Frame-Semantic Role Labeling with Heterogeneous Annotations

<u>Meghana Kshirsagar</u> Sam Thomson Nathan Schneider Jaime Carbonell Noah A. Smith Chris Dyer

Semantic role labeling (SRL)

Input:a sentenceOutput:representation of meaning

John stole a big car

Semantic role labeling (SRL)

Input:a sentenceOutput:representation of meaning (using "roles")

Frame SRL

In the case of organic pollutions, the analysis itself **took** no more than five days

He sat up and **took** a piece of mud-coloured rag ...

Frame SRL

Activity In the case of organic pollutions, the analysis itself took no more than five days

Time

TAKINGAgentThemeHe sat up and took a piece of mud-coloured rag ...

take.02

take.02

PropBank has many predicates, that are not in FrameNet Ex: attest, involve, nominate ...

take.02

PropBank has many predicates, that are not in FrameNet Ex: attest, involve, nominate ...

Goal:

"Target" task

 Improve semantic role labeling on FrameNet using other resources

- FrameNet full-text (FT) ≈ 5,000
 - document annotations: newswire, emails, transcripts of phone conversations etc.
- FrameNet Exemplars ≈ 140,000
 - single sentences, primarily British National Corpus
 - distribution of roles is "artificial"
- PropBank ≈ 110,000
 - WSJ data, generally coarser sense distinctions
 - different annotation scheme

FrameNet

Exemplars

This work incorporates these resources..

- FrameNet Exemplars ≈ 140,000
 - single sentences, primarily British National Corpus
 - distribution of roles is "artificial"
- PropBank

- WSJ data, generally coarser sense distinctions
- different annotation scheme

FrameNet

Exemplars

- FrameNet Hierarchy [Ruppenhofer et al., 2010] Crimin
 - relationships such as inheritance between roles

A model for Frame SRL

Given: a sentence, context features, POS tags, dependency parse

Output: a set of frame, <argument spans, role label>

A model for Frame SRL

Given: a sentence, context features, POS tags, dependency parse

Output: a set of frame, <argument spans, role label>

A model for Frame SRL

Given: a sentence, context features, POS tags, dependency parse

Output: a set of frame, <argument spans, role label>

• Goal: Match text-spans with role labels

- Goal: Match text-spans with role labels
- Score of a span 'a'

$$score_{\mathbf{w}}(a \mid \mathbf{x}, p, f, r) = \mathbf{w}^{\top} \phi(a, \mathbf{x}, p, f, r)$$

$$sentence_{predicate} frame_{frame}$$

- Goal: Match text-spans with role labels
- Score of a span 'a'

$$score_{\mathbf{w}}(a \mid \mathbf{x}, p, f, r) = \mathbf{w}^{\mathsf{T}} \phi(a, \mathbf{x}, p, f, r)$$

• Squared hinge loss for *i*th example

 $SqHinge_{\mathbf{w}}(i) = (\max_{a'} \{ \mathbf{w}^{\mathsf{T}} \phi(a', \mathbf{x}, p, f, r) + \operatorname{cost}(a', a) \} - \mathbf{w}^{\mathsf{T}} \phi(a, \mathbf{x}, p, f, r))^{2}$

Adadelta for optimization

- Match text-spans with role abels
- Score of a san 'α'

Significant benefits in run-time over prior work

(1 week -> 9 hours)

SqHinge_w (max { $\mathbf{w}^{\mathsf{T}}\phi(a', \mathbf{x}, p, f, r)$ + cost

er

Imple

predicate

 $\sup_{a'} \{ \mathbf{w}^{\mathsf{T}} \phi(a', \mathbf{x}, p, f, r) + \operatorname{cost}(a', a) \} - - \mathbf{w}^{\mathsf{T}} \phi(a, \mathbf{x}, p, f, r) \}^{2}$

Adadelta for optimization

Approaches to incorporate other resources

• Use as additional training data

- Via additional features (feature augmentation)
 Frustratingly easy domain adaptation [Daumé, 09]
 Defining "guide features" [Johansson, '13]
- Parameter sharing

Parameter sharing using the FrameNet hierarchy

Parameter sharing using the FrameNet hierarchy

Parameters are shared between all siblings

Sharing involving higher levels did not work as well

Please refer to paper for details!

Evaluation

- FrameNet 1.5
 - test set from Das et al. 2010
 - 2420 sentences, 7210 overt arguments
- For frame:
 - assume gold frame is known
 - use frames from SOTA frame-identification
 [Hermann et al 2014]

Full system performance

F₁ on test set (given gold frame)

F₁ on test set (given gold frame)

3.95% improvement over SEMAFOR

F₁ on test set (given gold frame)

Role-wise F₁

Role-wise F₁

Test sentences with gains

BOARD_VEHICLE

Can he just get on a plane and fly to Paris ?

Traveller

BODY_MOVEMENT

Agent	Body	_part	Purpose
Passengers	crane their	necks for	dizzying glimpses of the harbor

Arguments in blue colour are missed by the baseline, but found by our model

Conclusion

- Contributions:
 - we exploit multiple diverse resources for better coverage
 - side-effect: faster training using hinge loss
- Future work:
 - incorporate additional resources
 - combine with other models as the baseline [Tackstorm et al., 2015]

Prior work

- Using FrameNet hierarchy
 - Matsubayashi et al., '09
 - Johansson '12
- Other directions
 - Pavlick, '15
 - Fezabadi & Pado, '15

Co-authors

Jaime Carbonell

Nathan Schneider

Sam Thomson

Chris Dyer

Noah Smith

Thank you!

Sizes of the resources

Frustratingly easy domain adaptation

[Daume et al., 2009]

Maintain taskspecific and general copies of features