

10-708 Probabilistic Graphical Models

MACHINE LEARNING DEPARTMENT

Machine Learning Department School of Computer Science Carnegie Mellon University

Variational Inference

Matt Gormley Lecture 17 Mar. 31, 2021

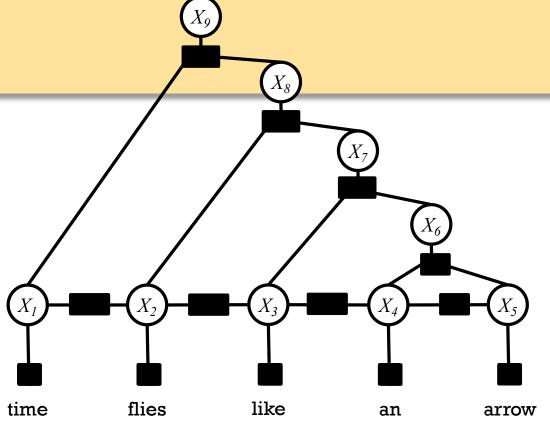
Reminders

- Project Proposal
 - Due: Wed, Mar. 31 at 11:59pm
- Homework 4: MCMC
 - Out: Wed, Mar. 24
 - Due: Wed, Apr. 7 at 11:59pm

HIGH-LEVEL INTRO TO VARIATIONAL INFERENCE

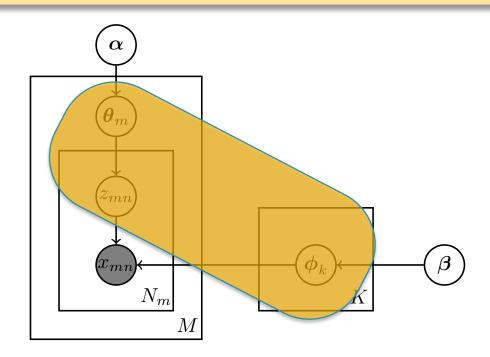
Problem:

- For observed variables x and latent variables z, estimating the posterior $p(z \mid x)$ is intractable



Problem:

- For observed variables x and latent variables z, estimating the posterior $p(z \mid x)$ is intractable
- For training data x and parameters z, estimating the posterior $p(z \mid x)$ is intractable



Problem:

- For observed variables x and latent variables z, estimating the posterior $p(z \mid x)$ is intractable
- For training data x and parameters z, estimating the posterior $p(z \mid x)$ is intractable

Solution:

- Approximate p(z | x) with a simpler q(z)
- Typically q(z) has more independence assumptions than $p(z \mid x)$ - fine b/c q(z) is tuned for a specific x
- Key idea: pick a single q(z) from some family Q that best approximates $p(z \mid x)$

Terminology:

- q(z): the variational approximation
- Q: the variational family
- Usually $q_{\theta}(z)$ is parameterized by some θ called variational parameters
- Usually $p_{\alpha}(\mathbf{z} \mid \mathbf{x})$ is parameterized by some fixed α we'll call them the parameters

Example Algorithms:

- mean-field variational inference
- loopy belief propagation
- tree-reweighted belief propagation
- expectation propagation

Is this trivial?

- Note: We are not defining a new distribution simple $q_{\theta}(\mathbf{z} \mid \mathbf{x})$, there is one simple $q_{\theta}(\mathbf{z} \mid \mathbf{x})$ for each $p_{\alpha}(\mathbf{z} \mid \mathbf{x})$
- Consider the MCMC equivalent of this:
 - you could draw samples $z^{(i)} \sim p(z \mid x)$
 - then train some simple $q_{\theta}(z)$ on $z^{(1)}, z^{(2)}, \dots, z^{(N)}$
 - hope that the sample adequately represents the posterior for the given x
- How is VI different from this?
 - VI doesn't require sampling
 - VI is fast and deterministic
 - Why? b/c we choose an objective function (KL divergence) that defines which q_{θ} best approximates p_{α} , and exploit the special structure of q_{θ} to optimize it

V.I. offers a new design decision

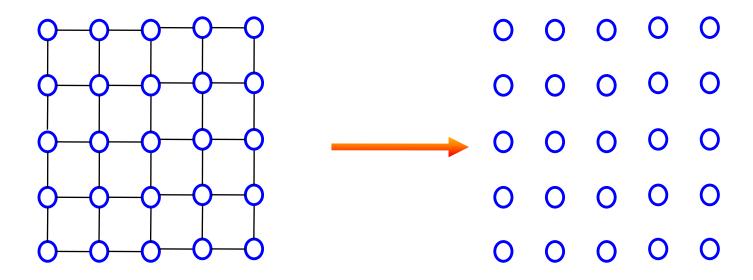
- Choose the distribution $p_{\alpha}(\mathbf{z} \mid \mathbf{x})$ that you really want, i.e. don't just simplify it to make it computationally convenient
- Then design a the structure of another distribution $q_{\theta}(z)$ such that V.I. is efficient

EXAMPLES OF VARIATIONAL APPROXIMATIONS

Mean Field for MRFs

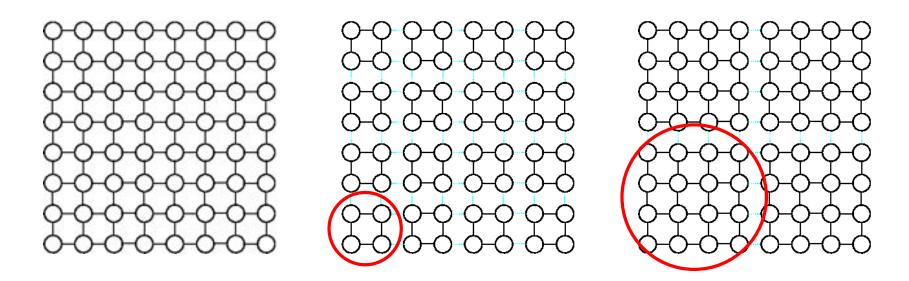
 Mean field approximation for Markov random field (such as the Ising model):

$$q(x) = \prod_{s \in V} q(x_s)$$



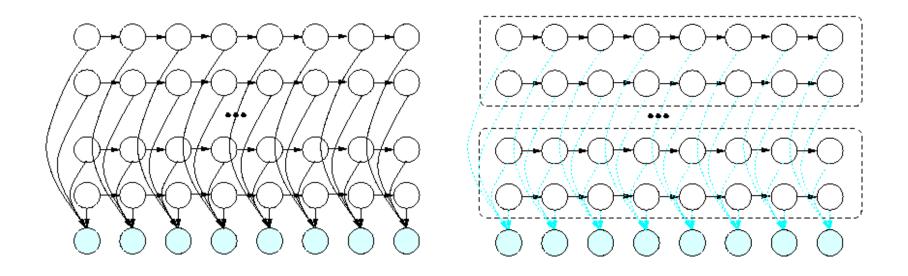
Variational Inference for MRFs

- We can also apply more general forms of mean field approximations (involving clusters) to the Ising model:
- Instead of making all latent variables independent (i.e. naïve mean field, previous figure), clusters of (disjoint) latent variables are independent.



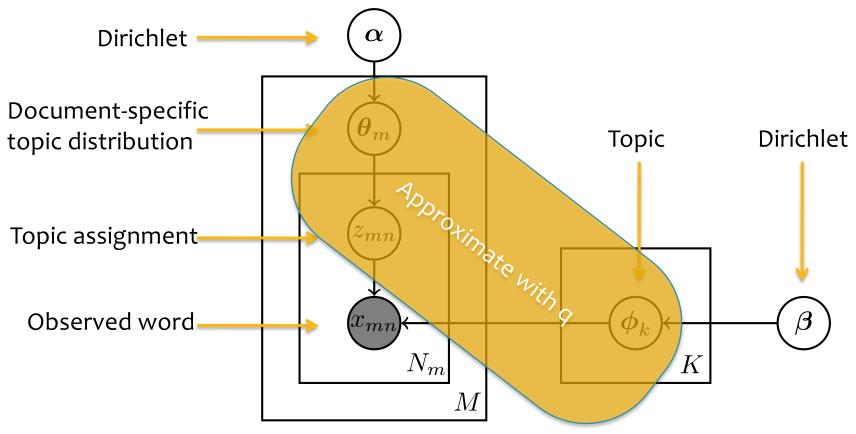
V.I. for Factorial HMM

 For a factorial HMM, we could decompose into chains



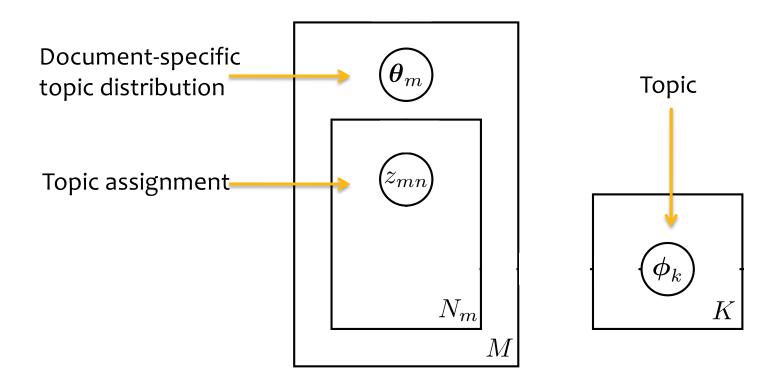
LDA Inference

 Explicit Variational Inference (original distribution)



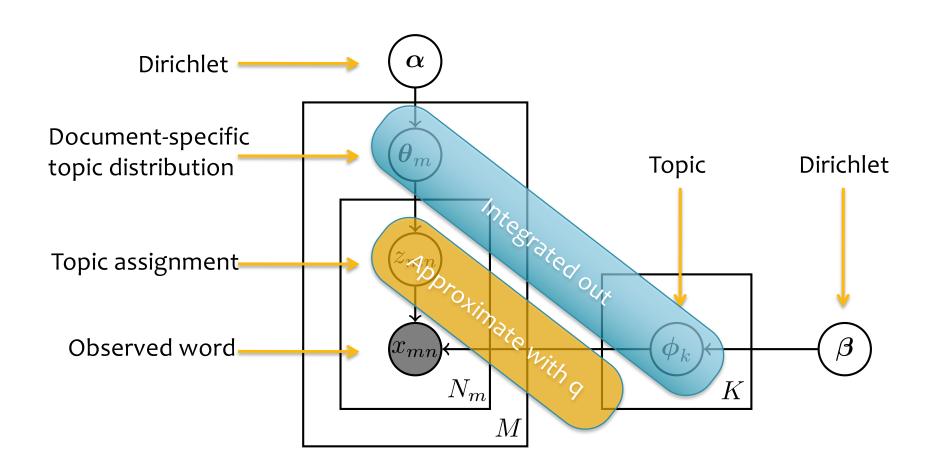
LDA Inference

 Explicit Variational Inference (variational approximation)



LDA Inference

Collapsed Variational Inference



MEAN FIELD VARIATIONAL INFERENCE

KL Divergence

• <u>Definition</u>: for two distributions q(x) and p(x) over $x \in \mathcal{X}$, the **KL Divergence** is: $KL(q || p) = E_{q(x)}[log q(x)/p(x)]$

Properties:

- KL(q || p) measures the **proximity** of two distributions q and p
- KL is **not** symmetric: KL(q \parallel p) \neq KL(p \parallel q)
- KL is minimized when q(x) = p(x) for all $x \in \mathcal{X}$

Whiteboard

- Background: KL Divergence
- Mean Field Variational Inference (overview)

Two Cases for Intractability

• Case 1:

given a joint distribution p(x, z)

$$\Rightarrow p(z \mid x) = \frac{p(x, z)}{p(x)}$$

we assume p(x) is intractable

• Case 2:

give factor graph and potentials

$$\Rightarrow p(z \mid x) = \frac{\tilde{p}(x,z)}{Z(x)}$$

we assume Z(x) is intractable

Mean Field Approximation

The **mean field approximation** assumes our variational approximation $q_{\theta}(z)$ treats each variable as independent

$$p_{\alpha}(\mathbf{z} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{c \in \mathcal{C}} \psi_c(\mathbf{z}_c, \mathbf{x})$$

$$q_{ heta}(\mathbf{z}) = \prod_{t=1}^T q_t(z_t)$$

Mean Field V.I. Overview

- 1. Goal: estimate $p_{\alpha}(\mathbf{z} \mid \mathbf{x})$ we assume this is intractable to compute exactly
- 2. <u>Idea</u>: approximate with another distribution $q_{\theta}(\mathbf{z}) \approx p_{\alpha}(\mathbf{z} \mid \mathbf{x})$ for each \mathbf{x}
- 3. Mean Field: assume $q_{\theta}(\mathbf{z}) = \prod_{t} q_{t}(z_{t}; \theta)$ i.e., we decompose over variables other choices for the decomposition of $q_{\theta}(\mathbf{z})$ give rise to "structured mean field"
- 4. Optimization Problem: pick the q that minimizes KL(q || p)

$$\hat{q}(\mathbf{z}) = \operatorname*{argmin}_{q(\mathbf{z}) \in \mathcal{Q}} \mathsf{KL}(q(\mathbf{z}) || p(\mathbf{z} \mid \mathbf{x})) \\ \hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \mathsf{KL}(q_{\theta}(\mathbf{z}) || p_{\alpha}(\mathbf{z} \mid \mathbf{x}))$$
 equivalent

5. Optimization Algorithm: coordinate descent i.e. pick the best $q_t(z_t)$ based on the other $\{q_s(z_s)\}_{s\neq t}$ being fixed

Question: How do we minimize KL?

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \mathsf{KL}(q_{\theta}(\mathbf{z}) \parallel p_{\alpha}(\mathbf{z} \mid \mathbf{x}))$$

Answer #1: Oh no! We can't even compute this KL.

Why we can't compute KL...

$$\begin{aligned} \mathsf{KL}(q(\mathbf{z}) \parallel p(\mathbf{z} \mid \mathbf{x})) &= E_{q(\mathbf{z})} \left[\log \left(\frac{q(\mathbf{z})}{p(\mathbf{z} \mid \mathbf{x})} \right) \right] \\ &= E_{q(\mathbf{z})} \left[\log q(\mathbf{z}) \right] - E_{q(\mathbf{z})} \left[\log p(\mathbf{z} \mid \mathbf{x}) \right] \\ &= E_{q(\mathbf{z})} \left[\log q(\mathbf{z}) \right] - E_{q(\mathbf{z})} \left[\log p(\mathbf{x}, \mathbf{z}) \right] + E_{q(\mathbf{z})} \left[\log p(\mathbf{x}) \right] \\ &= E_{q(\mathbf{z})} \left[\log q(\mathbf{z}) \right] - E_{q(\mathbf{z})} \left[\log p(\mathbf{x}, \mathbf{z}) \right] + \log p(\mathbf{x}) \end{aligned}$$

we have the same problem with an intractable data likelihood p(x) or an intractable partition function Z(x)

we assumed this is intractable to compute!

Question: How do we minimize KL?

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \mathsf{KL}(q_{\theta}(\mathbf{z}) \parallel p_{\alpha}(\mathbf{z} \mid \mathbf{x}))$$

Answer #1: Oh no! We can't even compute this KL.

Why we can't compute KL...

$$\begin{aligned} \mathsf{KL}(q(\mathbf{z}) \parallel p(\mathbf{z} \mid \mathbf{x})) &= E_{q(\mathbf{z})} \left[\log \left(\frac{q(\mathbf{z})}{p(\mathbf{z} \mid \mathbf{x})} \right) \right] \\ &= E_{q(\mathbf{z})} \left[\log q(\mathbf{z}) \right] - E_{q(\mathbf{z})} \left[\log p(\mathbf{z} \mid \mathbf{x}) \right] \\ &= E_{q(\mathbf{z})} \left[\log q(\mathbf{z}) \right] - E_{q(\mathbf{z})} \left[\log \tilde{p}(\mathbf{z} \mid \mathbf{x}) \right] + E_{q(\mathbf{z})} \left[\log Z(\mathbf{x}) \right] \\ &= E_{q(\mathbf{z})} \left[\log q(\mathbf{z}) \right] - E_{q(\mathbf{z})} \left[\log \tilde{p}(\mathbf{z} \mid \mathbf{x}) \right] + \log Z(\mathbf{x}) \end{aligned}$$

we have the same problem
with an intractable data
likelihood p(x) or an intractable
partition function Z(x)

we assumed this is intractable to compute!

Question: How do we minimize KL?

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \mathsf{KL}(q_{\theta}(\mathbf{z}) \parallel p_{\alpha}(\mathbf{z} \mid \mathbf{x}))$$

Answer #2: We don't need to compute this KL We can instead maximize the ELBO (i.e. Evidence Lower BOund)

$$\begin{aligned} \mathsf{ELBO}(q_{\theta}) = E_{q_{\theta}(\mathbf{z})} \left[\log p_{\alpha}(\mathbf{x}, \mathbf{z}) \right] - E_{q_{\theta}(\mathbf{z})} \left[\log q_{\theta}(\mathbf{z}) \right] \end{aligned}$$
 The ELBO for a DGM

Here is why...

$$\begin{split} \theta &= \operatorname*{argmin}_{\theta} \mathsf{KL}(q_{\theta}(\mathbf{z}) \parallel p_{\alpha}(\mathbf{z} \mid \mathbf{x})) \\ &= \operatorname*{argmin}_{\theta} E_{q_{\theta}(\mathbf{z})} \left[\log q_{\theta}(\mathbf{z}) \right] - E_{q_{\theta}(\mathbf{z})} \left[\log p_{\alpha}(\mathbf{x}, \mathbf{z}) \right] + \log p_{\alpha}(\mathbf{x}) \\ &= \operatorname*{argmin}_{\theta} E_{q_{\theta}(\mathbf{z})} \left[\log q_{\theta}(\mathbf{z}) \right] - E_{q_{\theta}(\mathbf{z})} \left[\log p_{\alpha}(\mathbf{x}, \mathbf{z}) \right] \\ &= \operatorname*{argmax}_{\theta} \mathsf{ELBO}(q_{\theta}) & \text{intractable term}_{gives the ELBO} \end{split}$$

Question: How do we minimize KL?

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \mathsf{KL}(q_{\theta}(\mathbf{z}) \parallel p_{\alpha}(\mathbf{z} \mid \mathbf{x}))$$

Answer #2: We don't need to compute this KL We can instead maximize the ELBO (i.e. Evidence Lower BOund)

$$\mathsf{ELBO}(q_{\theta}) = E_{q_{\theta}(\mathbf{z})} \left[\log \tilde{p}_{\alpha}(\mathbf{z} \mid \mathbf{x}) \right] - E_{q_{\theta}(\mathbf{z})} \left[\log q_{\theta}(\mathbf{z}) \right]$$

The ELBO for a UGM

Here is why...

$$\begin{split} \theta &= \operatorname*{argmin}_{\theta} \operatorname{KL}(q_{\theta}(\mathbf{z}) \parallel p_{\alpha}(\mathbf{z} \mid \mathbf{x})) \\ &= \operatorname*{argmin}_{\theta} E_{q_{\theta}(\mathbf{z})} \left[\log q_{\theta}(\mathbf{z}) \right] - E_{q_{\theta}(\mathbf{z})} \left[\log \tilde{p}_{\alpha}(\mathbf{z} \mid \mathbf{x}) \right] + \log Z_{\alpha}(\mathbf{x}) \\ &= \operatorname*{argmin}_{\theta} E_{q_{\theta}(\mathbf{z})} \left[\log q_{\theta}(\mathbf{z}) \right] - E_{q_{\theta}(\mathbf{z})} \left[\log \tilde{p}_{\alpha}(\mathbf{z} \mid \mathbf{x}) \right] \\ &= \operatorname*{argmax}_{\theta} \operatorname{ELBO}(q_{\theta}) & \operatorname{intractable term}_{gives the \ ELBO} \end{split}$$

ELBO as Objective Function

What does maximizing ELBO(q_{θ}) accomplish?

$$\mathsf{ELBO}(q_{\theta}) = E_{q_{\theta}(\mathbf{z})} \left[\log p_{\alpha}(\mathbf{x}, \mathbf{z}) \right] - E_{q_{\theta}(\mathbf{z})} \left[\log q_{\theta}(\mathbf{z}) \right]$$

1. The first expectation is high if q_{θ} puts probability mass on the same values of **z** that p_{α} puts probability mass

$$-E_{q_{\theta}(\mathbf{z})}\left[\log q_{\theta}(\mathbf{z})\right]$$

2. The second expectation is the entropy of q_{θ} and the negative entropy will be high if q_{θ} spreads its probability mass evenly

ELBO as lower bound

- For a DGM:
 - ELBO(q) is a lower bound for log p(x)
- For a UGM:
 - ELBO(q) is a lower bound for log Z(x)

<u>Takeaway</u>: in variational inference, we find the q that gives the **tightest bound** on the normalization constant for $p(z \mid x)$

Whiteboard

- Evidence Lower Bound (ELBO)
- ELBO's relation to log p(x)

COORDINATE ASCENT VARIATIONAL INFERENCE (CAVI)

Whiteboard

- Coordinate Ascent Variational Inference (CAVI)
 Algorithm
 - Connecting CAVI to BP and Gibbs sampling
 - Computing marginals from a trained mean field approximation
- CAVI algorithm derivation
 - Chain rule decomposition of log p(x, z)
 - Decomposing the entropy
 - Decomposing the ELBO
 - Derivatives and closed form solution