

10-601B Introduction to Machine Learning

HMMs and **CRFs**

Readings:

Bishop 13.1-13.2 Bishop 8.3-8.4 Sutton & McCallum (2006) Lafferty et al. (2001) Matt Gormley Lecture 23 November 16, 2016

Reminders

- Homework 6
 - due Mon., Nov. 21
- Final Exam
 - in-class Wed., Dec. 7
- Readings for Lecture 23 and Lecture 24 are swapped
 - today: HMM/CRF
 - next time: EM

1. Data

2. Model

$$p(\boldsymbol{x}\mid\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{C\in\mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. Objective $\ell(\theta; \mathcal{D}) = \sum_{n=0}^{\infty} \log p(\mathbf{x}^{(n)} \mid \boldsymbol{\theta})$

5. Inference

1. Marginal Inference

$$p(\boldsymbol{x}_C) = \sum_{\boldsymbol{x}': \boldsymbol{x}_C' = \boldsymbol{x}_C} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

2. Partition Function

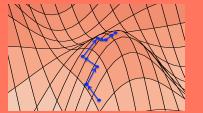
$$Z(oldsymbol{ heta}) = \sum_{oldsymbol{x}} \prod_{C \in \mathcal{C}} \psi_C(oldsymbol{x}_C)$$

3. MAP Inference

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} \ p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

4. Learning

$$\boldsymbol{\theta}^* = \operatorname*{argmax}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \mathcal{D})$$



HIDDEN MARKOV MODEL (HMM)

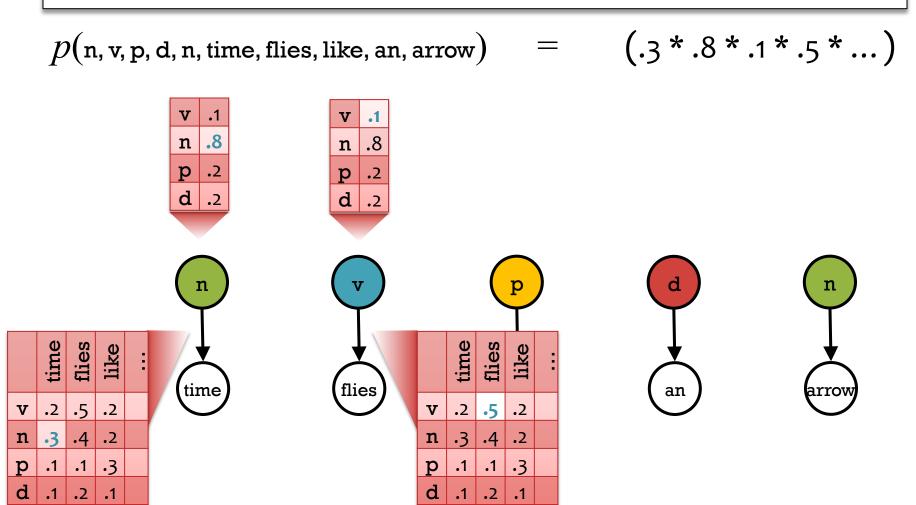
Dataset for Supervised Part-of-Speech (POS) Tagging

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

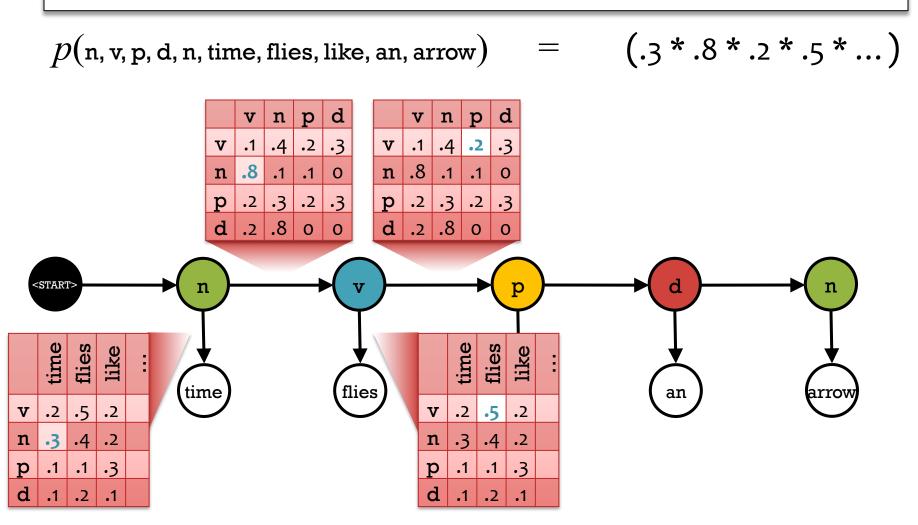
Sample 1:	n	flies	p like	an	$ \begin{array}{c c} $
Sample 2:	n	n	v like	d	$ \begin{array}{c c} $
Sample 3:	n	v fily	with	n	$ \begin{array}{c c} $
Sample 4:	with	n	you	will	$\begin{cases} y^{(4)} \\ x^{(4)} \end{cases}$

Naïve Bayes for Time Series Data

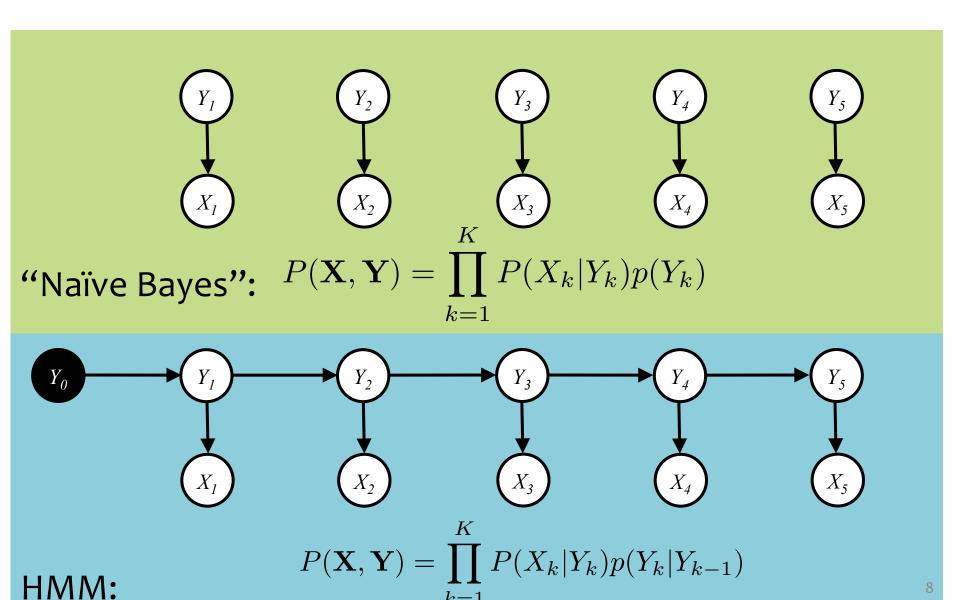
We could treat each word-tag pair (i.e. token) as independent. This corresponds to a Naïve Bayes model with a single feature (the word).



A Hidden Markov Model (HMM) provides a joint distribution over the the sentence/tags with an assumption of dependence between adjacent tags.



From NB to HMM



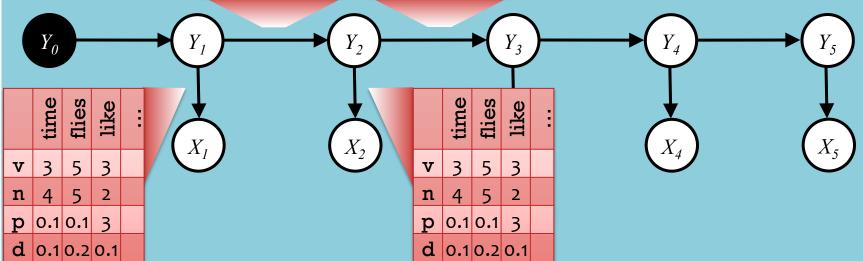
HMM Parameters:

Emission matrix, **A**, where $P(X_k = w | Y_k = t) = A_{t,w}, \forall k$

Transition matrix, **B**, where $P(Y_k = t | Y_{k-1} = s) = B_{s,t}, \forall k$

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0



HMM Parameters:

Emission matrix, **A**, where $P(X_k = w | Y_k = t) = A_{t,w}, \forall k$

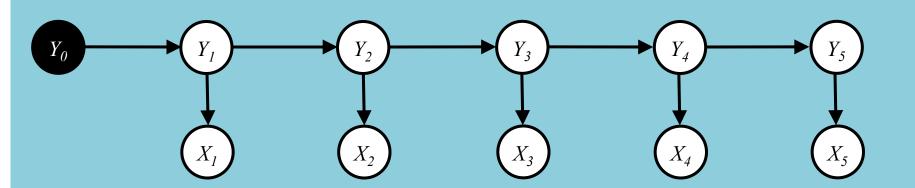
Transition matrix, **B**, where $P(Y_k = t | Y_{k-1} = s) = B_{s,t}, \forall k$

Assumption: $y_0 = START$

Generative Story:

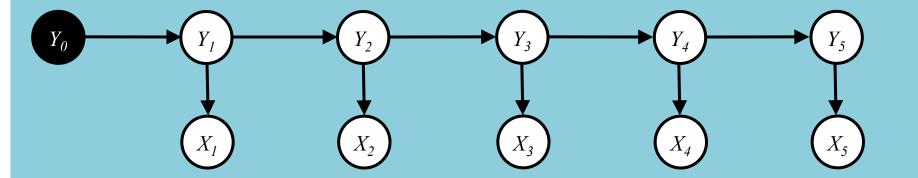
 $Y_k \sim \text{Multinomial}(\mathbf{B}_{Y_{k-1}}) \ \forall k$

 $X_k \sim \text{Multinomial}(\mathbf{A}_{Y_k}) \ \forall k$



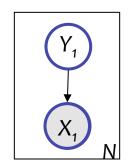
Joint Distribution:

$$p(\mathbf{x}, \mathbf{y}) = \prod_{k=1}^{K} p(x_k | y_k) p(y_k | y_{k-1})$$
$$= \prod_{k=1}^{K} A_{y_k, x_k} B_{y_{k-1}, y_k}$$

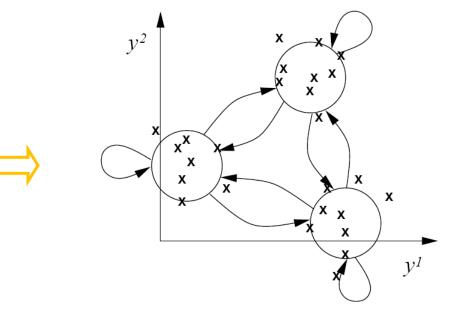


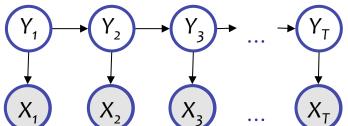
From static to dynamic mixture models

Static mixture



Dynamic mixture





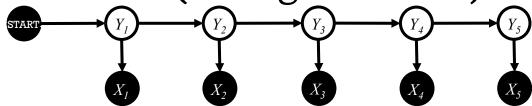
HMMs: History

- Markov chains: Andrey Markov (1906)
 - Random walks and Brownian motion
- Used in Shannon's work on information theory (1948)
- Baum-Welsh learning algorithm: late 60's, early 70's.
 - Used mainly for speech in 60s-70s.
- Late 80's and 90's: David Haussler (major player in learning theory in 80's) began to use HMMs for modeling biological sequences
- Mid-late 1990's: Dayne Freitag/Andrew McCallum
 - Freitag thesis with Tom Mitchell on IE from Web using logic programs, grammar induction, etc.
 - McCallum: multinomial Naïve Bayes for text
 - With McCallum, IE using HMMs on CORA

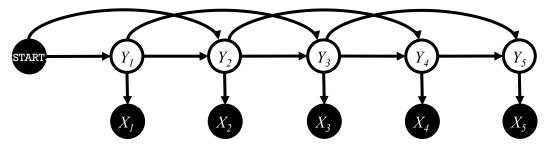
• ...

Higher-order HMMs

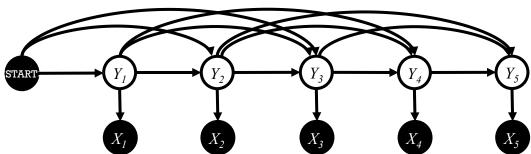
• 1st-order HMM (i.e. bigram HMM)



• 2nd-order HMM (i.e. trigram HMM)



• 3rd-order HMM



SUPERVISED LEARNING FOR BAYES NETS

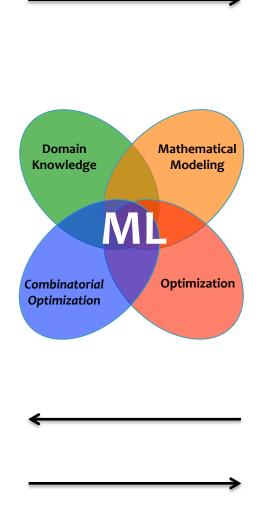
Machine Learning

The data inspires
the structures
we want to
predict

Inference finds

{best structure, marginals, partition function} for a new observation

(Inference is usually called as a subroutine in learning)

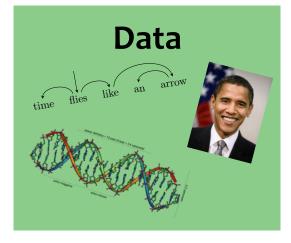


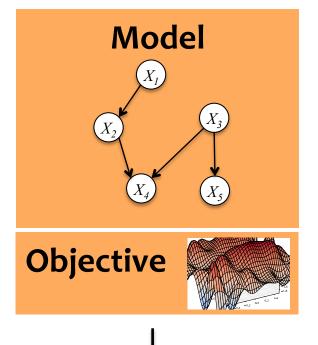
Our **model**defines a score
for each structure

It also tells us what to optimize

Learning tunes the parameters of the model

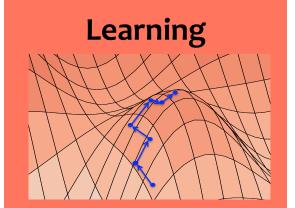
Machine Learning





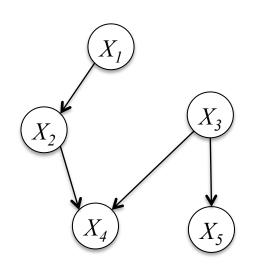
Inference

(Inference is usually called as a subroutine in learning)



Recall...

Learning Fully Observed BNs



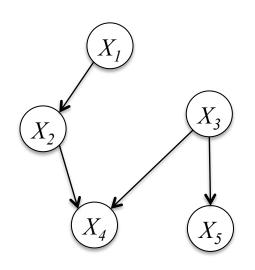
$$p(X_1, X_2, X_3, X_4, X_5) =$$

$$p(X_5|X_3)p(X_4|X_2, X_3)$$

$$p(X_3)p(X_2|X_1)p(X_1)$$

Recall...

Learning Fully Observed BNs



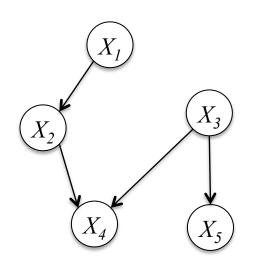
$$p(X_1, X_2, X_3, X_4, X_5) =$$

$$p(X_5|X_3)p(X_4|X_2, X_3)$$

$$p(X_3)p(X_2|X_1)p(X_1)$$

Recall

Learning Fully Observed BNs



$$p(X_1, X_2, X_3, X_4, X_5) =$$

$$p(X_5|X_3)p(X_4|X_2, X_3)$$

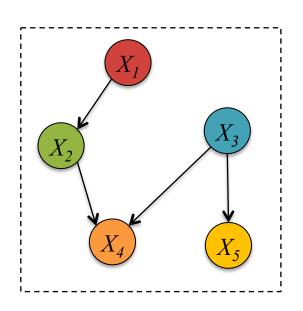
$$p(X_3)p(X_2|X_1)p(X_1)$$

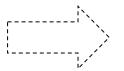
How do we learn these conditional and marginal distributions for a Bayes Net?

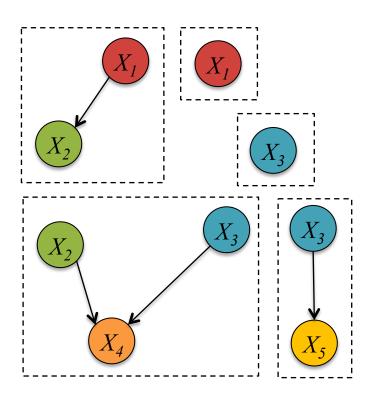
Learning Fully Observed BNs

Learning this fully observed Bayesian Network is equivalent to learning five (small / simple) independent networks from the same data

$$p(X_1, X_2, X_3, X_4, X_5) = p(X_5|X_3)p(X_4|X_2, X_3) p(X_3)p(X_2|X_1)p(X_1)$$

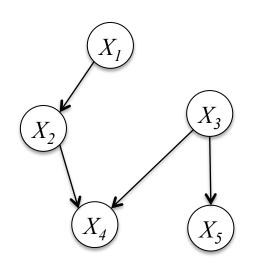






Learning Fully Observed BNs

How do we **learn** these conditional and marginal distributions for a Bayes Net?



$$\theta^* = \underset{\theta}{\operatorname{argmax}} \log p(X_1, X_2, X_3, X_4, X_5)$$

$$= \underset{\theta}{\operatorname{argmax}} \log p(X_5 | X_3, \theta_5) + \log p(X_4 | X_2, X_3, \theta_4)$$

$$+ \log p(X_3 | \theta_3) + \log p(X_2 | X_1, \theta_2)$$

$$+ \log p(X_1 | \theta_1)$$

$$egin{aligned} heta_1^* &= rgmax \log p(X_1| heta_1) \ heta_2^* &= rgmax \log p(X_2|X_1, heta_2) \ heta_3^* &= rgmax \log p(X_3| heta_3) \ heta_3^* &= rgmax \log p(X_4|X_2,X_3, heta_4) \ heta_4^* &= rgmax \log p(X_5|X_3, heta_5) \ heta_5^* &= rgmax \log p(X_5|X_3, heta_5) \end{aligned}$$

SUPERVISED LEARNING FOR HMMS

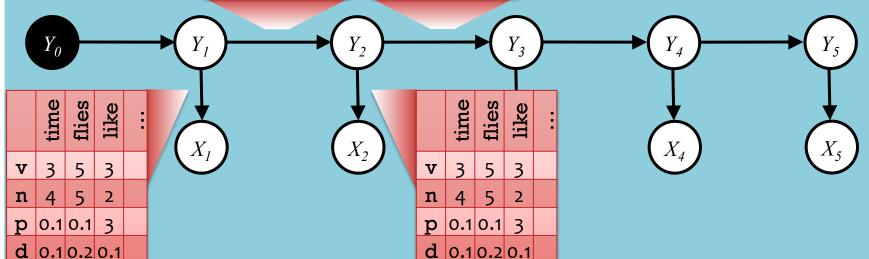
HMM Parameters:

Emission matrix, **A**, where $P(X_k = w | Y_k = t) = A_{t,w}, \forall k$

Transition matrix, **B**, where $P(Y_k = t | Y_{k-1} = s) = B_{s,t}, \forall k$

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0



HMM Parameters:

Emission matrix, **A**, where $P(X_k = w | Y_k = t) = A_{t,w}, \forall k$

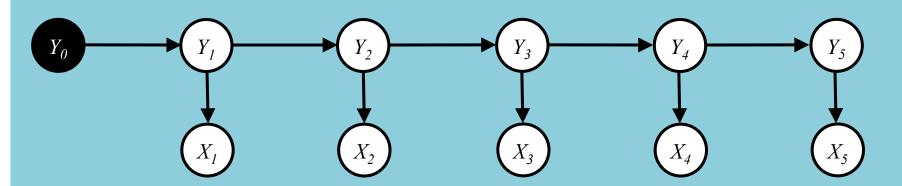
Transition matrix, **B**, where $P(Y_k = t | Y_{k-1} = s) = B_{s,t}, \forall k$

Assumption: $y_0 = START$

Generative Story:

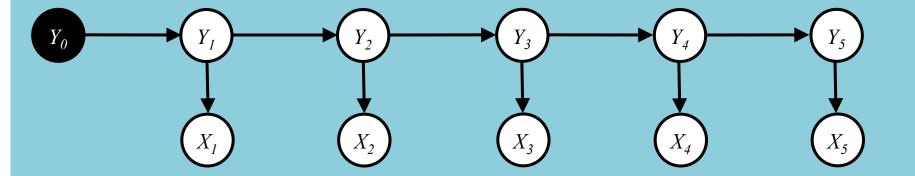
 $Y_k \sim \mathsf{Multinomial}(\mathbf{B}_{Y_{k-1}}) \ \forall k$

 $X_k \sim \mathsf{Multinomial}(\mathbf{A}_{Y_k}) \ \forall k$



Joint Distribution:

$$p(\mathbf{x}, \mathbf{y}) = \prod_{k=1}^{K} p(x_k | y_k) p(y_k | y_{k-1})$$
$$= \prod_{k=1}^{K} A_{y_k, x_k} B_{y_{k-1}, y_k}$$



Whiteboard

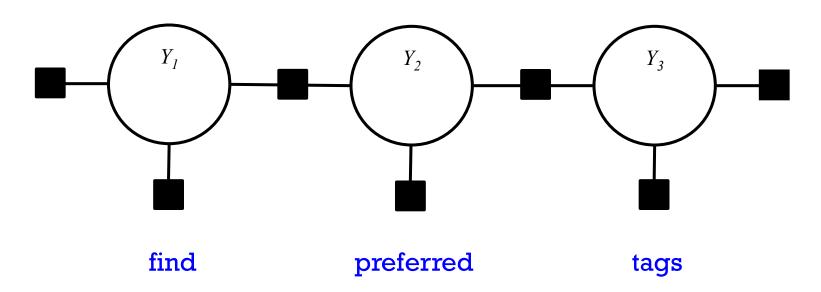
MLEs for HMM

THE FORWARD-BACKWARD ALGORITHM

Learning and Inference Summary

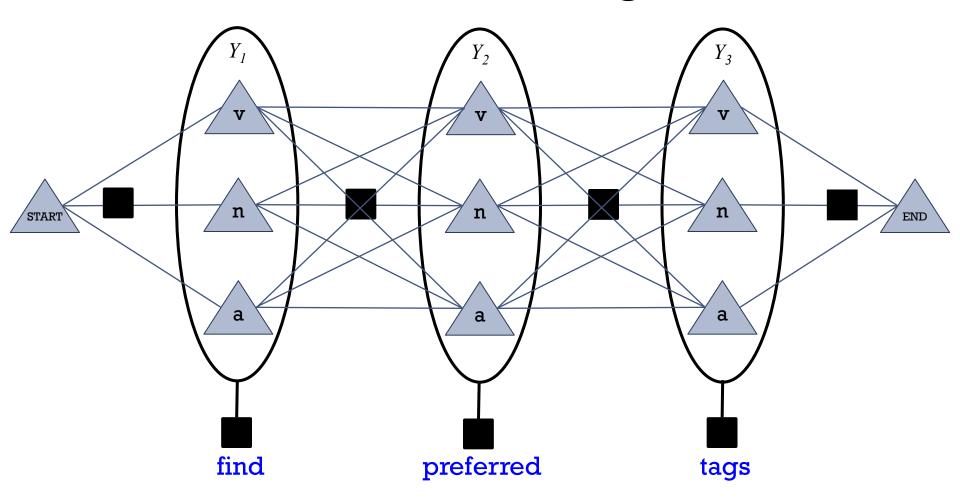
For discrete variables:

	Learning	Marginal Inference	MAP Inference
нмм		Forward- backward	Viterbi
Linear-chain CRF		Forward- backward	Viterbi

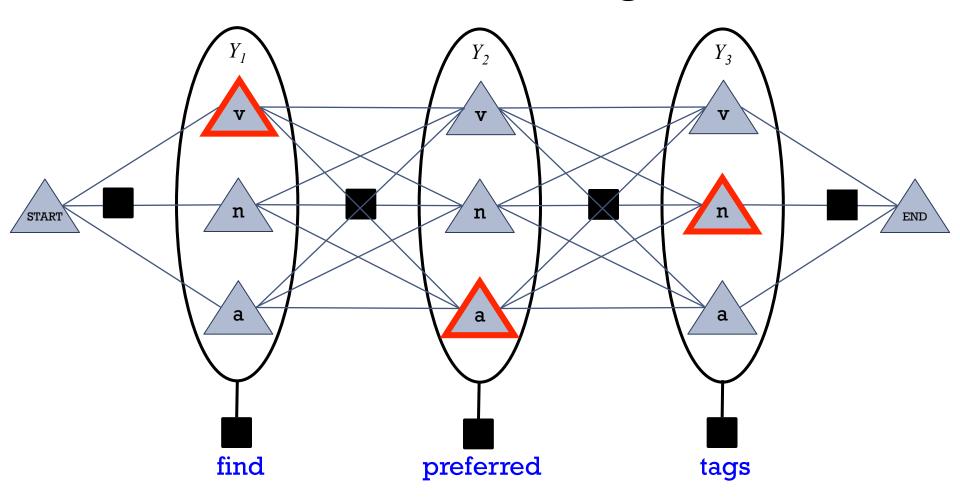


Could be verb or noun

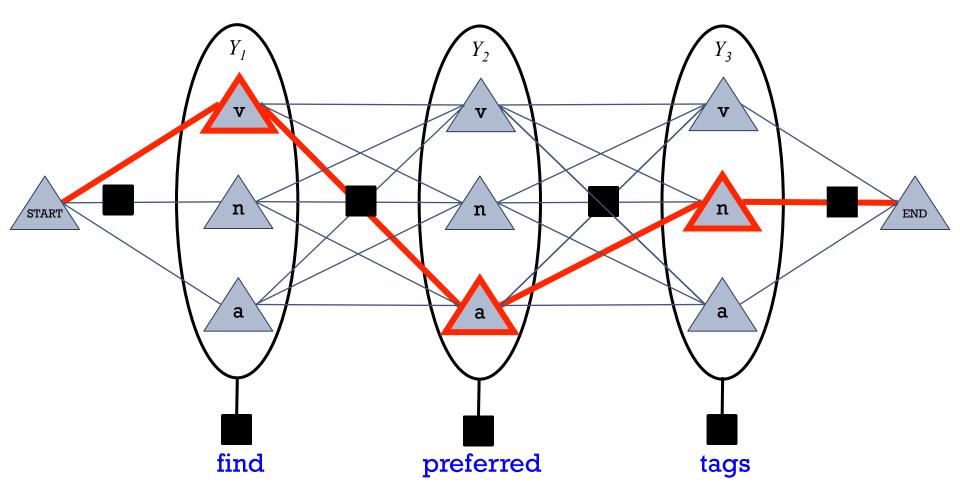
Could be adjective or verb Could be noun or verb



• Show the possible values for each variable

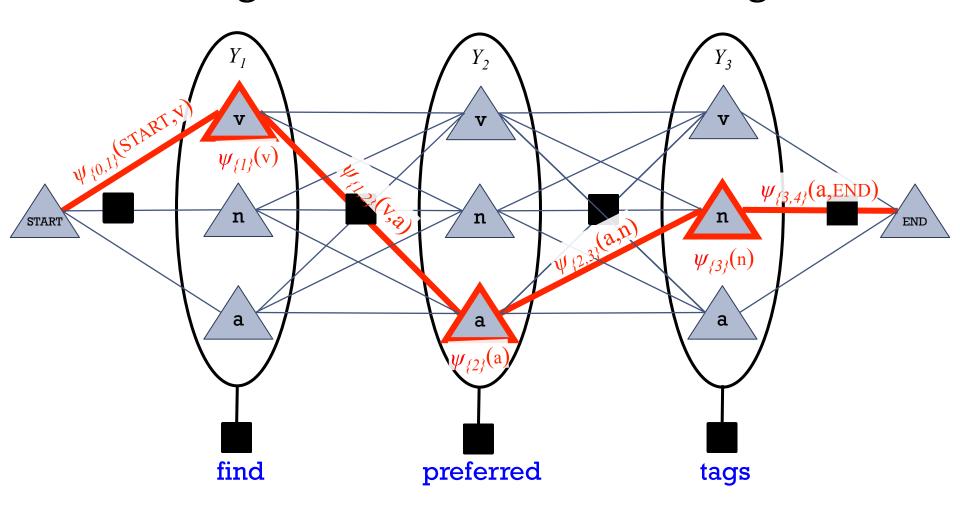


- Let's show the possible values for each variable
- One possible assignment



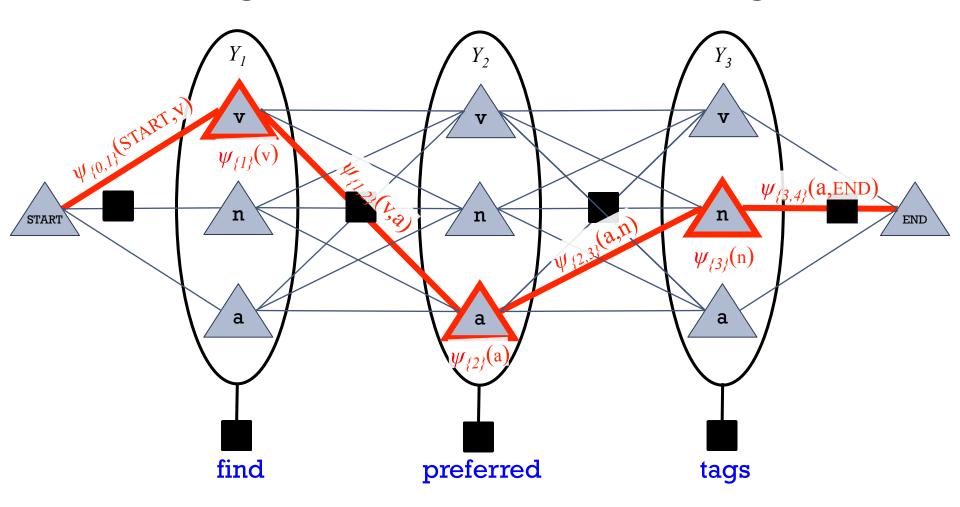
- Let's show the possible *values* for each variable One possible assignment
- And what the 7 factors think of it ...

Viterbi Algorithm: Most Probable Assignment



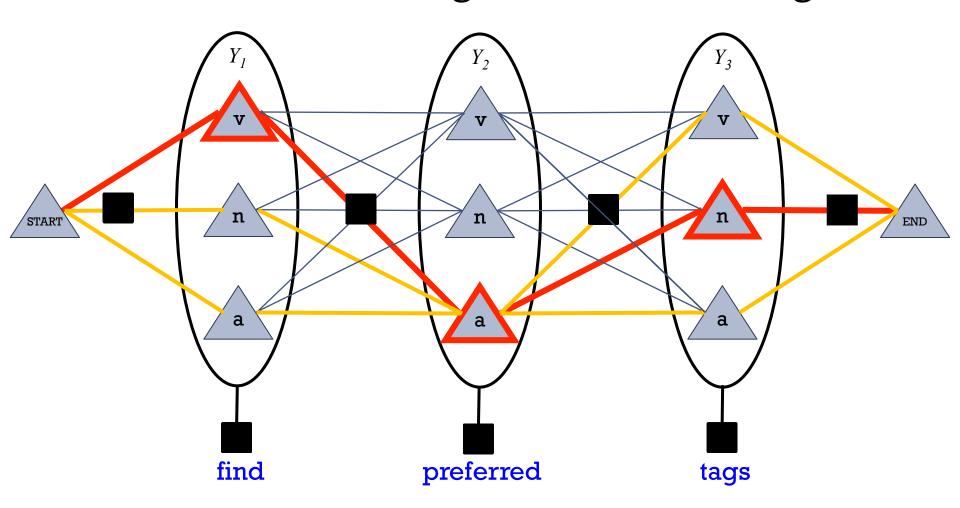
- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product of 7 numbers$
- Numbers associated with edges and nodes of path
- Most probable assignment = path with highest product

Viterbi Algorithm: Most Probable Assignment

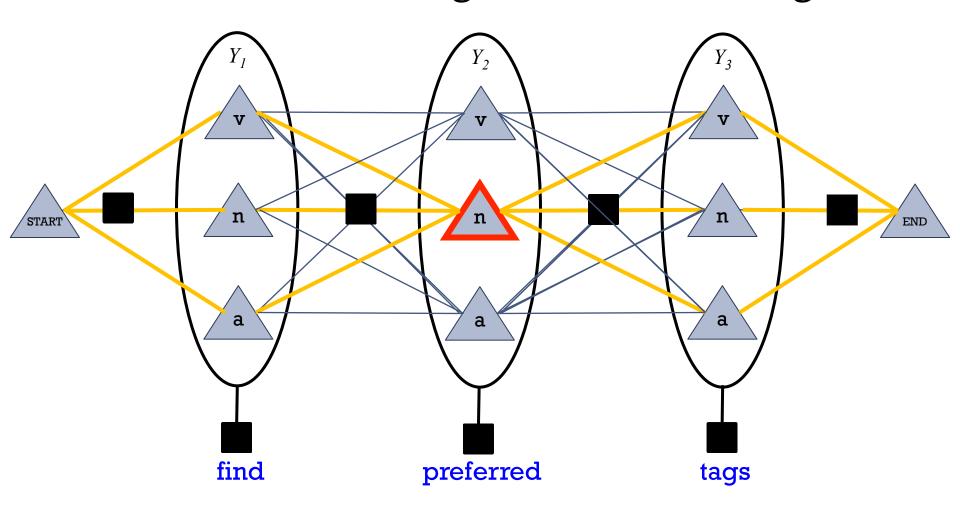


• So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$

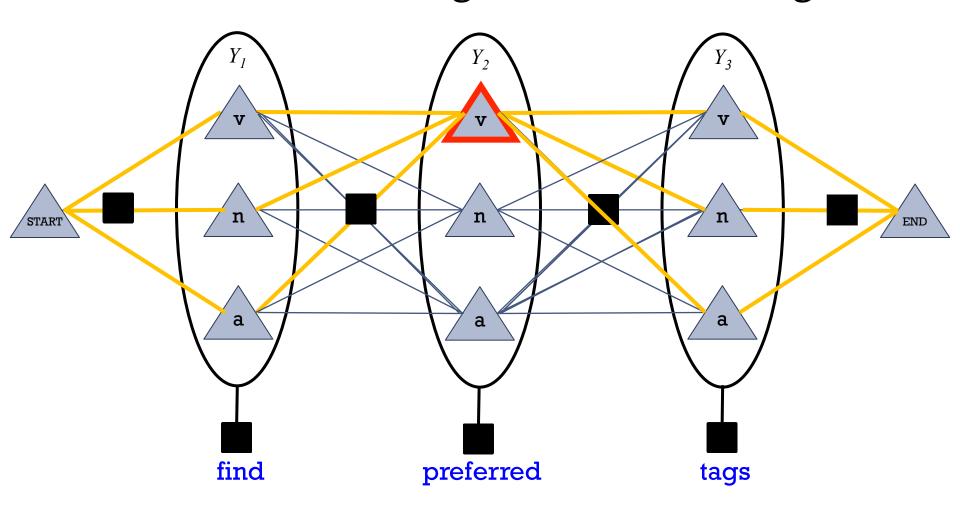
Forward-Backward Algorithm: Finds Marginals



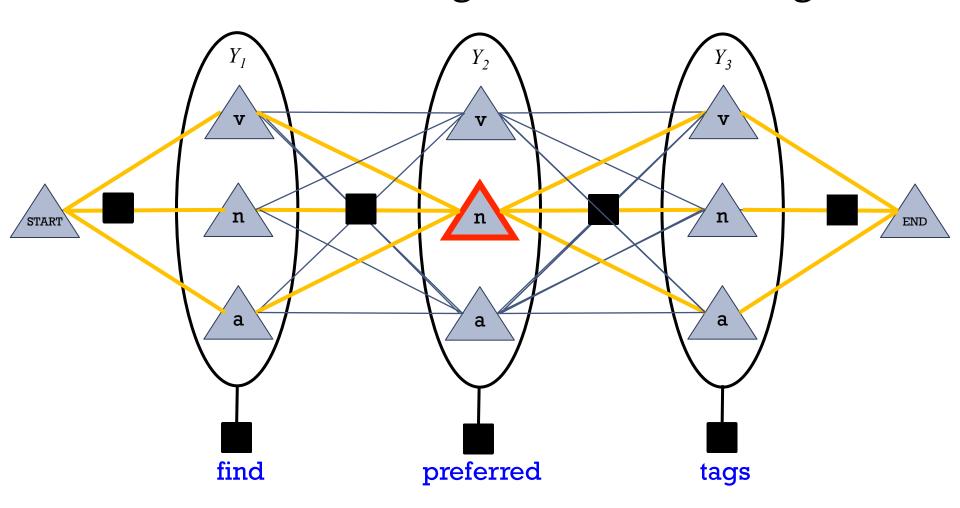
- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$
- Marginal probability $p(Y_2 = a)$ = (1/Z) * total weight of all paths through



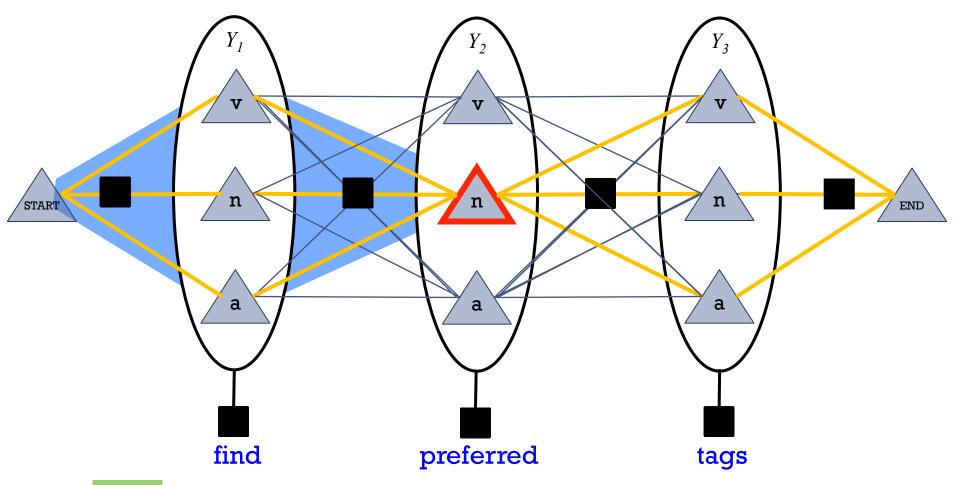
- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$
- Marginal probability $p(Y_2 = a)$ = (1/Z) * total weight of all paths through



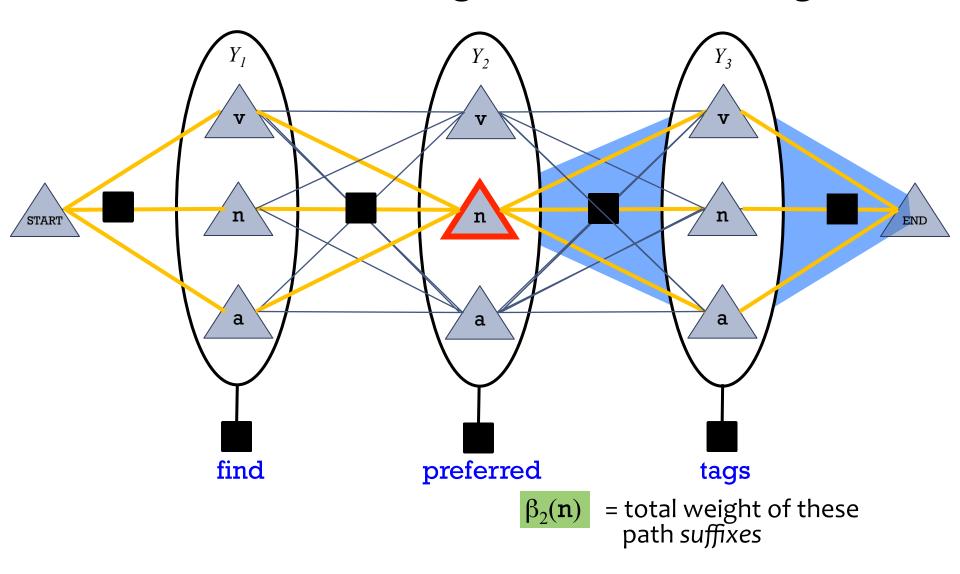
- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$
- Marginal probability $p(Y_2 = a)$ = (1/Z) * total weight of all paths through

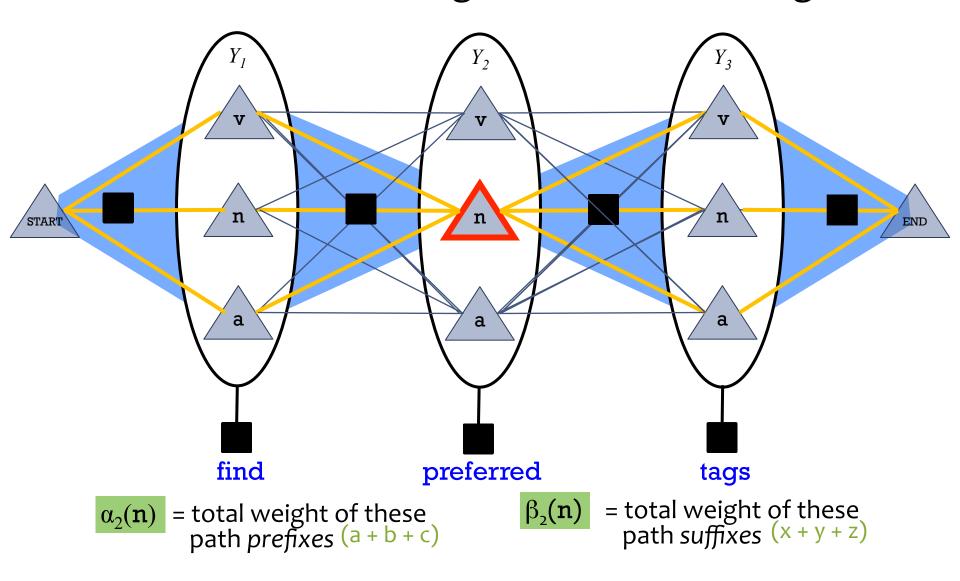


- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$
- Marginal probability $p(Y_2 = a)$ = (1/Z) * total weight of all paths through



 $\alpha_2(\mathbf{n})$ = total weight of these path *prefixes*

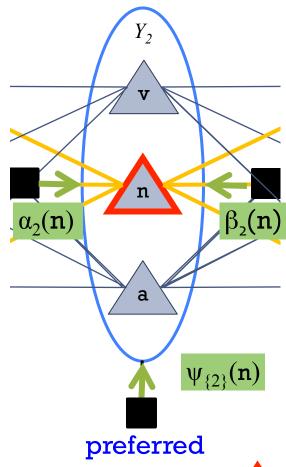




Product gives $\frac{ax+ay+az+bx+by+bz+cx+cy+cz}{ax+ay+az+bx+by+bz+cx+cy+cz} = total weight of paths$

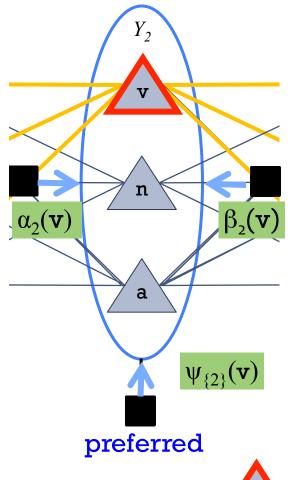
Oops! The weight of a path through a state also includes a weight at that state. So $\alpha(\mathbf{n}) \cdot \beta(\mathbf{n})$ isn't enough.

The extra weight is the opinion of the unigram factor at this variable.



"belief that $Y_2 = \mathbf{n}$ "

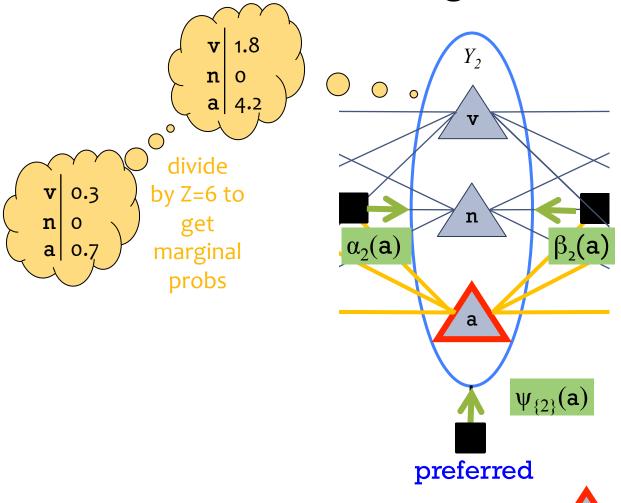
total weight of all paths through



"belief that $Y_2 = \mathbf{v}$ "

"belief that $Y_2 = \mathbf{n}$ "

total weight of all paths through



"belief that $Y_2 = \mathbf{v}$ "

"belief that $Y_2 = \mathbf{n}$ "

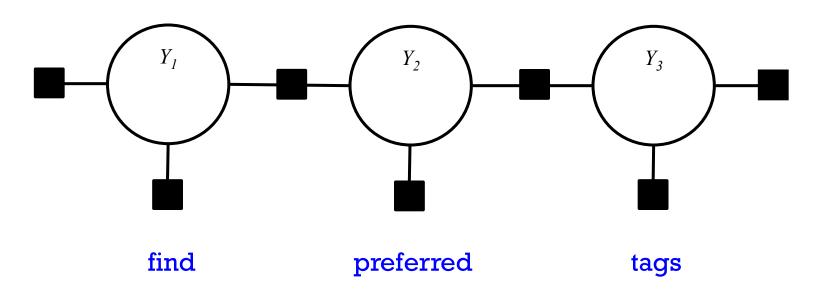
"belief that $Y_2 = \mathbf{a}$ "

sum = Z (total probability of *all* paths)

total weight of all paths through

$$\beta_2(a)$$

CRF Tagging Model



Could be verb or noun

Could be adjective or verb Could be noun or verb

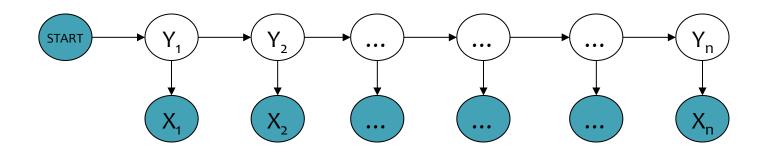
Whiteboard

- Forward-backward algorithm
- Viterbi algorithm

Conditional Random Fields (CRFs) for time series data

LINEAR-CHAIN CRFS

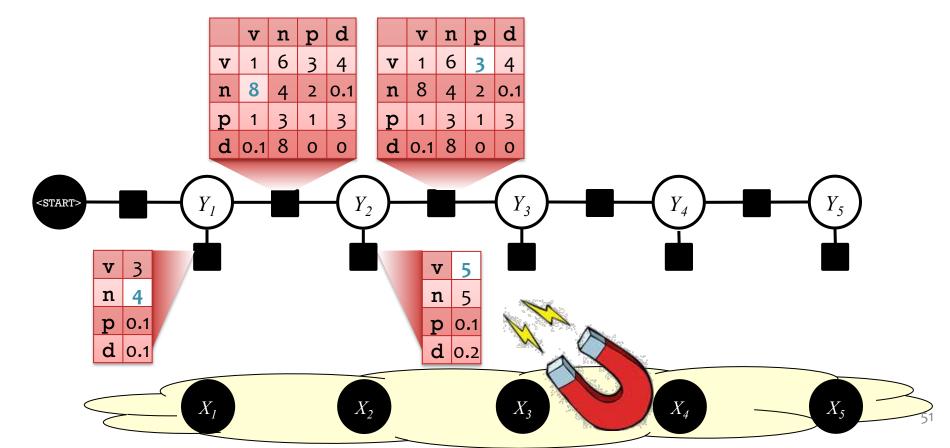
Shortcomings of Hidden Markov Models



- HMM models capture dependences between each state and only its corresponding observation
 - NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (nonlocal) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
 - HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we need the conditional probability P(Y|X)

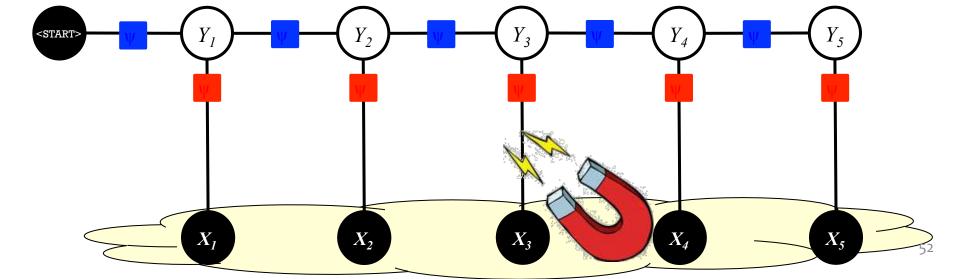
Conditional distribution over tags X_i given words w_i . The factors and Z are now specific to the sentence w.

Recall: Shaded nodes in a graphical model are observed



This **linear-chain CRF** is just **like an HMM**, except that its factors are **not** necessarily probability distributions

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \psi_{\text{em}}(y_k, x_k) \psi_{\text{tr}}(y_k, y_{k-1})$$
$$= \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{em}}(y_k, x_k)) \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{tr}}(y_k, y_{k-1}))$$



Quiz

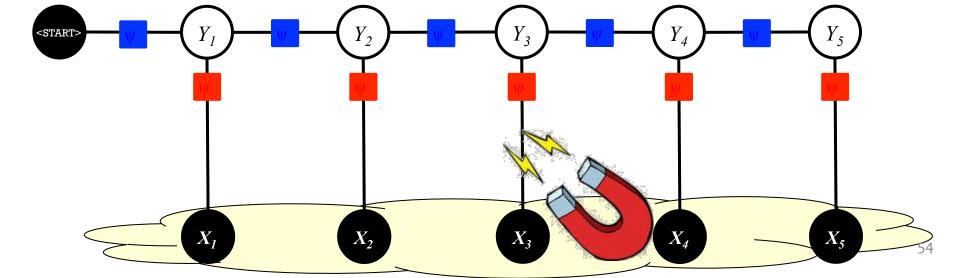
$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \psi_{\mathsf{em}}(y_k, x_k) \psi_{\mathsf{tr}}(y_k, y_{k-1})$$
$$= \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\mathsf{em}}(y_k, x_k)) \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\mathsf{tr}}(y_k, y_{k-1}))$$

Multiple Choice: Which model does the above distribution share the most in common with?

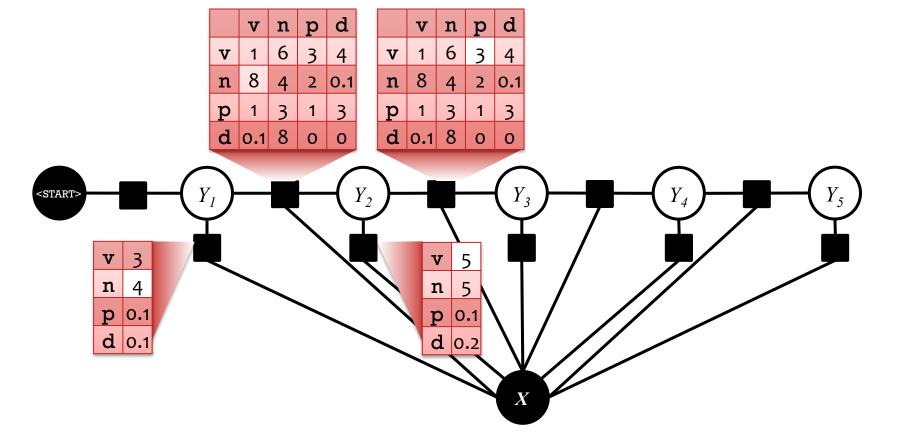
- A. Hidden Markov Model
- B. Bernoulli Naïve Bayes
- C. Gaussian Naïve Bayes
- D. Logistic Regression

This **linear-chain CRF** is just **like an HMM**, except that its factors are **not** necessarily probability distributions

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \psi_{\text{em}}(y_k, x_k) \psi_{\text{tr}}(y_k, y_{k-1})$$
$$= \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{em}}(y_k, x_k)) \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{tr}}(y_k, y_{k-1}))$$

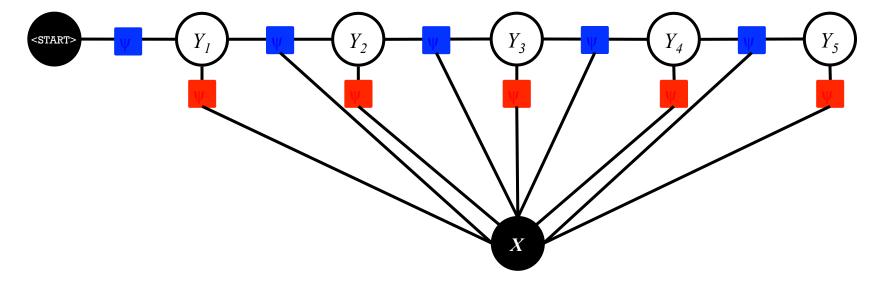


- That is the vector X
- Because it's observed, we can condition on it for free
- Conditioning is how we converted from the MRF to the CRF (i.e. when taking a slice of the emission factors)



- This is the standard linear-chain CRF definition
- It permits rich, overlapping features of the vector X

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \psi_{\text{em}}(y_k, \mathbf{x}) \psi_{\text{tr}}(y_k, y_{k-1}, \mathbf{x})$$
$$= \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{em}}(y_k, \mathbf{x})) \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{tr}}(y_k, y_{k-1}, \mathbf{x}))$$



- This is the standard linear-chain CRF definition
- It permits rich, overlapping features of the vector X

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \boldsymbol{\psi}_{em}(y_k, \mathbf{x}) \boldsymbol{\psi}_{tr}(y_k, y_{k-1}, \mathbf{x})$$

$$= \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{em}(y_k, \mathbf{x})) \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{tr}(y_k, y_{k-1}, \mathbf{x}))$$

Visual Notation: Usually we draw a CRF **without** showing the variable corresponding to *X*

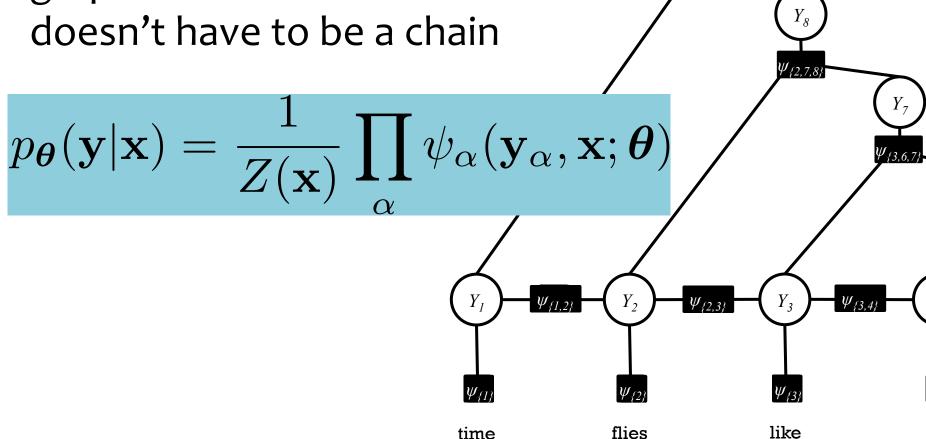
Whiteboard

 Forward-backward algorithm for linear-chain CRF

General CRF

 $\psi_{\{1.8.9\}}$

The topology of the graphical model for a CRF doesn't have to be a chain



Standard CRF Parameterization

$$p_{\theta}(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{\alpha} \psi_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}; \boldsymbol{\theta})$$

Define each potential function in terms of a fixed set of feature functions:

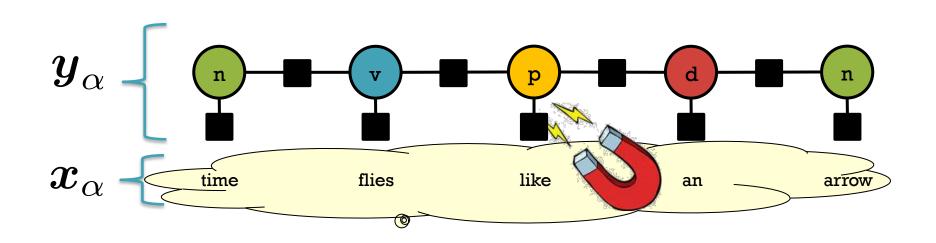
$$\psi_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}; \boldsymbol{\theta}) = \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}))$$

Predicted Observed variables variables

Standard CRF Parameterization

Define each potential function in terms of a fixed set of feature functions:

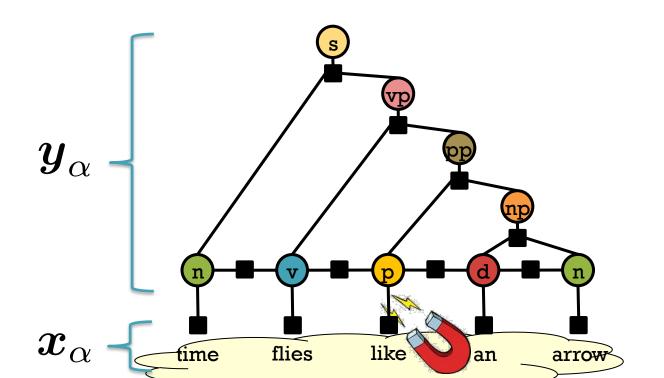
$$\psi_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}; \boldsymbol{\theta}) = \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}))$$



Standard CRF Parameterization

Define each potential function in terms of a fixed set of feature functions:

$$\psi_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}; \boldsymbol{\theta}) = \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}))$$



Exact inference for tree-structured factor graphs

BELIEF PROPAGATION

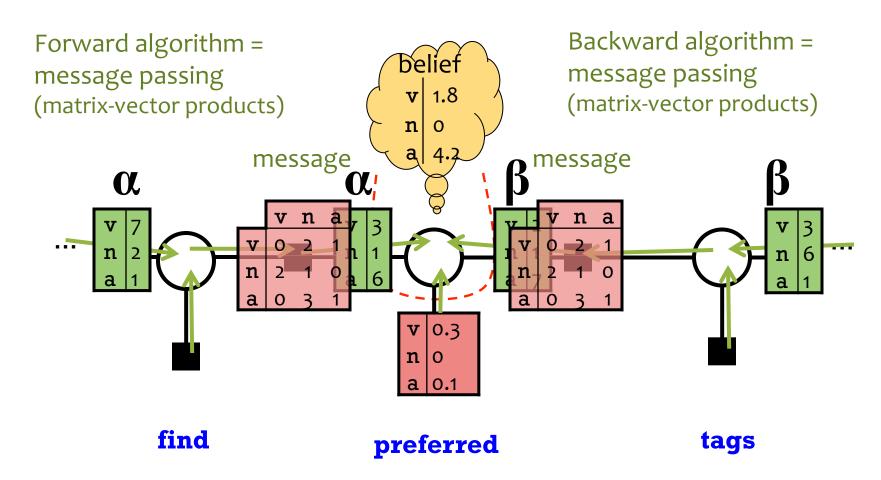
Inference for HMMs

- Sum-product BP on an HMM is called the forward-backward algorithm
- Max-product BP on an HMM is called the Viterbi algorithm

Inference for CRFs

- Sum-product BP on a CRF is called the forward-backward algorithm
- Max-product BP on a CRF is called the Viterbi algorithm

CRF Tagging by Belief Propagation



- Forward-backward is a message passing algorithm.
- It's the simplest case of belief propagation.

SUPERVISED LEARNING FOR CRFS

What is Training?

That's easy:

Training = picking **good** model parameters!

But how do we know if the model parameters are any "good"?

Log-likelihood Training

- Choose **model**
- Choose **objective**: Assign high probability to the things we observe and low probability to everything else

$$p_{\theta}(\boldsymbol{y}) = \frac{1}{Z} \prod_{\alpha} \psi_{\alpha}(\boldsymbol{y}_{\alpha})$$

$$L(\theta) = \sum_{\boldsymbol{v} \in \mathcal{D}} \log p_{\theta}(\boldsymbol{y})$$

Compute derivative **by**

derivative by hand using the chain rule
$$\frac{dL(\theta)}{d\theta_j} = \sum_{\boldsymbol{y} \in \mathcal{D}} \left(\sum_{\alpha} \left[f_{\alpha,j}(\boldsymbol{y}_{\alpha}) - \sum_{\boldsymbol{y}'} p_{\theta}(\boldsymbol{y}_{\alpha}') f_{\alpha,j}(\boldsymbol{y}_{\alpha}') \right] \right)$$

Machine Learning

Log-likelihood Training

- Choose model
 Such that derivative in #3 is easy
- 2. Choose **objective:**Assign high probability to the things we observe and low probability to everything else

$$p_{\theta}(\boldsymbol{y}) = \frac{1}{Z} \prod_{\alpha} \exp(\theta \cdot \boldsymbol{f}_{\alpha}(\boldsymbol{y}_{\alpha}))$$

$$L(\theta) = \sum_{\boldsymbol{y} \in \mathcal{D}} \log p_{\theta}(\boldsymbol{y})$$

3. Compute derivative by hand using the chain rule

$$egin{equation} rac{dL(heta)}{d heta_j} = \sum_{oldsymbol{y} \in \mathcal{D}} \left(\sum_{lpha} \left[f_{lpha,j}(oldsymbol{y}_lpha) - \sum_{oldsymbol{y}'} p_{ heta}(oldsymbol{y}'_lpha) f_{lpha,j}(oldsymbol{y}'_lpha)
ight]
ight) \end{aligned}$$

4. Compute the marginals by exact inference

Note that these are **factor marginals** which are just the (normalized) **factor beliefs** from BP!

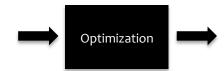
Recipe for Gradient-based Learning

- 1. Write down the objective function
- Compute the partial derivatives of the objective (i.e. gradient, and maybe Hessian)
- Feed objective function and derivatives into black box

4. Retrieve optimal parameters from black box

Optimization Algorithms

What is the black box?



- Newton's method
- Hessian-free / Quasi-Newton methods
 - Conjugate gradient
 - L-BFGS
- Stochastic gradient methods
 - Stochastic gradient descent (SGD)
 - Stochastic meta-descent
 - AdaGrad

Stochastic Gradient Descent

- Suppose we have N training examples s.t. $f(x) = \sum_{i=1}^{N} f_i(x)$.
- This implies that $\nabla f(x) = \sum_{i=1}^{N} \nabla f_i(x)$.

SGD Algorithm:

- 1. Choose a starting point x.
- 2. While not converged:
 - \circ Choose a step size t.
 - \circ Choose i so that it sweeps through the training set.
 - Update

$$\vec{x}^{(k+1)} = \vec{x}^{(k)} + t \nabla f_i(\vec{x})$$

Whiteboard

- CRF model
- CRF data log-likelihood
- CRF derivatives

Practical Considerations for Gradient-based Methods

- Overfitting
 - L2 regularization
 - L1 regularization
 - Regularization by early stopping
- For SGD: Sparse updates

"Empirical" Comparison of Parameter Estimation Methods

- Example NLP task: CRF dependency parsing
- Suppose: Training time is dominated by inference
- Dataset: One million tokens
- Inference speed: 1,000 tokens / sec
- → 0.27 hours per pass through dataset

	# passes through data to converge	# hours to converge
GIS	1000+	270
L-BFGS	100+	27
SGD	10	~3

FEATURE ENGINEERING FOR CRFS

Features

General idea:

- Make a list of interesting substructures.
- The feature $f_k(x,y)$ counts tokens of k^{th} substructure in (x,y).

Count of tag P as the tag for "like"

Weight of this feature is like log of an emission probability in an HMM

- Count of tag P as the tag for "like"
- Count of tag P

- Count of tag P as the tag for "like"
- Count of tag P
- Count of tag P in the middle third of the sentence

N V P D N Time flies like an arrow

- Count of tag P as the tag for "like"
- Count of tag P
- Count of tag P in the middle third of the sentence
- Count of tag bigram V P

Weight of this feature is like log of a transition probability in an HMM

N V P D N Time flies like an arrow

- Count of tag P as the tag for "like"
- Count of tag P
- Count of tag P in the middle third of the sentence
- Count of tag bigram V P
- Count of tag bigram V P followed by "an"

- Count of tag P as the tag for "like"
- Count of tag P
- Count of tag P in the middle third of the sentence
- Count of tag bigram V P
- Count of tag bigram V P followed by "an"
- Count of tag bigram V P where P is the tag for "like"

N V P D N Time flies like an arrow

- Count of tag P as the tag for "like"
- Count of tag P
- Count of tag P in the middle third of the sentence
- Count of tag bigram V P
- Count of tag bigram V P followed by "an"
- Count of tag bigram V P where P is the tag for "like"
- Count of tag bigram V P where both words are lowercase

- Count of tag trigram N V P?
 - A bigram tagger can only consider within-bigram features: only look at 2 adjacent blue tags (plus arbitrary red context).
 - So here we need a trigram tagger, which is slower.
 - The forward-backward states would remember two previous tags.

We take this arc once per N V P triple, so its weight is the total weight of the features that fire on that triple.

- Count of tag trigram N V P?
 - A bigram tagger can only consider within-bigram features: only look at 2 adjacent blue tags (plus arbitrary red context).
 - So here we need a trigram tagger, which is slower.
- Count of "post-verbal" nouns? ("discontinuous bigram" V N)
 - An n-gram tagger can only look at a narrow window.
 - Here we need a fancier model (finite state machine) whose states remember whether there was a verb in the left context.

1. Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).

For <u>position</u> in a tagging, these might include:

- Full name of tag i
- First letter of tag i (will be "N" for both "NN" and "NNS")
- Full name of tag i-1 (possibly BOS); similarly tag i+1 (possibly EOS)
- Full name of word i
- Last 2 chars of word i (will be "ed" for most past-tense verbs)
- First 4 chars of word i (why would this help?)
- "Shape" of word i (lowercase/capitalized/all caps/numeric/...)
- Whether word i is part of a known city name listed in a "gazetteer"
- Whether word i appears in thesaurus entry e (one attribute per e)
- Whether i is in the middle third of the sentence

- Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).
- 2. Now conjoin them into various "feature templates."

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At <u>each position</u> of (x,y), exactly one of the many template7 features will fire:

At i=1, we see an instance of "template7=(BOS,N,-es)" so we add one copy of that feature's weight to score(x,y)

- Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).
- 2. Now conjoin them into various "feature templates."

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At <u>each position</u> of (x,y), exactly one of the many template7 features will fire:

At i=2, we see an instance of "template7=(N,V,-ke)" so we add one copy of that feature's weight to score(x,y)

- Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).
- 2. Now conjoin them into various "feature templates."

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At <u>each position</u> of (x,y), exactly one of the many template7 features will fire:

N V P D N
Time flies like an arrow

At i=3, we see an instance of "template7=(N,V,-an)" so we add one copy of that feature's weight to score(x,y)

- Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).
- 2. Now conjoin them into various "feature templates."

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At <u>each position</u> of (x,y), exactly one of the many template7 features will fire:

N V P D N Time flies like an arrow

At i=4, we see an instance of "template7=(P,D,-ow)" so we add one copy of that feature's weight to score(x,y)

- Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).
- 2. Now conjoin them into various "feature templates."

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At <u>each position</u> of (x,y), exactly one of the many template7 features will fire:

At i=5, we see an instance of "template7=(D,N,-)" so we add one copy of that feature's weight to score(x,y)

- Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).
- 2. Now conjoin them into various "feature templates."

```
E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)). This template gives rise to many features, e.g.:
```

```
score(x,y) = ...
+ \theta ["template7=(P,D,-ow)"] * count("template7=(P,D,-ow)")
+ \theta ["template7=(D,D,-xx)"] * count("template7=(D,D,-xx)")
+ ...
```

With a handful of feature templates and a large vocabulary, you can easily end up with millions of features.

- 1. Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).
- Now conjoin them into various "feature templates."

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

Note: Every template should mention at least some blue.

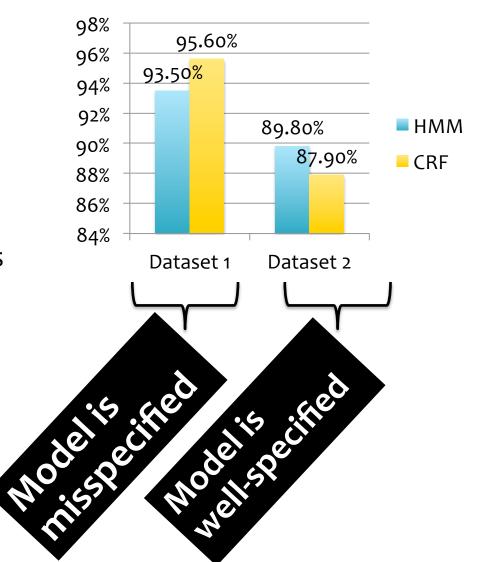
- Given an input x, a feature that only looks at red will contribute the same weight to $score(x,y_1)$ and $score(x,y_2)$.
- So it can't help you choose between outputs y_1 , y_2 .

HMMS VS CRFS

Generative vs. Discriminative

Liang & Jordan (ICML 2008) compares **HMM** and **CRF** with **identical features**

- Dataset 1: (Real)
 - WSJ Penn Treebank
 (38K train, 5.5K test)
 - 45 part-of-speech tags
- Dataset 2: (Artificial)
 - Synthetic data
 generated from HMM
 learned on Dataset 1
 (1K train, 1K test)
- Evaluation Metric: Accuracy



CRFs: some empirical results

Parts of Speech tagging

model	error	oov error
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%
MEMM+	4.81%	26.99%
CRF ⁺	4.27%	23.76%

⁺Using spelling features

- Using same set of features: HMM >=< CRF > MEMM
- Using additional overlapping features: CRF⁺ > MEMM⁺ >> HMM

MBR DECODING

Minimum Bayes Risk Decoding

- Suppose we given a loss function l(y', y) and are asked for a single tagging
- How should we choose just one from our probability distribution p(y|x)?
- A minimum Bayes risk (MBR) decoder h(x) returns the variable assignment with minimum **expected** loss under the model's distribution

$$h_{m{ heta}}(m{x}) = \underset{\hat{m{y}}}{\operatorname{argmin}} \ \mathbb{E}_{m{y} \sim p_{m{ heta}}(\cdot | m{x})}[\ell(\hat{m{y}}, m{y})]$$

$$= \underset{\hat{m{y}}}{\operatorname{argmin}} \ \sum_{m{y}} p_{m{ heta}}(m{y} \mid m{x})\ell(\hat{m{y}}, m{y})$$

Minimum Bayes Risk Decoding

$$h_{m{ heta}}(m{x}) = \mathop{\mathrm{argmin}}_{\hat{m{y}}} \; \mathbb{E}_{m{y} \sim p_{m{ heta}}(\cdot | m{x})}[\ell(\hat{m{y}}, m{y})]$$

Consider some example loss functions:

The θ -1 loss function returns 1 only if the two assignments are identical and θ otherwise:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = 1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})$$

The MBR decoder is:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \sum_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) (1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y}))$$
$$= \underset{\hat{\boldsymbol{y}}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{\boldsymbol{y}} \mid \boldsymbol{x})$$

which is exactly the MAP inference problem!

Minimum Bayes Risk Decoding

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \ \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot | \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]$$

Consider some example loss functions:

The **Hamming loss** corresponds to accuracy and returns the number of incorrect variable assignments:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \sum_{i=1}^{V} (1 - \mathbb{I}(\hat{y}_i, y_i))$$

The MBR decoder is:

$$\hat{y}_i = h_{\boldsymbol{\theta}}(\boldsymbol{x})_i = \underset{\hat{y}_i}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{y}_i \mid \boldsymbol{x})$$

This decomposes across variables and requires the variable marginals.

SUMMARY

Summary: Learning and Inference

For discrete variables:

	Learning	Marginal Inference	MAP Inference
нмм	MLE by counting	Forward- backward	Viterbi
Linear-chain CRF	Gradient based – doesn't decompose because of $Z(x)$ and requires marginal inference	Forward- backward	Viterbi

Summary: Models

	Classification	Structured Prediction
Generative	Naïve Bayes	HMM
Discriminative	Logistic Regression	CRF