

10-708 Probabilistic Graphical Models

MACHINE LEARNING DEPARTMENT

Machine Learning Department School of Computer Science Carnegie Mellon University

Undirected Graphical Models

Matt Gormley Lecture 3 Feb. 8, 2021

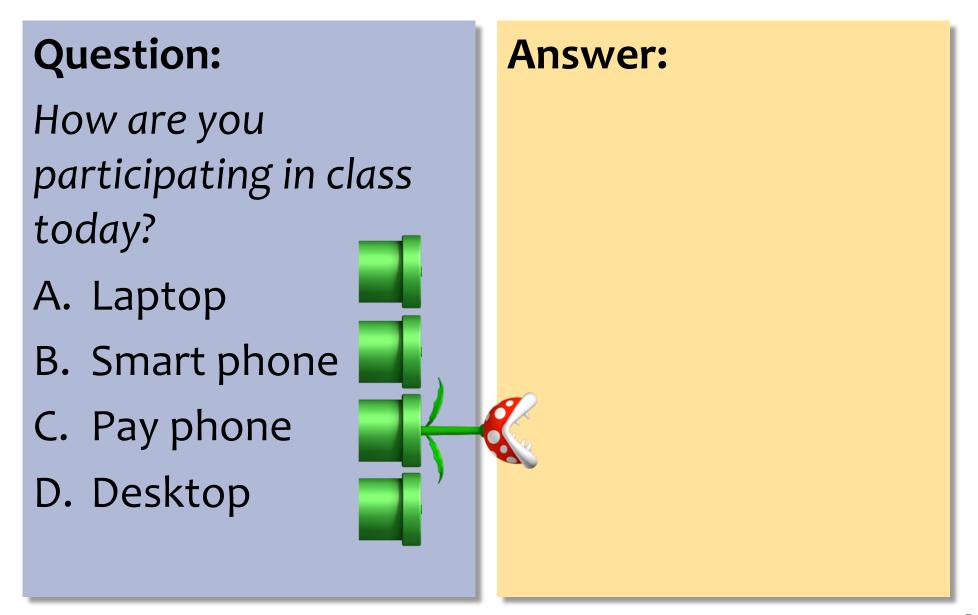
Q&A

Q: How will I earn the 5% participation points?

A: Very gradually. There will be a few aspects of the course (in-class polls, out-of-class polls, surveys, meetings with the course staff) that we will attach participation points to.

That said, we might not actually use the whole 5% that is being held out.

First In-Class Poll



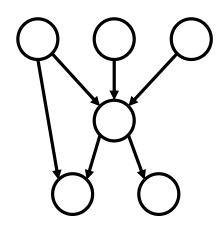
TYPES OF GRAPHICAL MODELS

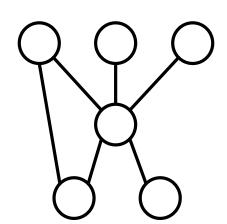
Three Types of Graphical Models

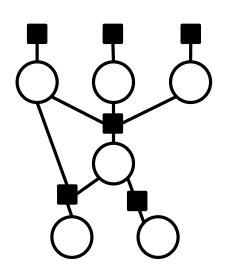
Directed Graphical Model

Undirected Graphical Model

Factor Graph







Key Concepts for Graphical Models

Graphical Models in General

- A graphical model defines a family of probability distributions
- That family shares in common a set of conditional independence assumptions
- 3. By choosing a parameterization of the graphical model, we obtain a single model from the family
- 4. The model may be either locally or globally normalized

Ex: Directed G.M.

1. Family:

2. Conditional Independencies:

3. Example parameterization:

4. Normalization:

Key Concepts for Graphical Models

Graphical Models in General

- A graphical model defines a family of probability distributions
- That family shares in common a set of conditional independence assumptions
- 3. By choosing a parameterization of the graphical model, we obtain a single model from the family
- 4. The model may be either locally or globally normalized

Ex: Undirected G.M.

1. Family:

2. Conditional Independencies:

3. Example parameterization:

4. Normalization:

Key Concepts for Graphical Models

Graphical Models in General

- A graphical model defines a family of probability distributions
- That family shares in common a set of conditional independence assumptions
- 3. By choosing a parameterization of the graphical model, we obtain a single model from the family
- 4. The model may be either locally or globally normalized

Ex: Factor Graph

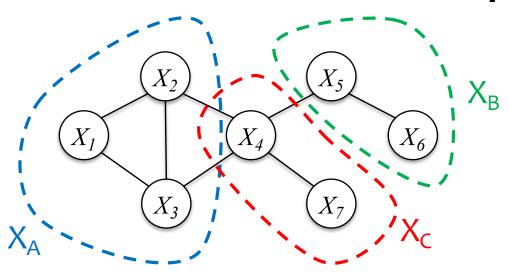
1. Family:

2. Conditional Independencies:

3. Example parameterization:

4. Normalization:

UNDIRECTED GRAPHICAL MODELS

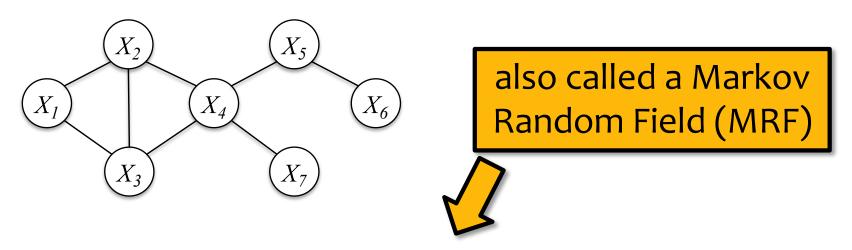


Notation: Let X_S denote all the variables with indices in the set $S \subset \mathbb{Z}^+$

Undirected Graph Terminology

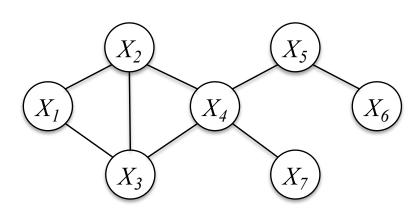
- <u>Definition</u>: a **clique** is a set of fully connected nodes (e.g. {X₁, X₂} or {X₁, X₂, X₃})
- Definition: a maximal clique is a clique to which adding any node makes it no longer a clique
 (e.g. {X₁, X₂, X₃} but not {X₁, X₂})
- <u>Definition</u>: a set of nodes
 X_C separates sets X_A and X_B
 if removing X_C leaves no
 path from a node in X_A to
 one in X_B.
 (e g {X X } separates {X

(e.g. $\{X_4, X_7\}$ separates $\{X_1, X_2, X_3\}$ and $\{X_5, X_6\}$)



<u>Def</u>: an undirected graphical model (UGM) consists of a graph G (qualitative specification) and potential functions ψ (quantitative specification)

- The graph G is an undirected graph over random variables $X_1, ..., X_T$ and cycles are permitted
- The potential functions ψ , also called "factors", are used to define the joint probability



- we have one potential function (aka. factor) per clique
- 2. potential functions must be non-negative

$$\psi_C(x_C) \ge 0, \forall C, x_C$$

Z is the partition function→ globally normalizedmodel

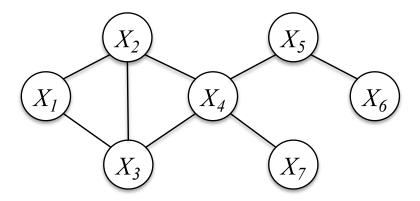
 $\mathbf{x} \in \mathcal{X}$

$$Z = \sum_{\mathbf{x} \in \mathcal{X}} \prod_{C \in \mathcal{C}} \psi_C(X_c)$$
$$= \sum_{\mathbf{x} \in \mathcal{X}} s(\mathbf{x})$$

<u>Def</u>: Joint probability of a UGM

$$p(x_1, \dots, x_T) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(x_C)$$

where C is the set of all cliques and $C \in C$ is an index set $\Rightarrow C \subseteq \{1, \dots, T\}$



<u>Def</u>: A distribution is said to **factor according to the graph** G if it can be written as

$$p(x_1, \dots, x_T) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(x_C)$$

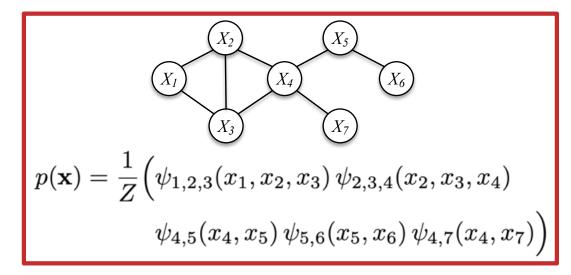
where \mathcal{C} is the set of all cliques and $C \in \mathcal{C}$ is an index set $\Rightarrow C \subseteq \{1, \dots, T\}$

Ex: Joint probability of UGM

$$p(\mathbf{x}) = \frac{1}{Z} \left(\psi_{1,2,3}(x_1, x_2, x_3) \, \psi_{2,3,4}(x_2, x_3, x_4) \right)$$

$$\psi_{4,5}(x_4, x_5) \, \psi_{5,6}(x_5, x_6) \, \psi_{4,7}(x_4, x_7) \right)$$

Potential Functions for UGM



How should we **interpret** the potential functions in a UGM?

• Idea #1: Maybe as marginals of the distribution? In general, no.

$$p(\mathbf{x}) \neq \frac{1}{Z} (p(x_1, x_2, x_3) p(x_2, x_3, x_4)$$
$$p(x_4, x_5) p(x_5, x_6) p(x_4, x_7))$$

Idea #2: Maybe as conditionals of the distribution? In general, no.

$$p(\mathbf{x}) \neq \frac{1}{Z} (p(x_1|x_2, x_3)p(x_2, x_3|x_4))$$
$$p(x_4|x_5)p(x_5|x_6)p(x_7|x_4))$$

Potential Functions for UGM

Whiteboard

Simple example of potential functions as tables

Compactness of a UGM

Consider random variables $X_1, X_2, ..., X_T$ where $X_i \in \mathcal{X}$, where $|\mathcal{X}| = R$

To represent an arbitrary distribution
 P(X) via a single joint probability table
 requires R^T – 1 values

Exponential in T

• If the distribution factors according to a graph G and $\max_{C \in \mathcal{C}} |C| \leq D$

then each $\psi_c(X_c)$ needs only R^D values for a total of only $T(R^D)$ values

Linear in T

Compactness of BayesNet

Question:

Suppose we have a DGM over T variables ranging over R values each. The distribution factors according to a graph G where each node has at most D parents.

How many parameters are needed to represent the distribution?

- A. $T^{D}(R^{D+1}-1)$
- B. $T(R^{D+1}-1)$
- C. $T^{D}(R^{D}(R-1))$
- D. $T(R^{D}(R-1))$
- E. TDR

Answer:

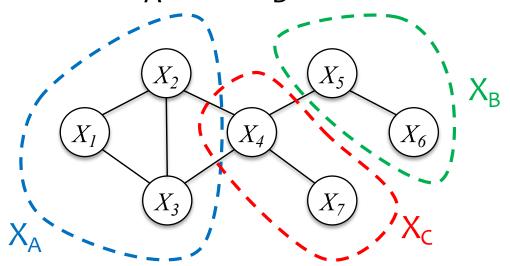
CONDITIONAL INDEPENDENCIES OF UGMS

Conditional Independence Semantics

Consider a distribution over r.v.s $X_1, ..., X_T$

For a UGM and any disjoint index sets A, B, C, (i.e., $A \subseteq \{1, ..., T\}$, $B \subseteq \{1, ..., T\}$, $C \subseteq \{1, ..., T\}$)

 X_A is **conditionally independent** of X_B given X_C iff X_C separates sets X_A and X_B



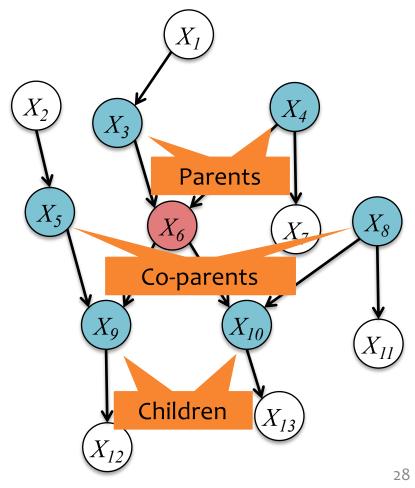
Markov Blanket (Directed)

Def: the **co-parents** of a node are the parents of its children

Def: the **Markov Blanket** of a node in a **directed** graphical model is the set containing the node's parents, children, and co-parents.

Theorem: a node is **conditionally independent** of every other node in the graph given its **Markov blanket**

Example: The Markov Blanket of X_6 is $\{X_3, X_4, X_5, X_8, X_9, X_{10}\}$

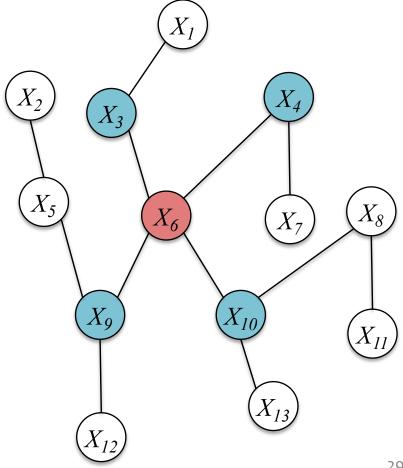


Markov Blanket (Undirected)

Def: the **Markov Blanket** of a node in an undirected graphical model is the set containing the node's neighbors.

Theorem: a node is conditionally independent of every other node in the graph given its Markov blanket

Example: The Markov Blanket of X_6 is $\{X_3, X_4, X_9, X_{10}\}$

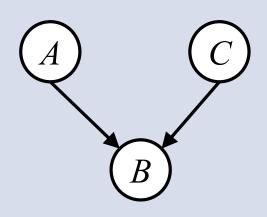


Whiteboard

- Proof of independence by separation (simple case)
- Global Markov properties
- Hammersley-Clifford Theorem
- Local Markov properties
- Pairwise Markov properties
- Equivalent characterizations of UGMs

Non-equivalence of Directed / Undirected Graphical Models

There does **not** exist an **undirected** graphical model that can capture the conditional independence assumptions of this **directed** graphical model:



There does **not** exist a **directed** graphical model that can capture the conditional independence assumptions of this **undirected** graphical model:

Whiteboard

- Alternate definition using maximal cliques
- Pairwise Markov Random Field (MRF)