10-606 Mathematical Foundations for Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Final Exam Review

Matt Gormley Lecture 13 Oct. 15, 2018

Reminders

- Homework 4: Probability
 - Out: Thu, Oct. 11
 - Due: Mon, Oct. 15 at 11:59pm
- Final Exam
 - Date: Wed, Oct. 17
 - Time: 6:30 9:30pm
 - Location: Posner Hall A35

EXAM LOGISTICS

Final Exam

- Time / Location
 - Date: Wed, Oct 17
 - Time: Evening Exam, 6:30pm 9:30pm
 - Room: Posner Hall A35
 - Seats: There will be assigned seats. Please arrive early.
- Logistics
 - Format of questions:
 - Multiple choice
 - True / False (with justification)
 - Short answers
 - Interpreting figures
 - Derivations
 - Short proofs
 - No electronic devices
 - You are allowed to bring one 8½ x 11 sheet of notes (front and back)

Final Exam

How to Prepare

- Attend this final exam review session
- Review prior year's exams and solutions
 - We already posted these (see Piazza)
 - Disclaimer: This year's 10-606/607 is not the same as prior offerings!
- Review this year's homework problems
- Review this year's quiz problems

Final Exam

Advice (for during the exam)

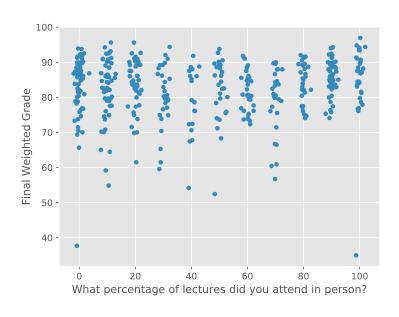
- Solve the easy problems first
 (e.g. multiple choice before derivations)
 - if a problem seems extremely complicated you're likely missing something
- Don't leave any answer blank!
- If you make an assumption, write it down
- If you look at a question and don't know the answer:
 - we probably haven't told you the answer
 - but we've told you enough to work it out
 - imagine arguing for some answer and see if you like it

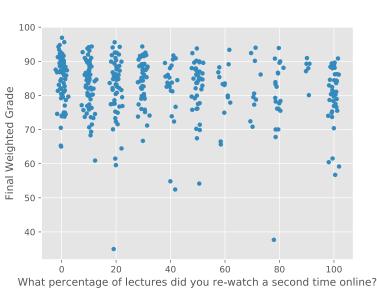
Topics Covered

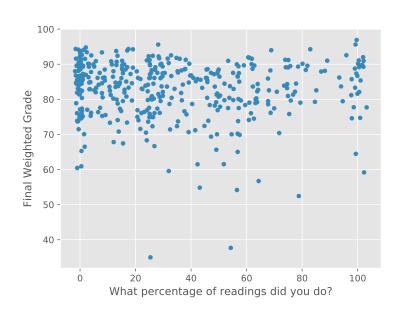
- Preliminaries
 - Sets
 - Types
 - Functions
- Linear Algebra
 - Vector spaces
 - Matrices and linear operators
 - Linear independence
 - Invertability
 - Eigenvalues and eigenvectors
 - Linear equations
 - Factorizations
 - Matrix Memories

- Matrix Calculus
 - Scalar derivatives
 - Partial derivatives
 - Vector derivatives
 - Matrix derivatives
 - Method of Lagrange multipliers
 - Least squares derivation
- Probability
 - Events
 - Disjoint union
 - Sum rule
 - Discrete random variables
 - Continuous random variables
 - Bayes Rule
 - Conditional, marginal, joint probabilities
 - Mean and variance

Analysis of 10601 Performance

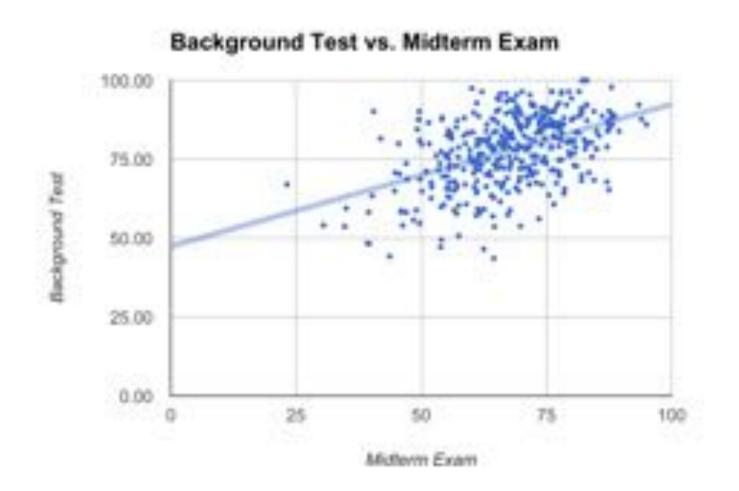






No obvious correlations...

Analysis of 10601 Performance



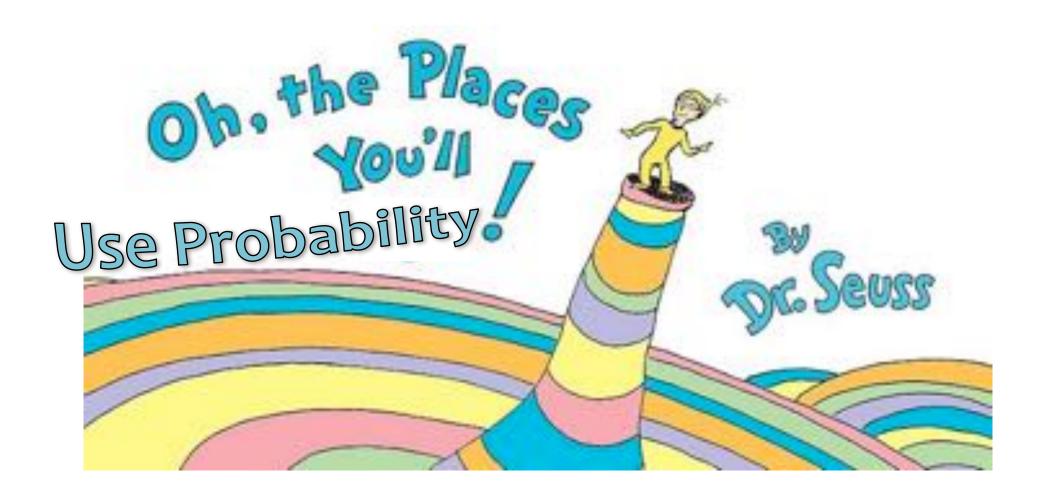
Correlation between Background Test and Midterm Exam:

- Pearson: 0.46 (moderate)
- Spearman: 0.43 (moderate)

Q&A

Agenda

- Review of probability (didactic)
- 2. Review of linear algebra / matrix calculus (through application)



Supervised Classification

Naïve Bayes

$$p(y|x_1, x_2, \dots, x_n) = \frac{1}{Z}p(y)\prod_{i=1}^n p(x_i|y)$$

Logistic regression

$$P(Y = y | X = x; \boldsymbol{\theta}) = p(y | x; \boldsymbol{\theta})$$

$$= \frac{\exp(\boldsymbol{\theta}_y \cdot \mathbf{f}(x))}{\sum_{y'} \exp(\boldsymbol{\theta}_{y'} \cdot \mathbf{f}(x))}$$

Note: This is just motivation -these topics are covered in Intro ML!

ML Theory

(Example: Sample Complexity)

Goal: h has small error over D.

True error:
$$err_D(h) = \Pr_{x \sim D}(h(x) \neq c^*(x))$$

How often $h(x) \neq c^*(x)$ over future instances drawn at random from D

But, can only measure:

Training error:
$$err_S(h) = \frac{1}{m} \sum_i I(h(x_i) \neq c^*(x_i))$$

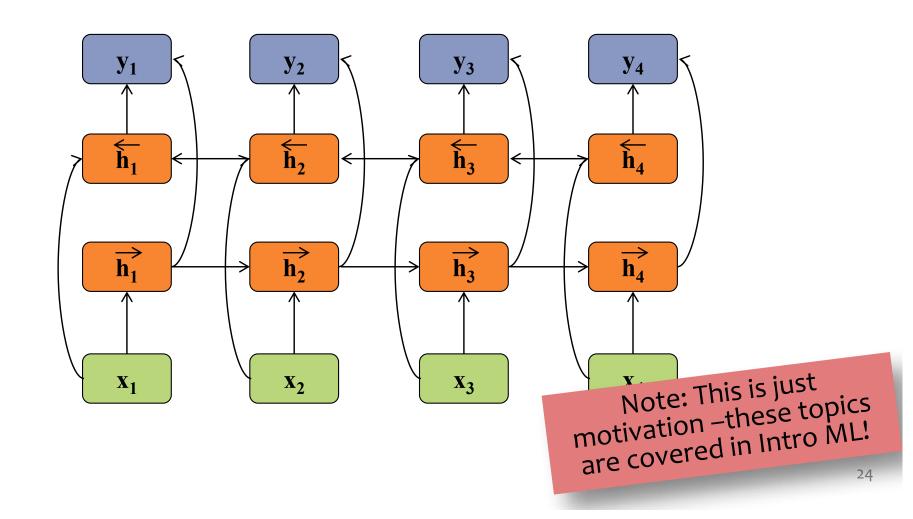
How often $h(x) \neq c^*(x)$ over training instances

Sample complexity: bound $err_D(h)$ in terms of $err_S(h)$

Note: This is just motivation -these topics are covered in Intro ML!

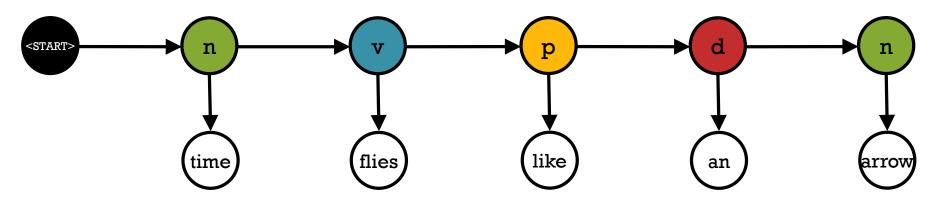
Deep Learning

(Example: Deep Bi-directional RNN)

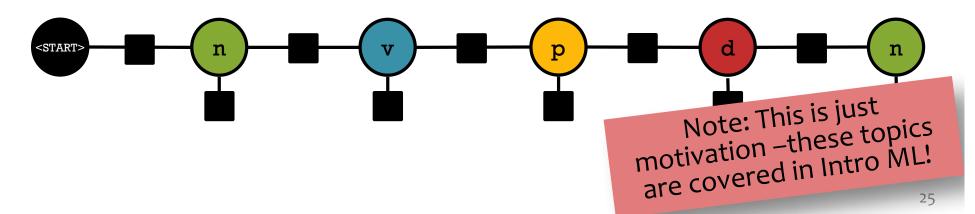


Graphical Models

Hidden Markov Model (HMM)



Conditional Random Field (CRF)



Probability Outline

Probability Theory

- Sample space, Outcomes, Events
- Complement
- Disjoint union
- Kolmogorov's Axioms of Probability
- Sum rule

Random Variables

- Random variables, Probability mass function (pmf), Probability density function (pdf), Cumulative distribution function (cdf)
- Examples
- Notation
- Expectation and Variance
- Joint, conditional, marginal probabilities
- Independence
- Bayes' Rule

Common Probability Distributions

Beta, Dirichlet, etc.

PROBABILITY AND EVENTS

Probability of Events

Example 1: Flipping a coin

Sample Space	Ω	{Heads, Tails}
Outcome	$\omega\in\Omega$	Example: Heads
Event	$E \subseteq \Omega$	Example: {Heads}
Probability	P(E)	$P(\{\text{Heads}\}) = 0.5$ $P(\{\text{Tails}\}) = 0.5$

Probability Theory: Definitions

Probability provides a science for inference about interesting events

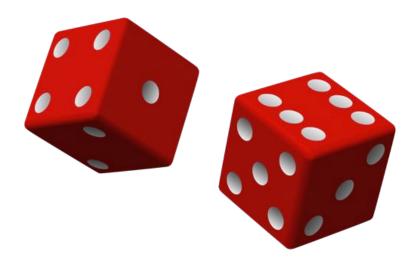
Sample Space	Ω	The set of all possible outcomes
Outcome	$\omega\in\Omega$	Possible result of an experiment
Event	$E \subseteq \Omega$	Any subset of the sample space
Probability	P(E)	The non-negative number assigned to each event in the sample space

- Each outcome is unique
- Only one outcome can occur per experiment
- An outcome can be in multiple events
- An elementary event consists of exactly one outcome
- A compound event consists of multiple outcomes

Probability of Events

Example 2: Rolling a 6-sided die

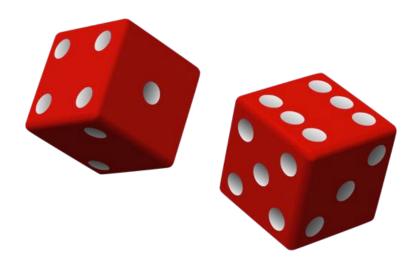
Sample Space	Ω	{1,2,3,4,5,6}
Outcome	$\omega\in\Omega$	Example: 3
Event	$E \subseteq \Omega$	Example: {3} (the event "the die came up 3")
Probability	P(E)	$P({3}) = 1/6$ $P({4}) = 1/6$



Probability of Events

Example 2: Rolling a 6-sided die

Sample Space	Ω	{1,2,3,4,5,6}
Outcome	$\omega\in\Omega$	Example: 3
Event	$E \subseteq \Omega$	Example: {2,4,6} (the event "the roll was even")
Probability	P(E)	$P({2,4,6}) = 0.5$ $P({1,3,5}) = 0.5$



Example

Probability of Events

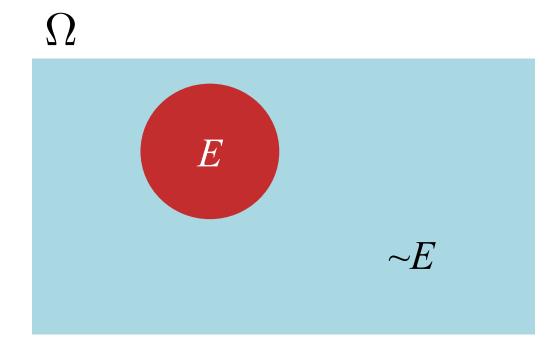
Example 3: Timing how long it takes a monkey to reproduce Shakespeare

Sample Space	Ω	$[0, +\infty)$
Outcome	$\omega \in \Omega$	Example: 1,433,600 hours
Event	$E \subseteq \Omega$	Example: [1, 6] hours
Probability	P(E)	P([1,6]) = 0.000000000001 $P([1,433,600,+\infty)) = 0.99$

Probability Theory: Definitions

- The **complement** of an event E, denoted $\sim E$, is the event that E does not occur.
- $P(E) + P(\sim E) = 1$
- All of the following notations equivalently denote the complement of event ${\cal E}$

$$\sim E = \neg E = E^{\mathsf{C}} = \overline{E}$$

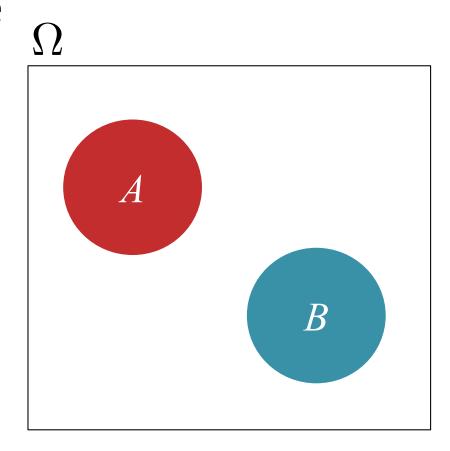


Disjoint Union

 Two events A and B are disjoint if

$$A \cap B = \emptyset$$

 The disjoint union rule says that if events A and B are disjoint, then



$$P(A \cup B) = P(A) + P(B)$$

Disjoint Union

- The disjoint union rule can be extended to multiple disjoint events
- If each pair of events A_i and A_j are disjoint, $A_i \cap A_j = \emptyset, \forall i \neq j$ then

$$P\left(\bigcup_{i} A_{i}\right) = \sum_{i} P(A_{i})$$



Non-disjoint Union

 Two events A and B are non-disjoint if

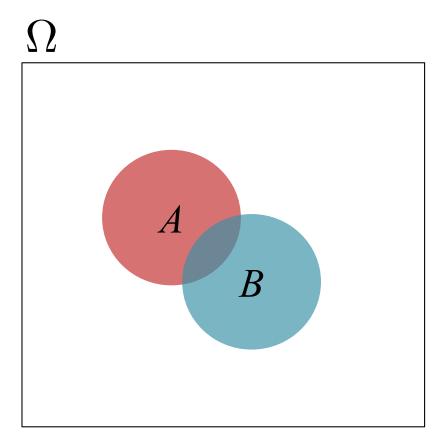
$$A \cap B \neq \emptyset$$

 We can apply the disjoint union rule to various disjoint sets:

$$P(A) = P(A \setminus B) + P(A \cap B)$$

$$P(B) = P(B \setminus A) + P(A \cap B)$$

$$P(A \cup B) = P(A \setminus B) + P(B \setminus A) + P(A \cap B)$$



Kolmogorov's Axioms

- 1. $P(E) \ge 0$, for all events E
- 2. $P(\Omega) = 1$
- 3. If E_1, E_2, \ldots are disjoint, then $P(E_1 \text{ or } E_2 \text{ or } \ldots) = P(E_1) + P(E_2) + \ldots$

Kolmogorov's Axioms

- 1. $P(E) \geq 0$, for all events E
- 2. $P(\Omega) = 1$
- 3. If E_1, E_2, \ldots are disjoint, then

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$$

All of probability can be derived from just these!

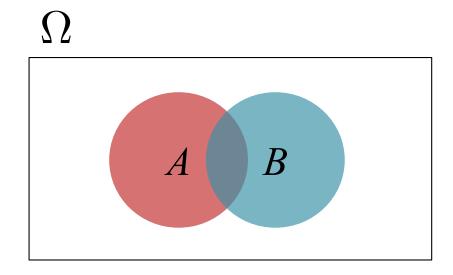
In words:

- Each event has non-negative probability.
- 2. The probability that some event will occur is one.
- The probability of the union of many disjoint sets is the sum of their probabilities

Sum Rule

For any two events A and B, we have that

$$P(A) = P(A \cap B) + P(A \cap \sim B)$$



RANDOM VARIABLES

Random Variable	X (capital letters)	Def 1: Variable whose possible values are the outcomes of a random experiment
Value of a Random Variable	x (lowercase letters)	The value taken by a random variable

Random Variable	X	Def 1: Variable whose possible values are the outcomes of a random experiment
Discrete Random Variable	X	Random variable whose values come from a countable set (e.g. the natural numbers or {True, False})
Continuous Random Variable	X	Random variable whose values come from an interval or collection of intervals (e.g. the real numbers or the range (3, 5))

Random Variable	X	Def 1: Variable whose possible values are the outcomes of a random experiment $ \text{Def 2: A measureable function from the sample space to the real numbers: } $
Discrete Random Variable	X	Random variable whose values come from a countable set (e.g. the natural numbers or {True, False})
Continuous Random Variable	X	Random variable whose values come from an interval or collection of intervals (e.g. the real numbers or the range (3, 5))

Discrete Random Variable	X	Random variable whose values come from a countable set (e.g. the natural numbers or {True, False})
Probability mass function (pmf)	p(x)	Function giving the probability that discrete r.v. X takes value x. $p(x) := P(X = x)$

Example 2: Rolling a 6-sided die

Sample Space	Ω	{1,2,3,4,5,6}
Outcome	$\omega \in \Omega$	Example: 3
Event	$E \subseteq \Omega$	Example: {3} (the event "the die came up 3")
Probability	P(E)	$P({3}) = 1/6$ $P({4}) = 1/6$

Example 2: Rolling a 6-sided die

Sample Space	Ω	{1,2,3,4,5,6}
Outcome	$\omega\in\Omega$	Example: 3
Event	$E \subseteq \Omega$	Example: {3} (the event "the die came up 3")
Probability	P(E)	$P({3}) = 1/6$ $P({4}) = 1/6$
Discrete Ran- dom Variable	X	Example: The value on the top face of the die.
Prob. Mass Function (pmf)	p(x)	p(3) = 1/6 p(4) = 1/6

Example 2: Rolling a 6-sided die

Sample Space	Ω	{1,2,3,4,5,6}
Outcome	$\omega\in\Omega$	Example: 3
Event	$E \subseteq \Omega$	Example: {2,4,6} (the event "the roll was even")
Probability	P(E)	$P({2,4,6}) = 0.5$ $P({1,3,5}) = 0.5$
Discrete Ran- dom Variable	X	Example: 1 if the die landed on an even number and o otherwise
Prob. Mass Function (pmf)	p(x)	p(1) = 0.5 p(0) = 0.5

Discrete Random Variable	X	Random variable whose values come from a countable set (e.g. the natural numbers or {True, False})
Probability mass function (pmf)	p(x)	Function giving the probability that discrete r.v. X takes value x. $p(x) := P(X = x)$

Continuous Random Variable	X	Random variable whose values come from an interval or collection of intervals (e.g. the real numbers or the range (3, 5))
Probability density function (pdf)	f(x)	Function the returns a nonnegative real indicating the relative likelihood that a continuous r.v. X takes value x

- For any continuous random variable: P(X = x) = 0
- Non-zero probabilities are only available to intervals:

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Example 3: Timing how long it takes a monkey to reproduce Shakespeare

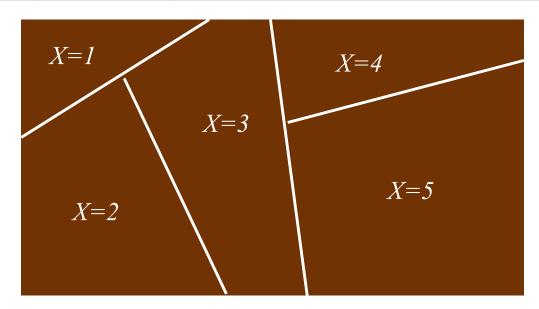
Sample Space	Ω	[0, +∞)
Outcome	$\omega\in\Omega$	Example: 1,433,600 hours
Event	$E \subseteq \Omega$	Example: [1, 6] hours
Probability	P(E)	P([1,6]) = 0.000000000001 $P([1,433,600,+\infty)) = 0.99$
Continuous Random Var.	X	Example: Represents time to reproduce (not an interval!)
Prob. Density Function	f(x)	Example: Gamma distribution

Example

Random Variables: Definitions

"Region"-valued Random Variables

Sample Space	Ω	{1,2,3,4,5}
Events	X	The sub-regions 1, 2, 3, 4, or 5
Discrete Ran- dom Variable	X	Represents a random selection of a sub-region
Prob. Mass Fn.	P(X=x)	Proportional to size of sub-region



"Region"-valued Random Variables

	O		
Sample Space Ω		Ω	All points in the region:
E	vents	X	The sub-regions 1, 2, 3, 4, or 5
D de Pi	is any subset of the sample space. So both definitions		Presents a random selection of a sub-region Proportional to size of sub-region
	of the samp here are	valid. X=2	X=3 $X=4$ $X=5$

String-valued Random Variables

Sample Space	Ω	All Korean sentences (an infinitely large set)
Event	X	Translation of an English sentence into Korean (i.e. elementary events)
Discrete Ran- dom Variable	X	Represents a translation
Probability	P(X=x)	Given by a model

English:	machine learning requires probability and statistics
	P(X=) 기계 학습은 확률과 통계를 필요 $)$
Korean:	P(X = 머신 러닝은 확률 통계를 필요 $)$
	P(X = 머신 러닝은 확률 통계를 이 필요합니 및
	•••

Cumulative distribution **function**

F(x) that a random variable X is less than or Function that returns the probability equal to x:

$$F(x) = P(X \le x)$$

For **discrete** random variables:

$$F(x) = P(X \le x) = \sum_{x' \le x} P(X = x') = \sum_{x' \le x} p(x')$$

For **continuous** random variables:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x')dx'$$

Random Variables and Events

Question: Something seems wrong...

- We defined P(E) (the capital 'P') as a function mapping events to probabilities
- So why do we write P(X=x)?
- A good guess: *X*=*x* is an event...

Random Variable Def 2: A measureable function from the sample space to the real numbers:

$$X:\Omega\to\mathbb{R}$$

Answer: P(X=x) is just shorthand!

Example 1:

These sets are events!

$$P(X = x) \equiv P(\{\omega \in \Omega : X(\omega) = x\})$$

Example 2:

$$P(X \le 7) \equiv P(\{\omega \in \Omega : X(\omega) \le 7\})$$

Notational Shortcuts

A convenient shorthand:

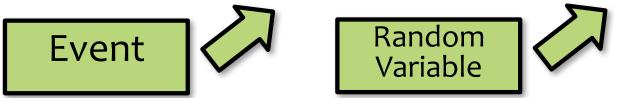
$$P(A|B) = \frac{P(A,B)}{P(B)}$$

 \Rightarrow For all values of a and b:

$$P(A = a|B = b) = \frac{P(A = a, B = b)}{P(B = b)}$$

Notational Shortcuts

But then how do we tell P(E) apart from P(X)?



Instead of writing:

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

We should write:

$$P_{A|B}(A|B) = \frac{P_{A,B}(A,B)}{P_{B}(B)}$$

... but only probability theory textbooks go to such lengths.

Expectation and Variance

The **expected value** of X is E[X]. Also called the mean.

Discrete random variables:

Suppose X can take any value in the set X.

$$E[X] = \sum_{x \in \mathcal{X}} xp(x)$$

Continuous random variables:

$$E[X] = \int_{-\infty}^{+\infty} x f(x) dx$$

Expectation and Variance

The **variance** of X is Var(X).

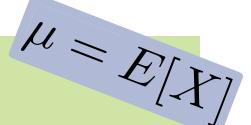
$$Var(X) = E[(X - E[X])^2]$$

Discrete random variables:

$$Var(X) = \sum_{x \in \mathcal{X}} (x - \mu)^2 p(x)$$

Continuous random variables:

$$Var(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$



Joint probability

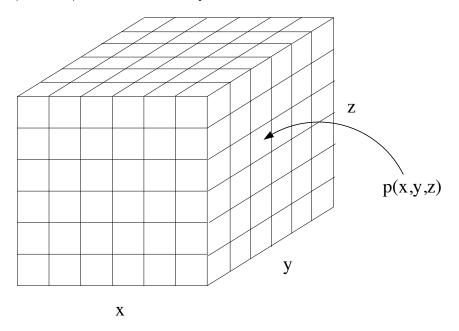
Marginal probability

Conditional probability

MULTIPLE RANDOM VARIABLES

Joint Probability

- Key concept: two or more random variables may interact.
 Thus, the probability of one taking on a certain value depends on which value(s) the others are taking.
- We call this a joint ensemble and write p(x,y) = prob(X = x and Y = y)

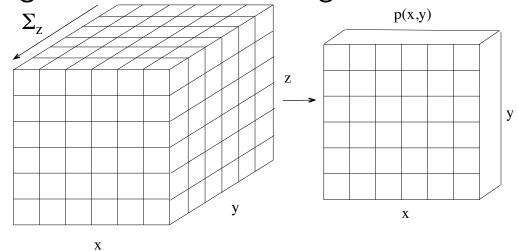


Marginal Probabilities

 We can "sum out" part of a joint distribution to get the marginal distribution of a subset of variables:

$$p(x) = \sum_{y} p(x, y)$$

• This is like adding slices of the table together.

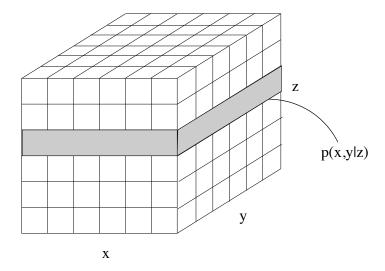


 \bullet Another equivalent definition: $p(x) = \sum_y p(x|y) p(y).$

Conditional Probability

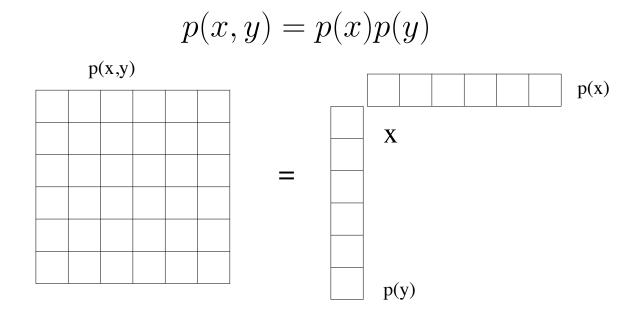
- If we know that some event has occurred, it changes our belief about the probability of other events.
- This is like taking a "slice" through the joint table.

$$p(x|y) = p(x,y)/p(y)$$



Independence and Conditional Independence

• Two variables are independent iff their joint factors:



• Two variables are conditionally independent given a third one if for all values of the conditioning variable, the resulting slice factors:

$$p(x,y|z) = p(x|z)p(y|z) \qquad \forall z$$

MLE AND MAP

What does maximizing likelihood accomplish?

- There is only a finite amount of probability mass (i.e. sum-to-one constraint)
- MLE tries to allocate as much probability mass as possible to the things we have observed...

... at the expense of the things we have not observed

MLE vs. MAP

Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$

$$\boldsymbol{\theta}^{\mathsf{MLE}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1}^{N} p(\mathbf{x}^{(i)} | \boldsymbol{\theta})$$

Maximum Likelihood Estimate (MLE)

Example: MLE of Exponential Distribution

- pdf of Exponential(λ): $f(x) = \lambda e^{-\lambda x}$
- Suppose $X_i \sim \text{Exponential}(\lambda)$ for $1 \leq i \leq N$.
- Find MLE for data $\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$
- First write down log-likelihood of sample.
- Compute first derivative, set to zero, solve for λ .
- Compute second derivative and check that it is concave down at $\lambda^{\rm MLE}$.

Example: MLE of Exponential Distribution

• First write down log-likelihood of sample.

$$\ell(\lambda) = \sum_{i=1}^{N} \log f(x^{(i)}) \tag{1}$$

$$= \sum_{i=1}^{N} \log(\lambda \exp(-\lambda x^{(i)}))$$
 (2)

$$=\sum_{i=1}^{N}\log(\lambda) + -\lambda x^{(i)}$$
 (3)

$$= N \log(\lambda) - \lambda \sum_{i=1}^{N} x^{(i)}$$
 (4)

Example: MLE of Exponential Distribution

• Compute first derivative, set to zero, solve for λ .

$$\frac{d\ell(\lambda)}{d\lambda} = \frac{d}{d\lambda} N \log(\lambda) - \lambda \sum_{i=1}^{N} x^{(i)}$$
 (1)

$$= \frac{N}{\lambda} - \sum_{i=1}^{N} x^{(i)} = 0$$
 (2)

$$\Rightarrow \lambda^{\mathsf{MLE}} = \frac{N}{\sum_{i=1}^{N} x^{(i)}} \tag{3}$$

Example: MLE of Exponential Distribution

- pdf of Exponential(λ): $f(x) = \lambda e^{-\lambda x}$
- Suppose $X_i \sim \text{Exponential}(\lambda)$ for $1 \leq i \leq N$.
- Find MLE for data $\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$
- First write down log-likelihood of sample.
- Compute first derivative, set to zero, solve for λ .
- Compute second derivative and check that it is concave down at λ^{MLE} .

MLE vs. MAP

Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$

$$oldsymbol{ heta}^{ ext{MLE}} = rgmax \prod_{i=1}^{N} p(\mathbf{x}^{(i)}|oldsymbol{ heta}) ag{Maximum Likelihood Estimate (MLE)}$$
 $oldsymbol{ heta}^{ ext{MAP}} = rgmax \prod_{i=1}^{N} p(\mathbf{x}^{(i)}|oldsymbol{ heta}) p(oldsymbol{ heta}) ext{Maximum a posteriori (MAP) estimate}$
Prior

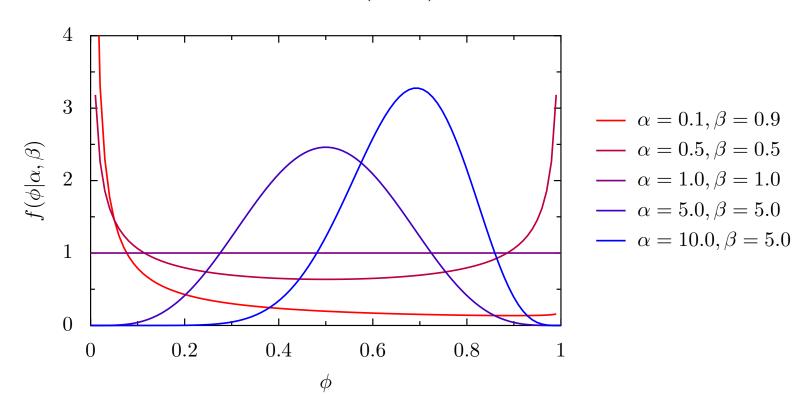
COMMON PROBABILITY DISTRIBUTIONS

- For Discrete Random Variables:
 - Bernoulli
 - Binomial
 - Multinomial
 - Categorical
 - Poisson
- For Continuous Random Variables:
 - Exponential
 - Gamma
 - Beta
 - Dirichlet
 - Laplace
 - Gaussian (1D)
 - Multivariate Gaussian

Beta Distribution

probability density function:

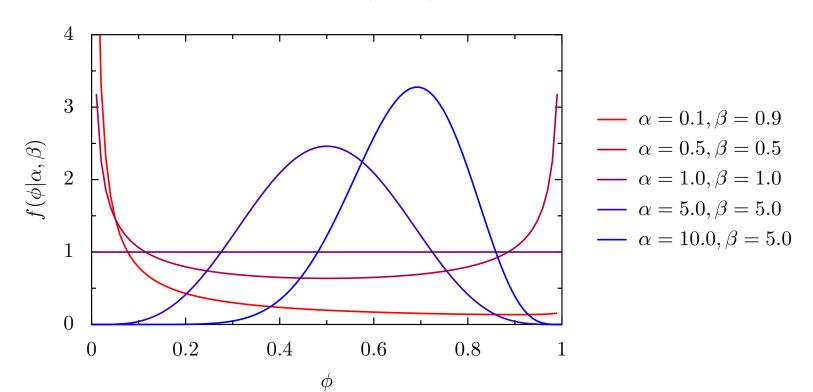
$$f(\phi|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$



Dirichlet Distribution

probability density function:

$$f(\phi|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$



Dirichlet Distribution

probability density function:

$$p(\vec{\phi}|\boldsymbol{\alpha}) = \frac{1}{B(\boldsymbol{\alpha})} \prod_{k=1}^{K} \phi_k^{\alpha_k - 1} \quad \text{where } B(\boldsymbol{\alpha}) = \frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{K} \alpha_k)}$$

