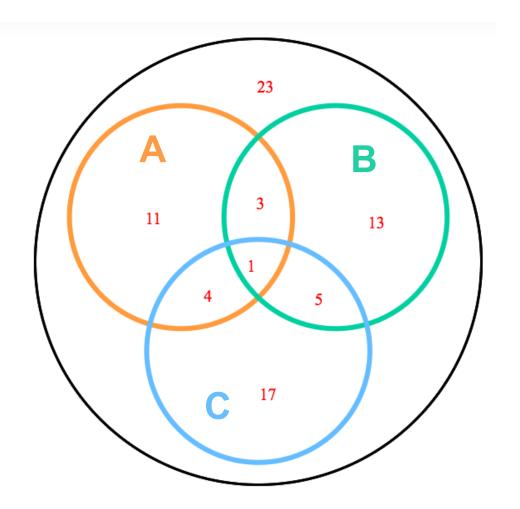
10-606 Probability

Abhinav Maurya

Events



$$N = 77$$

$$P(A) = \frac{19}{77}$$

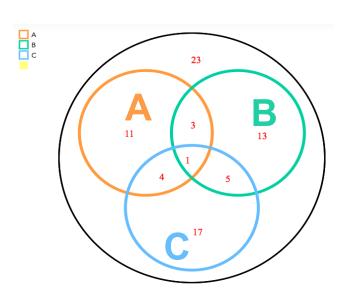
$$P(A \cap B) = \frac{4}{77}$$

$$P(A \cap B \cap C) = \frac{1}{77}$$

$$P(A \cap ! B \cap C) = \frac{4}{77}$$

$$P(A|B \cup C) = \frac{8}{43}$$

Random Variables



- Event A indicates stock A goes up
- Event !A indicates the opposite
- Boolean random variable A and !A can indicate the stock movement too.

- Random Variables
 - Measurement in an experiment
- Types
 - Univariate: e.g. X=output of dice roll
 - Multivariate: e.g. $X=(X_1,X_2)=$ (width of box, height of box)
 - Discrete: e.g. X=output of dice roll
 - Continuous: e.g. X=width of box
 - Hybrid: e.g. X=reading of a censored sensor

Joint Probability Table

		Intelligence			
		low	high		
	A	0.07	0.18	0.25	
Grade	В	$0.28 \\ 0.35$	0.09	0.37	
	C	0.35	0.03	0.38	
		0.7	0.3	1	

Intelligence=I	Grade=G	Probability(Intelligence=I, Grade=G)
low	Α	0.07
low	В	0.28
low	С	0.35
high	Α	0.18
high	В	0.09
high	С	0.03

Joint Probabilities

		Intelligence low high			
		low			
	A	ı	0.18	0.25	
Grade	В	0.28	0.09	0.37	
	C	0.35	0.03	0.38	
		0.7	0.3	1	

$$P(Grade = A, Intelligence = low) = 0.07$$

$$P(A = a, B = b, C = c, \dots)$$

Marginal Probabilities

		Intelligence				
		low	low high			
	A		0.18	0.25		
Grade	В	0.28	0.09	0.37		
	C	0.35	0.03	0.38		
		0.7	0.3	1		

$$P(Grade = A) = P(Grade = A, Intelligence = low) + P(Grade = A, Intelligence = high) = 0.25$$

Sum/Marginalization Rule

$$P(A = a) = \sum_{b \in \mathcal{B}} P(A = a, B = b)$$

Marginal Probabilities

		Intelligence low high			
		low			
	A		0.18	0.25	
Grade	В	0.28	0.09	0.37	
	C	0.35	0.03	0.38	
		0.7	0.3	1	

$$P(Intelligence = high) = P(Grade = A, Intelligence = high) + P(Grade = B, Intelligence = high) + P(Grade = C, Intelligence = high) = 0.3$$

Sum/Marginalization Rule

$$P(A = a) = \sum_{b \in \mathcal{B}} P(A = a, B = b)$$

Conditional Probabilities

		Intelligence			
		low	high		
	A	0.07	0.18	0.25	
Grade	В	$0.28 \\ 0.35$	0.09	0.37	
	C	0.35	0.03	0.38	
		0.7	0.3	1	

$$P(Grade = A \mid Intelligence = low) = \frac{P(Grade = A, Intelligence = low)}{P(Intelligence = low)}$$
$$= \frac{0.07}{0.7} = 0.1$$

Conditioning Rule

$$P(A = a|B = b) = \frac{P(A = a, B = b)}{P(B = b)}$$

Conditional Probabilities

		Intelligence			
		low	high		
	A	0.07	0.18	0.25	
Grade	В	$0.28 \\ 0.35$	0.09	0.37	
	C	0.35	0.03	0.38	
		0.7	0.3	1	

$$P(Grade = C \mid Intelligence = high) = \frac{P(Grade = C, Intelligence = high)}{P(Intelligence = high)}$$
$$= \frac{0.03}{0.3} = 0.1$$

Conditioning Rule

$$P(A = a|B = b) = \frac{P(A = a, B = b)}{P(B = b)}$$

Conditional Probability Table

		Intell	igence				Intell	igence	Grade
		low	high				low	high	
	A	0.07	0.18	0.25		Α	0.28	0.72	1.00
Grade	В	0.28	0.09	0.37	Grade	В	0.76	0.24	1.00
	C	0.35	0.03	0.38		C	0.92	0.08	1.00
		0.7	0.3	1					

- Same shape as joint probability table
- But shows P(A = a | B = b) instead of P(A = a, B = b)
- Sum of all conditional probabilities under a condition equal to 1.

Conditional Probability Table

		Intell	igence				Intell	igence
		low	high				low	high
	Α	0.07	0.18	0.25		Α	0.10	0.60
Grade	B	0.28	0.09	0.37	Grade	В	0.40	0.30
	<i>C</i>	0.35	0.03	0.38	Intel.	<i>C</i>	0.50	0.10
		0.7	0.3	1			1.00	1.00

- Same shape as joint probability table
- But shows P(A = a | B = b) instead of P(A = a, B = b)
- Sum of all conditional probabilities under a condition equal to 1.

Chain Rule

Sum/Marginalization Rule

$$P(A = a) = \sum_{b \in \mathcal{B}} P(A = a, B = b)$$

Conditioning Rule

$$P(A = a|B = b) = \frac{P(A = a, B = b)}{P(B = b)}$$

Product/Chain Rule

$$P(A = a, B = b) = P(A = a | B = b) \cdot P(B = b)$$

		Intelligence		
		low	high	
	Α	0.10	0.60	
Grade Intel.	B	0.40	0.30	(
Intel.	C	0.50	0.10	
		1.00	1.00	

		Intelligence		
		low	high	
	A			
Grade	В	?	$_{??}$	
	\boldsymbol{C}			
		0.7	0.3	

Finally the Bayes Rule

Sum/Marginalization Rule

$$P(A = a) = \sum_{b \in \mathcal{B}} P(A = a, B = b)$$

Conditioning Rule

$$P(A = a|B = b) = \frac{P(A = a, B = b)}{P(B = b)}$$

Product/Chain Rule

$$P(A = a, B = b) = P(A = a | B = b) \cdot P(B = b)$$

Bayes Rule

$$P(A = a|B = b) = \frac{P(A = a, B = b)}{P(B = b)}$$

$$= \frac{P(B = b|A = a) \cdot P(A = a)}{P(B = b)}$$

$$= \frac{P(B = b|A = a) \cdot P(A = a)}{\sum_{a \in \mathcal{A}} P(B = b|A = a) \cdot P(A = a)}$$

Let's do a simple inference with the Bayes rule

- H~Headache, F~Flu
- P(H) = 1/10
- P(F) = 1/40
- P(H | F) = 1/2

$$P(F \text{ and } H) = P(H \mid F) \times P(F) = \frac{1}{2} \times \frac{1}{40} = \frac{1}{80}$$

$$P(F | H) = \frac{P(F \text{ and } H)}{P(H)} = \frac{\frac{1}{80}}{\frac{1}{10}} = \frac{1}{8}$$

Another Bayes rule example

- Two coins first coin is Head+Tail, the second coin has both heads.
- Randomly picked one of the coins with equal probability.
- Tossed it and observed 10 heads.
- What is the probability that you picked the first coin?

$$P(FC|10H) = \frac{P(10H|FC) \cdot P(FC)}{P(10H)}$$

$$P(FC|10H) = \frac{P(10H|FC) \cdot P(FC)}{P(10H|FC) \cdot P(FC) + P(10H|SC) \cdot P(SC)}$$

Conditioning Caveat

- All rules hold when conditioning on a particular event or on particular values of random variables
- Marginalization Rule

$$P(A = a | C = c, D = d) = \sum_{b \in B} P(A = a, B = b | C = c, D = d)$$

Conditioning Rule

$$P(A = a|B = b, C = c, D = d) = \frac{P(A = a, B = b|C = c, D = d)}{P(B = b|C = c, D = d)}$$

Chain Rule

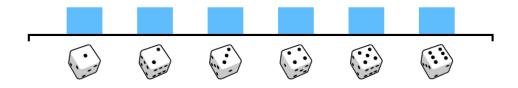
$$P(A = a, B = b | C = c) = P(A = a | B = b, C = c) \cdot P(B = b | C = c)$$

Bayes Rule

$$P(A = a | B = b, C = c) = \frac{P(B = b | A = a, C = c) \cdot P(A = a | C = c)}{\sum_{a \in \mathcal{A}} P(B = b | A = a, C = c) \cdot P(A = a | C = c)}$$

Expectation

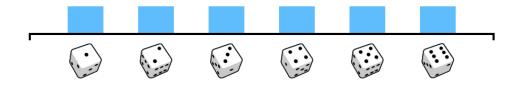
$$E[X] = \sum x P(x)$$



$$E[X] = 3.5$$

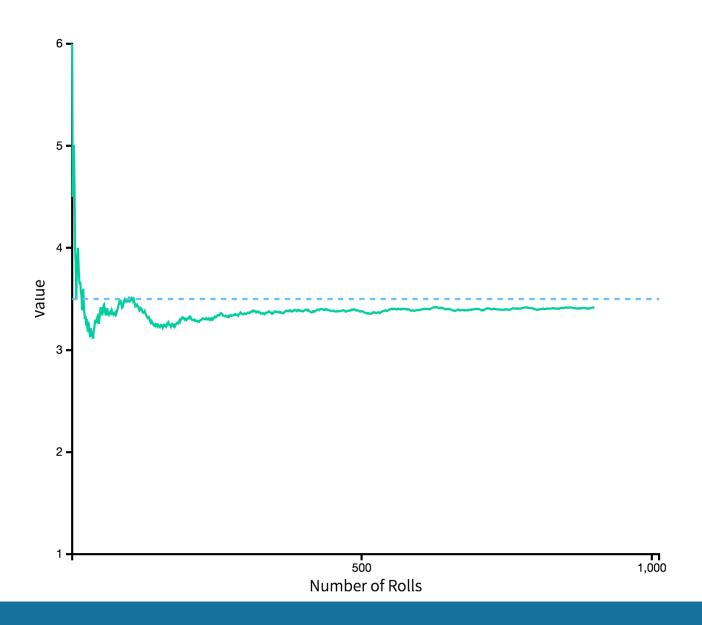
Variance

$$Var[X] = E[(X - E[X])^2]$$



$$Var[X] = \frac{1}{6} \{ (1 - 3.5)^2 + (2 - 3.5)^2 + \dots \} = \frac{35}{12}$$

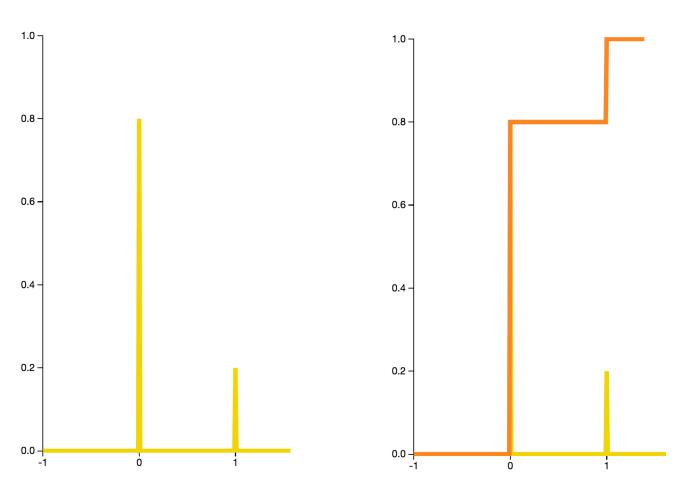
Central Limit Theorem



Discrete Random Variables

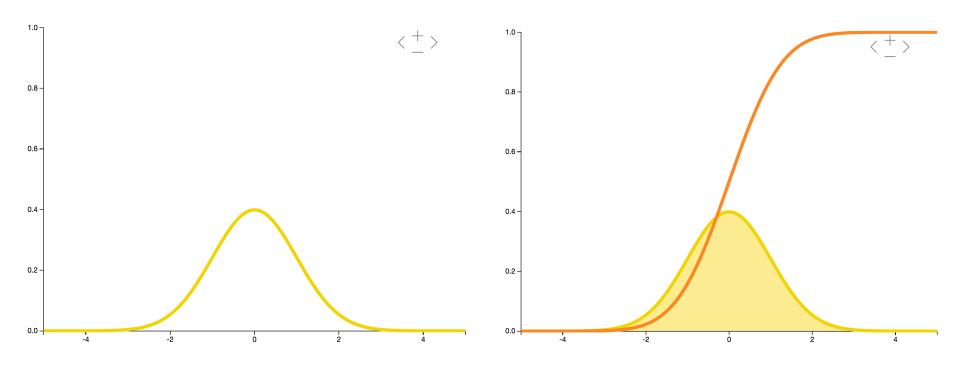
$$P(X=x) = f(x)$$

$$P(X < x) = F(x)$$



Continuous Random Variables

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$
$$P(X < x) = F(x)$$



Some resources

- Seeing Theory: https://seeing-theory.brown.edu/
- Chapter 2 of Koller and Friedman's Probabilistic Graphical Models
- Larry Wasserman's All of Statistics

Thanks!

Questions?