minCost;’
from K1 (by the call to FindMinAndAttach(), in line 13
of DeleteSupernodeFromlterator, in Figure 4). If no such
minNode; is found, n; does not get attached to the SPI tree.
All inner nodes which get attached are put in the priority
queue with the newly computed path-cost (minCost;), and
get explored later.

Part (E) shows the last step where, each node n; in D,

S1
S1
K1 K2
Answer tree containing a K1
supernode
K1's SPI-tree
(A) (B)

O - inner node

O - supernode

attached inner
nodes of S1

—+>» edges from the
answer tree

I

I

I

I

I

I

I

I

|
R » new edges to |
next-best explored |
nodes |
I

I

I

I

I

I

I

I

I

I

supernode that

® - is expanded &

I
I
I
I
|
! replaced by
I
I
I
I
I

inner-nodes
o or. - affected Inner nodes of S1 are
node attached in SPI tree

(D)

.
unattached | @

nod

Nodes affected by
deletion of S1 (Ds)

supernode
N

SIW

K1

All nodes connected to K1
through S1 are affected
(C)

Affected nodes get attached
to next-best explored nodes
if available

“~
~my
.
.

e

|
getting attached to
other nodes in tree

Final SPI-tree of K1 after
expansion of S1

(E)

Figure 13: Incremental Search: Updates to the multi-granular graph upon expansion of S1

is attached to an explored and unaffected node minNode;,
with the best path-cost from K1 (by the call to FindMi-
nAndAttach(), in line 15 of DeleteSupernodeFromlIterator).
If no such node minNode is found, n is simply deleted from
the SPI tree.

Figure 13 shows the update to the SPI tree of K1 when
S1 is expanded. All SPI trees containing S1 are updated
similarly. The same procedure is followed for each expanded
supernode, updating each SPI tree in which it occurs.

C. OTHER EXPERIMENTS

In addition to the experiments reported in Section 7 we
performed several other experiments, which are described
below.

C.1 Thrashing Control Experiments

As mentioned earlier in Section 7.3.1, the thrashing-control
heuristics from Section 6.2 resulted in improved performance,
with good recall. Figure 14 shows further results on the ef-
fectiveness of the thrashing-control heuristics. Q10 to Q15
are queries which exhibit thrashing behaviour. The graph in
Figure 14 compares the total query execution time (plotted
in log scale) for these queries, with thrashing-control (TC)

1202

100 |
K

¥ o o o

-
o
a

-

10 ¢ NoTC-1024 ——

Total Query Execution Time: CPU + IO (secs)

TC-1024 -
NOTC-1536 ----x---
TC-1536 &
NoTC-2048 --=--
TC-2048 ---o--
1
Q10 Qi1 Q16 Q13 Q14 Q15
Queries

Figure 14: Effect of Thrashing Control on Incremen-
tal Expansion

and without thrashing-control (NoTC), on three different
cache-sizes: 1024, 1536 and 2048 nodes. It can be seen
that with thrashing control, the query execution times are
significantly better, with differences of nearly two orders of
magnitude in some cases. It is clear that thrashing control
is essential for good performance. It can also be seen that

T T T T T T T T T T T
| Incr 24AMB —+— i
1e+06 VM 24MB -
VM Unlimited ---3---
100000 | o
(%]
@ 10000 |
R
b
2 1000 F
Q
©
o
100 |
10 | E
1 1 1 1 1 1 1 1 1 1 1

Q1L Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Queries

Figure 15: Cache Misses for VM-Search with Un-
limited Cache Size

O [O-time
m CPU-time

Bars indicate Incr-24m, VM-24m, VM-unlimited resp

80

Query Execution Time (secs)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q1:

Queries

Figure 16: CPU and IO Time for VM-Search with
Unlimited Cache Size

as the cache size increases, time taken decreases for the case
of no thrashing control, whereas it increases for the case of
thrashing control. As explained in Section 7.3.1, recall went
down for only one query, Q11.

C.2 VM-Search with Unlimited Cache Size

Compared to Incremental Search, VM-Search performs
extra IO operations because it is forced to expand all su-
pernodes encountered during search, whereas Incremental
expands only those that result in supernode answers. For
the case where there is thrashing, there also also extra 10s
due to repeated fetches into cache. To separate out the
first component, which is intrinsic, from the second, which
depends on the cache size, we ran another set of experi-
ments, comparing Incremental with VM-Search using inlim-
ited cache size (in the experiments, we used a cache size of
25000 supernodes, which is greater than the database size
of around 17000 supernodes). The results are shown in Fig-
ure 15, which shows the cache misses, and Figure 16, which
shows the CPU and IO time taken.

The results show that the cache misses and CPU/IO time
are significantly better for VM-Search with unlimited cache,
compared to VM-Search with a 24 MB cache, for queries
where VM-Search with a 24 MB cache showed thrashing.
However, Incremental with 24 MB cache (equivalent to 1024
supernodes, after accounting for the supernode graph size)

1203

T T T T T T T T T T T
Incr k=10 ——
1le+06 Incr k=20 ---x--- E
VM k=10 ---%---
VM k=20 -~&
100000 F
1%
é 10000
=
2 1000
Q
54
o
100 |
10
l 1 1 1 1 1 1 1 1 1 1 1

Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Qil Q12

Queries

Figure 17: Cache
Results Retrieved

Misses with Varying Number of

100 TT 1T TT1T 1T 1T 11T 1T 1T 1T TT 1T TT

O 10-time
m CPU-time

Query Execution Time (secs)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 QI9QLMQLINI2

Oueries

Figure 18: CPU and IO Time with Varying Number
of Results Retrieved

still outperforms VM-Search with unlimited cache, by a fac-
tor of 10 or more on cache misses. For total time taken,
Incremental with 24 MB cache beats VM-Search with un-
limited cache on all but one query, Q10, where VM-Search
is somewhat faster. Further, for most of the queries Incre-
mental continues to be up to a factor of up to 2 faster than
VM-Search with unlimited cache.

C.3 Varying Number of Results Retrieved

The performance results in Section 7 were for fetching the
top 10 results. In the next set of experiments, we compare
the performance of Incremental as well as VM-Search when
fetching the top 20 results, instead of the top 10 results. We
set the cache size to 24M (equivalent to 1024 supernodes for
Incremental), and measured the number of cache misses and
time taken.

The results are shown in Figure 17 and 18. It can be
seen that the number of cache misses do increase when go-
ing from 10 to 20 results, but typically by a factor of only
around 2. However the relative performance of VM-Search
and Incremental remains essentially the same when retriev-
ing the top 20 results as when retrieving the top 10 results.
In terms of time taken, the increase is generally less than a
factor of 2, but the relative performance of Incremental and
VM-Search again remains essentially unchanged.

Query With Thrashing Control

CPU Time | IO Time | Cache Misses | Recall
Q1 4.094 1.377 132 83
Q2 4.035 3.667 391 100
Q3 5.378 2.754 338 100
Q4 1.446 0.578 57 100
Q5 3.644 0.417 29 100
Q6 1.796 0.863 83 60
Q7 0.825 0.55 16 100
Q8 4.581 3.981 512 100
Q9 3.289 1.286 92 100
Q10 7.101 3.727 510 83
Q11 5.76 4.93 510 75
Q12 7.397 3.925 512 100

Figure 19: Results for Incremental with 512 Supern-
ode Cache Size

C.4 Smaller Cache Size

Our earlier experiments had a minimum cache size of 1024
nodes, corresponding to about 1/17th of the total number of
supernodes. To measure performance at even smaller cache
sizes, we performed experiments on Incremental Search, set-
ting the cache-size to 512 nodes. Figure 19 shows the results,
including CPU and 1O time, cache misses, and recall. We
observe that for most queries in our query set, 512 nodes
are sufficient to hold the portion of the graph relevant to
the query. For a few queries, the cache misses were larger
in number, and thrashing-control kicks in. Even for such
queries, it can be seen that the recall is quite good.

1204

