Intro to Data Structures

Lecture #9 – ArrayLists & An Intro to Efficiency September 16, 2014 Mark Stehlik

Outline for Today

- Hours worked in HW1/2
- HW1 ~OK! Discuss Q2
 - 1 did not compile!
 - Average was 81 (Low was 53, but 9 A's!)
 - Let's look at some code examples (anonymous)
- Test as many boundaries/edge cases as you can,
 - empty, singleton, N
 - beginning, middle, end
- ArrayList operations and Quantifying Efficiency

ArrayList methods

- From java.util.ArrayList (the ArrayList API):
 - list.add(value); //adds value to end of list
 - list.add(index, value); //adds value at index
 - list.remove(value); //removes first occurrence of value
 - list.remove(index); //removes element at index (slides down)
 - list.clear(); //removes all elements, list is empty
 - list.contains(value); //true if value in list; false if not
 - list.get(index); //returns the element at index
 - list.indexOf(value); //returns first index of value; -1 if not
 - list.isEmpty(); //what do you think?
 - list.set(index, value); //sets element at index to value
 - list.size(); //returns the number of elements in list

Efficiency (an informal intro)

- Let's look at those ArrayList operations in terms of how many elements need to be accessed (assume the list has *n* elements)...
- But there are a number of ways to look at this:
 - best case
 - average case
 - worst case

- We want to measure the performance of an algorithm/method/program
- We need a way to do this that is independent of machine, OS, programming language
- So we count how the number of operations varies wrt (as a function of) the size of the input
- What's an operation?
 - list access, comparison, whatever is innate to the algorithm being investigated

- And how do we characterize these functions (operations as a function of input size, *n*)?
 - Takes the same amount of time regardless of *n*
 - "constant"
 - Takes time proportional to the size of the input (e.g., double the input, double the time [on same device])
 - linear
 - Takes time proportional to the square of the input
 - quadratic (an example?)

• Big O is a notation to capture these function "families"; in increasing order of "time"

```
- O(1) constant
```

- $O(\log n)$ logarithmic (double $n \to 1$ more operation) usually involves halving the problem
- O(n) linear (double $n \rightarrow$ double the time)
- $O(n^2)$ quadratic (triple $n \rightarrow 9x$ the time) usually a linear operation nested inside another linear operation
- O(2ⁿ) exponential
- O(n!) factorial

- Big O describes "bounding relationships"
 - let's look at some graphs
 - ignore constant factors, low-order terms
 - limit definition (let's get mathy):
 - $g(n) \in O(f(n))$ if limit of g(n)/f(n) = c as $n \to \infty$
 - i.e., in the limit, the two functions differ by no more than a constant factor
 - − think of Big O as "<=", i.e.,</p>
 - $N^2 + 5n 1000$ is $O(n^2)$
 - N + 10000 is O(n); [turns out it's also $O(n^2)$ and $O(n^3)$, but we try to keep the bound as tight as possible]

- As an aside, there's a whole family:
 - little o (o), which can be thought as "<"
 - $\lim_{\to} 1 = 0$
 - big Omega (Ω), which can be thought as ">="
 - $\lim_{t \to 0}$
 - little omega (ω), which can be thought of as ">"
 - $\lim_{n \to \infty} 1$
 - and theta (Θ) , which can be thought of as "=="
 - $g(n) \in O(f(n))$ and $f(n) \in O(g(n))$

Efficiency (time – why it matters)

n	O(1)	O(log ₂ n)	O(n)	$O(n^2)$
1000	10 ns	100 ns	10 μs	10 ms
1 million	10 ns	200 ns	10 ms	3 hours
1 billion	10 ns	300 ns	10 s	300 years