10-607 Computational Foundations for Machine Learning

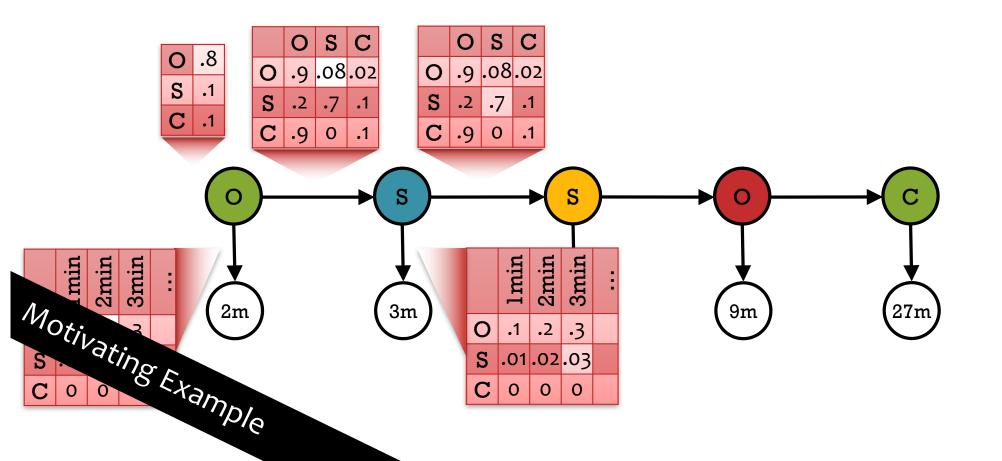
Machine Learning Department School of Computer Science Carnegie Mellon University

Data Structures

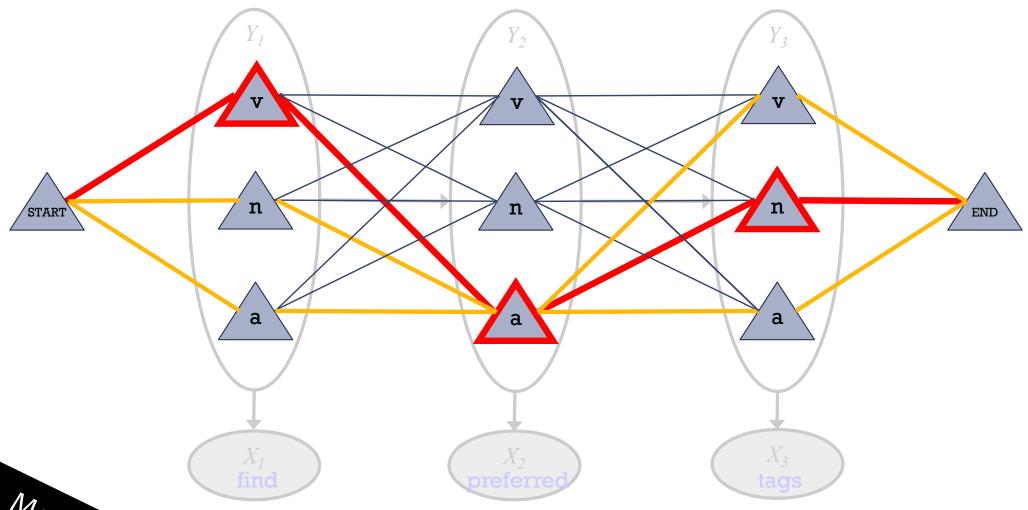
Matt Gormley Lecture 9 Nov. 19, 2018

Reminders

- Homework B: Complexity & Recursion
 - Out: Thu, Nov. 8
 - Due: Tue, Nov. 20 at 11:59pm
- Quiz A: Logic & Proofs; Computation
 - Mon, Nov. 26, in-class
 - Covers Lectures 1 6


Q&A

DYNAMIC PROGRAMMING


Hidden Markov Model

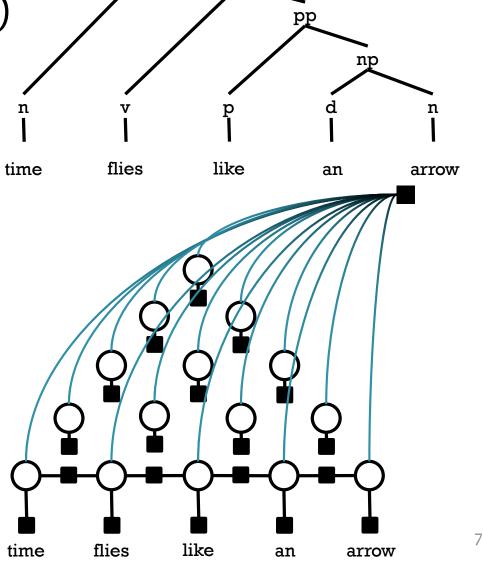
A Hidden Markov Model (HMM) provides a joint distribution over the the tunnel states / travel times with an assumption of dependence between adjacent tunnel states.

$$p(0, S, S, O, C, 2m, 3m, 18m, 9m, 27m) = (.8 * .08 * .2 * .7 * .03 * ...)$$

Forward-Backward Algorithm: Finds Marginals

 $Motivating p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/\mathbf{Z})$ " productions $f(\mathbf{v}) = \mathbf{v}$ probability $f(\mathbf{v}) = \mathbf{a}$ total weight of all paths through \mathbf{a}

Constituency Parsing


Variables:

Constituent type (or ∅) for each of O(n²) substrings

Interactions:

- Constituents must describe a binary tree
- Tag bigrams
- Nonterminal triples (parent, left-child, right-child)

[these factors not shown]

Dynamic Programming

Key Idea: Divide a large problem into reusable subproblems and solve each subproblem, storing the result of each for later reuse

"Let's take a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that is it's impossible to use the word, dynamic, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. [. . .] Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities."

Richard Bellman, Autobiography (1984)

Dynamic Programming

- Big Idea: Dynamic Programming
- Example: Fibonacci with and without dynamic programming
 - Recursive Fibonacci's computational complexity
 - Dynamic programming Fibonacci's computational complexity
- Types of Dynamic Programming
 - Tabulation (bottom-up)
 - Memoization (top-down)
- Example: Matrix Product Parenthesization

DATA STRUCTURES FOR ML

Abstractions vs. Data Structures

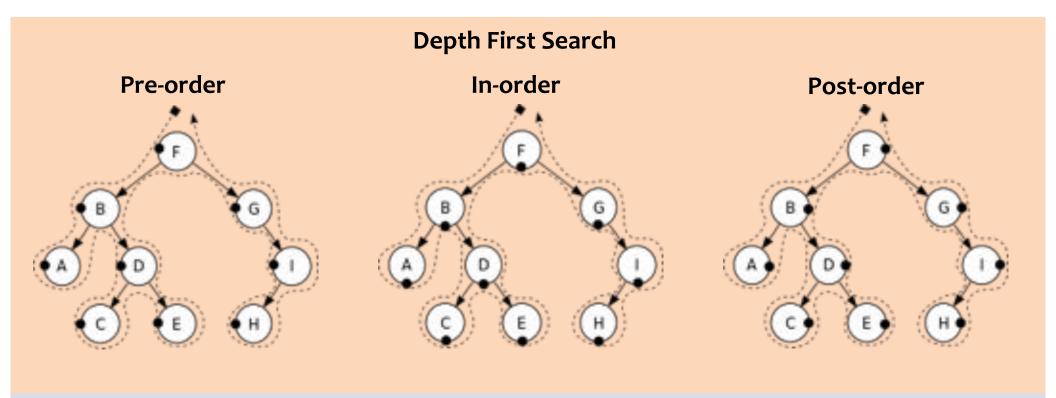
Abstractions

- List
- Set
- Map
- Queue (FIFO)
- Stack (LIFO)
- Graph
- Priority Queue

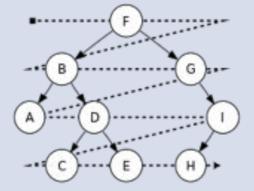
Data Structures

- Array (fixed size)
- Array (variable size)
- Linked List
- Doubly-Linked List
- Multidimensional Array
- Tensor
- Hash Map
- Binary Search Tree
- Balanced Tree
- Trie
- Stack
- Heap
- Graph
- Bipartite Graph
- Sparse Vector
- Sparse Matrix

Data Structures for ML


Examples...

- Data:
 - Dense feature vector (array)
 - Sparse feature vector (sparse vector)
 - Design matrix (multidimensional array)
- Models:
 - Decision Trees (tree)
 - Bayesian Network (directed acyclic graph)
 - Factor Graph (bipartite graph)
- Algorithms:
 - Greedy Search (weighted graph)
 - A* Search (priority queue/heap)
 - Forward-backward for HMM (trellis)

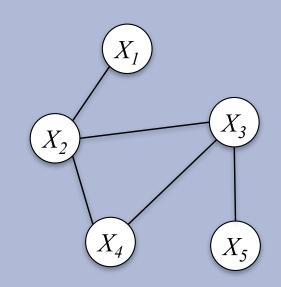

Trees

- Binary Tree
 - Representation
 - Depth First Search
 - pre-order traversal
 - in-order traversal
 - post-order traversal
 - Breadth First Search
- Decision Tree
 - Representation

Tree Traversals

Breadth First Search

Graphs


- Undirected Graphs
 - Representation
 - Breadth First Search

Decision Tree Learning Example

In-Class Exercise

- Suppose we now have an undirected (possibly cyclic) graph
- You need a breadth-first traversal of the graph from some query node
- Your friend suggests you use the same BFS algorithm we defined for binary trees
- 1. What goes wrong?
- 2. How can you fix it?

Example Undirected Graph:

Sparse Vectors

- Sparse Vector
 - Representation
 - Sparse Dot Product
 - Addition of dense vector and sparse vector

Data Structures & Algorithms

- Weighted Directed Acyclic Graph
 - Representation
 - Greedy Search
 - Dijkstra's Algorithm
 - A* Search
- Binary Search Tree
 - Representation
 - Average vs. Worst Case Time Complexity
 - Search
 - Insertion
 - Deletion