

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Hidden Markov Models

Matt Gormley Lecture 19 Nov. 5, 2018

Reminders

- Homework 6: PAC Learning / Generative Models
 - Out: Wed, Oct 31
 - Due: Wed, Nov 7 at 11:59pm (1 week)
- Homework 7: HMMs
 - Out: Wed, Nov 7
 - Due: Mon, Nov 19 at 11:59pm

Grades are up on Canvas

Q&A

Q: Why would we use Naïve Bayes? Isn't it too Naïve?

A: Naïve Bayes has one **key advantage** over methods like Perceptron, Logistic Regression, Neural Nets:

Training is lightning fast!

While other methods require slow iterative training procedures that might require hundreds of epochs, Naïve Bayes computes its parameters in closed form by counting.

DISCRIMINATIVE AND GENERATIVE CLASSIFIERS

Generative Classifiers:

- Example: Naïve Bayes
- Define a joint model of the observations ${\bf x}$ and the labels y: $p({\bf x},y)$
- Learning maximizes (joint) likelihood
- Use Bayes' Rule to classify based on the posterior:

$$p(y|\mathbf{x}) = p(\mathbf{x}|y)p(y)/p(\mathbf{x})$$

Discriminative Classifiers:

- Example: Logistic Regression
- Directly model the conditional: $p(y|\mathbf{x})$
- Learning maximizes conditional likelihood

Whiteboard

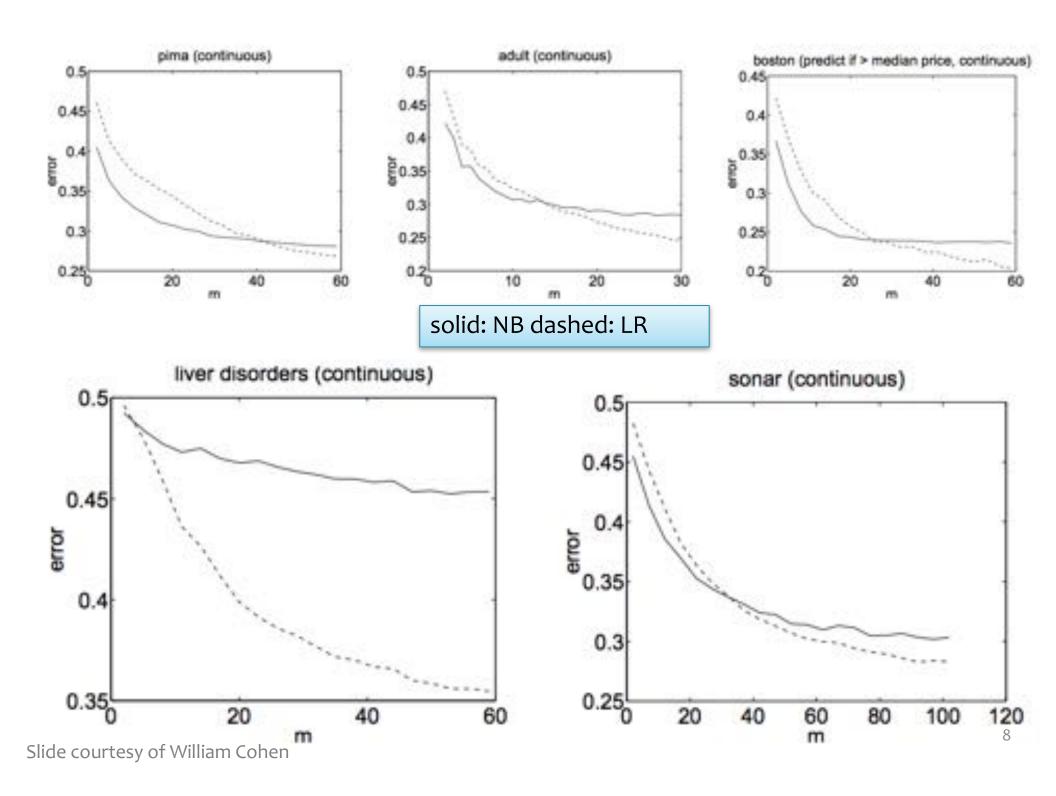
- Contrast: To model p(x) or not to model p(x)?

Finite Sample Analysis (Ng & Jordan, 2002)

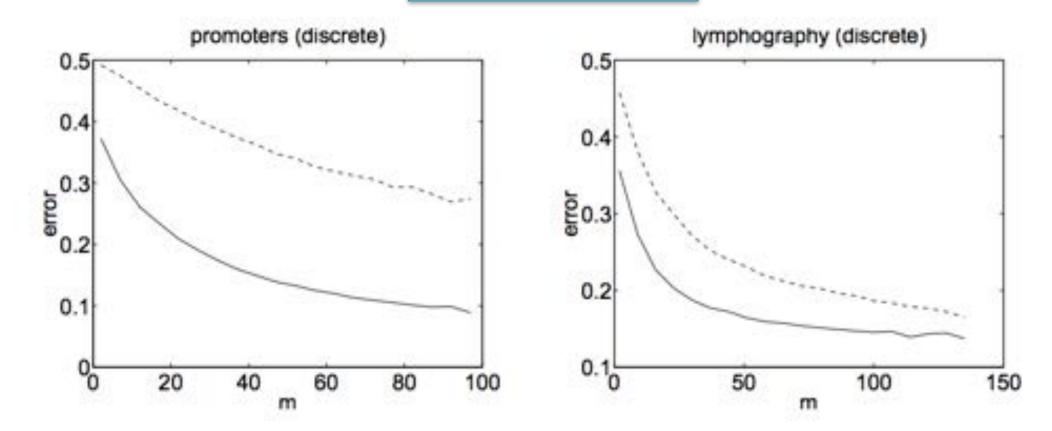
[Assume that we are learning from a finite training dataset]

If model assumptions are correct: Naive Bayes is a more efficient learner (requires fewer samples) than Logistic Regression

If model assumptions are incorrect: Logistic Regression has lower asymtotic error, and does better than Naïve Bayes



solid: NB dashed: LR



Naïve Bayes makes stronger assumptions about the data but needs fewer examples to estimate the parameters

"On Discriminative vs Generative Classifiers:" Andrew Ng and Michael Jordan, NIPS 2001.

Learning (Parameter Estimation)

Naïve Bayes:

Parameters are decoupled -> Closed form solution for MLE

Logistic Regression:

Parameters are coupled > No closed form solution – must use iterative optimization techniques instead

Naïve Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naïve Bayes:

Parameters are probabilities \rightarrow Beta prior (usually) pushes probabilities away from zero / one extremes

Logistic Regression:

Parameters are not probabilities

Gaussian prior encourages parameters to be close to zero

(effectively pushes the probabilities away from zero / one extremes)

Naïve Bayes vs. Logistic Reg.

Features

Naïve Bayes:

Features x are assumed to be conditionally independent given y. (i.e. Naïve Bayes Assumption)

Logistic Regression:

No assumptions are made about the form of the features x. They can be dependent and correlated in any fashion.

MOTIVATION: STRUCTURED PREDICTION

Structured Prediction

 Most of the models we've seen so far were for classification

- Given observations: $\mathbf{x} = (x_1, x_2, ..., x_K)$
- Predict a (binary) label: y
- Many real-world problems require structured prediction
 - Given observations: $\mathbf{x} = (x_1, x_2, ..., x_K)$
 - Predict a structure: $y = (y_1, y_2, ..., y_J)$
- Some classification problems benefit from latent structure

Structured Prediction Examples

Examples of structured prediction

- Part-of-speech (POS) tagging
- Handwriting recognition
- Speech recognition
- Word alignment
- Congressional voting

Examples of latent structure

Object recognition

Dataset for Supervised Part-of-Speech (POS) Tagging

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

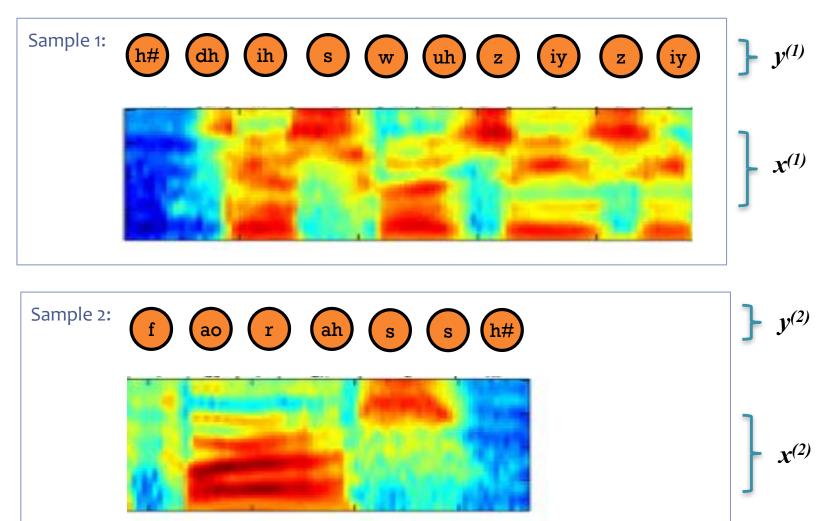
Sample 1:	n	flies	p like	an	$\begin{array}{c c} & & \\ & &$
Sample 2:	n	n	like	d	
Sample 3:	n	fly	with	n	
Sample 4:	with	n	you	will	$\begin{cases} \mathbf{v} \\ \mathbf{see} \end{cases} y^{(4)}$

Dataset for Supervised Handwriting Recognition

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

Dataset for Supervised Phoneme (Speech) Recognition

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

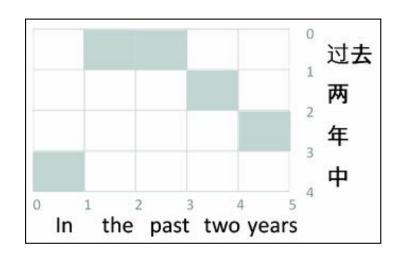


Application:

Word Alignment / Phrase Extraction

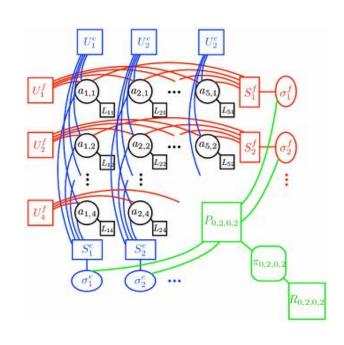
Variables (boolean):

For each (Chinese phrase, English phrase) pair, are they linked?



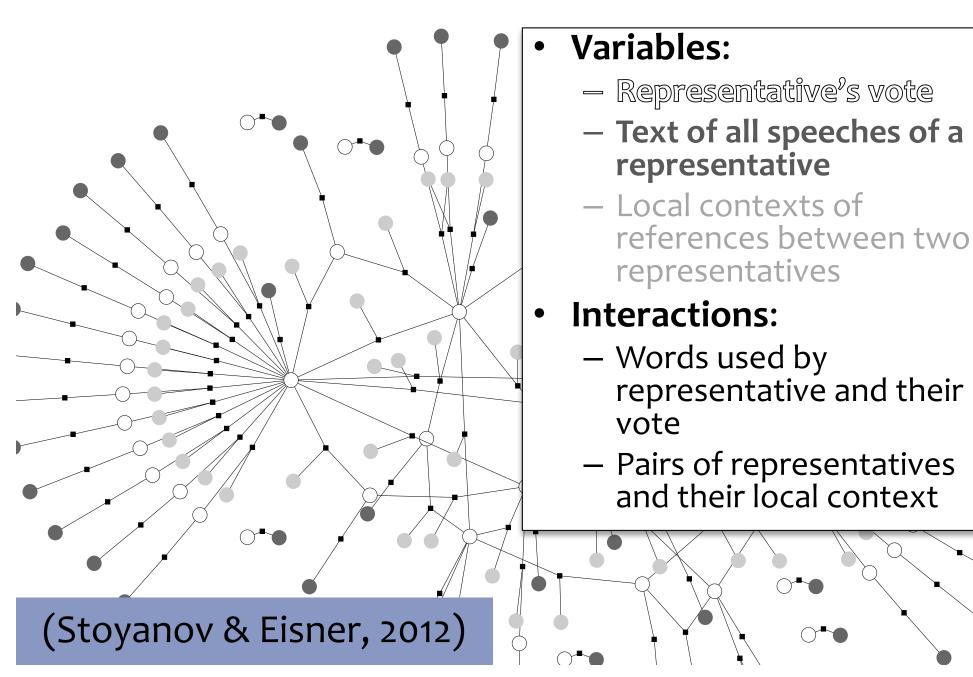
Interactions:

- Word fertilities
- Few "jumps" (discontinuities)
- Syntactic reorderings
- "ITG contraint" on alignment
- Phrases are disjoint (?)



Application:

Congressional Voting



Structured Prediction Examples

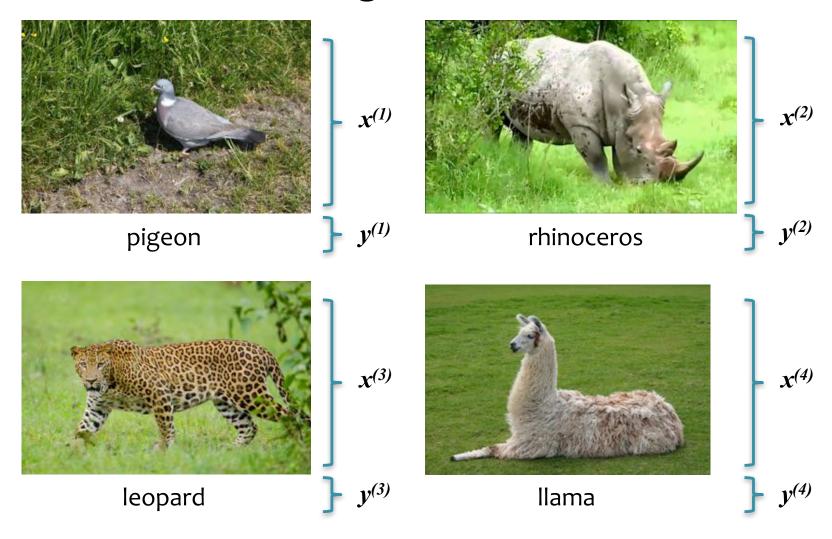
Examples of structured prediction

- Part-of-speech (POS) tagging
- Handwriting recognition
- Speech recognition
- Word alignment
- Congressional voting

Examples of latent structure

Object recognition

Data consists of images x and labels y.



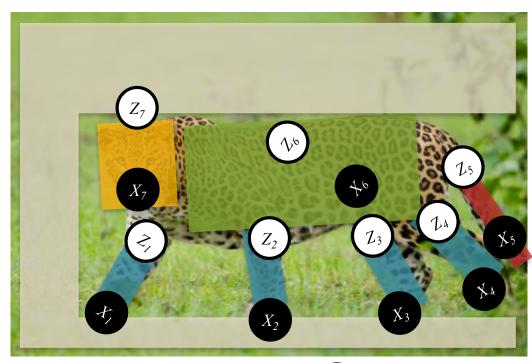
Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z
 describing the object's
 parts (e.g. head, leg,
 tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time

leopard

Data consists of images x and labels y.

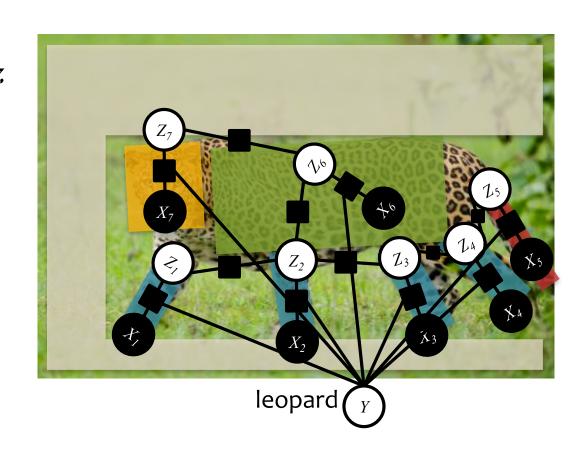
- Preprocess data into "patches"
- Posit a latent labeling z
 describing the object's
 parts (e.g. head, leg,
 tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time



leopard (y)

Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z
 describing the object's
 parts (e.g. head, leg,
 tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time



Structured Prediction

Preview of challenges to come...

 Consider the task of finding the most probable assignment to the output

Classification
$$\hat{y} = \operatorname*{argmax}_y p(y|\mathbf{x})$$
 where $y \in \{+1, -1\}$

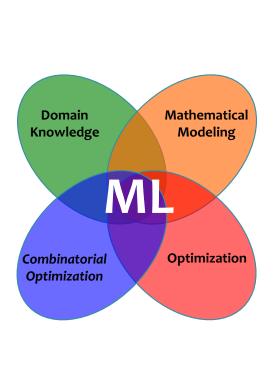
Structured Prediction
$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y}} p(\mathbf{y}|\mathbf{x})$$
 where $\mathbf{y} \in \mathcal{Y}$ and $|\mathcal{Y}|$ is very large

Machine Learning

The data inspires
the structures
we want to
predict

{best structure, marginals, partition function} for a new observation

(Inference is usually called as a subroutine in learning)

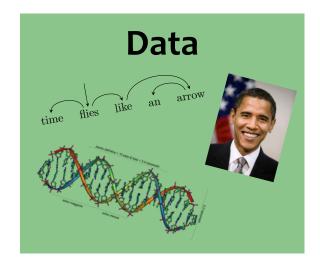


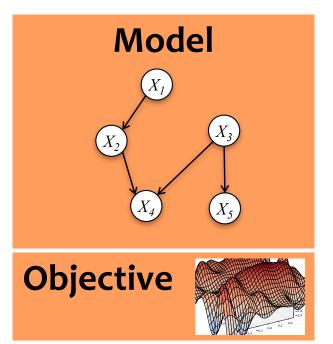
Our **model**defines a score
for each structure

It also tells us what to optimize

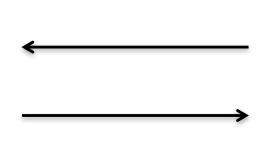
Learning tunes the parameters of the model

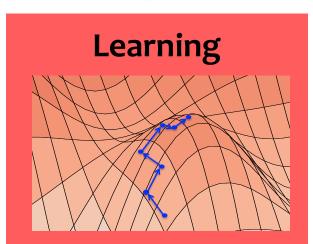
Machine Learning











BACKGROUND

Background: Chain Rule of Probability

For random variables A and B:

$$P(A,B) = P(A|B)P(B)$$

For random variables X_1, X_2, X_3, X_4 :

$$P(X_1, X_2, X_3, X_4) = P(X_1 | X_2, X_3, X_4)$$

$$P(X_2 | X_3, X_4)$$

$$P(X_3 | X_4)$$

$$P(X_4)$$

Background: Conditional Independence

Random variables A and B are conditionally independent given C if:

$$P(A,B|C) = P(A|C)P(B|C)$$
 (1)

or equivalently:

$$P(A|B,C) = P(A|C) \tag{2}$$

We write this as:

$$A \perp \!\!\! \perp \!\!\! \perp \!\!\! B | C$$

Later we will also write: I < A, $\{C\}$, B >

HIDDEN MARKOV MODEL (HMM)

HMM Outline

Motivation

Time Series Data

Hidden Markov Model (HMM)

- Example: Squirrel Hill Tunnel Closures [courtesy of Roni Rosenfeld]
- Background: Markov Models
- From Mixture Model to HMM
- History of HMMs
- Higher-order HMMs

Training HMMs

- (Supervised) Likelihood for HMM
- Maximum Likelihood Estimation (MLE) for HMM
- EM for HMM (aka. Baum-Welch algorithm)

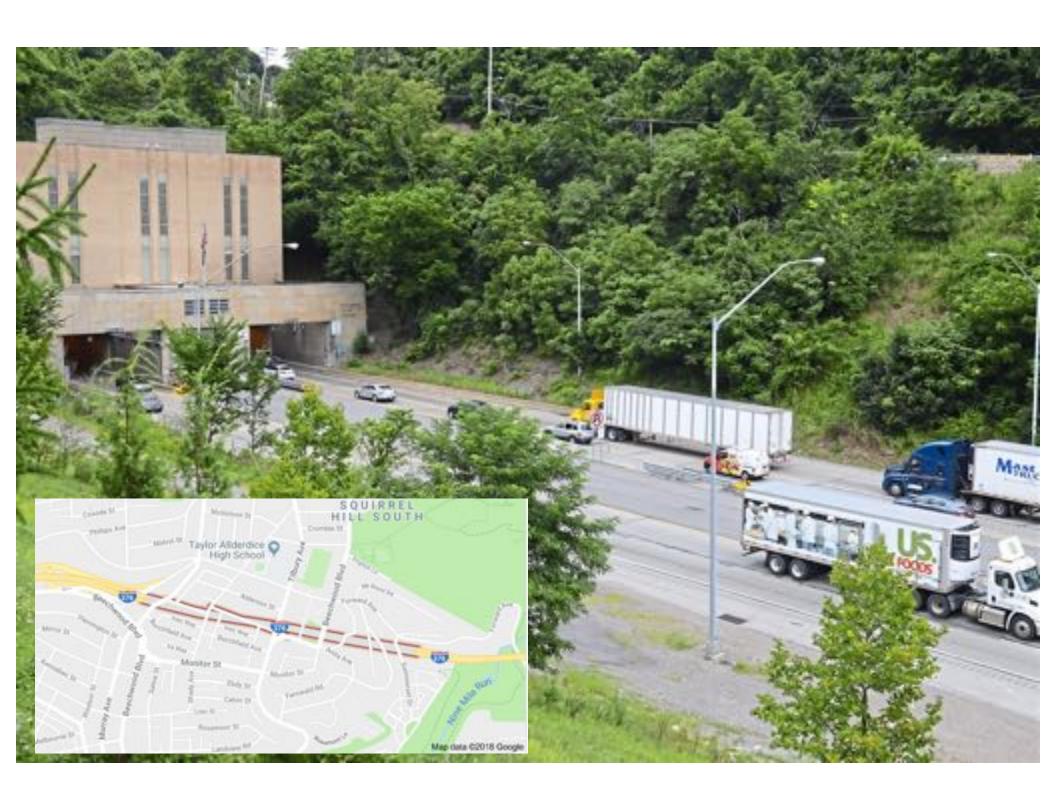
Forward-Backward Algorithm

- Three Inference Problems for HMM
- Great Ideas in ML: Message Passing
- Example: Forward-Backward on 3-word Sentence
- Derivation of Forward Algorithm
- Forward-Backward Algorithm
- Viterbi algorithm

Markov Models

Whiteboard

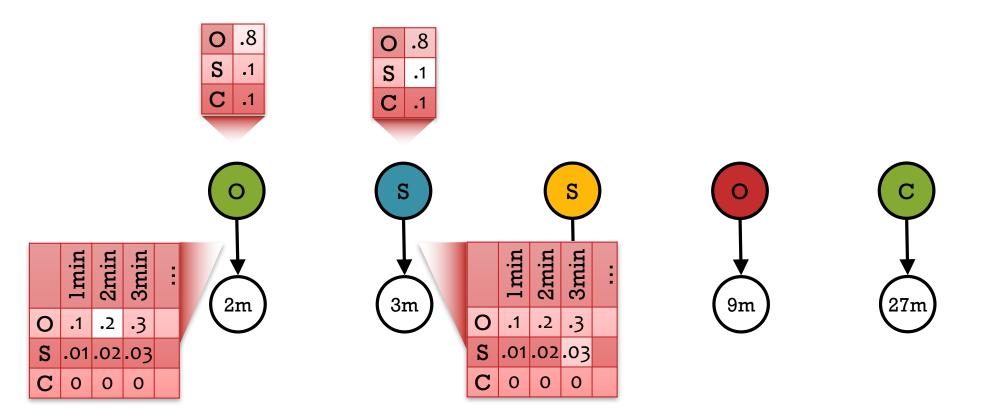
- Example: Squirrel Hill Tunnel Closures[courtesy of Roni Rosenfeld]
- First-order Markov assumption
- Conditional independence assumptions



Mixture Model for Time Series Data

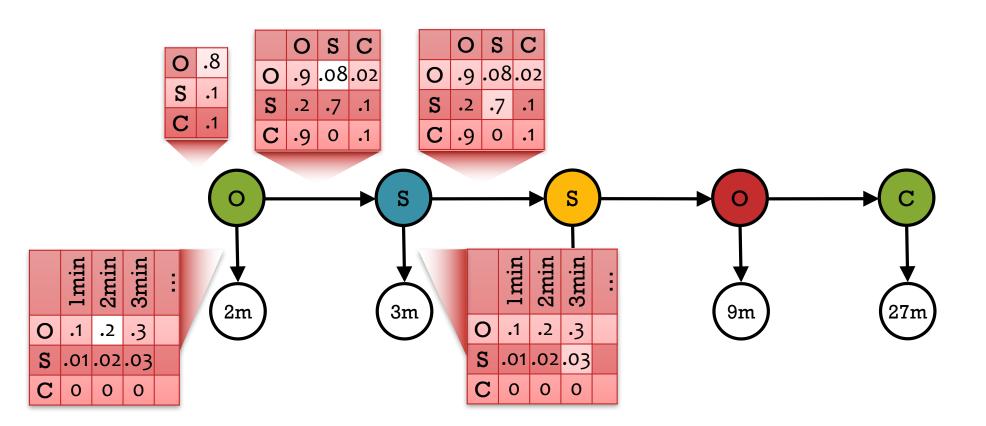
We could treat each (tunnel state, travel time) pair as independent. This corresponds to a Naïve Bayes model with a single feature (travel time).

$$p(0, S, S, O, C, 2m, 3m, 18m, 9m, 27m) = (.8 * .2 * .1 * .03 * ...)$$

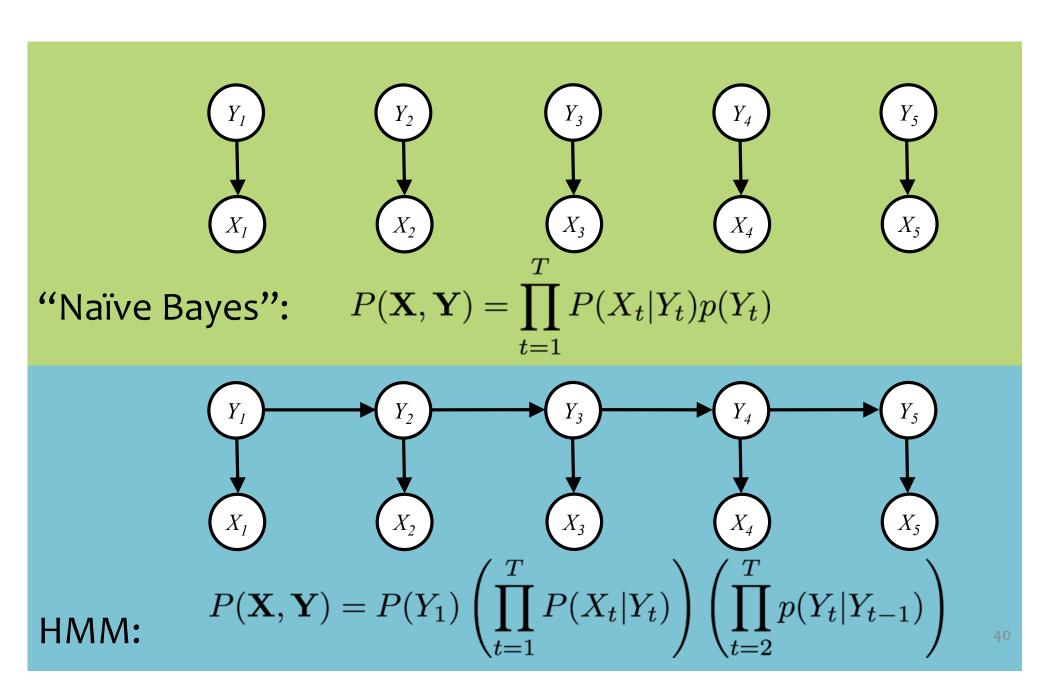


A Hidden Markov Model (HMM) provides a joint distribution over the the tunnel states / travel times with an assumption of dependence between adjacent tunnel states.

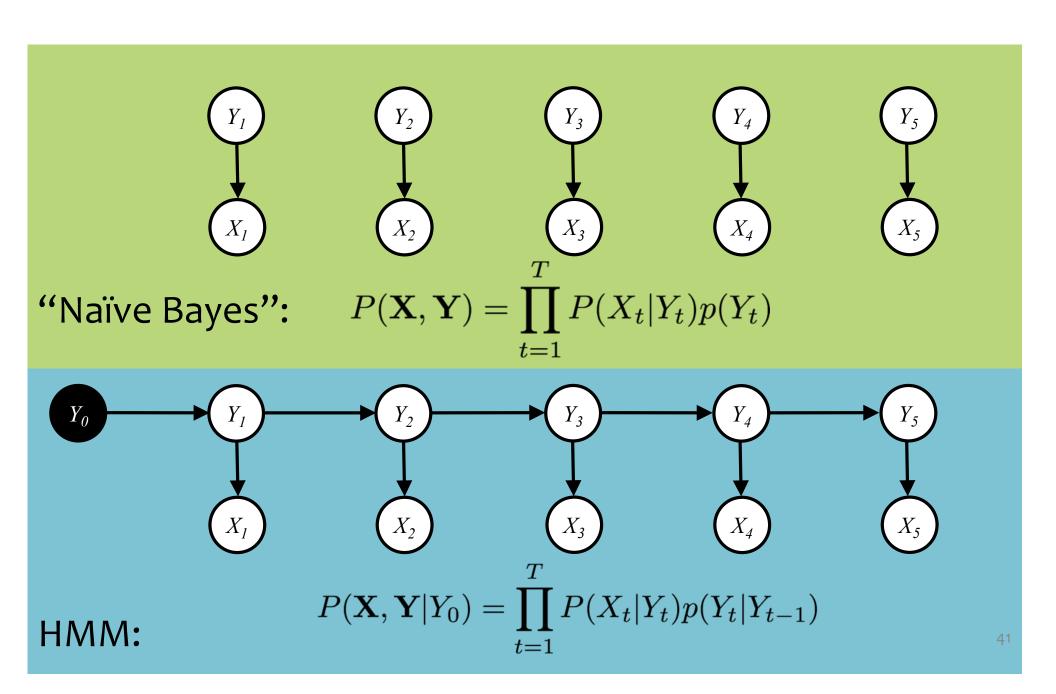
$$p(0, S, S, O, C, 2m, 3m, 18m, 9m, 27m) = (.8 * .08 * .2 * .7 * .03 * ...)$$



From Mixture Model to HMM



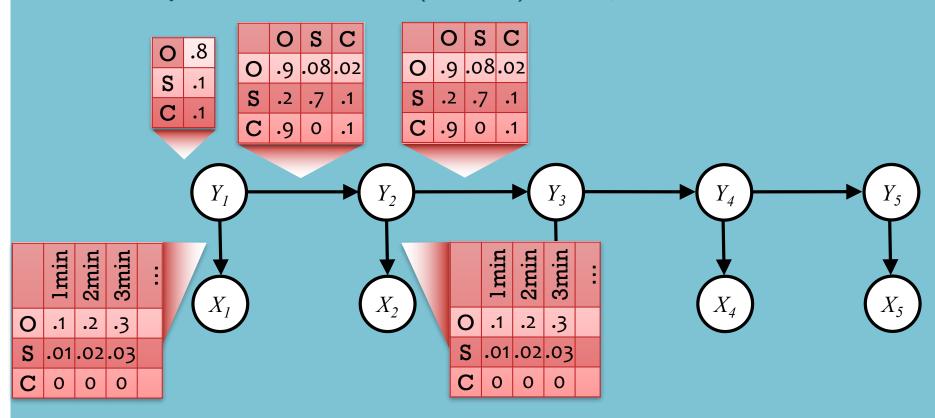
From Mixture Model to HMM



SUPERVISED LEARNING FOR HMMS

HMM Parameters:

Emission matrix, **A**, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$ Transition matrix, **B**, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$ Initial probs, **C**, where $P(Y_1 = k) = C_k, \forall k$



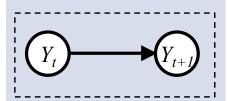
Training HMMs

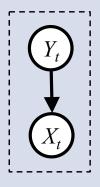
Whiteboard

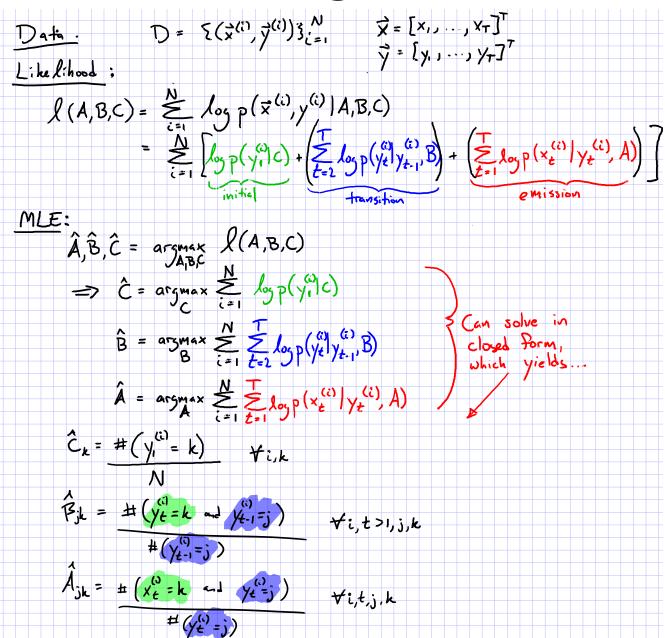
- (Supervised) Likelihood for an HMM
- Maximum Likelihood Estimation (MLE) for HMM

Supervised Learning for HMMs

Learning an HMM decomposes into solving two (independent) Mixture Models







HMM Parameters:

Emission matrix, **A**, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$ Transition matrix, **B**, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$

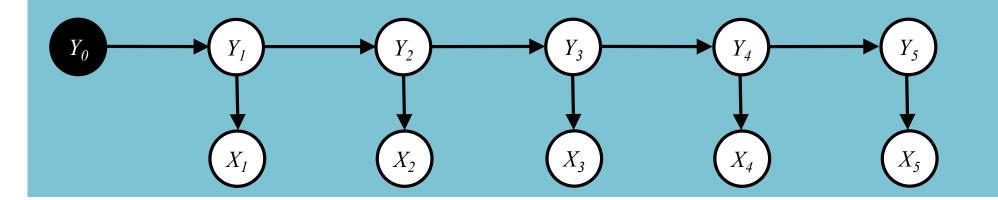
Assumption: $y_0 = START$

Generative Story:

 $Y_t \sim \text{Multinomial}(\mathbf{B}_{Y_{t-1}}) \ \forall t$

 $X_t \sim \text{Multinomial}(\mathbf{A}_{Y_t}) \ \forall t$

For notational convenience, we fold the initial probabilities **C** into the transition matrix **B** by our assumption.

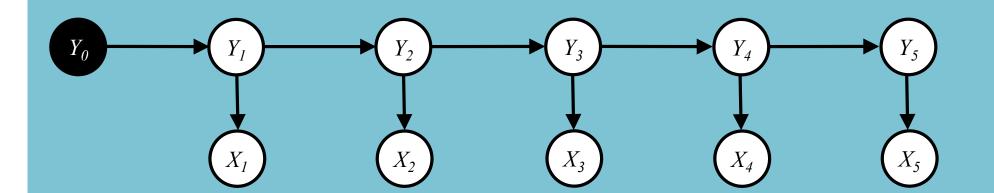


Joint Distribution:

$$y_0 = \mathsf{START}$$

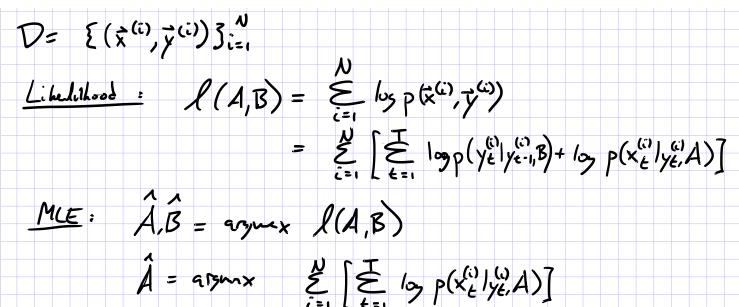
$$p(\mathbf{x}, \mathbf{y}|y_0) = \prod_{t=1}^{T} p(x_t|y_t) p(y_t|y_{t-1})$$

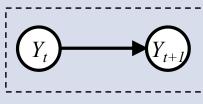
$$= \prod_{t=1}^{I} A_{y_t, x_t} B_{y_{t-1}, y_t}$$

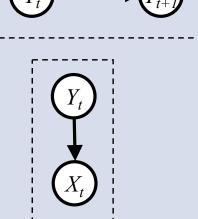


Supervised Learning for HMMs

Learning an HMM decomposes into solving two (independent) Mixture Models







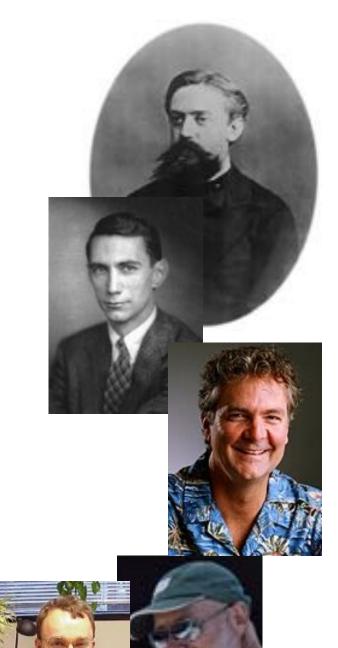
$$\hat{A}_{jk} = \pm \left(\begin{array}{c} x_{\ell}^{(i)} = k & \text{and} & y_{\ell}^{(i)} = j \end{array} \right)$$

$$\pm \left(\begin{array}{c} y_{\ell}^{(i)} = j \end{array} \right)$$

HMMs: History

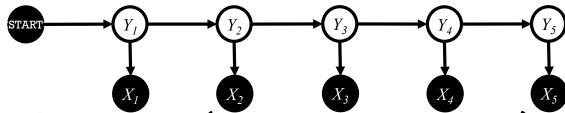
- Markov chains: Andrey Markov (1906)
 - Random walks and Brownian motion
- Used in Shannon's work on information theory (1948)
- Baum-Welsh learning algorithm: late 60's, early 70's.
 - Used mainly for speech in 60s-70s.
- Late 80's and 90's: David Haussler (major player in learning theory in 80's) began to use HMMs for modeling biological sequences
- Mid-late 1990's: Dayne Freitag/Andrew McCallum
 - Freitag thesis with Tom Mitchell on IE from Web using logic programs, grammar induction, etc.
 - McCallum: multinomial Naïve Bayes for text
 - With McCallum, IE using HMMs on CORA

• ...

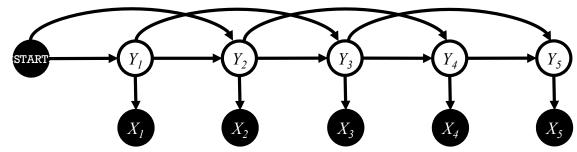


Higher-order HMMs

• 1st-order HMM (i.e. bigram HMM)



• 2nd-order HMM (i.e. trigram HMM)



• 3rd-order HMM

