Intro to Data Structures

Lecture #22 – Priority Queues & Heaps November 16, 2014

Mark Stehlik

Outline for Today

- HW5 returned with grade sheets
- HW6 due Tuesday midnight (Pgh)
- Priority Queues
- Heaps
- What's left?
 - Maps & Sets
 - Hashing
 - stuff

Priority Queue

- A new Abstract Data Type (what ADT's have we seen so far in the course?)
- What's new about this one? Operations:
 - boolean isEmpty
 - add(AnyType) // AnyType must implement Comparable
 - AnyType peekMin() // could also be peekMax()
 - AnyType removeMin() // or removeMax()
- What does this remind you of?
- Applications what is it used for?

Priority Queue implementations

- What data structure should we use to implement a Priority Queue?
- What data structures have we seen so far and how efficient will they be?
 - unordered array (or ArrayList)
 - sorted array (or ArrayList)
 - increasing order
 - decreasing order
 - LinkedList (increasing order)
 - BST

Efficiency of various implementations

	unordered ArrayList	increasing ArrayList	decreasing ArrayList	increasing LinkedList	BST
add	O(1)	O(n)	O(n)	O(n)	O(log n) [w/c O(n)]
peekMin	O(n)	O(1)	O(1)	O(1)	where O(log n) would [w/c Q(n)]
removeMin	O(n)	O(n)	O(1)	O(1)	O(log n) [w/c O(n)]

Can we do better?

- Yes, but we'll need a new data structure a binary heap. A binary heap has two properties:
 - Shape (structure) property it must be a complete binary tree (what was that?)
 - Order (heap) property the parent of a node is <= its children (minHeap) or >= its children (maxHeap)
- Examples...

Can we do better?

- How does this work w/respect to implementing the operations of a priority queue?
 - add add at end (maintain *shape* property) & heapify up (swap w/parent if necessary to maintain *order* property)
 - peekMin always at the root
 - removeMin remove root; move last leaf into root's position (maintain shape) & heapify down (swap w/smaller child if exists to maintain order)
 - some examples...
- what data structure should we use to implement the heap in order to minimize the cost of operations?

Efficiency of PQ ops

- Use the array implementation of a binary tree!
 - access to the place to insert the next leaf value O(1)
 - heap with n nodes will have height log n
 - add at end (maintain *shape* property) & heapify up (if less, swap w/parent to maintain *order* property): O(1) + O(log n) [most nodes added low; why?]
 - peekMin return the value at the root: O(1)
 - removeMin remove root; move last leaf into root's position (maintain *shape*) & heapify down (swap w/smaller child if exists to maintain *order*): O(1) + O(log n)

Is it better than the others?

- Yes...
 - O(1) for peekMin(), guaranteed O(log n) for add() and removeMin()
- So?
 - Fast implementation of Priority Queue
 - And?
 - If I add n integers to an initially empty minHeap and then remove items one at a time, what is true about the sequence of values removed?
 - They are in ascending order! This is heap sort!

Details of Heapsort...

- Time to add n integers into an empty minHeap?
 - $-n * O(\log n) \longrightarrow O(n \log n)$
- Time to remove n mins?
 - $-n * O(\log n) \longrightarrow O(n \log n)$
- Time to do both?
 - $-2 O(n log n) \longrightarrow O(n log n)$
- And, unlike merge sort, it can be done in place (no auxiliary storage). How? Put the elements into a maxHeap, then removeMax, store in last open index, removeMax, store in next open index...