

10-601B Introduction to Machine Learning

Directed Graphical Models (aka. Bayesian Networks)

Readings:

Bishop 8.1 and 8.2.2 Mitchell 6.11 Murphy 10 Matt Gormley Lecture 21 November 9, 2016

Reminders

- Homework 6
 - due Mon., Nov. 21
- Final Exam
 - in-class Wed., Dec. 7

Outline

Motivation

Structured Prediction

Background

- Conditional Independence
- Chain Rule of Probability

Directed Graphical Models

- Bayesian Network definition
- Qualitative Specification
- Quantitative Specification
- Familiar Models as Bayes Nets
- Example: The Monty Hall Problem

Conditional Independence in Bayes Nets

- Three case studies
- D-separation
- Markov blanket

MOTIVATION

Structured Prediction

 Most of the models we've seen so far were for classification

- Given observations: $\mathbf{x} = (x_1, x_2, ..., x_K)$
- Predict a (binary) label: y
- Many real-world problems require structured prediction
 - Given observations: $\mathbf{x} = (x_1, x_2, ..., x_K)$
 - Predict a structure: $y = (y_1, y_2, ..., y_J)$
- Some classification problems benefit from latent structure

Structured Prediction Examples

Examples of structured prediction

- Part-of-speech (POS) tagging
- Handwriting recognition
- Speech recognition
- Word alignment
- Congressional voting

Examples of latent structure

Object recognition

Dataset for Supervised Part-of-Speech (POS) Tagging

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

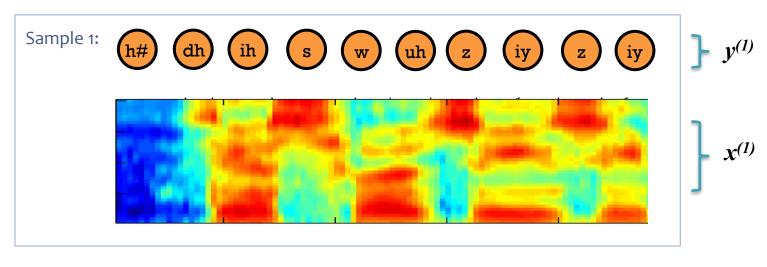
Sample 1:	n	flies	p like	an	$\begin{array}{c c} & \\ & \\ & \\ & \\ & \\ & \end{array}$
Sample 2:	n	n	v like	an	$ \begin{array}{c c} $
Sample 3:	n	fly	with	their	$ \begin{array}{c c} $
Sample 4:	p	n	you	will	$\begin{cases} y^{(4)} \\ x^{(4)} \end{cases}$

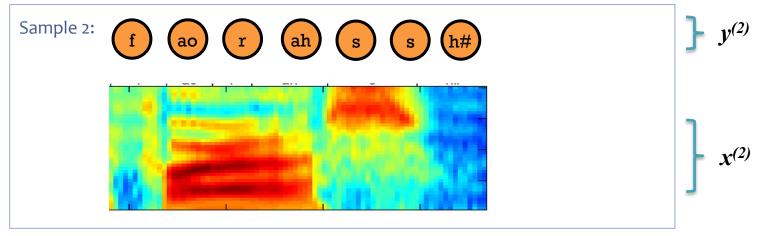
Dataset for Supervised Handwriting Recognition

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

Dataset for Supervised Phoneme (Speech) Recognition

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$



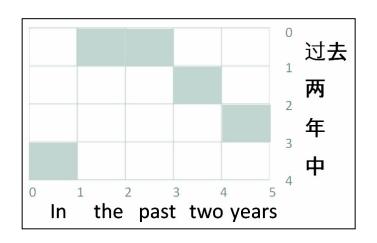


Application:

Word Alignment / Phrase Extraction

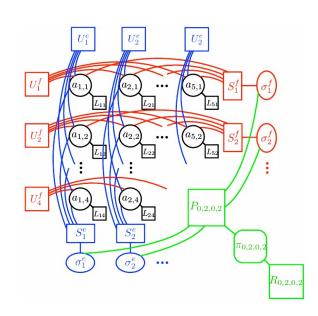
Variables (boolean):

For each (Chinese phrase, English phrase) pair, are they linked?



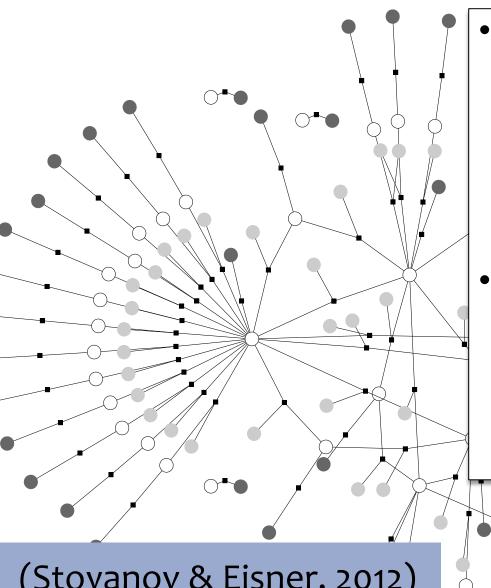
Interactions:

- Word fertilities
- Few "jumps" (discontinuities)
- Syntactic reorderings
- "ITG contraint" on alignment
- Phrases are disjoint (?)



Application:

Congressional Voting



Variables:

- Representative's vote
- Text of all speeches of a representative
- Local contexts of references between two representatives

Interactions:

- Words used by representative and their vote
- Pairs of representatives and their local context

(Stoyanov & Eisner, 2012)

Structured Prediction Examples

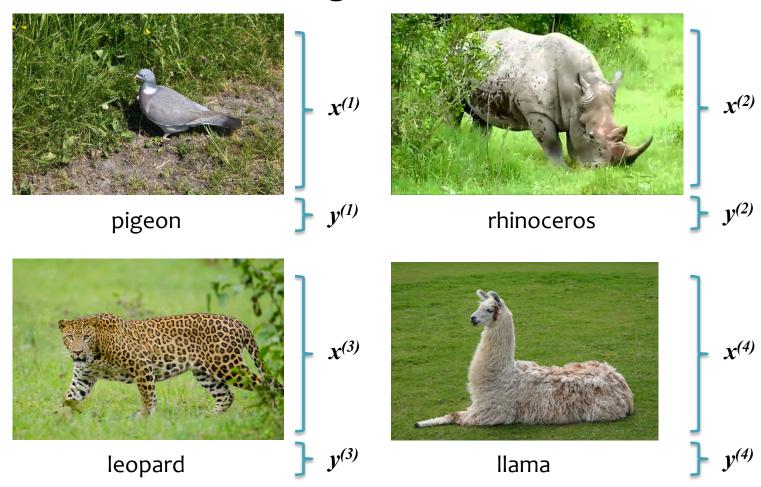
Examples of structured prediction

- Part-of-speech (POS) tagging
- Handwriting recognition
- Speech recognition
- Word alignment
- Congressional voting

Examples of latent structure

Object recognition

Data consists of images x and labels y.



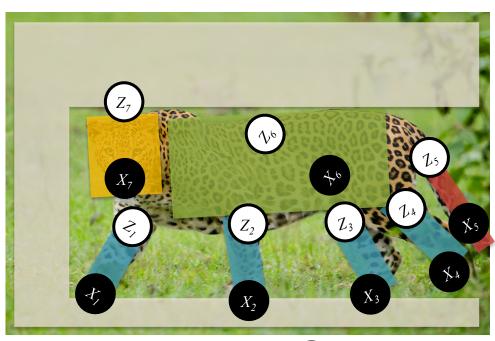
Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time

leopard

Data consists of images x and labels y.

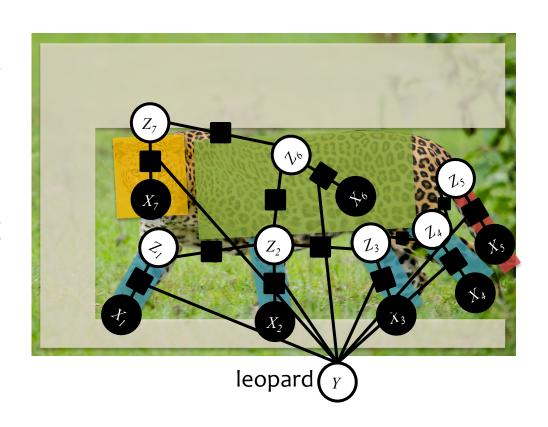
- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time



leopard (y)

Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time



Structured Prediction

Preview of challenges to come...

 Consider the task of finding the most probable assignment to the output

Classification
$$\hat{y} = \operatorname*{argmax}_{y} p(y|\mathbf{x})$$
 where $y \in \{+1, -1\}$

Structured Prediction
$$\hat{\mathbf{y}} = \operatorname*{argmax} p(\mathbf{y}|\mathbf{x})$$
 \mathbf{y} where $\mathbf{y} \in \mathcal{Y}$ and $|\mathcal{Y}|$ is very large

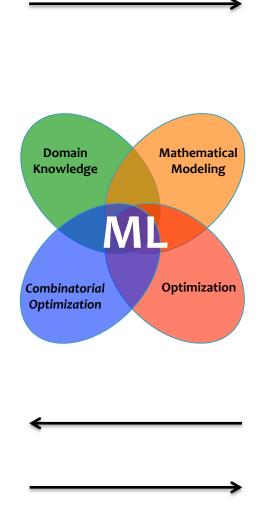
Machine Learning

The data inspires
the structures
we want to
predict

Inference finds

{best structure, marginals, partition function} for a new observation

(Inference is usually called as a subroutine in learning)

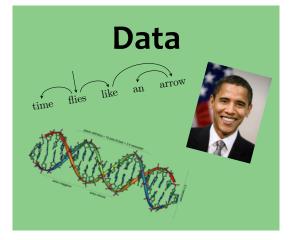


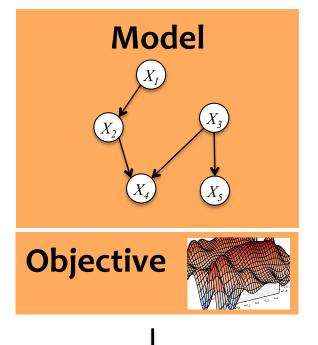
Our **model**defines a score
for each structure

It also tells us what to optimize

Learning tunes the parameters of the model

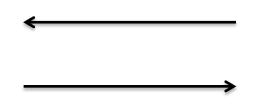
Machine Learning

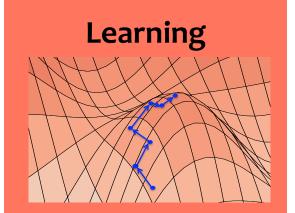




Inference

(Inference is usually called as a subroutine in learning)





BACKGROUND

Background: Chain Rule of Probability

For random variables A and B:

$$P(A,B) = P(A|B)P(B)$$

For random variables X_1, X_2, X_3, X_4 :

$$P(X_1, X_2, X_3, X_4) = P(X_1 | X_2, X_3, X_4)$$

$$P(X_2 | X_3, X_4)$$

$$P(X_3 | X_4)$$

$$P(X_4)$$

Background: Conditional Independence

Random variables A and B are conditionally independent given C if:

$$P(A, B|C) = P(A|C)P(B|C)$$
 (1)

or equivalently:

$$P(A|B,C) = P(A|C) \tag{2}$$

We write this as:

$$A \perp \!\!\! \perp B | C$$

Later we will also write: I < A, $\{C\}$, B >

Bayesian Networks

DIRECTED GRAPHICAL MODELS

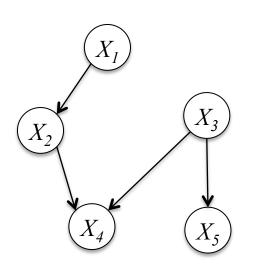
Whiteboard

Writing Joint Distributions

- Strawman: Giant Table
- Alternate #1: Rewrite using chain rule
- Alternate #2: Assume full independence
- Alternate #3: Drop variables from RHS of conditionals

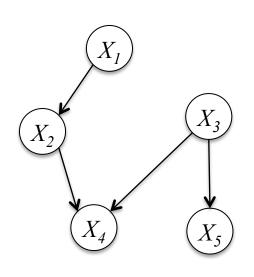
Bayesian Network

Definition:



$$P(X_1...X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$$

Bayesian Network



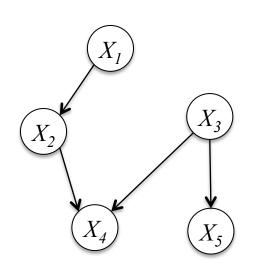
Definition:

$$p(X_1, X_2, X_3, X_4, X_5) =$$

$$p(X_5|X_3)p(X_4|X_2, X_3)$$

$$p(X_3)p(X_2|X_1)p(X_1)$$

Bayesian Network



Definition:

$$p(X_1, X_2, X_3, X_4, X_5) =$$

$$p(X_5|X_3)p(X_4|X_2, X_3)$$

$$p(X_3)p(X_2|X_1)p(X_1)$$

- A Bayesian Network is a directed graphical model
- It consists of a graph G and the conditional probabilities P
- These two parts full specify the distribution:
 - Qualitative Specification: G
 - Quantitative Specification: P

- Where does the qualitative specification come from?
 - Prior knowledge of causal relationships
 - Prior knowledge of modular relationships
 - Assessment from experts
 - Learning from data
 - We simply link a certain architecture (e.g. a layered graph)
 - ...

Whiteboard

If time...

• Example: 2016 Presidential Election

Towards quantitative specification of probability distribution

- Separation properties in the graph imply independence properties about the associated variables
- For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents

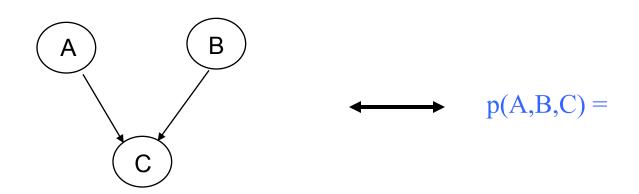
The Equivalence Theorem

For a graph G,

Let D₁ denote the family of all distributions that satisfy I(G),

Let D₂ denote the family of all distributions that factor according to G,

Then $D_1 \equiv D_2$.

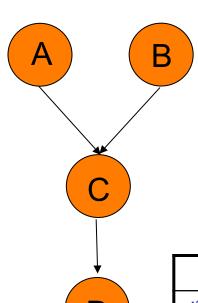


Conditional probability tables (CPTs)

a^0	0.75	
a ¹	0.25	

b ⁰	0.33
b ¹	0.67

P(a,b,c.d) = P(a)P(b)P(c| a,b)P(d|c)



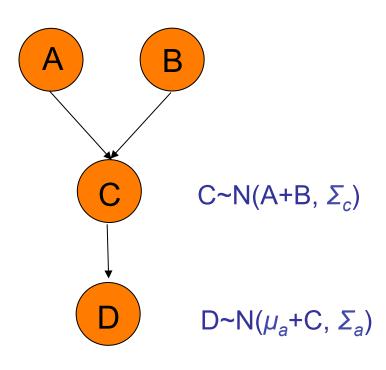
	a ⁰ b ⁰	a ⁰ b ¹	a¹b ⁰	a ¹ b ¹
\mathbf{c}_0	0.45	1	0.9	0.7
C ¹	0.55	0	0.1	0.3

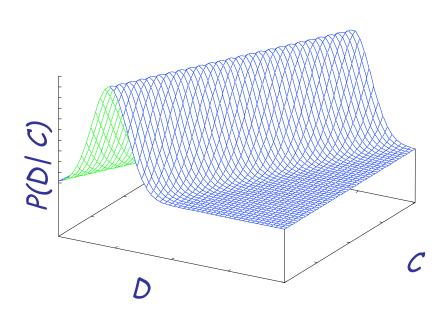
	C ₀	C ¹
d^0	0.3	0.5
d ¹	07	0.5

Conditional probability density func. (CPDs)

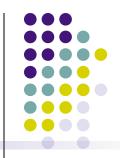
$$A \sim N(\mu_a, \Sigma_a)$$
 $B \sim N(\mu_b, \Sigma_b)$

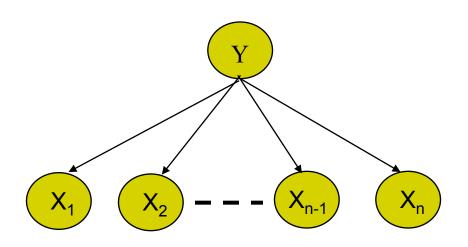
P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)





Conditional Independencies





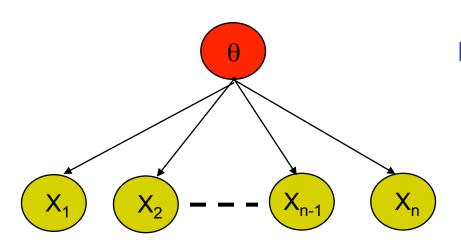
Label

Features

What is this model

- 1. When Y is observed?
- 2. When Y is unobserved?

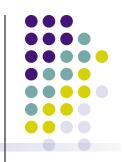
Conditionally Independent Observations

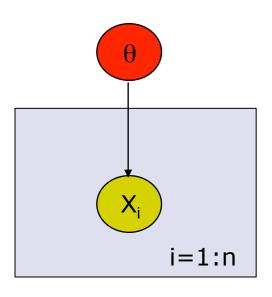


Model parameters

Data =
$$\{y_1, \dots y_n\}$$

"Plate" Notation





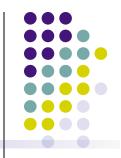
Model parameters

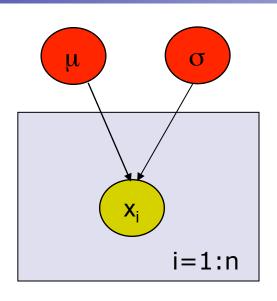
Data =
$$\{x_1, ..., x_n\}$$

Plate = rectangle in graphical model

variables within a plate are replicated in a conditionally independent manner

Example: Gaussian Model





Generative model:

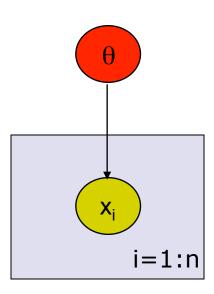
$$p(x_1,...x_n \mid \mu, \sigma) = P p(x_i \mid \mu, \sigma)$$

$$= p(data \mid parameters)$$

$$= p(D \mid \theta)$$

$$where $\theta = \{\mu, \sigma\}$$$

- Likelihood = p(data | parameters)= p(D | θ)= L (θ)
- Likelihood tells us how likely the observed data are conditioned on a particular setting of the parameters
 - Often easier to work with log L (θ)



More examples

Density estimation

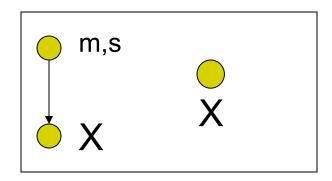
Parametric and nonparametric methods

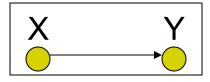
Regression

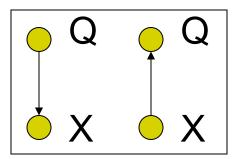
Linear, conditional mixture, nonparametric

Classification

Generative and discriminative approach



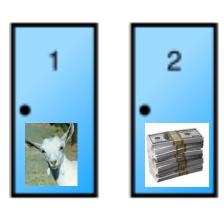


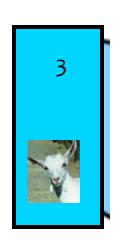


EXAMPLE: THE MONTY HALL PROBLEM

Extra slides from last semester

- You're in a game show.
 Behind one door is a prize.
 Behind the others, goats.
- You pick one of three doors, say #1
- The host, Monty Hall, opens one door, revealing... a goat!





You now can either

- stick with your guess
- always change doors
- flip a coin and pick a new door randomly according to the coin

Extra slides from last semester

Extra slides from last semester

- You' re in a game show. Behind one door is a prize. Behind the others, goats.
- You pick one of three doors, say #1
- The host, Monty Hall, opens one door, revealing... a goat!
- You now can either stick with your guess or change doors

Α	P(A)
1	0.33
2	0.33
3	0.33

First guess

The money

В	P(B)
1	0.33
2	0.33
3	0.33

Stick, or swap?

P(D)	
. (5)	
0.5	

D	P(D)
Stick	0.5
Swap	0.5

The revealed goat

	1	В	С	P(C A,B)
1		1	2	0.5
1		1	3	0.5
1	_	2	3	1.0
1	-	3	2	1.0

Second guess

 $P(C = c \mid A = a, B = b) = \begin{cases} 1.0 & \text{if } (a \neq b) \land (c \notin \{a, b\}) \\ 0.5 & \text{if } (a = b) \land (c \notin \{a, b\}) \\ 0 & \text{otherwise} \end{cases}$

1.0 if
$$(a \neq b) \land (c \notin \{a, b\})$$

$$0.5 \quad \text{if } (a = b) \land (c \notin \{a, b\})$$

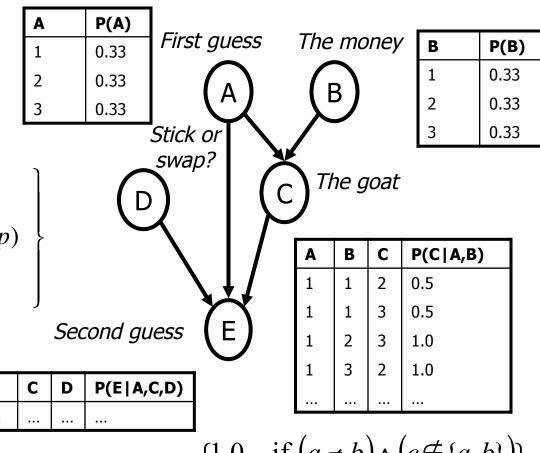
Extra slides from last semester

$$P(E = e \mid A, C, D)$$

$$= \begin{cases} 1.0 & \text{if } (e = a) \land (d = stick) \\ 1.0 & \text{if } (e \notin \{a, c\}) \land (d = swap) \\ 0 & \text{otherwise} \end{cases}$$

If you stick: you win if your first guess was right.

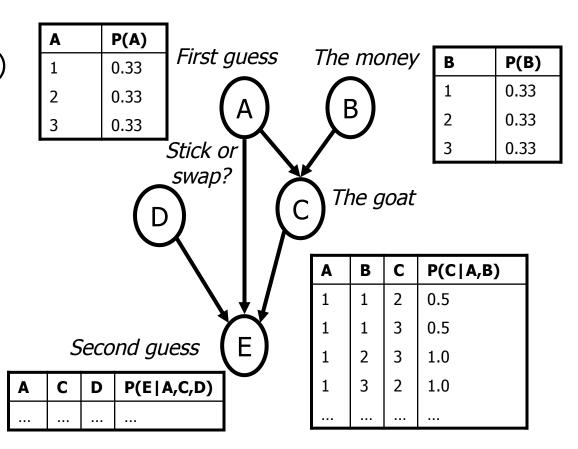
If you swap: you win if your first guess was wrong.



$$P(C = c \mid A = a, B = b) = \begin{cases} 1.0 & \text{if } (a \neq b) \land (c \notin \{a, b\}) \\ 0.5 & \text{if } (a = b) \land (c \notin \{a, b\}) \\ 0 & \text{otherwise} \end{cases}$$

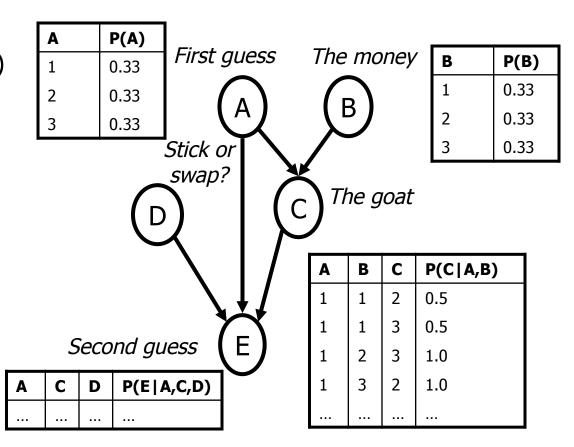
We could construct the joint and compute P(E=B|D=swap)

...again by the chain rule:



We could construct the joint and compute P(E=B|D=swap)

...again by the chain rule:



The joint table has...?

$$3*3*3*2*3 = 162$$
 rows

The *conditional* probability tables (CPTs) shown have ...?

$$3 + 3 + 3*3*3 + 2*3*3$$

= 51 rows < 162 rows

Α	P(A)	<i></i>			
1	0.33	First guess	The money	В	P(B)
2	0.33			1	0.33
3	0.33			2	0.33
		Stick or		3	0.33

Big questions:

- why are the CPTs smaller?
- •how *much smaller* are the CPTs than the joint?

Secoi

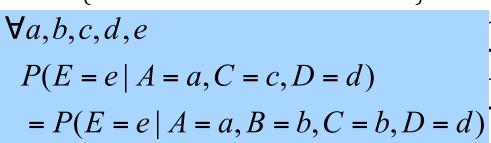
Α	U	D	
	:		

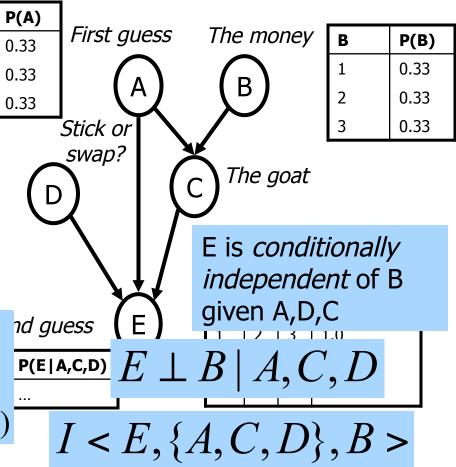
 can we compute the answers to queries like P(E=B|d) without building the joint probability tables, just using the CPTs?

Why is the CPTs representation smaller? Follow the money! (B)

$$P(E = e \mid A, C, D)$$

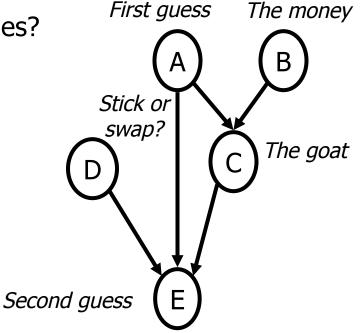
$$= \begin{cases} 1.0 & \text{if } (e = a) \land (d = stick) \\ 1.0 & \text{if } (e \notin \{a, c\}) \land (d = swap) \\ 0 & \text{otherwise} \end{cases}$$





What are the conditional indepencies?

- I<A, {B}, C>?
- I<A, {C}, B> ?
- I<E, {A,C}, B>?
- I<D, {E}, B> ?
- ..



GRAPHICAL MODELS: DETERMINING CONDITIONAL INDEPENDENCIES

What Independencies does a Bayes Net Model?

• In order for a Bayesian network to model a probability distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants in the graph given the value of all its parents.

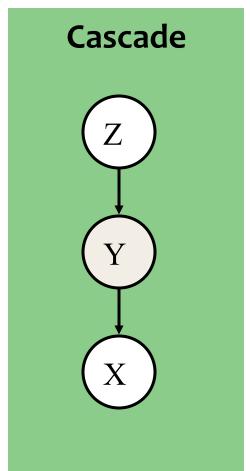
This follows from

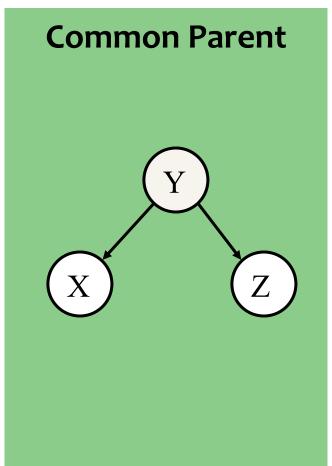
$$P(X_1...X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$$
$$= \prod_{i=1}^n P(X_i \mid X_1...X_{i-1})$$

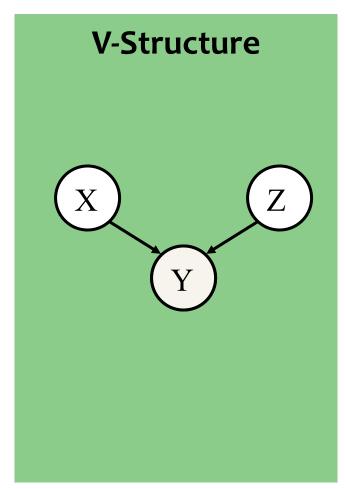
But what else does it imply?

What Independencies does a Bayes Net Model?

Three cases of interest...

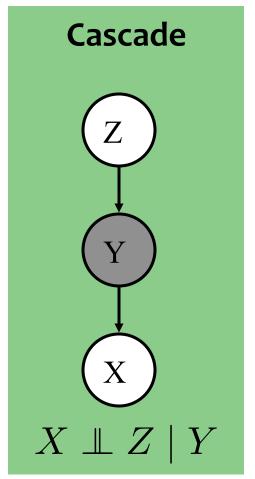


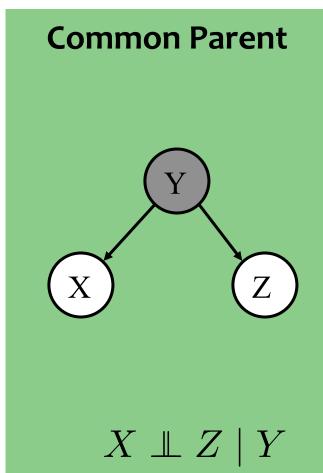


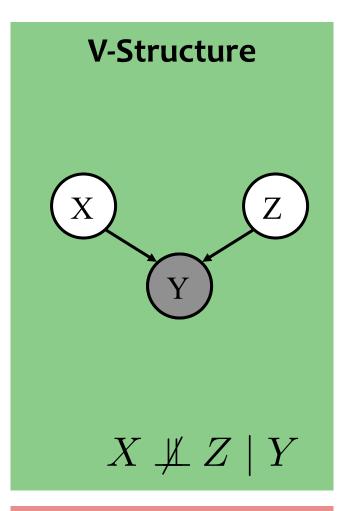


What Independencies does a Bayes Net Model?

Three cases of interest...





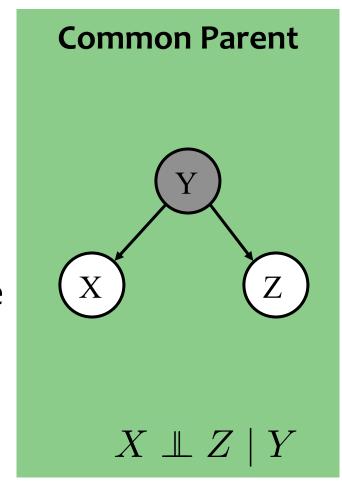


Knowing Y **decouples** X and Z

Knowing Y couples X and Z

Whiteboard

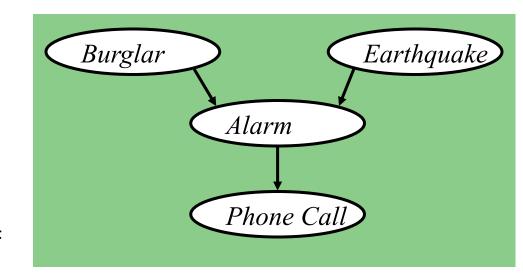
Proof of conditional independence



(The other two cases can easily be shown just as easily.)

The "Burglar Alarm" example

- Your house has a twitchy burglar alarm that is also sometimes triggered by earthquakes.
- Earth arguably doesn't care whether your house is currently being burgled
- While you are on vacation, one of your neighbors calls and tells you your home's burglar alarm is ringing. Uh oh!



Quiz: True or False?

 $Burglar \perp \!\!\! \perp Earthquake \mid Phone Call$

D-Separation (Definition #1)

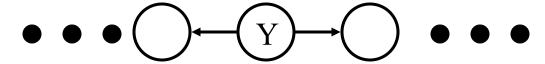
- Fortunately, there is a relatively simple algorithm for determining whether two variables in a Bayesian network are conditionally independent: *d-separation*.
- **Definition:** variables *X* and *Z* are *d-separated* (conditionally independent) given a set of evidence variables *E* iff every undirected path from *X* to *Z* is "blocked", where a path is "blocked" iff one or more of the following conditions is true: ...

ie. X and Z are dependent iff there exists an unblocked path

D-Separation (Definition #1)

A path is "blocked" when...

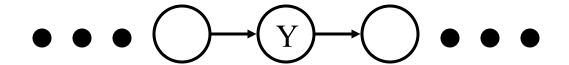
- There exists a variable Y on the path such that
 - it is in the evidence set E
 - the arcs putting Y in the path are "tail-to-tail"



unknown

"common causes" of X and Z impose dependency

- Or, there exists a variable Y on the path such that
 - it is in the evidence set E
 - the arcs putting Y in the path are "tail-to-head"



Or, ...

unknown

"causal chains" connecting X an Z impose dependency

D-Separation (Definition #1)

A path is "blocked" when...

- ... Or, there exists a variable V on the path such that
 - it is NOT in the evidence set E
 - neither are any of its descendants
 - the arcs putting Y on the path are "head-to-head"

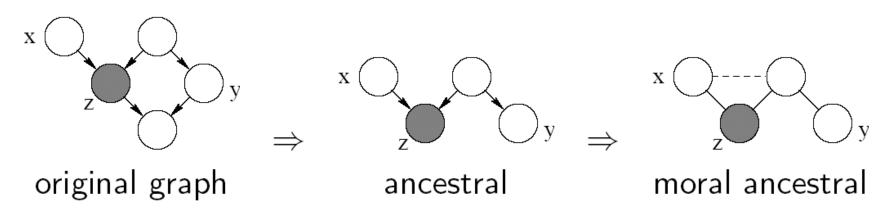
Known "common symptoms" of X and Z impose dependencies... X may "explain away" Z

D-Separation (Definition #2)

D-separation criterion for Bayesian networks (D for Directed edges):

Definition: variables X and Y are *D-separated* (conditionally independent) given Z if they are separated in the moralized ancestral graph

Example:

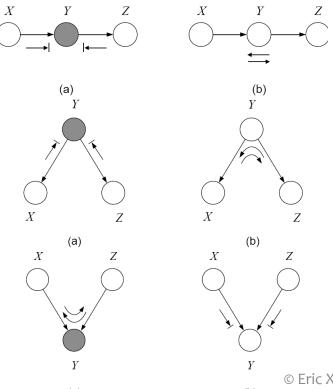


D-Separation

- Theorem [Verma & Pearl, 1998]:
 - If a set of evidence variables E d-separates X and Z in a Bayesian network's graph, then I<X, E, Z>.
- d-separation can be computed in linear time using a depth-first-searchlike algorithm.
- Be careful: d-separation finds what must be conditionally independent
 - "Might": Variables may actually be independent when they're not d-separated, depending on the actual probabilities involved

"Bayes-ball" and D-Separation

• X is d-separated (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "Bayes-ball" algorithm illustrated bellow (and plus some boundary conditions):



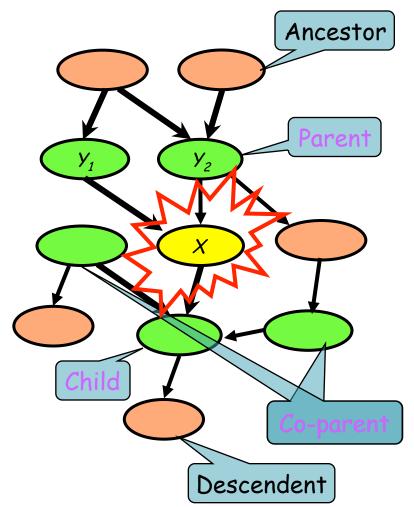
• Defn: *I*(*G*)=all independence properties that correspond to dseparation:

$$I(G) = \left\{ X \perp Z \middle| Y : dsep_G(X; Z \middle| Y) \right\}$$

• D-separation is sound and complete

Markov Blanket

A node is conditionally independent of every other node in the network outside its Markov blanket



Summary: Bayesian Networks

Structure: DAG

- Meaning: a node is conditionally independent of every other node in the network outside its Markov blanket
- Local conditional distributions
 (CPD) and the DAG completely
 determine the joint dist.
- Give causality relationships, and facilitate a generative process

