10-607 Computational Foundations for Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Unconstrained Optimization

Matt Gormley Lecture 12 Dec. 2, 2018

Reminders

- Homework C: Data Structures
 - Out: Mon, Nov. 26
 - Due: Mon, Dec. 3 at 11:59pm
- Quiz B: Computation; Programming & Efficiency
 - Wed, Dec. 5, in-class
 - Covers Lectures 7 12
- Homework D: Inference & Optimization
 - Out: Mon, Dec. 3
 - Due: Fri, Dec. 7 at 11:59pm

Q&A

GRADIENT DESCENT

Motivation: Gradient Descent

Cases to consider gradient descent:

- 1. What if we can not find a closed-form solution?
- 2. What if we can, but it's inefficient to compute?
- 3. What if we **can**, but it's numerically unstable to compute?

Motivation: Gradient Descent

To solve the Ordinary Least Squares problem we compute:

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y^{(i)} - (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}))^{2}$$
$$= (\mathbf{X}^{T} \mathbf{X})^{-1} (\mathbf{X}^{T} \mathbf{Y})$$

The resulting shape of the matrices:

$$(\mathbf{X}^{T} \mathbf{X})^{-1} (\mathbf{X}^{T} \mathbf{Y})$$

$$M \times N N \times M$$

$$M \times N N \times 1$$

$$M \times M$$

$$M \times 1$$

Background: Matrix Multiplication Given matrices ${f A}$ and ${f B}$

- If **A** is $q \times r$ and **B** is $r \times s$, computing **AB** takes O(qrs)
- If **A** and **B** are $q \times q$, computing **AB** takes $O(q^{2.373})$
- If **A** is $q \times q$, computing A^{-1} takes $O(q^{2.373})$.

Computational Complexity of OLS:

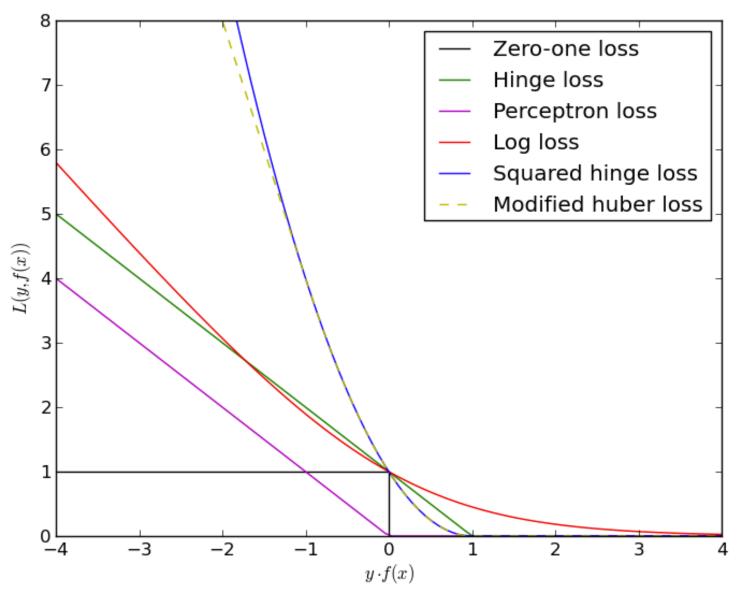
Linear in # of examples, N
Polynomial in # of features, M

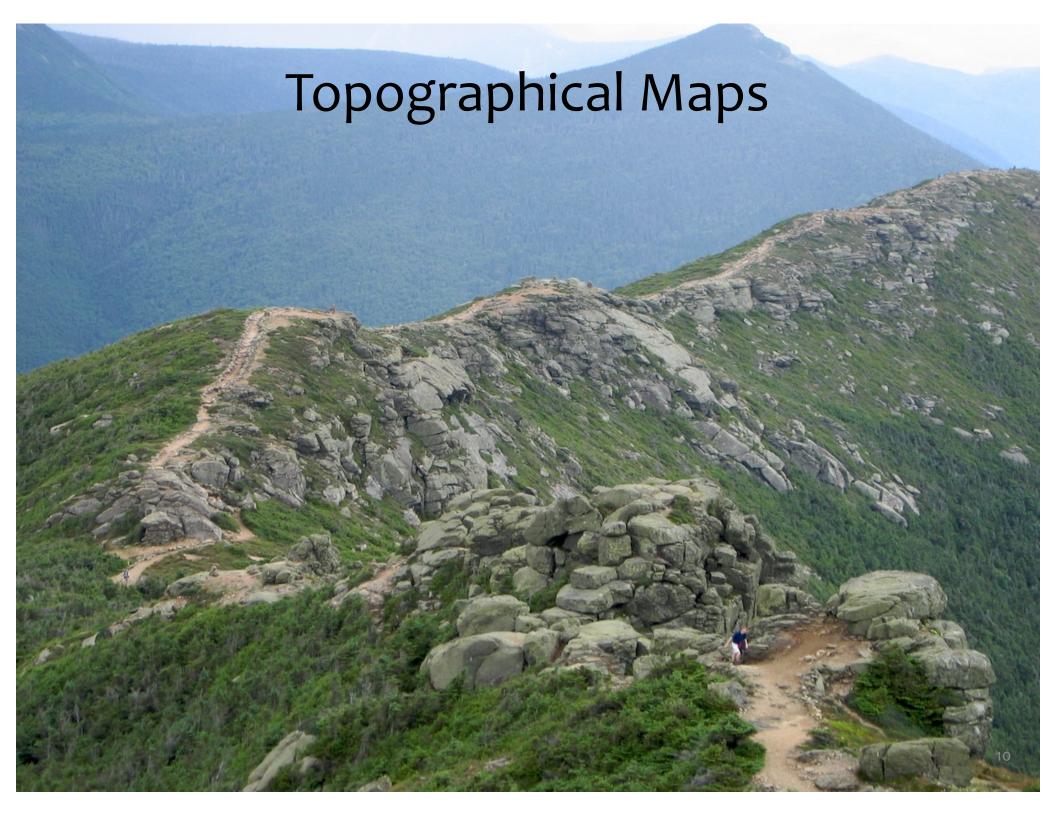
Regularized Regret

Chalkboard

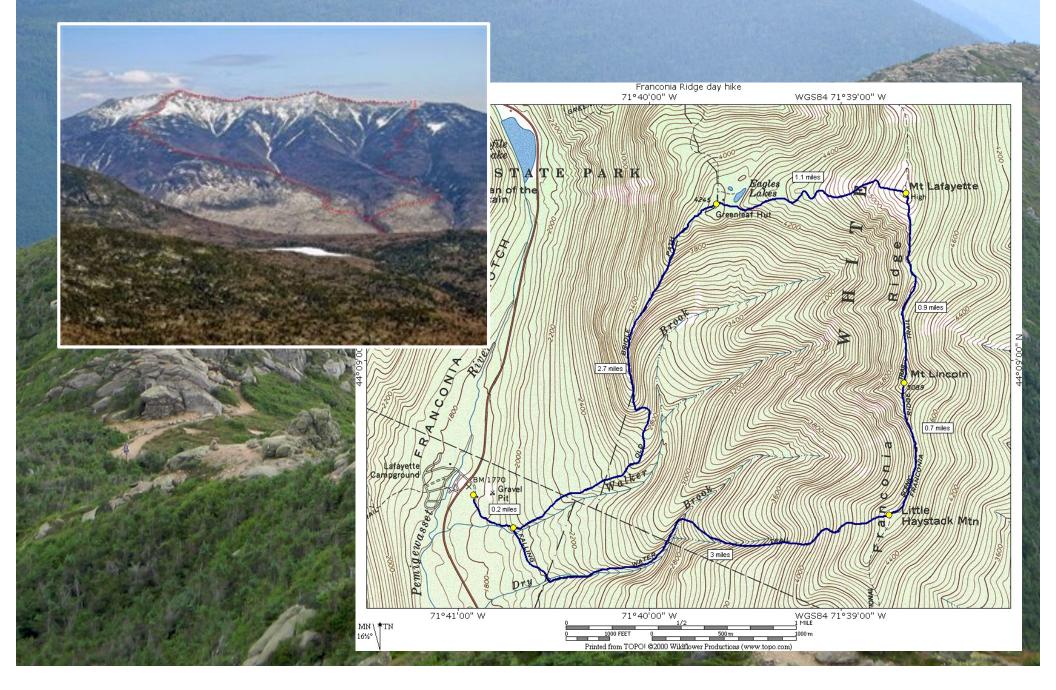
- Regularized loss minimization
- L1 vs. L2 regularizers
- Learning linear models by optimization
- Example loss functions:
 - zero-one
 - logistic (log-loss)
 - exponential
 - squared
 - hinge
 - perceptron

Losses for Linear Models

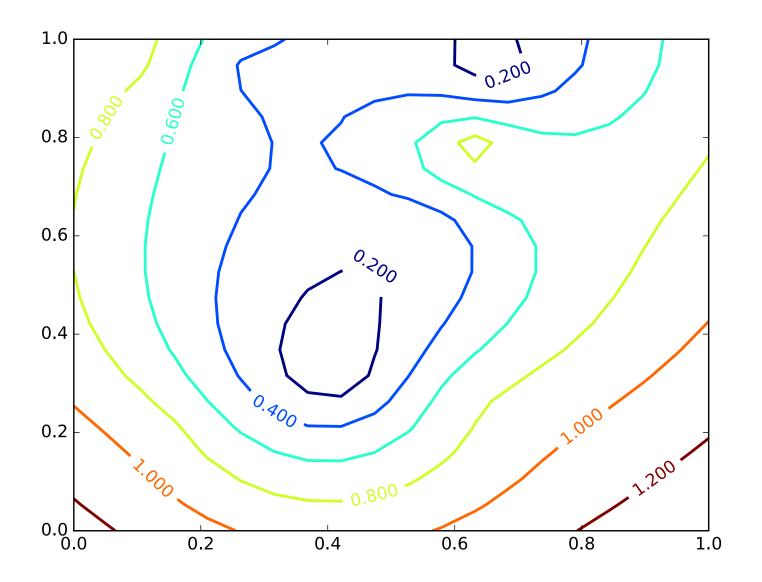




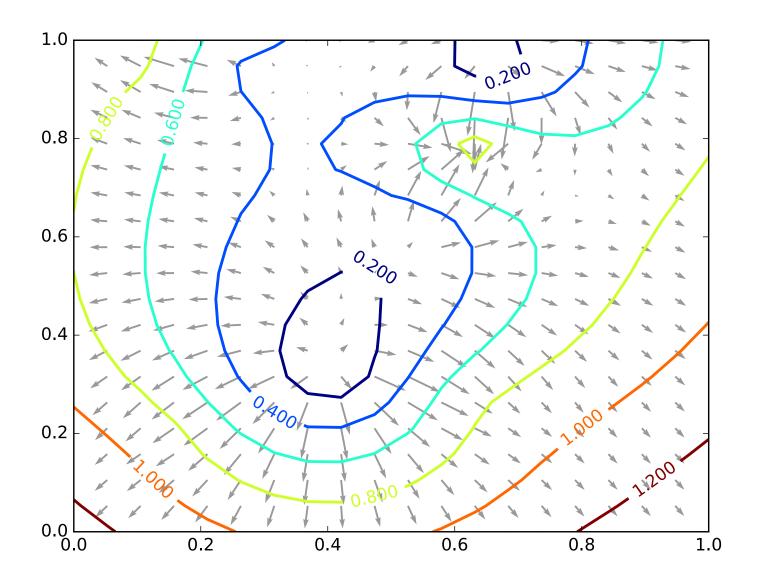
Topographical Maps



Gradients

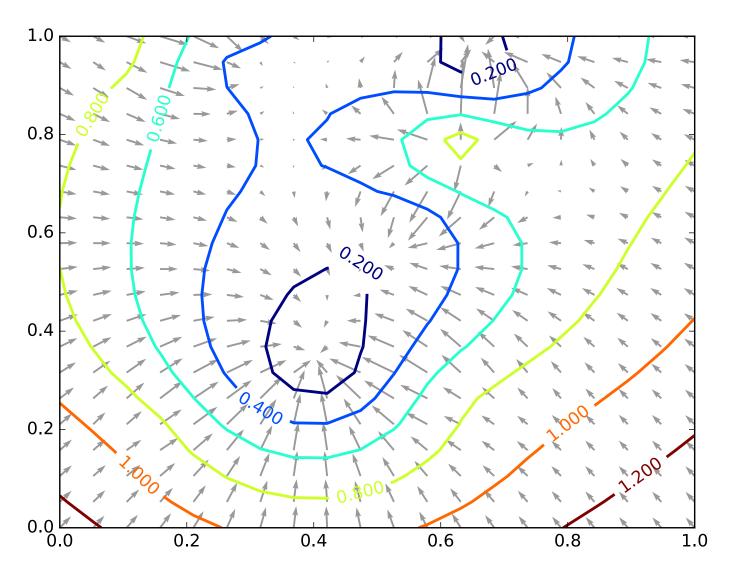


Gradients



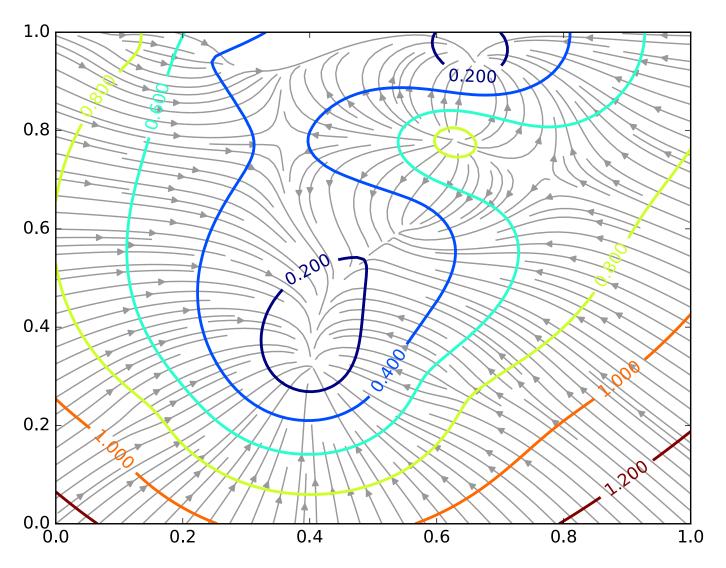
These are the **gradients** that Gradient **Ascent** would follow.

(Negative) Gradients



These are the **negative** gradients that Gradient **Descent** would follow.

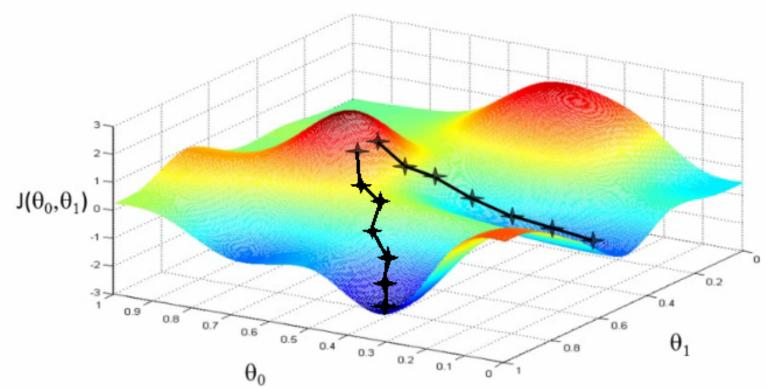
(Negative) Gradient Paths



Shown are the **paths** that Gradient Descent would follow if it were making **infinitesimally small steps**.

Pros and cons of gradient descent

- Simple and often quite effective on ML tasks
- Often very scalable
- Only applies to smooth functions (differentiable)
- Might find a local minimum, rather than a global one



Gradient Descent

Chalkboard

- Gradient Descent Algorithm
- Details: starting point, stopping criterion, line search

Gradient Descent

Algorithm 1 Gradient Descent

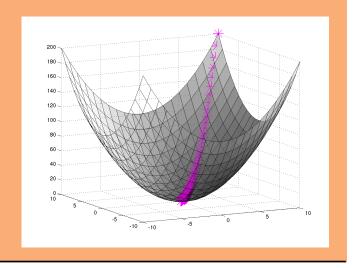
1: **procedure** $GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$

2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$

3: while not converged do

4: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

5: return θ



In order to apply GD to Linear Regression all we need is the gradient of the objective function (i.e. vector of partial derivatives).

$$abla_{m{ heta}} J(m{ heta}) = egin{bmatrix} rac{d heta_1}{d heta_2} J(m{ heta}) \ dots \ rac{d}{d heta_M} J(m{ heta}) \end{bmatrix}$$

Gradient Descent

Algorithm 1 Gradient Descent

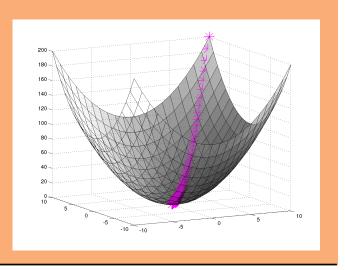
1: **procedure** $GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$

2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$

3: while not converged do

4: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

5: return θ



There are many possible ways to detect **convergence**. For example, we could check whether the L2 norm of the gradient is below some small tolerance.

$$||\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})||_2 \leq \epsilon$$

Alternatively we could check that the reduction in the objective function from one iteration to the next is small.

STOCHASTIC GRADIENT DESCENT

Stochastic Gradient Descent (SGD)

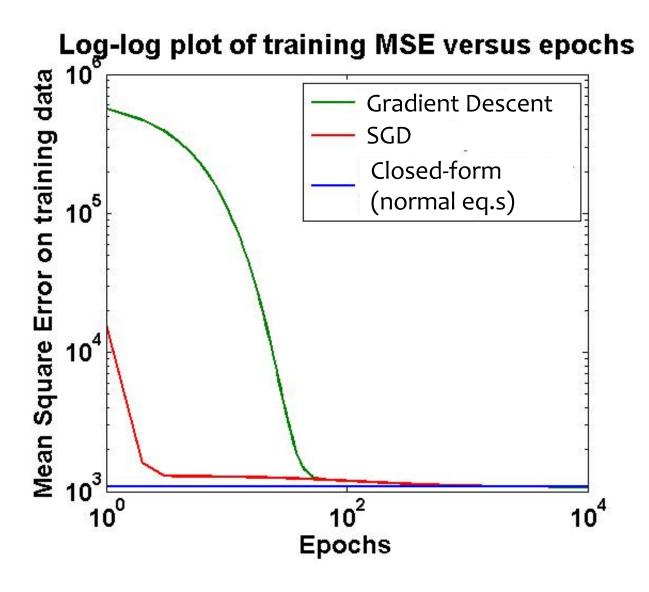
Algorithm 2 Stochastic Gradient Descent (SGD)

```
1: procedure SGD(\mathcal{D}, \boldsymbol{\theta}^{(0)})
2: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}
3: while not converged do
4: for i \in \text{shuffle}(\{1, 2, \dots, N\}) do
5: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})
6: return \boldsymbol{\theta}
```

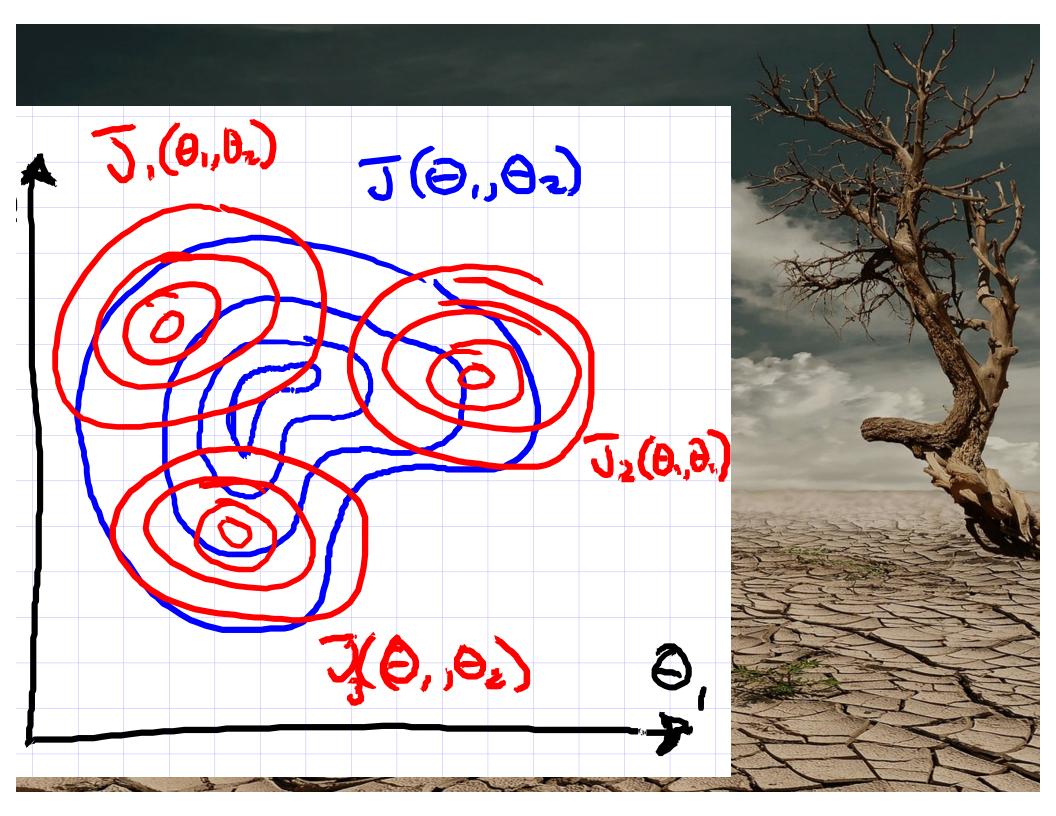
We need a per-example objective:

Let
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

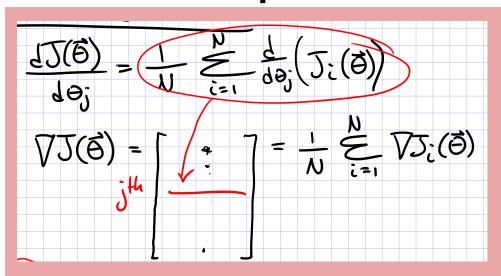
Convergence Curves



- Def: an epoch is a single pass through the training data
- For GD, only one update per epoch
- For SGD, N updatesper epochN = (# train examples)
- SGD reduces MSE much more rapidly than GD
- For GD / SGD, training MSE is initially large due to uninformed initialization



Expectations of Gradients



Recall: for any discrete r.v.
$$X$$

$$E_{X}[f(x)] \triangleq \sum_{x} P(x=x)f(x)$$

Qibbat is the expectal value of a randomly chosen
$$\nabla J_i(\Theta)$$
?

Let $I \sim U_{ni} Sova(\{1,...,N\})$
 $\Rightarrow P(I=i) = \frac{1}{N} \text{ if } ie \{1,...N\}$

$$E_{I}[\nabla J_{I}(\vec{\Theta})] = \bigotimes_{i=1}^{N} P(I=i) \nabla J_{i}(\vec{\Theta})$$

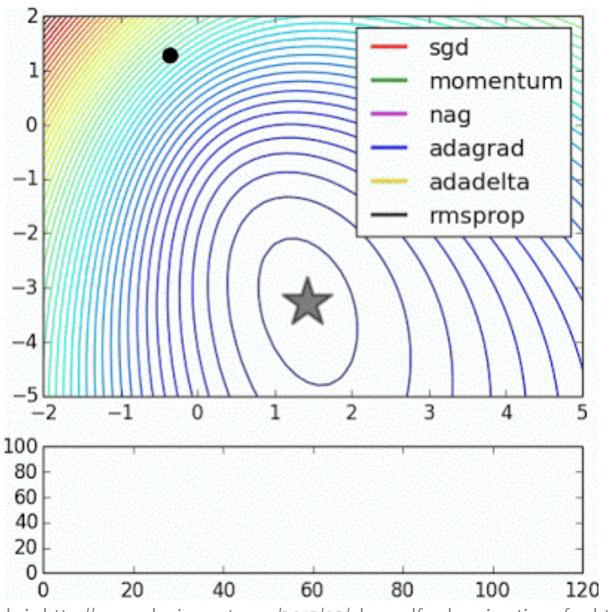
$$= \bigcup_{i=1}^{N} \bigotimes_{i=1}^{N} \nabla J_{i}(\vec{\Theta})$$

$$= \nabla J(\vec{\Theta})$$

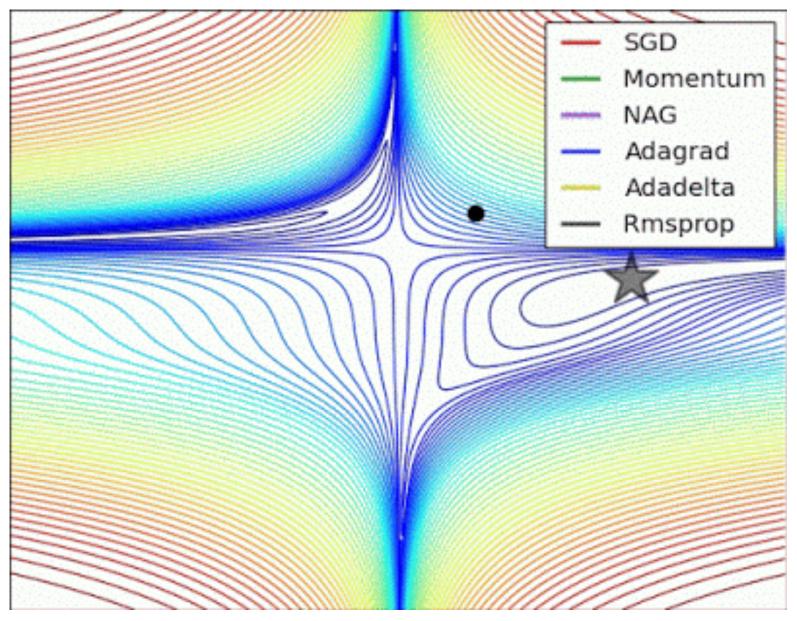
Convergence of Optimizers

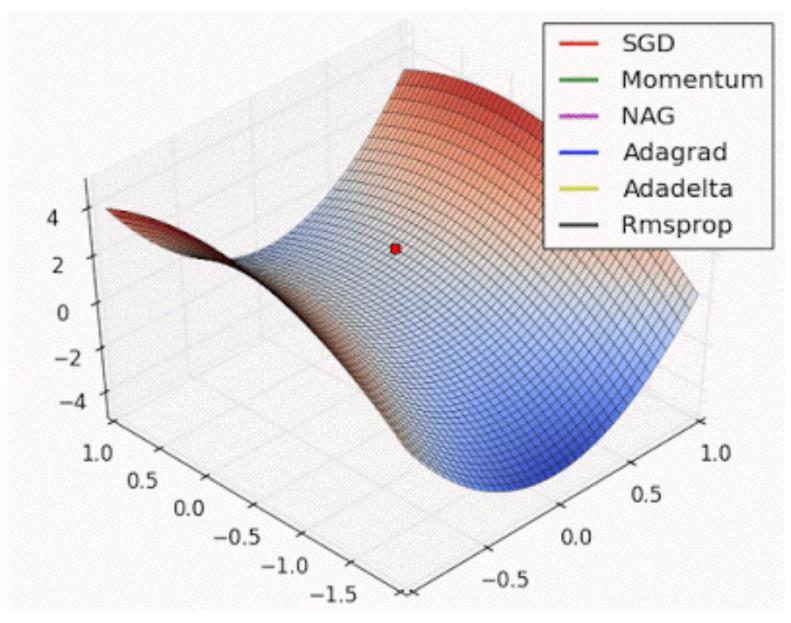
Convergence Analy	5 (3):	tre vulenn min
		-2(€*) < €
Methods	Steps to Converge	Compotation per iteration
Newlow's Method	O(lala/e)7 O(la/6)	7J(0) 7J(0) ~ O(NM2)
SED	O(lu /6)	$\Delta \Sigma(\Theta) \leftarrow O(NW)$
	0(1/6)	$\nabla J_i(\Theta) \leftarrow O(M)$
	"almost sure" lots of coverts	Wey less Company
	SED lass hards cla	Juk and the second of the seco
anegi	ay: SGD has much sk	in Ocare

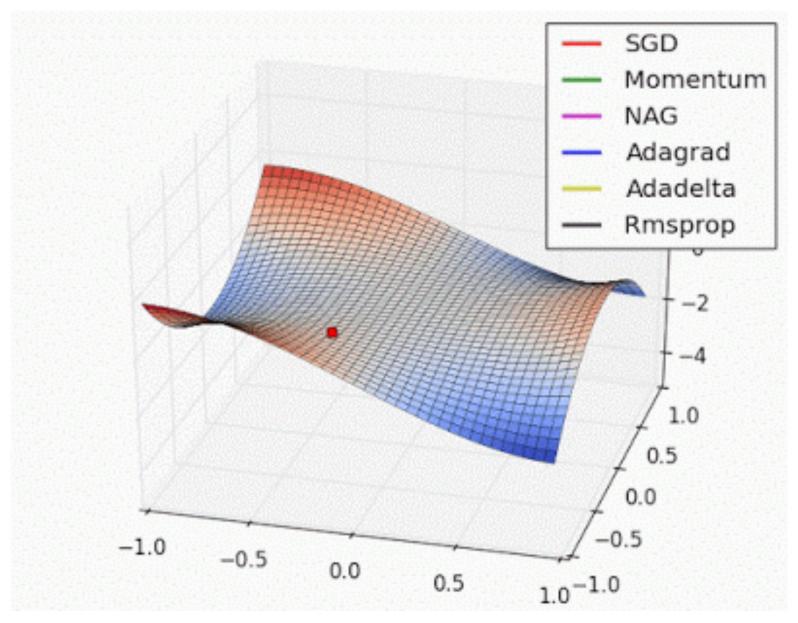
ADAGRAD



28







Algorithm Updates:

```
SGD: w_{t+1} = w_t - \eta_t(f_t'(w_t) + r'(w_t))

MD: w_{t+1} = \arg\min_{w \in \Omega} \eta \left\langle f_t'(w_t), w - w_t \right\rangle + \eta r(w) + B_{\psi}(w, w_t)

COMID: w_{t+1} = \arg\min_{w \in \Omega} \eta \left\langle f_t'(w_t), w - w_t \right\rangle + \eta r(w) + B_{\psi}(w, w_t)

RDA: w_{t+1} = \arg\min_{w \in \Omega} \eta \left\langle \bar{g}_t, w \right\rangle + \eta r(w) + \frac{1}{t} \psi_t(w)

AdaGrad-COMID: w_{t+1} = \arg\min_{w \in \Omega} \eta \left\langle f_t'(w_t) - H_t w_t, w \right\rangle + \eta r(w) + \frac{1}{2} \left\langle w, H_t w \right\rangle

AdaGrad-RDA: w_{t+1} = \arg\min_{w \in \Omega} \eta \left\langle t\bar{g}_t, w \right\rangle + \eta r(w) + \frac{1}{2} \left\langle w, H_t w \right\rangle
```

Derived Algorithms:

 ℓ_1 -regularization For the regularizer $r(w) = \lambda ||w||_1$, we have the following updates.

RDA:
$$w_{t+1,i} = \operatorname{sign}(-\bar{g}_{t,i})\eta\sqrt{t}[|\bar{g}_{t,i}| - \lambda]_+$$

AdaGrad-RDA:
$$w_{t+1,i} = \operatorname{sign}(-\bar{g}_{t,i}) \frac{\eta t}{H_{t,i}} [|\bar{g}_{t,i}| - \lambda]_+$$

Fobos (COMID):
$$w_{t+1,i} = \operatorname{sign}(w_{t,i} - \eta_t g_{t,i} \left[|w_{t,i} - \eta_t g_{t,i}| - \eta_t \lambda \right]_+$$

AdaGrad-COMID:
$$w_{t+1,i} = \operatorname{sign}\left(w_{t,i} - \frac{\eta}{H_{t,ii}}g_{t,i}\right) \left[\left|w_{t,i} - \frac{\eta}{H_{t,ii}}g_{t,i}\right| - \frac{\lambda\eta}{H_{t,ii}}\right]_+$$

where
$$[x]_{+} = \max(0, x)$$
.

 $g_{t,i}$ is shorthand for the *i*th element of $f'_t(\theta)$.

Derived Algorithms:

AdaGrad-COMID

For the ℓ_2^2 -regularizer, $r(\theta) = \frac{\lambda}{2} ||\theta||_2^2$, we have the following update.

$$\theta_i^{(t+1)} = \frac{H_{t,i,i}\theta_i^{(t)} - \eta g_{t,i}}{\eta \lambda \delta + H_{t,i,i}}$$

where the hyperparameter δ helps deal with the initially noisy values in $H_{t,i,i}$ and typically takes a small positive value ≤ 1 .

 H_t is a diagonal matrix defined such that each

$$H_{t,i,i} = \delta + \sqrt{\sum_{s=1}^{t} (f'_s(\boldsymbol{\theta})_i)^2}$$

is a smoothed version of the square root of the sum of the squares of the ith element of

Derived Algorithms:

AdaGrad-COMID

In the case of no regularizer (i.e. $r(\theta) = 0$), we have the following update.

$$\theta_i^{(t+1)} = \theta_i^{(t)} - \frac{\eta}{\sqrt{H_{t,i,i} + \delta}} g_{t,i}$$

 H_t is a diagonal matrix defined such that each

$$H_{t,i,i} = \delta + \sqrt{\sum_{s=1}^{t} (f'_s(\boldsymbol{\theta})_i)^2}$$

is a smoothed version of the square root of the sum of the squares of the ith element of