

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Naïve Bayes

Matt Gormley Lecture 18 Oct. 31, 2018

Reminders

- Homework 6: PAC Learning / Generative Models
 - Out: Wed, Oct 31
 - Due: Wed, Nov 7 at 11:59pm (1 week)

TIP: Do the readings!

- Exam Viewing
 - Thu, Nov 1
 - Fri, Nov 2

NAÏVE BAYES

Naïve Bayes Outline

Real-world Dataset

- Economist vs. Onion articles
- Document → bag-of-words → binary feature vector

Naive Bayes: Model

- Generating synthetic "labeled documents"
- Definition of model
- Naive Bayes assumption
- Counting # of parameters with / without NB assumption

Naïve Bayes: Learning from Data

- Data likelihood
- MLE for Naive Bayes
- MAP for Naive Bayes
- Visualizing Gaussian Naive Bayes

Fake News Detector

Today's Goal: To define a generative model of emails of two different classes (e.g. real vs. fake news)

The Economist

The Onion

Naive Bayes: Model

Whiteboard

- Document → bag-of-words → binary feature vector
- Generating synthetic "labeled documents"
- Definition of model
- Naive Bayes assumption
- Counting # of parameters with / without NB assumption

Flip weighted coin

If HEADS, flip each red coin

 \mathbf{O}

 χ_2

 χ_3

 x_M

 \mathcal{Y}

 x_1

Each red coin corresponds to an x_m

If TAILS, flip each blue coin

We can **generate** data in this fashion. Though in practice we never would since our data is **given**.

Instead, this provides an explanation of **how** the data was generated (albeit a terrible one).

What's wrong with the Naïve Bayes Assumption?

The features might not be independent!!

- Example 1:
 - If a document contains the word "Donald", it's extremely likely to contain the word "Trump"
 - These are not independent!

NEWS IN BRIEF August 18, 2016 VOL 52 ISSUE 32 - Politics - Politicians - Election 2016 - Donald Trump

• Example 2:

If the petal width is very high,
 the petal length is also likely to
 be very high

Naïve Bayes: Learning from Data

Whiteboard

- Data likelihood
- MLE for Naive Bayes
- Example: MLE for Naïve Bayes with Two Features
- MAP for Naive Bayes

NAÏVE BAYES: MODEL DETAILS

Support: Binary vectors of length K

$$\mathbf{x} \in \{0, 1\}^K$$

Generative Story:

$$Y \sim \mathsf{Bernoulli}(\phi)$$

$$X_k \sim \mathsf{Bernoulli}(\theta_{k,Y}) \ \forall k \in \{1,\ldots,K\}$$

Model:

$$p_{\phi,\theta}(x,y) = p_{\phi,\theta}(x_1, \dots, x_K, y)$$

$$= p_{\phi}(y) \prod_{k=1}^K p_{\theta_k}(x_k|y)$$

$$= (\phi)^y (1 - \phi)^{(1-y)} \prod_{k=1}^K (\theta_{k,y})^{x_k} (1 - \theta_{k,y})^{(1-x_k)}$$

Support: Binary vectors of length K

$$\mathbf{x} \in \{0, 1\}^K$$

Generative Story:

$$Y \sim \mathsf{Bernoulli}(\phi)$$

$$X_k \sim \mathsf{Bernoulli}(\theta_{k,Y}) \ \forall k \in \{1, \dots, K\}$$

Model:

$$p_{\phi,\theta}(x,y) = (\phi)^y (1-\phi)^{(1-y)}$$

Same as Generic Naïve Bayes

Classification: Find the class that maximizes the posterior

$$\hat{y} = \operatorname*{argmax}_{y} p(y|\mathbf{x})$$

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each $P(X_k|Y)$ we condition on the data with the corresponding class.

$$\phi = \frac{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1)}{N}$$

$$\theta_{k,0} = \frac{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0 \land x_k^{(i)} = 1)}{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0)}$$

$$\theta_{k,1} = \frac{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1 \land x_k^{(i)} = 1)}{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1)}$$

$$\forall k \in \{1, \dots, K\}$$

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each $P(X_k|Y)$ we condition on the data with the corresponding

class.
$$\phi = \frac{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1)}{N}$$

$$\theta_{k,0} = \frac{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0 \land x_k^{(i)} = 1)}{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0)}$$

$$\theta_{k,1} = \frac{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1 \land x_k^{(i)} = 1)}{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1)}$$

$$\forall k \in \{1, \dots, K\}$$

Data:

У	x_1	x_2	λ_3	• • •	\mathcal{A}_K
0	1	0	1	•••	1
1	0	1	0	•••	1
1	1	1	1	• • •	1
0	0	0	1	• • •	1
0	1	0	1	•••	0
1	1	0	1	•••	0

Other NB Models

- Bernoulli Naïve Bayes:
 - for binary features
- 2. Gaussian Naïve Bayes:
 - for continuous features
- 3. Multinomial Naïve Bayes:
 - for integer features
- 4. Multi-class Naïve Bayes:
 - for classification problems with > 2 classes
 - event model could be any of Bernoulli, Gaussian,
 Multinomial, depending on features

Model 2: Gaussian Naïve Bayes

Support:

$$\mathbf{x} \in \mathbb{R}^K$$

Model: Product of prior and the event model

$$p(\mathbf{x}, y) = p(x_1, \dots, x_K, y)$$
$$= p(y) \prod_{k=1}^K p(x_k | y)$$

Gaussian Naive Bayes assumes that $p(x_k|y)$ is given by a Normal distribution.

Model 3: Multinomial Naïve Bayes

Support:

Option 1: Integer vector (word IDs)

 ${\bf x} = [x_1, x_2, \dots, x_M]$ where $x_m \in \{1, \dots, K\}$ a word id.

Generative Story:

$$\begin{aligned} &\textbf{for } i \in \{1,\dots,N\} \textbf{:} \\ &y^{(i)} \sim \mathsf{Bernoulli}(\phi) \\ &\textbf{for } j \in \{1,\dots,M_i\} \textbf{:} \\ &x_j^{(i)} \sim \mathsf{Multinomial}(\boldsymbol{\theta}_{y^{(i)}},1) \end{aligned}$$

Model:

$$p_{\phi,\boldsymbol{\theta}}(\boldsymbol{x},y) = p_{\phi}(y) \prod_{k=1}^{K} p_{\boldsymbol{\theta}_k}(x_k|y)$$
$$= (\phi)^y (1-\phi)^{(1-y)} \prod_{j=1}^{M_i} \theta_{y,x_j}$$

Model 5: Multiclass Naïve Bayes

Model:

The only change is that we permit y to range over C classes.

$$p(\mathbf{x}, y) = p(x_1, \dots, x_K, y)$$

= $p(y) \prod_{k=1}^{K} p(x_k|y)$

Now, $y \sim \text{Multinomial}(\phi, 1)$ and we have a separate conditional distribution $p(x_k|y)$ for each of the C classes.

Generic Naïve Bayes Model

Support: Depends on the choice of **event model**, $P(X_k|Y)$

Model: Product of prior and the event model

$$P(\mathbf{X}, Y) = P(Y) \prod_{k=1}^{K} P(X_k | Y)$$

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each $P(X_k|Y)$ we condition on the data with the corresponding

Classification: Find the class that maximizes the posterior

$$\hat{y} = \operatorname*{argmax}_{y} p(y|\mathbf{x})$$

Generic Naïve Bayes Model

Classification:

$$\hat{y} = \operatorname*{argmax} p(y|\mathbf{x})$$
 (posterior)
$$= \operatorname*{argmax} \frac{p(\mathbf{x}|y)p(y)}{p(x)}$$
 (by Bayes' rule)
$$= \operatorname*{argmax} p(\mathbf{x}|y)p(y)$$

$$= \operatorname*{argmax} p(\mathbf{x}|y)p(y)$$

Smoothing

- Add-1 Smoothing
- 2. Add-λ Smoothing
- 3. MAP Estimation (Beta Prior)

MLE

What does maximizing likelihood accomplish?

- There is only a finite amount of probability mass (i.e. sum-to-one constraint)
- MLE tries to allocate as much probability mass as possible to the things we have observed...

... at the expense of the things we have not observed

MLE

For Naïve Bayes, suppose we never observe the word "serious" in an Onion article.

In this case, what is the MLE of $p(x_k | y)$?

$$\theta_{k,0} = \frac{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0 \land x_k^{(i)} = 1)}{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0)}$$

Now suppose we observe the word "serious" at test time. What is the posterior probability that the article was an Onion article?

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})}$$

1. Add-1 Smoothing

The simplest setting for smoothing simply adds a single pseudo-observation to the data. This converts the true observations \mathcal{D} into a new dataset \mathcal{D}' from we derive the MLEs.

$$\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N} \tag{1}$$

$$\mathcal{D}' = \mathcal{D} \cup \{ (\mathbf{0}, 0), (\mathbf{0}, 1), (\mathbf{1}, 0), (\mathbf{1}, 1) \}$$
 (2)

where ${\bf 0}$ is the vector of all zeros and ${\bf 1}$ is the vector of all ones.

This has the effect of pretending that we observed each feature x_k with each class y.

1. Add-1 Smoothing

What if we write the MLEs in terms of the original dataset \mathcal{D} ?

$$\phi = \frac{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1)}{N}$$

$$\theta_{k,0} = \frac{1 + \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0 \land x_k^{(i)} = 1)}{2 + \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0)}$$

$$\theta_{k,1} = \frac{1 + \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1 \land x_k^{(i)} = 1)}{2 + \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1)}$$

$$\forall k \in \{1, \dots, K\}$$

2. Add-λ Smoothing

For the Categorical Distribution

Suppose we have a dataset obtained by repeatedly rolling a K-sided (weighted) die. Given data $\mathcal{D}=\{x^{(i)}\}_{i=1}^N$ where $x^{(i)}\in\{1,\ldots,K\}$, we have the following MLE:

$$\phi_k = \frac{\sum_{i=1}^N \mathbb{I}(x^{(i)} = k)}{N}$$

With add- λ smoothing, we add pseudo-observations as before to obtain a smoothed estimate:

$$\phi_k = \frac{\lambda + \sum_{i=1}^N \mathbb{I}(x^{(i)} = k)}{k\lambda + N}$$

3. MAP Estimation (Beta Prior)

Generative Story:

The parameters are drawn once for the entire dataset.

```
\begin{aligned} &\text{for } k \in \{1, \dots, K\}\text{:} \\ &\text{for } y \in \{0, 1\}\text{:} \\ &\theta_{k,y} \sim \text{Beta}(\alpha, \beta) \\ &\text{for } i \in \{1, \dots, N\}\text{:} \\ &y^{(i)} \sim \text{Bernoulli}(\phi) \\ &\text{for } k \in \{1, \dots, K\}\text{:} \\ &x_k^{(i)} \sim \text{Bernoulli}(\theta_{k,y^{(i)}}) \end{aligned}
```

Training: Find the **class-conditional** MAP parameters

$$\phi = \frac{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1)}{N}$$

$$\theta_{k,0} = \frac{(\alpha - 1) + \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0 \land x_k^{(i)} = 1)}{(\alpha - 1) + (\beta - 1) + \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0)}$$

$$\theta_{k,1} = \frac{(\alpha - 1) + \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1 \land x_k^{(i)} = 1)}{(\alpha - 1) + (\beta - 1) + \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1)}$$

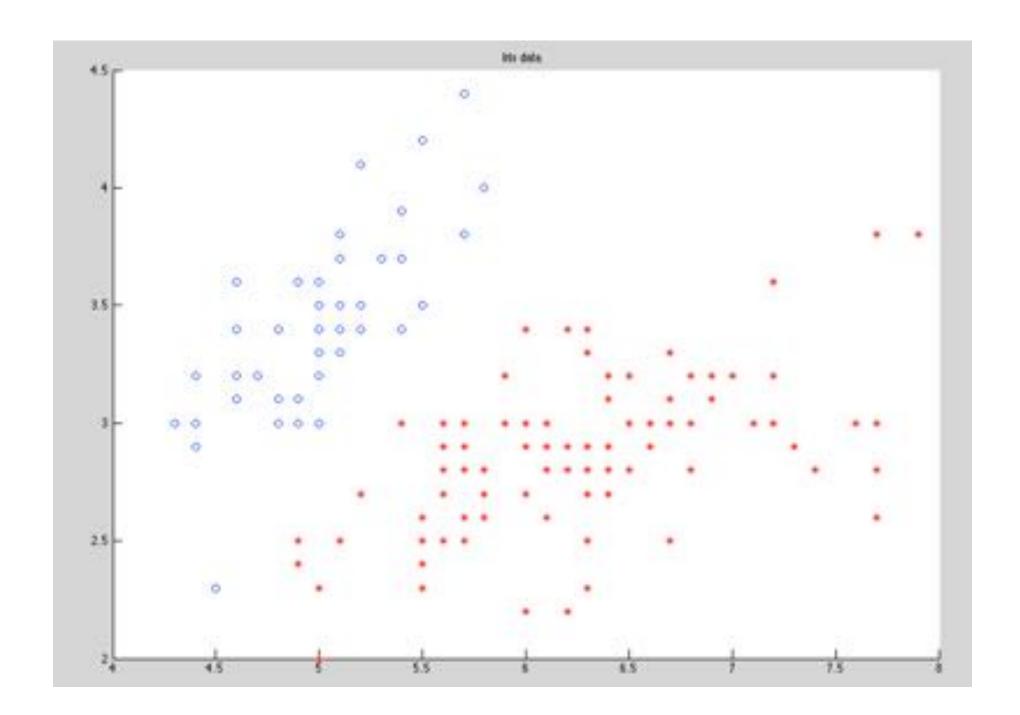
$$\forall k \in \{1, \dots, K\}$$

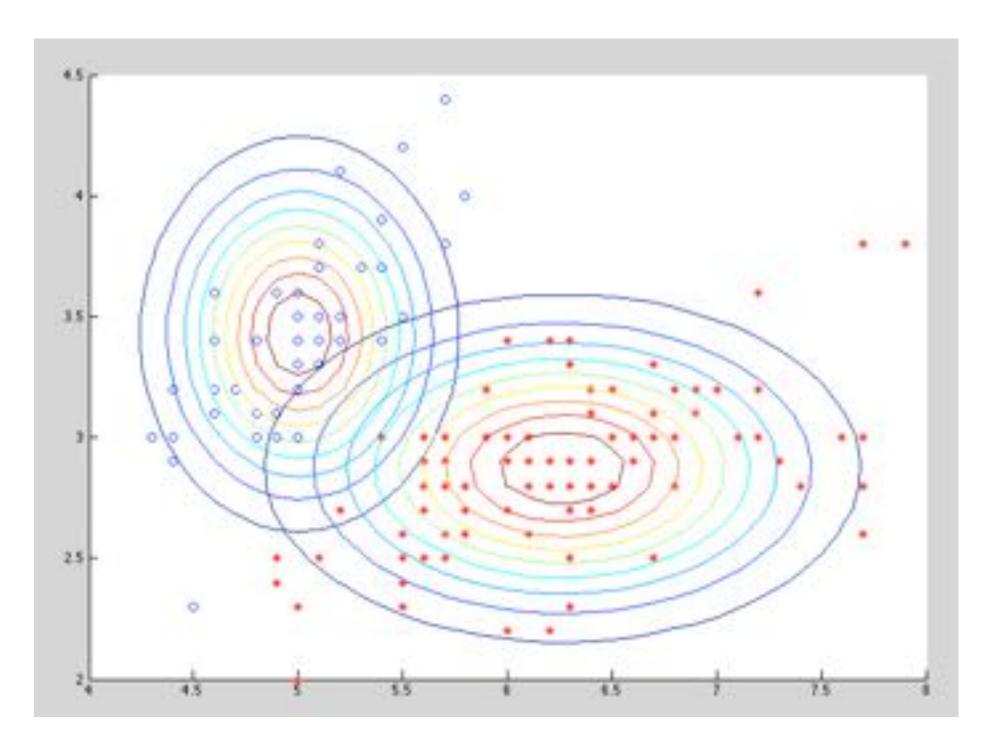
VISUALIZING NAÏVE BAYES

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

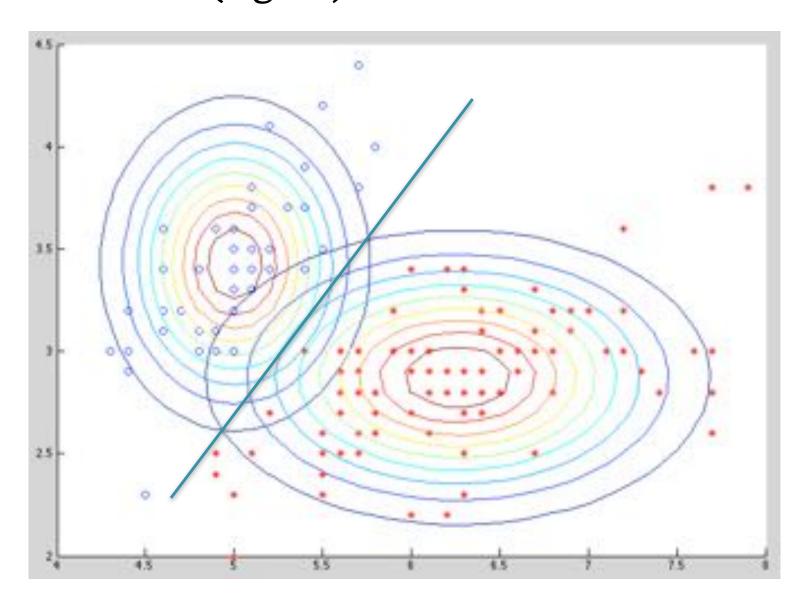
Species	Sepal Length	Sepal Width	Petal Length	Petal Width
0	4.3	3.0	1.1	0.1
0	4.9	3.6	1.4	0.1
0	5.3	3.7	1.5	0.2
1	4.9	2.4	3.3	1.0
1	5.7	2.8	4.1	1.3
1	6.3	3.3	4.7	1.6
1	6.7	3.0	5.0	1.7



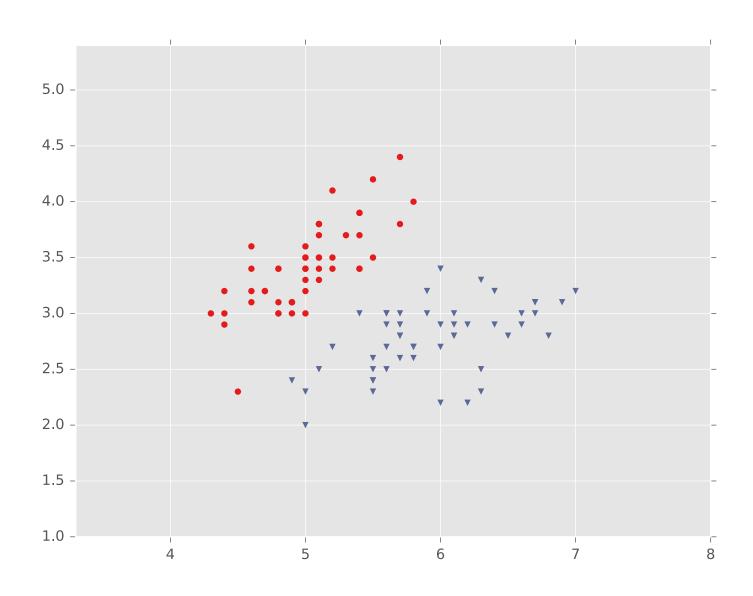


Slide from William Cohen

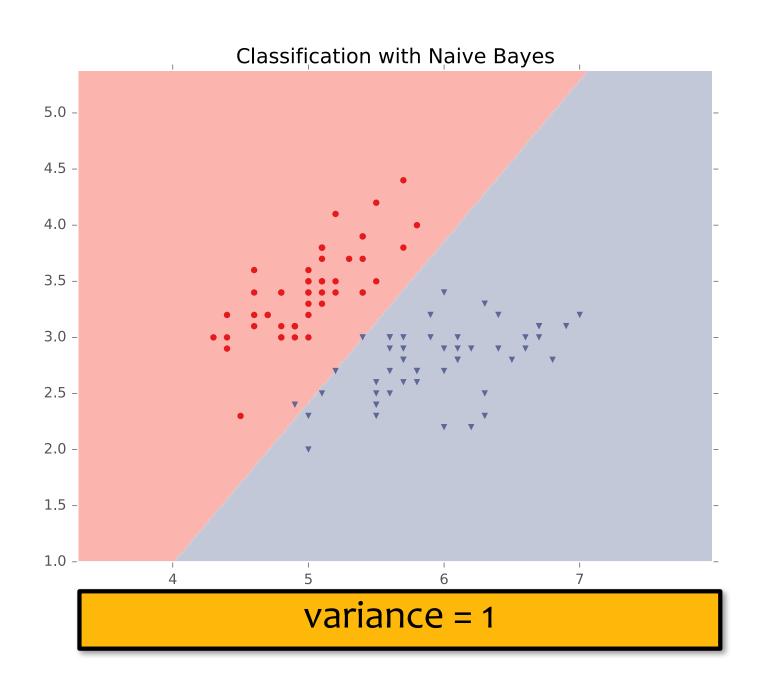
Naïve Bayes has a **linear** decision boundary if variance (sigma) is constant across classes



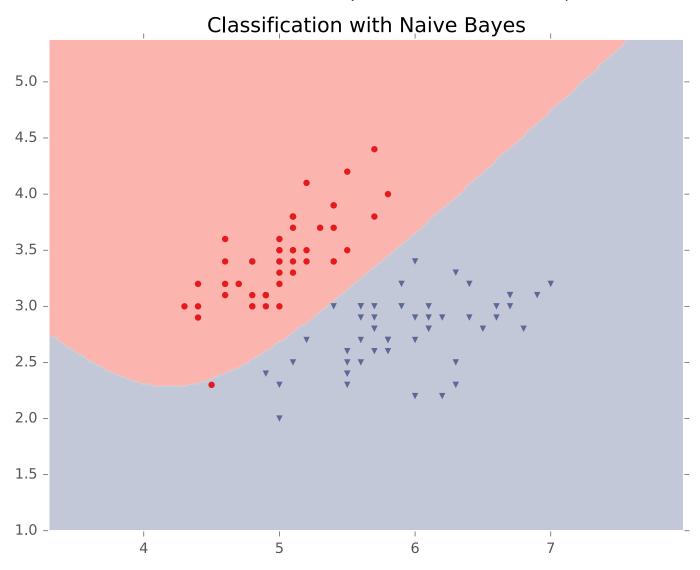
Iris Data (2 classes)



Iris Data (2 classes)

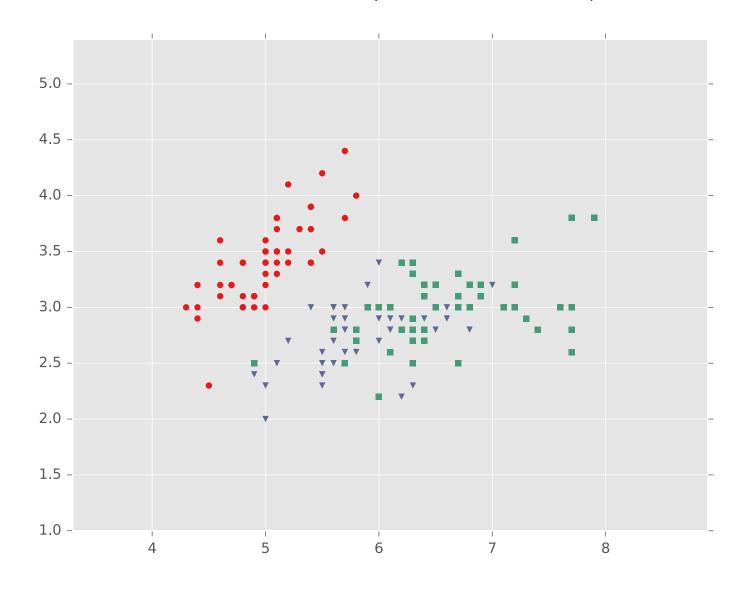


Iris Data (2 classes)

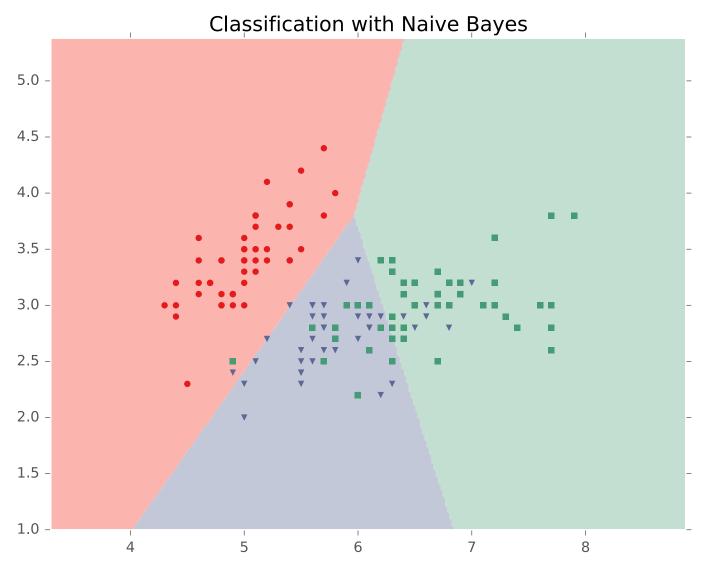


variance learned for each class

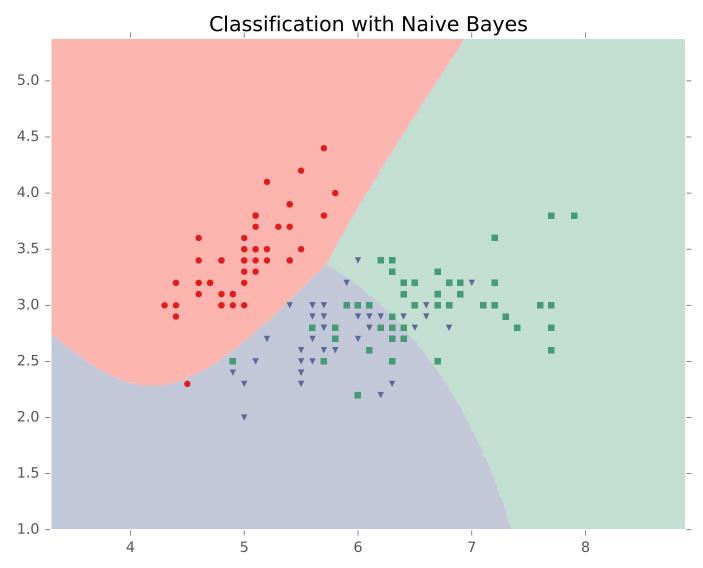
Iris Data (3 classes)



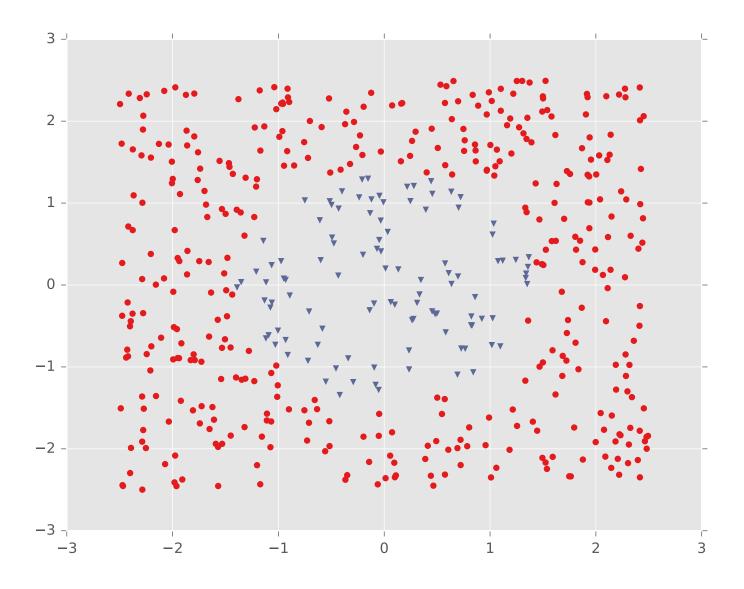
Iris Data (3 classes)



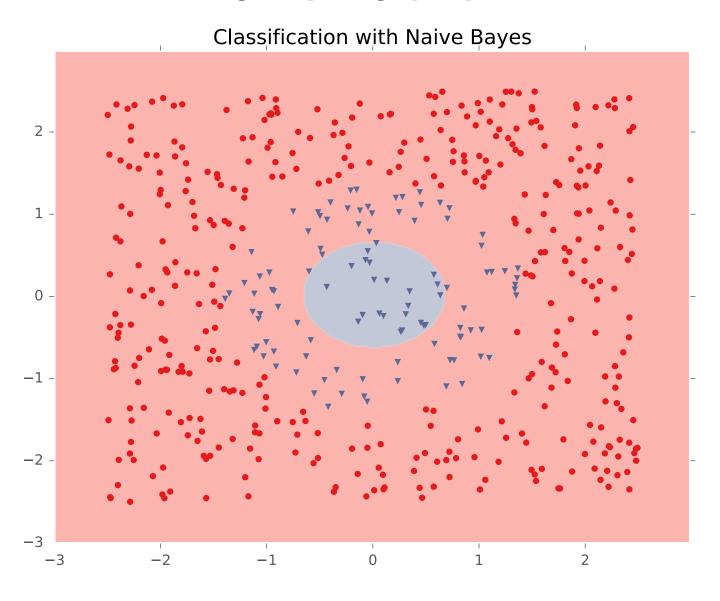
Iris Data (3 classes)



One Pocket

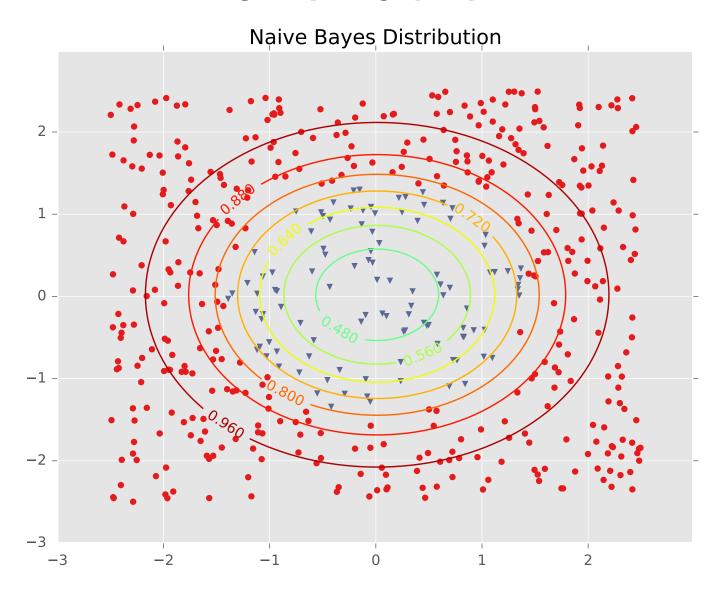


One Pocket



variance learned for each class

One Pocket



Summary

- Naïve Bayes provides a framework for generative modeling
- 2. Choose $p(x_m | y)$ appropriate to the data (e.g. Bernoulli for binary features, Gaussian for continuous features)
- 3. Train by MLE or MAP
- 4. Classify by maximizing the posterior

DISCRIMINATIVE AND GENERATIVE CLASSIFIERS

Generative Classifiers:

- Example: Naïve Bayes
- Define a joint model of the observations ${\bf x}$ and the labels y: $p({\bf x},y)$
- Learning maximizes (joint) likelihood
- Use Bayes' Rule to classify based on the posterior:

$$p(y|\mathbf{x}) = p(\mathbf{x}|y)p(y)/p(\mathbf{x})$$

Discriminative Classifiers:

- Example: Logistic Regression
- Directly model the conditional: $p(y|\mathbf{x})$
- Learning maximizes conditional likelihood

Whiteboard

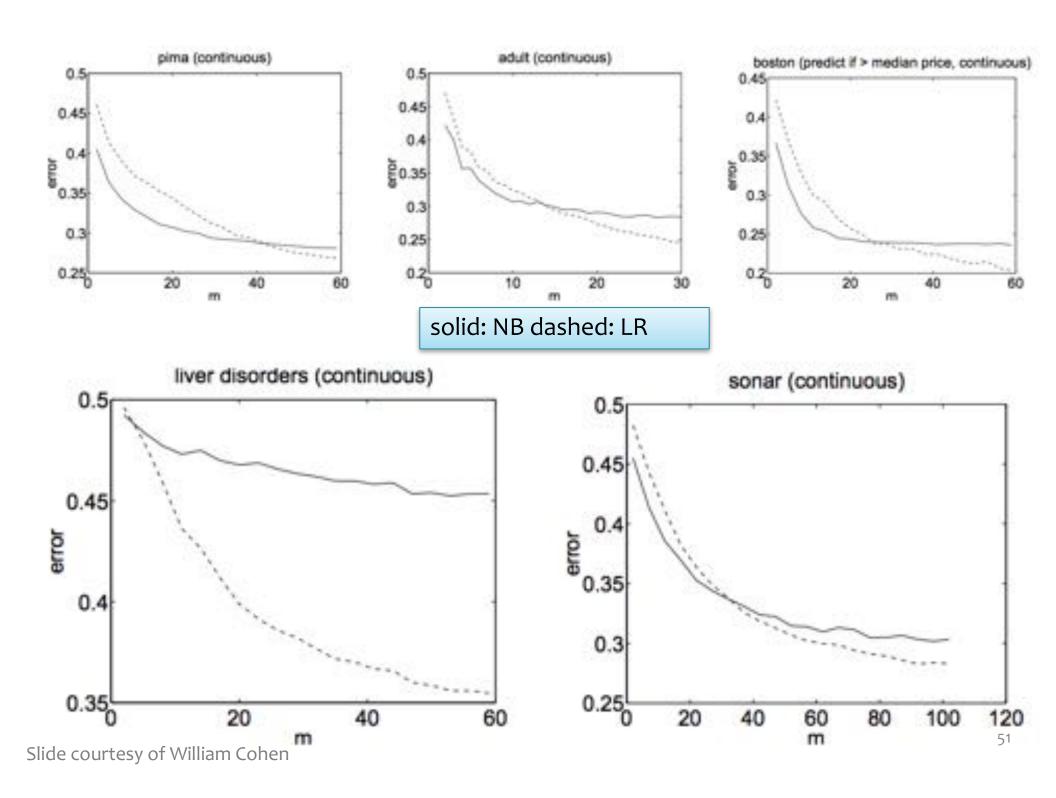
- Contrast: To model p(x) or not to model p(x)?

Finite Sample Analysis (Ng & Jordan, 2002)

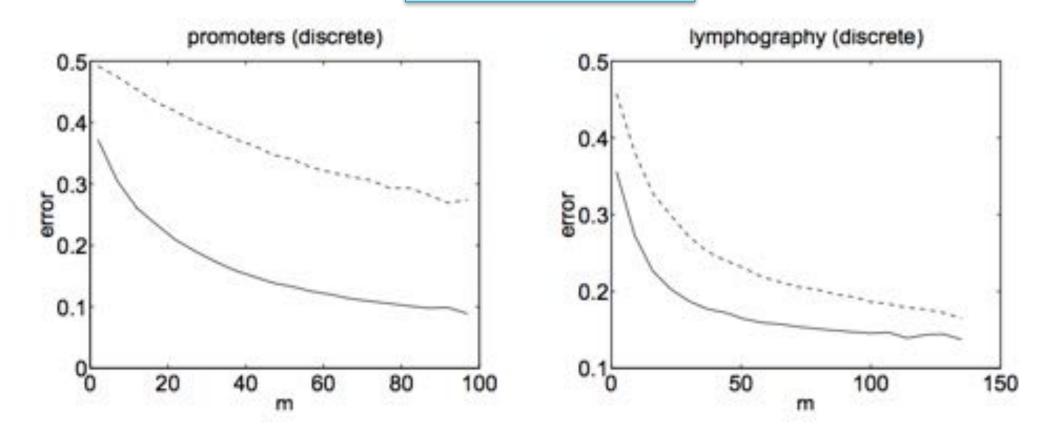
[Assume that we are learning from a finite training dataset]

If model assumptions are correct: Naive Bayes is a more efficient learner (requires fewer samples) than Logistic Regression

If model assumptions are incorrect: Logistic Regression has lower asymtotic error, and does better than Naïve Bayes



solid: NB dashed: LR



Naïve Bayes makes stronger assumptions about the data but needs fewer examples to estimate the parameters

"On Discriminative vs Generative Classifiers:" Andrew Ng and Michael Jordan, NIPS 2001.

Learning (Parameter Estimation)

Naïve Bayes:

Parameters are decoupled -> Closed form solution for MLE

Logistic Regression:

Parameters are coupled > No closed form solution – must use iterative optimization techniques instead

Naïve Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naïve Bayes:

Parameters are probabilities \rightarrow Beta prior (usually) pushes probabilities away from zero / one extremes

Logistic Regression:

Parameters are not probabilities

Gaussian prior encourages parameters to be close to zero

(effectively pushes the probabilities away from zero / one extremes)

Naïve Bayes vs. Logistic Reg.

Features

Naïve Bayes:

Features x are assumed to be conditionally independent given y. (i.e. Naïve Bayes Assumption)

Logistic Regression:

No assumptions are made about the form of the features x. They can be dependent and correlated in any fashion.

Learning Objectives

Naïve Bayes

You should be able to...

- 1. Write the generative story for Naive Bayes
- 2. Create a new Naive Bayes classifier using your favorite probability distribution as the event model
- 3. Apply the principle of maximum likelihood estimation (MLE) to learn the parameters of Bernoulli Naive Bayes
- 4. Motivate the need for MAP estimation through the deficiencies of MLE
- 5. Apply the principle of maximum a posteriori (MAP) estimation to learn the parameters of Bernoulli Naive Bayes
- 6. Select a suitable prior for a model parameter
- 7. Describe the tradeoffs of generative vs. discriminative models
- 8. Implement Bernoulli Naives Bayes
- 9. Employ the method of Lagrange multipliers to find the MLE parameters of Multinomial Naive Bayes
- 10. Describe how the variance affects whether a Gaussian Naive Bayes model will have a linear or nonlinear decision boundary

PROBABILISTIC LEARNING

Probabilistic Learning

Function Approximation

Previously, we assumed that our output was generated using a deterministic target function:

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$

$$y^{(i)} = c^*(\mathbf{x}^{(i)})$$

Our goal was to learn a hypothesis h(x) that best approximates c*(x)

Probabilistic Learning

Today, we assume that our output is **sampled** from a conditional **probability distribution**:

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$

$$y^{(i)} \sim p^*(\cdot|\mathbf{x}^{(i)})$$

Our goal is to learn a probability distribution p(y|x) that best approximates $p^*(y|x)$

Robotic Farming

	Deterministic	Probabilistic
Classification (binary output)	Is this a picture of a wheat kernel?	Is this plant drought resistant?
Regression (continuous output)	How many wheat kernels are in this picture?	What will the yield of this plant be?

Oracles and Sampling

Whiteboard

- Sampling from common probability distributions
 - Bernoulli
 - Categorical
 - Uniform
 - Gaussian
- Pretending to be an Oracle (Regression)
 - Case 1: Deterministic outputs
 - Case 2: Probabilistic outputs
- Probabilistic Interpretation of Linear Regression
 - Adding Gaussian noise to linear function
 - Sampling from the noise model
- Pretending to be an Oracle (Classification)
 - Case 1: Deterministic labels
 - Case 2: Probabilistic outputs (Logistic Regression)
 - Case 3: Probabilistic outputs (Gaussian Naïve Bayes)

In-Class Exercise

- 1. With your neighbor, write a function which returns samples from a Categorical
 - Assume access to the rand() function
 - Function signature should be: categorical_sample(theta) where theta is the array of parameters
 - Make your implementation as **efficient** as possible!
- 2. What is the **expected runtime** of your function?

Whiteboard

- Generative vs. Discriminative Models
 - Chain rule of probability
 - Maximum (Conditional) Likelihood Estimation for Discriminative models
 - Maximum Likelihood Estimation for Generative models

Categorical Distribution

Whiteboard

- Categorical distribution details
 - Independent and Identically Distributed (i.i.d.)
 - Example: Dice Rolls

Takeaways

- One view of what ML is trying to accomplish is function approximation
- The principle of maximum likelihood estimation provides an alternate view of learning
- Synthetic data can help debug ML algorithms
- Probability distributions can be used to model real data that occurs in the world (don't worry we'll make our distributions more interesting soon!)

Learning Objectives

Oracles, Sampling, Generative vs. Discriminative You should be able to...

- 1. Sample from common probability distributions
- Write a generative story for a generative or discriminative classification or regression model
- 3. Pretend to be a data generating oracle
- 4. Provide a probabilistic interpretation of linear regression
- 5. Use the chain rule of probability to contrast generative vs. discriminative modeling
- 6. Define maximum likelihood estimation (MLE) and maximum conditional likelihood estimation (MCLE)

PROBABILISTIC LEARNING

Probabilistic Learning

Function Approximation

Previously, we assumed that our output was generated using a deterministic target function:

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$

$$y^{(i)} = c^*(\mathbf{x}^{(i)})$$

Our goal was to learn a hypothesis h(x) that best approximates c*(x)

Probabilistic Learning

Today, we assume that our output is **sampled** from a conditional **probability distribution**:

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$

$$y^{(i)} \sim p^*(\cdot|\mathbf{x}^{(i)})$$

Our goal is to learn a probability distribution p(y|x) that best approximates $p^*(y|x)$

Robotic Farming

	Deterministic	Probabilistic
Classification (binary output)	Is this a picture of a wheat kernel?	Is this plant drought resistant?
Regression (continuous output)	How many wheat kernels are in this picture?	What will the yield of this plant be?

Oracles and Sampling

Whiteboard

- Sampling from common probability distributions
 - Bernoulli
 - Categorical
 - Uniform
 - Gaussian
- Pretending to be an Oracle (Regression)
 - Case 1: Deterministic outputs
 - Case 2: Probabilistic outputs
- Probabilistic Interpretation of Linear Regression
 - Adding Gaussian noise to linear function
 - Sampling from the noise model
- Pretending to be an Oracle (Classification)
 - Case 1: Deterministic labels
 - Case 2: Probabilistic outputs (Logistic Regression)
 - Case 3: Probabilistic outputs (Gaussian Naïve Bayes)

Takeaways

- One view of what ML is trying to accomplish is function approximation
- The principle of maximum likelihood estimation provides an alternate view of learning
- Synthetic data can help debug ML algorithms
- Probability distributions can be used to model real data that occurs in the world (don't worry we'll make our distributions more interesting soon!)

Learning Objectives

Oracles, Sampling, Generative vs. Discriminative You should be able to...

- 1. Sample from common probability distributions
- Write a generative story for a generative or discriminative classification or regression model
- 3. Pretend to be a data generating oracle
- 4. Provide a probabilistic interpretation of linear regression
- 5. Use the chain rule of probability to contrast generative vs. discriminative modeling
- 6. Define maximum likelihood estimation (MLE) and maximum conditional likelihood estimation (MCLE)