Representations for Automated Reasoning

Ruben Martins

Carnegie Mellon University

http://www.cs.cmu.edu/~mheule/15816-f20/ https://cmu.zoom.us/j/93095736668 Automated Reasoning and Satisfiability September 14, 2020

AtLeastOne

Given a set of Boolean variables $x_1, ..., x_n$, how to encode ATLEASTONE $(x_1, ..., x_n)$

into SAT?

Hint: This is easy...

AtLeastOne

Given a set of Boolean variables x_1, \dots, x_n , how to encode

Atleastone
$$(x_1, \ldots, x_n)$$

into SAT?

Hint: This is easy...

$$(x_1 \lor x_2 \lor \cdots \lor x_n)$$

Given a set of Boolean variables x_1, \ldots, x_n , how to encode $XOR(x_1, \ldots, x_n)$

into SAT?

χ	y	XOR(x, y)
0	0	0
0	1	1
1	0	1
1	1	0

Given a set of Boolean variables x_1, \ldots, x_n , how to encode $XOR(x_1, \ldots, x_n)$

into SAT?

χ	y	XOR(x,y)
0	0	0
0	1	1
1	0	1
1	1	0

$$(x\vee y)\wedge(\overline{x}\vee\overline{y})$$

Given a set of Boolean variables $x_1, ..., x_n$, how to encode $XOR(x_1, ..., x_n)$

into SAT?

χ	y	XOR(x, y)
0	0	0
0	1	1
1	0	1
1	1	0

 $XOR(x_1,...,x_n)$ is *true* when an odd number of x_i is assigned to *true*.

Given a set of Boolean variables $x_1, ..., x_n$, how to encode $XOR(x_1, ..., x_n)$

into SAT?

The direct encoding requires 2^{n-1} clauses of length n:

$$\bigwedge_{\mathrm{even}\ \#^{\neg}} (\overline{x}_1 \vee \overline{x}_2 \vee \dots \vee \overline{x}_n)$$

Given a set of Boolean variables $x_1, ..., x_n$, how to encode $XOR(x_1, ..., x_n)$

into SAT?

The direct encoding requires 2^{n-1} clauses of length n:

$$\bigwedge_{\mathrm{even}} (\overline{x}_1 \vee \overline{x}_2 \vee \cdots \vee \overline{x}_n)$$

$$XOR(x, y, z) = (x \lor y \lor z) \land (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{y} \lor \overline{z}) \land (x \lor \overline{y} \lor \overline{z})$$

Given a set of Boolean variables $x_1, ..., x_n$, how to encode $XOR(x_1, ..., x_n)$

into SAT?

The direct encoding requires 2^{n-1} clauses of length n:

$$\bigwedge_{\mathrm{even} \ \#^{\neg}} (\overline{x}_1 \vee \overline{x}_2 \vee \cdots \vee \overline{x}_n)$$

$$XOR(x, y, z) = (x \lor y \lor z) \land (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{y} \lor \overline{z}) \land (x \lor \overline{y} \lor \overline{z})$$

Question: How many solutions does this formula have?

Given a set of Boolean variables $x_1, ..., x_n$, how to encode $XOR(x_1, ..., x_n)$

into SAT?

The direct encoding requires 2^{n-1} clauses of length n:

$$\bigwedge_{\mathrm{even} \ \#^{\neg}} (\overline{x}_1 \vee \overline{x}_2 \vee \cdots \vee \overline{x}_n)$$

$$XOR(x, y, z) = (x \lor y \lor z) \land (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{y} \lor \overline{z}) \land (x \lor \overline{y} \lor \overline{z})$$

Question: How many solutions does this formula have? 4

Given a set of Boolean variables $x_1, ..., x_n$, how to encode $XOR(x_1, ..., x_n)$

into SAT?

The direct encoding requires 2^{n-1} clauses of length n:

$$\bigwedge_{\mathrm{even}\ \#^{\neg}} (\overline{x}_1 \vee \overline{x}_2 \vee \dots \vee \overline{x}_n)$$

Can we encode large XORs with less clauses?

Given a set of Boolean variables x_1, \ldots, x_n , how to encode

$$XOR(x_1,\ldots,x_n)$$

into SAT?

The direct encoding requires 2^{n-1} clauses of length n:

$$\bigwedge_{\mathrm{even}} (\overline{x}_1 \vee \overline{x}_2 \vee \cdots \vee \overline{x}_n)$$

Can we encode large XORs with less clauses?

Make it compact: XOR $(x_1, x_2, y) \land XOR (\overline{y}, x_3, ..., x_n)$ Tradeoff: increase the number of variables but decreases the number of clauses!

Given a set of Boolean variables x_1,\dots,x_n , how to encode $\operatorname{ATMOSTONE}\left(x_1,\dots,x_n\right)$

into SAT?

Given a set of Boolean variables x_1, \ldots, x_n , how to encode

ATMOSTONE
$$(x_1, \ldots, x_n)$$

into SAT?

The direct encoding requires n(n-1)/2 binary clauses:

$$\bigwedge_{1 \leq i < j \leq n} (\overline{x}_i \vee \overline{x}_j)$$

Given a set of Boolean variables x_1, \ldots, x_n , how to encode

ATMOSTONE
$$(x_1, \ldots, x_n)$$

into SAT?

The direct encoding requires n(n-1)/2 binary clauses:

$$\bigwedge_{1 \le i < j \le n} (\overline{x}_i \vee \overline{x}_j)$$

Is it possible to use fewer clauses?

Given a set of Boolean variables $x_1, ..., x_n$, how to encode $\operatorname{ATMOSTONE} (x_1, ..., x_n)$

into SAT using a linear number of binary clauses?

Given a set of Boolean variables x_1, \ldots, x_n , how to encode

ATMOSTONE
$$(x_1, \ldots, x_n)$$

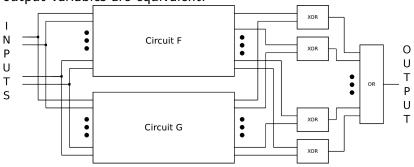
into SAT using a linear number of binary clauses?

By splitting the constraint using additional variables. Apply the direct encoding if $n \le 4$ otherwise replace $\operatorname{ATMOSTONE}(x_1, \dots, x_n)$ by

ATMOSTONE $(x_1, x_2, x_3, y) \land$ ATMOSTONE $(\overline{y}, x_4, ..., x_n)$ resulting in 3n - 6 clauses and (n - 3)/2 new variables

How to show that two encodings of $AtMostOne(x_1, x_2)$ are equivalent?

If we have a circuit representation of each encoding then we can use a miter circuit to show that for the same inputs, the output variables are equivalent:



Are these two formulas that encode $Atmostone(x_1, x_2)$ equivalent?

φ_1 (direct encoding)	φ_2 (split encoding)
$\overline{x}_1 \vee \overline{x}_2$	$\overline{x}_1 \vee \overline{y}$
	$y \vee \overline{x}_2$

Question: Is φ_1 equivalent to φ_2 ?

Note: $\phi_1 \leftrightarrow \phi_2$ is valid if $\neg \phi_1 \land \phi_2$ and $\phi_1 \land \neg \phi_2$ are

unsatisfiable.

Are these two formulas that encode $AtMostone(x_1, x_2)$ equivalent?

φ_1 (direct encoding)	φ_2 (split encoding)
$\overline{x}_1 \vee \overline{x}_2$	$\overline{x}_1 \vee \overline{y}$
	$y \vee \overline{x}_2$

Is $\neg \phi_1 \wedge \phi_2$ unsatisfiable?

Note: $\neg \phi_1 \equiv x_1 \wedge x_2$

Are these two formulas that encode $\operatorname{ATMOSTONE}(x_1, x_2)$ equivalent?

ϕ_1 (direct encoding)	φ_2 (split encoding)
$\overline{x}_1 \vee \overline{x}_2$	$\overline{x}_1 \vee \overline{y}$
	$y \vee \overline{x}_2$

Is $\neg \phi_1 \wedge \phi_2$ unsatisfiable? yes! Note: $\neg \phi_1 \equiv x_1 \wedge x_2$

Are these two formulas that encode $Atmostone(x_1, x_2)$ equivalent?

φ_1 (direct encoding)	φ_2 (split encoding)
$\overline{x}_1 \vee \overline{x}_2$	$\overline{x}_1 \vee \overline{y}$
	$y \vee \overline{x}_2$

Is $\phi_1 \wedge \neg \phi_2$ unsatisfiable?

Note:
$$\neg \phi_2 \equiv (x_1 \lor y) \land (x_1 \lor x_2) \land (\overline{y} \lor x_2)$$

Are these two formulas that encode $Atmostone(x_1, x_2)$ equivalent?

ϕ_1 (direct encoding)	φ_2 (split encoding)
$\overline{x}_1 \vee \overline{x}_2$	$\overline{x}_1 \vee \overline{y}$
	$y \vee \overline{x}_2$

Is $\phi_1 \wedge \neg \phi_2$ unsatisfiable? no!

Note:
$$\neg \phi_2 \equiv (x_1 \lor y) \land (x_1 \lor x_2) \land (\overline{y} \lor x_2)$$

Are these two formulas that encode $AtMostOne(x_1, x_2)$ equivalent?

φ_1 (direct encoding)	φ_2 (split encoding)
$\overline{x}_1 \vee \overline{x}_2$	$\overline{x}_1 \vee \overline{y}$
	$y \vee \overline{x}_2$

 φ_1 and φ_2 are equisatisfiable:

 $ightharpoonup \phi_1$ is satisfiable iff ϕ_2 is satisfiable.

Note: Equisatisfiability is weaker than equivalence but useful if all we want we want to do is determine satisfiability.

How to encode a problem into SAT?

```
c famous problem (in CNF)
p cnf 6 9
1 4 0
250
360
-1 -2 0
-1 -3 0
-2 -3 0
-4 - 50
-4 - 60
-5 -6 0
```

How to encode a problem into SAT?

```
c pigeon hole problem
p cnf 6 9
1 4 0
                        # pigeon[1]@hole[1] \vee pigeon[1]@hole[2]
                        # pigeon[2]@hole[1] \vee pigeon[2]@hole[2]
250
                        # pigeon[3]@hole[1] \( \nu \) pigeon[3]@hole[2]
360
-1 - 20
                     \# \neg pigeon[1]@hole[1] \lor \neg pigeon[2]@hole[1]
-1 -3 0
                     \# \neg pigeon[1]@hole[1] \lor \neg pigeon[3]@hole[1]
-2 -3 0
                     \# \neg pigeon[2]@hole[1] \lor \neg pigeon[3]@hole[1]
                     \# \neg pigeon[1]@hole[2] \lor \neg pigeon[2]@hole[2]
-4 -50
                     \# \neg pigeon[1]@hole[2] \lor \neg pigeon[3]@hole[2]
-4 - 60
                     \# \neg pigeon[2]@hole[2] \lor \neg pigeon[3]@hole[2]
-5 -60
```

- ► SAT solvers take as input a formula in CNF
- What is the complexity of transformation any formula φ in CNF?

- ► SAT solvers take as input a formula in CNF
- What is the complexity of transformation any formula φ in CNF?

In some cases, converting a formula to CNF can have an exponential explosion on the size of the formula.

If we convert $(x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee ... \vee (x_n \wedge y_n)$ using De Morgan's laws and distributive law to CNF:

$$(x_1 \vee x_2 \vee \ldots \vee x_n) \wedge (y_1 \vee x_2 \ldots \vee x_n) \wedge \ldots \wedge (y_1 \vee y_2 \vee \ldots \vee y_n)$$

► How can we avoid the exponential blowup? In this case, the equivalent formula would have 2ⁿ clauses!

- ► SAT solvers take as input a formula in CNF
- What is the complexity of transformation any formula φ in CNF?
- ► Tseitin's transformation converts a formula φ into an equisatisfiable CNF formula that is linear in the size of φ!
- Key idea: introduce auxiliary variables to represent the output of subformulas, and constrain those variables using CNF clauses!

$$P \rightarrow (Q \wedge R)$$

$$P \to (Q \land R)$$

1. Introduce a fresh variable for every non-atomic subformula

$$P \to (Q \land R)$$

1. Introduce a fresh variable for every non-atomic subformula

$$T_1 \ \leftrightarrow \ P \to T_2$$

$$P \rightarrow (Q \wedge R)$$

1. Introduce a fresh variable for every non-atomic subformula

$$\begin{array}{ccc} T_1 & \leftrightarrow & P \rightarrow T_2 \\ T_2 & \leftrightarrow & Q \wedge R \end{array}$$

$$P \rightarrow (Q \wedge R)$$

1. Introduce a fresh variable for every non-atomic subformula

$$\begin{array}{ccc} T_1 & \leftrightarrow & P \rightarrow T_2 \\ T_2 & \leftrightarrow & Q \wedge R \end{array}$$

2. Convert each equivalence into CNF

$$P \rightarrow (Q \wedge R)$$

- 1. Introduce a fresh variable for every non-atomic subformula
- 2. Convert each equivalence into CNF

$$\begin{array}{ccc} T_1 & \leftrightarrow & P \rightarrow T_2 \\ T_2 & \leftrightarrow & Q \wedge R \end{array}$$

$$(T_1 \vee P) \wedge (T_1 \vee \neg T_2) \wedge (\neg T_1 \vee \neg P \vee T_2)$$

$$P \rightarrow (Q \wedge R)$$

- Introduce a fresh variable for every non-atomic subformula
- 2. Convert each equivalence into CNF

 $T_1 \leftrightarrow P \rightarrow T_2$

$$\begin{array}{l} (T_1 \vee P) \wedge (T_1 \vee \neg T_2) \wedge (\neg T_1 \vee \neg P \vee T_2) \\ (\neg T_2 \vee Q) \wedge (\neg T_2 \vee R) \wedge (T_2 \vee \neg Q \vee \neg R) \end{array}$$

Tseitin Transformation (2)

$$P \to (Q \land R)$$

- 1. Introduce a fresh variable for every non-atomic subformula
- 2. Convert each equivalence into CNF
- Assert the conjunction of T₁ and the CNF-converted equivalences

$$\begin{array}{ccc} T_1 & \leftrightarrow & P \rightarrow T_2 \\ T_2 & \leftrightarrow & Q \wedge R \end{array}$$

$$\begin{array}{l} (T_1 \vee P) \wedge (T_1 \vee \neg T_2) \wedge (\neg T_1 \vee \neg P \vee T_2) \\ (\neg T_2 \vee Q) \wedge (\neg T_2 \vee R) \wedge (T_2 \vee \neg Q \vee \neg R) \end{array}$$

Tseitin Transformation (2)

$$P \rightarrow (Q \wedge R)$$

- Introduce a fresh variable for every non-atomic subformula
- 2. Convert each equivalence into CNF
- Assert the conjunction of T₁ and the CNF-converted equivalences

$$\begin{array}{ccc} T_1 & \leftrightarrow & P \to T_2 \\ T_2 & \leftrightarrow & Q \land R \end{array}$$

$$\begin{array}{l} F_1: (T_1 \vee P) \wedge (T_1 \vee \neg T_2) \wedge (\neg T_1 \vee \neg P \vee T_2) \\ F_2: (\neg T_2 \vee Q) \wedge (\neg T_2 \vee R) \wedge (T_2 \vee \neg Q \vee \neg R) \end{array}$$

Tseitin Transformation (2)

$$P \to (Q \land R)$$

- 1. Introduce a fresh variable for every non-atomic subformula
- 2. Convert each equivalence into CNF
- 3. Assert the conjunction of T₁ and the CNF-converted equivalences

$$\begin{array}{ccc} \mathsf{T}_1 & \leftrightarrow & \mathsf{P} \to \mathsf{T}_2 \\ \mathsf{T}_2 & \leftrightarrow & \mathsf{Q} \wedge \mathsf{R} \end{array}$$

$$F_1: (T_1 \vee P) \wedge (T_1 \vee \neg T_2) \wedge (\neg T_1 \vee \neg P \vee T_2) F_2: (\neg T_2 \vee Q) \wedge (\neg T_2 \vee R) \wedge (T_2 \vee \neg Q \vee \neg R)$$

$$T_1 \wedge F_1 \wedge F_2$$

Tseitin Transformation (3)

Using automated tools to encode to CNF: limboole: http://fmv.jku.at/limboole

Tseitin Transformation (3)

- Using automated tools to encode to CNF: limboole: http://fmv.jku.at/limboole
- Tseitin's encoding may add many redundant variables/clauses!
- ► Using **limboole** for the pigeon hole problem (n=3) creates a formula with 40 variables and 98 clauses
- ► After unit propagation the formula has 12 variables and 28 clauses
- ► Original CNF formula only has 6 variables and 9 clauses

Boolean representation of Integers (1)

Onehot encoding:

- Each number is represented by a boolean variable: $x_0 ... x_n$
- ▶ At most one number: $\bigwedge_{i\neq j} \overline{x}_i \vee \overline{x}_j$

Boolean representation of Integers (1)

Onehot encoding:

- ► Each number is represented by a boolean variable:
 - $x_0 \dots x_n$
- \blacktriangleright At most one number: $\bigwedge_{i\neq j} \overline{x}_i \vee \overline{x}_j$

Unary encoding:

- ► Each variable x_n is true iff the number is equal to or greater than n:
 - $x_2 = 1$ represents that the number is equal to or greater than 2
- $ightharpoonup x_i$ implies x_{i+1} : $\bigwedge_{i < j} \overline{x}_i \lor x_j$

Boolean representation of Integers (2)

Binary encoding:

Use $\lceil log_2 n \rceil$ auxiliary variables to represent n in binary Consider n=3: x_0 (number 0) corresponds to the binary representation 00 $\overline{x}_0 \vee \overline{b}_0$, $\overline{x}_0 \vee \overline{b}_1$

Boolean representation of Integers (2)

Binary encoding:

Use $\lceil log_2 n \rceil$ auxiliary variables to represent n in binary Consider n=3: x_0 (number 0) corresponds to the binary representation 00 $\overline{x}_0 \vee \overline{b}_0$, $\overline{x}_0 \vee \overline{b}_1$

Order encoding:

- ► Encode the comparison $x \le \alpha$ by a different Boolean variable for each integer variable x and integer value α
- ▶ Useful if you want to capture the order between integers: $\{x \le \alpha, \neg(y \le \alpha)\}$ can be used to represent the constraint among integer variables, i.e. $x \le y$

How to encode linear constraints?

Recall ATMOSTONE constraints:

- ▶ Direct encoding for ATMOSTONE constraints:
- ► ATMOSTONE: $x_1 + x_2 + x_3 + x_4 \le 1$
- ► Clauses:

$$\begin{array}{c} (x_1 \Rightarrow \overline{x}_2) \\ (x_1 \Rightarrow \overline{x}_3) \\ (x_1 \Rightarrow \overline{x}_4) \\ \dots \end{array} \right\} \begin{array}{c} \overline{x}_1 \vee \overline{x}_2 \\ \overline{x}_1 \vee \overline{x}_3 \\ \overline{x}_1 \vee \overline{x}_4 \\ \dots \end{array}$$

► Complexity: $\mathcal{O}(n^2)$ clauses

How to encode linear constraints?

ATMOSTK constraints:

- ► Naive encoding for ATMOSTK constraints:
- ightharpoonup Cardinality constraint: $x_1 + x_2 + x_3 + x_4 < 2$
- ► Clauses:

$$\begin{array}{c} (x_1 \wedge x_2 \Rightarrow \overline{x}_3) \\ (x_1 \wedge x_2 \Rightarrow \overline{x}_4) \\ (x_2 \wedge x_3 \Rightarrow \overline{x}_4) \\ \dots \end{array} \right\} \begin{array}{c} (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3) \\ (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_4) \\ (\overline{x}_2 \vee \overline{x}_3 \vee \overline{x}_4) \\ \dots \end{array}$$

- ightharpoonup Complexity: $\mathcal{O}(\mathfrak{n}^k)$ clauses
- What properties should these encodings have?

How to encode linear constraints?

ATMOSTK constraints:

- ► Naive encoding for ATMOSTK constraints:
- ► Cardinality constraint: $x_1 + x_2 + x_3 + x_4 \le 2$
- Clauses:

$$\begin{array}{c} (x_1 \wedge x_2 \Rightarrow \overline{x}_3) \\ (x_1 \wedge x_2 \Rightarrow \overline{x}_4) \\ (x_2 \wedge x_3 \Rightarrow \overline{x}_4) \\ \dots \end{array} \right\} \begin{array}{c} (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3) \\ (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_4) \\ (\overline{x}_2 \vee \overline{x}_3 \vee \overline{x}_4) \\ \dots \end{array}$$

- ightharpoonup Complexity: $\mathcal{O}(\mathfrak{n}^k)$ clauses
- What properties should these encodings have? Number of variables? Number of clauses? Other?

Consistency and Arc-Consistency (1)

- ▶ Let us consider an encoding of a constraint *C* such that there is a correspondence between assignments of the variables in *C* with Boolean assignments of the variables in the encoding
- ► The encoding is consistent if whenever M is partial assignment inconsistent wrt C (i.e., cannot be extended to a solution of C), unit propagation leads to conflict

Consistency and Arc-Consistency (1)

- ▶ Let us consider an encoding of a constraint *C* such that there is a correspondence between assignments of the variables in *C* with Boolean assignments of the variables in the encoding
- ► The encoding is consistent if whenever M is partial assignment inconsistent wrt C (i.e., cannot be extended to a solution of C), unit propagation leads to conflict
- ► The encoding is arc-consistent if
 - 1. it is consistent, and
 - 2. unit propagation discards arc-inconsistent values (values that cannot be assigned)
- ► These are good properties for encodings: SAT solvers are very good at unit propagation!

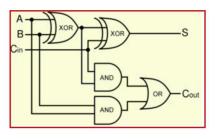
Consistency and Arc-Consistency (2)

In the case of the ATMOSTONE constraint $x_1 + x_2 + ... + x_n \le 1$:

- ► Consistency \equiv if there are two variables x_i assigned to true then unit propagation should give a conflict
- ► Arc-consistency \equiv Consistency + if there is one x_i assigned to *true* then all others x_j should be assigned to *false* by unit propagation

Adder encoding (1)

Build an adder circuit by using bit-adders as building blocks:



$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = C_{in}(A \oplus B) + AB$$

Encodings of this kind are not arc-consistent! Consider $A+B+C_{\rm in}\leq 0$, i.e. $\overline{S}\wedge \overline{C}_{\rm out}$ Then unit propagation should propagate $\overline{A},\overline{B},\overline{C}_{\rm in}$

Adder encoding (2)

```
# Inputs: 2 = A, 3 = B, 5 = C_{in}; Outputs: 6 = S, 9 = C_{out}
p cnf 9 17
23 - 40
-2 -3 -4 0
2 - 3 4 0
-2 3 4 0
4 5 -6 0
-4 -5 -6 0
4 - 560
-4 5 6 0
2 - 70
3 - 70
-2 -3 7 0
4 - 80
5 - 80
-4 -5 8 0
-7 9 0
-8 9 0
78-90
```

Adder encoding (2)

```
# Inputs: 2 = A, 3 = B, 5 = C_{in}; Outputs: 6 = S, 9 = C_{out}
p cnf 9 17
23 - 40
-2 -3 -4 0
2 - 3 4 0
-2 3 4 0
45 - 60
-4 -5 -6 0
4 -5 6 0
-4 5 6 0
2 - 70
3 - 70
-2 - 370
4 - 80
5 - 80
-4 -5 8 0
-790
-8 9 0
78-90
```

Can we build an encoding that is arc-consistent and uses a polynomial number of variables/clauses for at-most-k constraints?

Can we build an encoding that is arc-consistent and uses a polynomial number of variables/clauses for at-most-k constraints?

Yes! By adding $O(n \cdot k)$ auxiliary variables we only need $O(n \cdot k)$ clauses!

$$x_1 + x_2 + x_3 \le 2$$

$$x_1 + x_2 + x_3 \le 2$$

Note: this is easy to encode but we will use it to give intuition. How would you encode this with a single clause?

$$x_1 + x_2 + x_3 < 2$$

Note: this is easy to encode but we will use it to give intuition. How would you encode this with a single clause?

$$\neg(x_1 \land x_2 \land x_3) \equiv (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3)$$

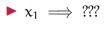
$$x_1 + x_2 + x_3 \le 2$$

χ_1	χ_2	χ_3
s _{1,1}	s _{2,1}	s _{3,1}
_	s _{2,2}	s _{3,2}
_	_	S _{3,3}

► $s_{i,j} \equiv \text{At least } j \text{ variables}$ $x_1, \dots, x_i \text{ are assigned } 1$

$$x_1 + x_2 + x_3 \leq 2$$

χ_1	χ_2	χ_3
s _{1,1}	s _{2,1}	s _{3,1}
_	s _{2,2}	s _{3,2}
_	_	S2 2



$$x_1 + x_2 + x_3 \leq 2$$

χ_1	χ_2	χ_3
s _{1,1}	s _{2,1}	s _{3,1}
_	s _{2,2}	s _{3,2}
_	_	S _{3.3}

$$\triangleright x_1 \implies s_{1,1}$$

$$\triangleright x_2 \implies s_{2,1}$$

$$ightharpoonup x_3 \implies s_{3,1}$$

$$x_1+x_2+x_3 \leq 2$$

χ_1	χ_2	χ_3
s _{1,1}	s _{2,1}	s _{3,1}
_	s _{2,2}	$s_{3,2}$
_	_	S _{2,3}

$$x_1+x_2+x_3 \leq 2$$

χ_1	χ_2	χ_3
s _{1,1}	s _{2,1}	s _{3,1}
_	s _{2,2}	s _{3,2}
_	_	S _{3.3}

- $ightharpoonup s_{1,1} \implies s_{2,1}$
- $ightharpoonup s_{2,1} \implies s_{3,1}$
- $ightharpoonup s_{2,2} \implies s_{3,2}$

$$x_1 + x_2 + x_3 \leq 2$$

χ_1	x_2	χ_3
s _{1,1}	s _{2,1}	s _{3,1}
_	s _{2,2}	$s_{3,2}$
_	_	S ₃ ₃

$$(x_2 \wedge s_{1,1}) \implies ???$$

$$x_1+x_2+x_3 \leq 2$$

x_1	χ_2	χ_3
s _{1,1}	s _{2,1}	s _{3,1}
_	s _{2,2}	$s_{3,2}$
_	_	S _{3.3}

- $\triangleright (x_2 \land s_{1,1}) \implies s_{2,2}$
- $\triangleright (x_3 \land s_{2,2}) \implies s_{3,3}$

$$x_1 + x_2 + x_3 \leq 2$$

χ_1	χ_2	χ_3
s _{1,1}	s _{2,1}	s _{3,1}
_	$s_{2,2}$	s _{3,2}
_	_	$s_{3,3}$

- What are we missing?
- We need to enforce that at most two x_i are assigned to 1. How can we do this?

$$x_1 + x_2 + x_3 \le 2$$

x_1	χ_2	χ_3
s _{1,1}	s _{2,1}	s _{3,1}
_	s _{2,2}	s _{3,2}
_	_	s _{3,3}

- What are we missing?
- We need to enforce that at most two x_i are assigned to 1. How can we do this?
- $ightharpoonup \overline{s}_{3,3}$

$$x_1+x_2+x_3 \leq 2$$

```
p cnf 9 10
-140
-250
-370
-450
-570
-680
-2 - 460
-3 -5 8 0
-3 - 690
-9.0
```

```
\# \overline{\chi}_1 \vee s_{1,1}
                  \# \overline{\mathbf{x}}_2 \vee \mathbf{s}_{2,1}
                   \# \overline{\chi}_3 \vee s_{3,1}
               # \bar{s}_{1,2} \vee s_{2,1}
               # \bar{s}_{2,1} \vee s_{3,1}
               # \bar{s}_{2,2} \vee s_{3,2}
\# \overline{x}_2 \vee \overline{s}_{1,1} \vee s_{2,2}
\# \overline{\chi}_3 \vee \overline{s}_{2,1} \vee s_{3,2}
\# \overline{\chi}_3 \vee \overline{s}_{2,2} \vee s_{3,3}
                                  \# \overline{s}_{3,3}
```

$$x_1 + x_2 + x_3 \le 2$$

```
p cnf 9 10
-140
-250
-370
-4 5 0
-570
-680
-2 - 460
-3 -5 8 0
-3 - 690
-90
```

$$\begin{array}{c} \# \ \overline{\chi}_1 \lor s_{1,1} \\ \# \ \overline{\chi}_2 \lor s_{2,1} \\ \# \ \overline{\chi}_3 \lor s_{3,1} \\ \# \ \overline{s}_{1,2} \lor s_{2,1} \\ \# \ \overline{s}_{2,1} \lor s_{3,1} \\ \# \ \overline{s}_{2,2} \lor s_{3,2} \\ \# \ \overline{\chi}_2 \lor \overline{s}_{1,1} \lor s_{2,2} \\ \# \ \overline{\chi}_3 \lor \overline{s}_{2,1} \lor s_{3,2} \\ \# \ \overline{\chi}_3 \lor \overline{s}_{2,2} \lor s_{3,3} \\ \# \ \overline{\chi}_3 \lor \overline{s}_{2,2} \lor s_{3,3} \\ \# \ \overline{s}_{3,3} \end{array}$$

If $x_1 = 1$ and $x_2 = 2$ then by unit propagation we have $x_3 = 0$.

$$x_1 + x_2 + x_3 \le 2$$

```
p cnf 9 10
-140
-250
-370
-4 5 0
-570
-680
-2 - 460
-3 -5 8 0
-3 - 690
-90
```

$$\begin{array}{c} \# \ \overline{x}_1 \lor s_{1,1} \\ \# \ \overline{x}_2 \lor s_{2,1} \\ \# \ \overline{x}_3 \lor s_{3,1} \\ \# \ \overline{s}_{1,2} \lor s_{2,1} \\ \# \ \overline{s}_{2,1} \lor s_{3,1} \\ \# \ \overline{s}_{2,2} \lor s_{3,2} \\ \# \ \overline{x}_2 \lor \overline{s}_{1,1} \lor s_{2,2} \\ \# \ \overline{x}_3 \lor \overline{s}_{2,1} \lor s_{3,2} \\ \# \ \overline{x}_3 \lor \overline{s}_{2,2} \lor s_{3,3} \\ \# \ \overline{x}_{3} \lor \overline{s}_{2,2} \lor s_{3,3} \\ \# \ \overline{s}_{3,3} \end{array}$$

If $x_1 = 1$ and $x_2 = 2$ then by unit propagation we have $x_3 = 0$.

$$x_1 + x_2 + x_3 \le 2$$

```
p cnf 9 10
-140
-250
-370
-450
-570
-680
-2 -460
-3 -5 8 0
-3 - 690
-90
```

If $x_1 = 1$ and $x_2 = 2$ then by unit propagation we have $x_3 = 0$.

Sinz encoding (3)

Encoding for the general case $x_1 + ... + x_n \le k$:

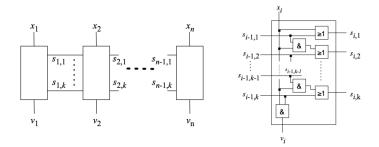
$$\begin{split} &(\overline{x}_1 \vee s_{1,1}) \\ &(\overline{s}_{1,j}) \qquad \text{for } 1 < j \leq k \\ &(\overline{x}_i \vee s_{i,1}) \\ &(\overline{s}_{i-1,1} \vee s_{i,1}) \\ &(\overline{s}_i \vee \overline{s}_{i-1,k}) \end{split} \qquad \qquad \text{for } 1 < i < n \\ &(\overline{x}_i \vee \overline{s}_{i-1,k}) \end{split}$$

More details in paper: "Towards an Optimal CNF Encoding of Boolean Cardinality Constraints", CP2005

► This version considers extra auxiliary variables that can be removed (e.g., sum at x_1 is never greater than 1)

Sinz encoding (4)

Sinz's encoding can also be viewed as a circuit:

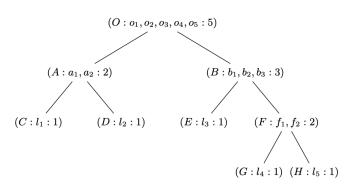


 $s_{i,j}$ denotes the j-th digit of the i-th partial sum s_i in unary representation; variables v_i are overflow bits, indicating that the i-th partial sum is greater than k.

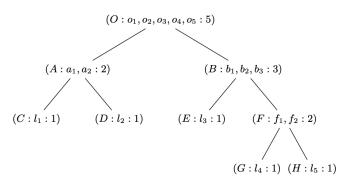
Totalizer encoding (1)

What is another example of an at-most-k encoding for $l_1 + \dots l_5 \leq k$?

Totalizer encoding is based on a tree structure and also only needs $O(n \cdot k)$ clauses/variables.

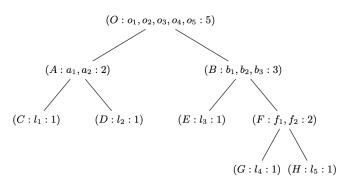


Totalizer encoding (2)



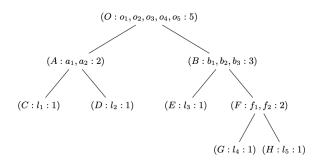
- ▶ Use auxiliary variables to count the sum of the subtree:
 - ▶ $f_1 \equiv l_4 + l_5 = 1$
 - $f_2 \equiv l_4 + l_5 = 2$
- Note that only f_1 or f_2 will be assigned to 1.

Totalizer encoding (2)



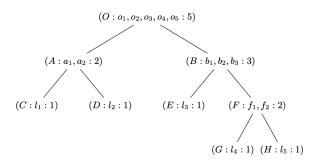
- ▶ Use auxiliary variables to count the sum of the subtree:
 - $b_1 \equiv l_3 + f_1 + 2 \times f_2 = 1$
 - $b_2 \equiv l_3 + f_1 + 2 \times f_2 = 2$
 - $b_3 \equiv l_3 + f_1 + 2 \times f_2 = 3$

Totalizer encoding (3)



Any intermediate node P, counting up to n_1 , has two children Q and R counting up to n_2 and n_3 respectively such that $n_2+n_3=n_1$.

Totalizer encoding (3)



In order to ensure that the correct sum is received at P, the following formula is built for P:

$$\bigwedge_{\substack{0 \leq \alpha \leq n_2 \\ 0 \leq \beta \leq n_3 \\ 0 \leq \sigma \leq n 1 \\ \alpha + \beta = \sigma}} (\overline{q}_\alpha \vee \overline{r}_\beta \vee p_\sigma) \quad \text{where, } p_0 = q_0 = r_0 = 1$$

More details can be found in the Totalizer encoding paper.

Further reading

More details about cardinality encodings can be found in:

- ➤ Sinz's encoding:
 Carsten Sinz. Towards an Optimal CNF Encoding of Boolean
 Cardinality Constraints. CP 2005. pp. 827-831
 http://www.carstensinz.de/papers/CP-2005.pdf
- ➤ Totalizer encoding:
 Olivier Bailleux, Yacine Boufkhad. Efficient CNF Encoding of Boolean Cardinality Constraints. CP 2003. pp. 108-122 https://tinyurl.com/y6ph76au
- ► Modulo Totalizer encoding: Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura, Hiroshi Fujita. Modulo Based CNF Encoding of Cardinality Constraints and Its Application to MaxSAT Solvers. ICTAI 2013. pp. 9-17 https://ieeexplore.ieee.org/document/6735224
- ► Cardinality networks: Roberto Asin, Robert Nieuwenhuis, Albert Oliveras, Enric Rodriguez-Carbonell. Cardinality Networks and Their Applications. SAT 2009. pp. 167-180 https://tinyurl.com/yxwrxzxo

Many other encodings exist for cardinality constraints! Majority are based on circuits!

Example: Sorting Networks use $O(nlog^2k)$ variables and clauses

We can also generalize to linear constraints with integer coefficients called pseudo-Boolean constraints:

$$a_1x_1 + \ldots + a_nx_n \le k$$

Many other encodings exist for cardinality constraints! Majority are based on circuits!

Example: Sorting Networks use $O(nlog^2k)$ variables and clauses

We can also generalize to linear constraints with integer coefficients called pseudo-Boolean constraints:

$$a_1x_1 + \ldots + a_nx_n \le k$$

Question: Can we generalize Sinz's encoding to pseudo-Boolean constraints?

Many other encodings exist for cardinality constraints! Majority are based on circuits!

Example: Sorting Networks use $O(nlog^2k)$ variables and clauses

We can also generalize to linear constraints with integer coefficients called pseudo-Boolean constraints:

$$a_1x_1 + \ldots + a_nx_n \le k$$

Question: Can we generalize Sinz's encoding to pseudo-Boolean constraints? Yes! We just need to consider the coefficient when writing the sum constraints.

Many other encodings exist for cardinality constraints!

Majority are based on circuits!

Example: Sorting Networks use $O(nlog^2k)$ variables and clauses

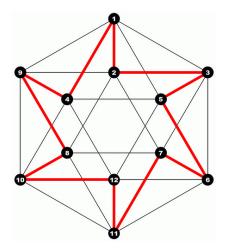
We can also generalize to linear constraints with integer coefficients called pseudo-Boolean constraints:

$$a_1x_1 + \ldots + a_nx_n \le k$$

Question: Can we generalize Sinz's encoding to pseudo-Boolean constraints? Yes! We just need to consider the coefficient when writing the sum constraints.

More efficient encodings: Binary merger encoding only requires $O(n^2 log^2(n) log(w_{max}))$ clauses and maintains arc-consistency!

The Hamiltonian cycle problem is the problem of finding a closed loop through a graph that visits each node exactly once!



Let G = (V, E) be a graph where V is a set of $\mathfrak n$ nodes and E is a set of edges.

Let x_{ij} be a Boolean variable for each arc $(i,j) \in E$, which is equal to 1 when (i,j) is used in a solution cycle.

- For each node i = 1, ..., n (in- and out-degree)
 - $\sum_{(i,j)\in F} x_{i,j} = 2$
 - $x_{8,10} + x_{8,9} + x_{2,8} + x_{7,8} + x_{8,11} = 2$
- ▶ $S \subset V$, $2 \le |S| \le n 2$ (connectivity)
 - $\triangleright \sum_{i,j \in S} x_{i,j} \leq |S| 1$
 - $S = \{8, 9, 10\} : x_{8,10} + x_{8,9} + x_{9,10} \le 2$

How to encode $x_{8,10} + x_{8,9} + x_{2,8} + x_{7,8} + x_{8,11} = 2$?

How to encode $x_{8,10} + x_{8,9} + x_{2,8} + x_{7,8} + x_{8,11} = 2$? We can split it into two constraints:

$$x_{8,10} + x_{8,9} + x_{2,8} + x_{7,8} + x_{8,11} \le 2$$

How to encode $x_{8,10} + x_{8,9} + x_{2,8} + x_{7,8} + x_{8,11} = 2$? We can split it into two constraints:

- $x_{8,10} + x_{8,9} + x_{2,8} + x_{7,8} + x_{8,11} \le 2$
 - ► We know how to do this now! For example, we can use Sinz's encoding!
- $x_{8,10} + x_{8,9} + x_{2,8} + x_{7,8} + x_{8,11} \ge 2$
 - ▶ Any ≥ constraint can be transformed into a ≤ constraint
 - $\overline{x}_{8,10} + \overline{x}_{8,9} + \overline{x}_{2,8} + \overline{x}_{7,8} + \overline{x}_{8,11} \leq 3$
 - ► Now we can use Sinz's encoding!

How to encode $x_{8,10} + x_{8,9} + x_{2,8} + x_{7,8} + x_{8,11} = 2$? We can split it into two constraints:

- $x_{8,10} + x_{8,9} + x_{2,8} + x_{7,8} + x_{8,11} \le 2$
 - ► We know how to do this now! For example, we can use Sinz's encoding!
- $x_{8,10} + x_{8,9} + x_{2,8} + x_{7,8} + x_{8,11} \ge 2$
 - ▶ Any ≥ constraint can be transformed into a ≤ constraint
 - $\overline{x}_{8,10} + \overline{x}_{8,9} + \overline{x}_{2,8} + \overline{x}_{7,8} + \overline{x}_{8,11} \leq 3$
 - Now we can use Sinz's encoding!
- $\triangleright x_1 + x_2 + \ldots + x_n \ge k$ can always be rewritten as:
 - $ightharpoonup \overline{x}_1 + \overline{x}_2 + \ldots + \overline{x}_n < n k$
 - Note that $(1-x_1) \equiv \overline{x}_1$

The out-degree and in-degree constraints force that, for each node, in-degree and out-degree are respectively exactly one in a solution cycle.

The connectivity constraint prohibits the formation of sub-cycles, i.e., cycles on proper subsets of n nodes.

The out-degree and in-degree constraints force that, for each node, in-degree and out-degree are respectively exactly one in a solution cycle.

The connectivity constraint prohibits the formation of sub-cycles, i.e., cycles on proper subsets of n nodes.

There is an exponential number of subtours and encoding connectivity constraints with this approach is often not practical!

Lazy encodings

Lazy encoding: instead of encoding the connectivity constraint eagerly, encode it lazily!

Every time the solver returns a solution:

- 1. Check if it is connected. If it is then we found a solution.
- 2. Otherwise, add constraints to force connectivity of the current path. Ask for a new solution [Go to 1].

In practice, we can find a solution without adding add subtours! Even though we need to perform several SAT calls to find the solution, this is often faster than solving one large SAT formula.

Beyond Propositional Logic

What if our formula looks like this? $(p \land \overline{q} \lor \alpha = f(b-c)) \land (g(b) \neq c \lor \alpha - c \leq 7)$

We can transform it into a SAT formula

can only find solutions within bounds

Talks about integers, functions, sets, lists, ...

very inefficient, so bounds are small

Better idea: combine SAT with special solvers for theories

Satisfiability Modulo Theories

Equality and Uninterpreted Functions

 $\mathsf{EUF} = <\mathsf{f},\mathsf{g},\mathsf{h},\ldots,=, \mathsf{axioms} \mathsf{ of equality \& congruence} >$

Linear Integer Arithmetic

LIA = $< 0, 1, \dots, +, -, =, \leq$, axioms of arithmetic >

Arrays, Strings, bitvectors, datatypes, quantifiers, ...

Theories can be combined!

SMT Solvers

- Z3 (Microsoft): https://github.com/Z3Prover/z3/wiki
- CVC4 (Stanford): http://cvc4.cs.stanford.edu/web/
- ► Yices (SRI): http://yices.csl.sri.com/
- Boolector (JKU Austria): https://boolector.github.io/

Next lecture we will go over SAT and SMT solvers in practice!

Representations for Automated Reasoning

Ruben Martins

Carnegie Mellon University

http://www.cs.cmu.edu/~mheule/15816-f20/ https://cmu.zoom.us/j/93095736668 Automated Reasoning and Satisfiability September 14, 2020