

10-601B Introduction to Machine Learning

Deep Learning (Part II)

Readings:

Nielsen (online book)
Neural Networks and Deep Learning

Matt Gormley Lecture 17 October 26, 2016

Reminders

- Homework 5
 - due Wed., Nov. 2nd
- Homework 6
 - (not out yet)
 - implement a Conv Net!

Outline

Deep Neural Networks (DNNs)

- Three ideas for training a DNN
- Experiments: MNIST digit classification
- Autoencoders
- Pretraining

Convolutional Neural Networks (CNNs)

- Convolutional layers
- Pooling layers
- Image recognition

Recurrent Neural Networks (RNNs)

- Bidirectional RNNs
- Deep Bidirectional RNNs
- Deep Bidirectional LSTMs
- Connection to forward-backward algorithm

Part I

Part II

CONVOLUTIONAL NEURAL NETS

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Convolution

0	0	0
0	1	1
0	1	0

1	1	1	1	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	0	0	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

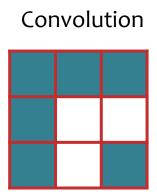
0	0	0
0	1	1
0	1	0

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
О	1	0	1	0	0	0
О	1	1	0	0	О	0
О	1	0	0	0	0	0
0	0	0	0	0	0	0

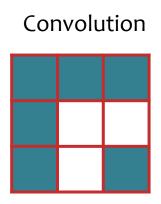


3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

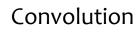


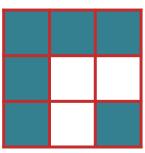
3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	О
0	0	0	0	0	0	0

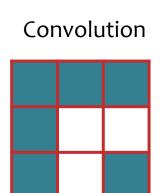


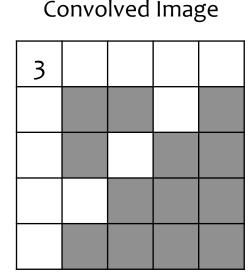


3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

Input Image

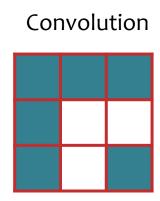
			0	0	0	0
	1	1	1	1	1	0
	1		0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

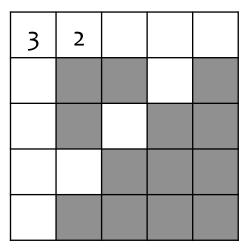




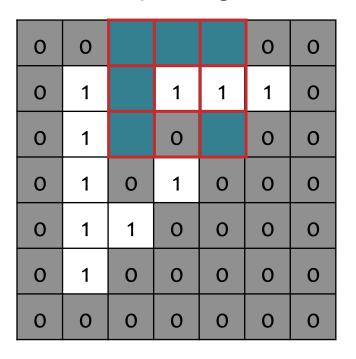
Input Image

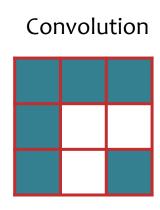
0				0	0	0
0		1	1	1	1	0
0		0		1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

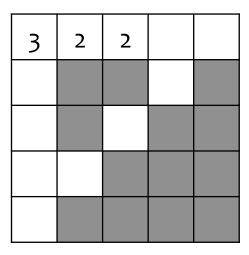




Input Image

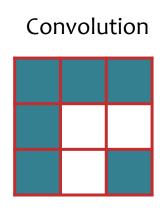


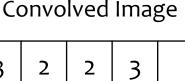




Input Image

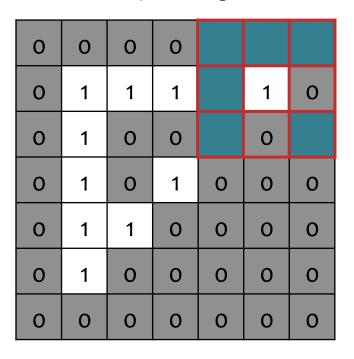
0	0	0				0
0	1	1		1	1	0
0	1	0		1		0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

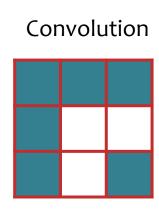


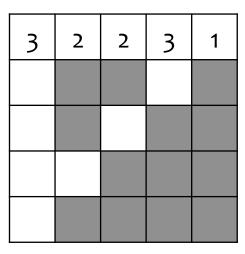


A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image



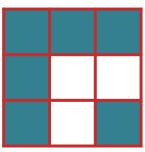




A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

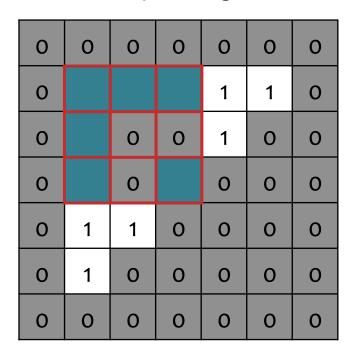
0	0	0	0	0	0	0
			1	1	1	0
	1	0	0	1	0	0
	1		1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

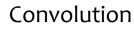


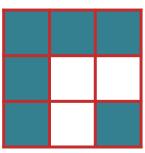
3	2	2	3	1
2				

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image





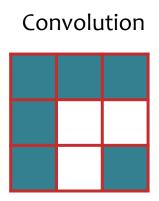


3	2	2	3	1
2	0			

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
О	1	1	0	0	0	0
О	1	0	0	0	0	0
0	0	0	0	0	0	0



3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Identity Convolution

0	0	0
0	1	0
0	0	0

1	1	1	1	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	0	0	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	О
0	0	0	0	0	0	0

Blurring Convolution

.1	.1	.1
.1	.2	.1
.1	.1	.1

.4	·5	•5	.5	.4
.4	.2	·3	.6	.3
.5	.4	.4	.2	.1
.5	.6	.2	.1	0
.4	.3	.1	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Blurring Convolution

.1	.1	.1
.1	.2	.1
.1	.1	.1

.4	·5	•5	.5	.4
.4	.2	·3	.6	.3
•5	.4	.4	.2	.1
•5	.6	.2	.1	0
.4	.3	.1	0	0

Convolutional Neural Network (CNN)

CNN key idea: Treat convolution matrix as parameters and learn them!

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
О	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

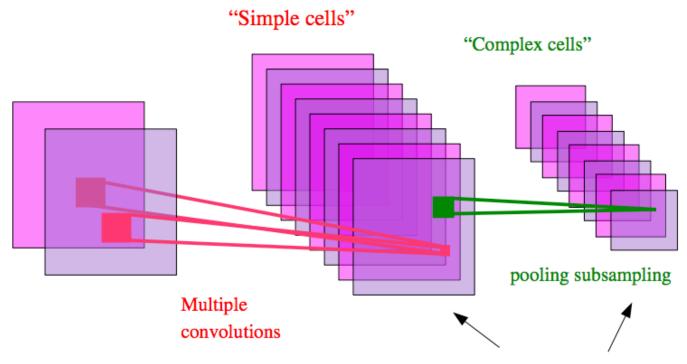
Learned Convolution

θ ₁₁	θ_{12}	θ_{13}
θ_{21}	θ_{22}	θ_{23}
θ_{31}	θ_{32}	θ_{33}

.4	·5	•5	·5	.4
.4	.2	•3	.6	-3
.5	.4	.4	.2	.1
•5	.6	.2	.1	0
.4	•3	.1	0	0

Model of vision in animals

- [Hubel & Wiesel 1962]:
 - simple cells detect local features
 - complex cells "pool" the outputs of simple cells within a retinotopic neighborhood.



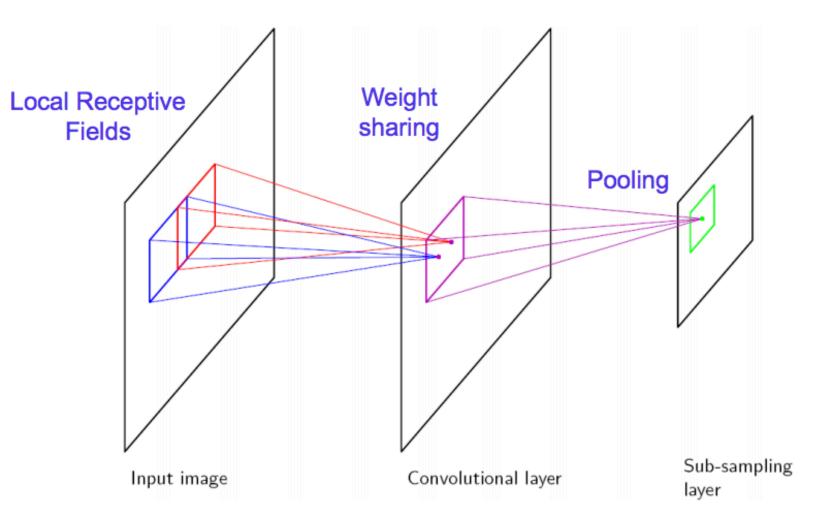
Retinotopic Feature Maps

Huber & Wiesel Video

https://www.youtube.com/watch?v=8VdFf3egwfg

Vision with ANNs

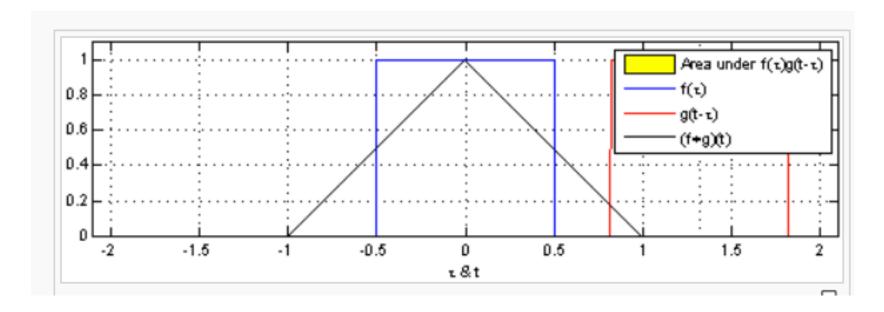
(LeCun et al., 1989)



https://en.wikipedia.org/wiki/Convolution

1-D
$$(f*g)(t) \stackrel{\mathrm{def}}{=} \int_{-\infty}^{\infty} f(\tau) \, g(t-\tau) \, d\tau$$

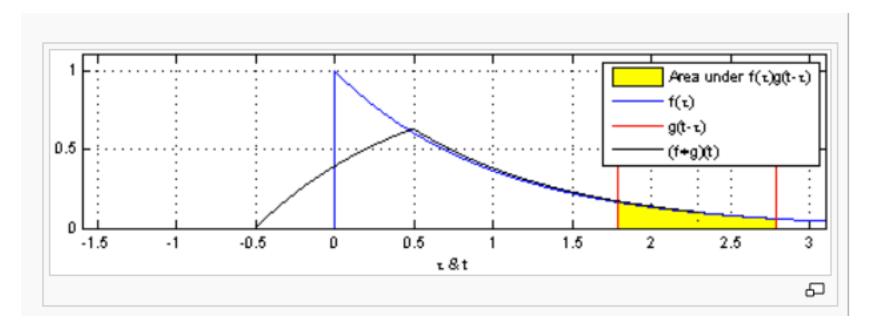
$$= \int_{-\infty}^{\infty} f(t-\tau) \, g(\tau) \, d\tau.$$

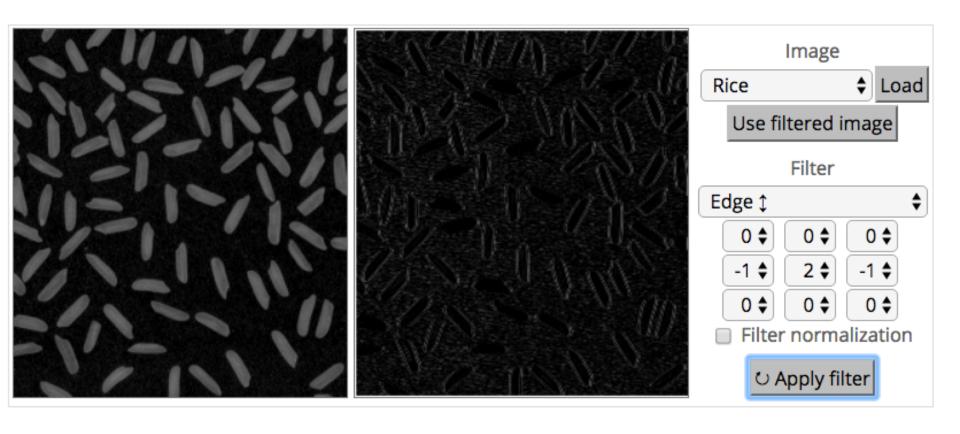


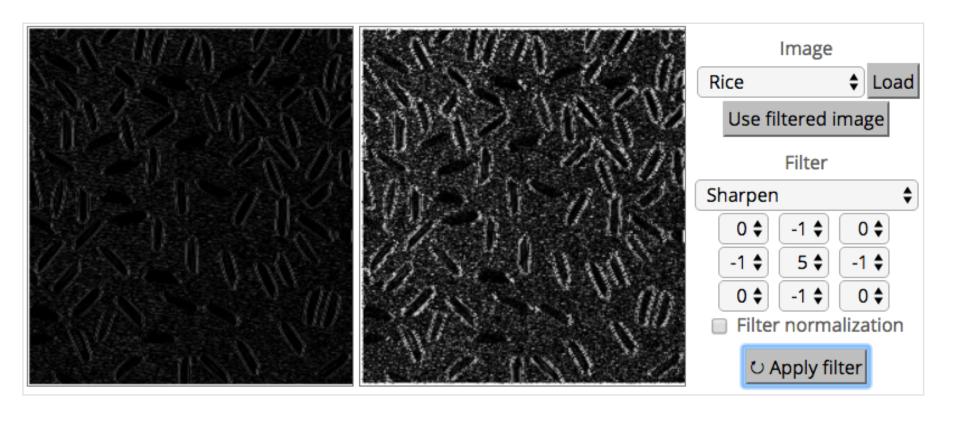
https://en.wikipedia.org/wiki/Convolution

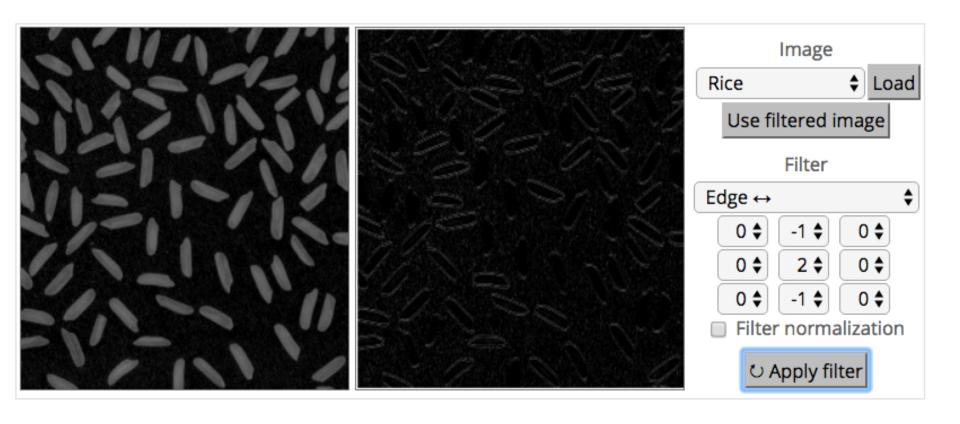
1-D
$$(f*g)(t) \stackrel{\mathrm{def}}{=} \int_{-\infty}^{\infty} f(\tau) \, g(t-\tau) \, d\tau$$

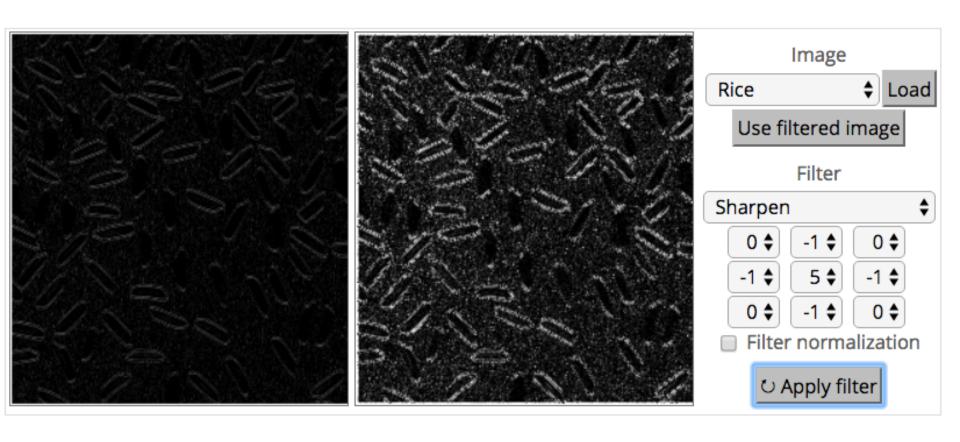
$$= \int_{-\infty}^{\infty} f(t-\tau) \, g(\tau) \, d\tau.$$

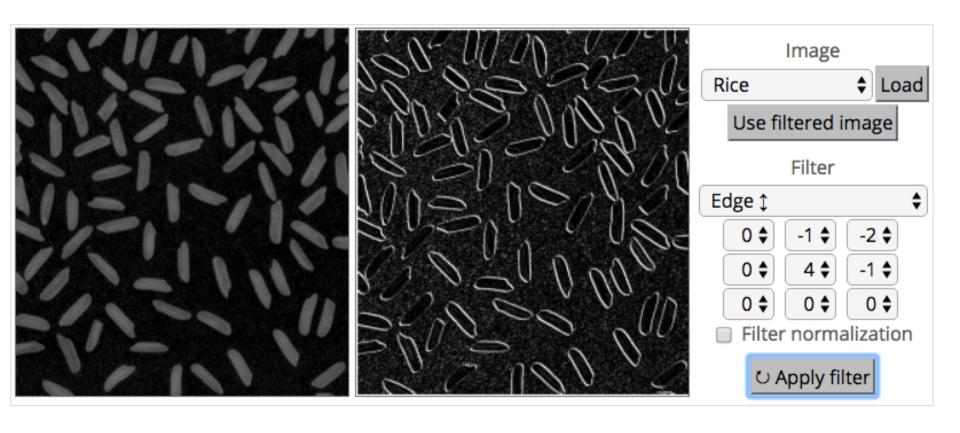


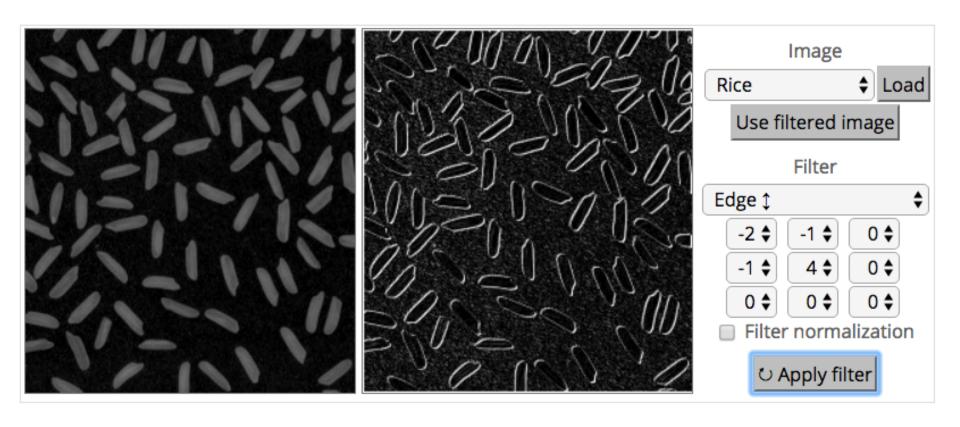












Basic idea:

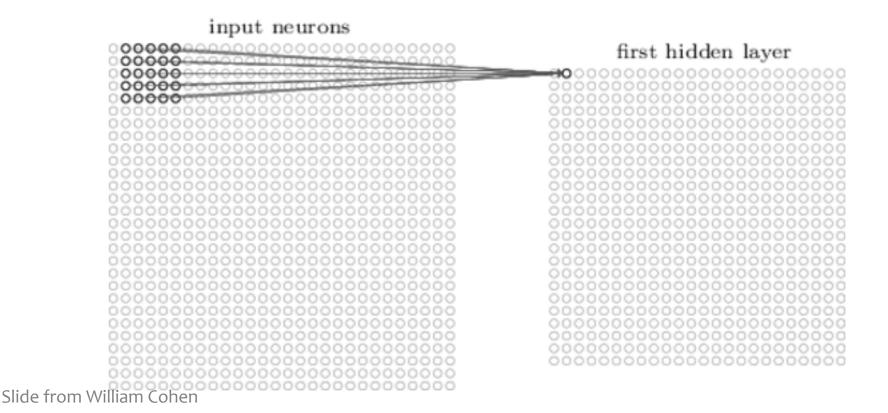
- Pick a 3x3 matrix F of weights
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

Key point:

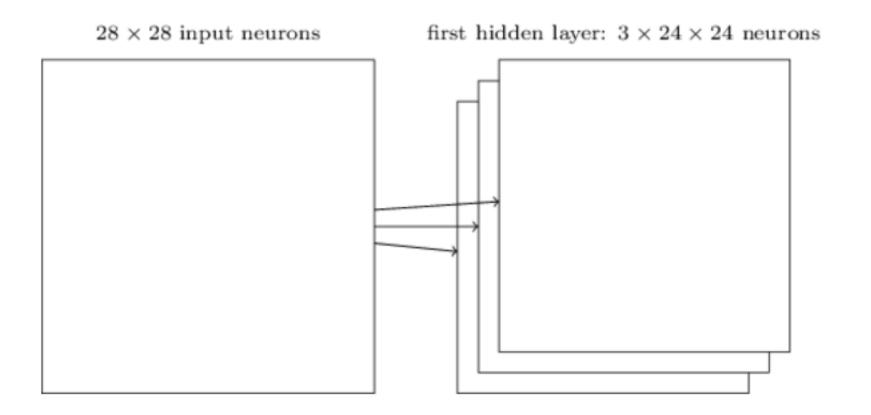
- Different convolutions extract different types of low-level "features" from an image
- All that we need to vary to generate these different features is the weights of F

How do we convolve an image with an ANN?

Note that the parameters in the matrix defining the convolution are **tied** across all places that it is used



How do we do many convolutions of an image with an ANN?



Convolutional Neural Network (CNN)

Typical layers include:

- Convolutional layer
- Max-pooling layer
- Fully connected layer
- (Nonlinear layer)
- Softmax

These can be arranged into arbitrarily deep topologies

PROC. OF THE IEEE, NOVEMBER 1998

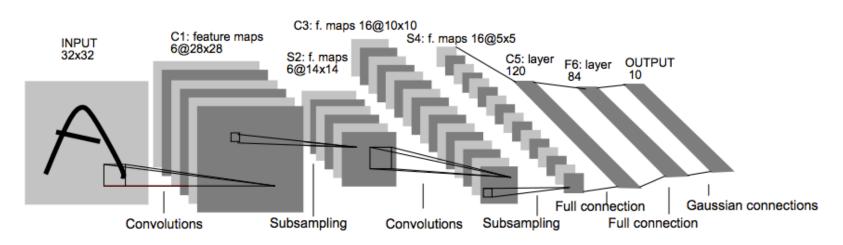


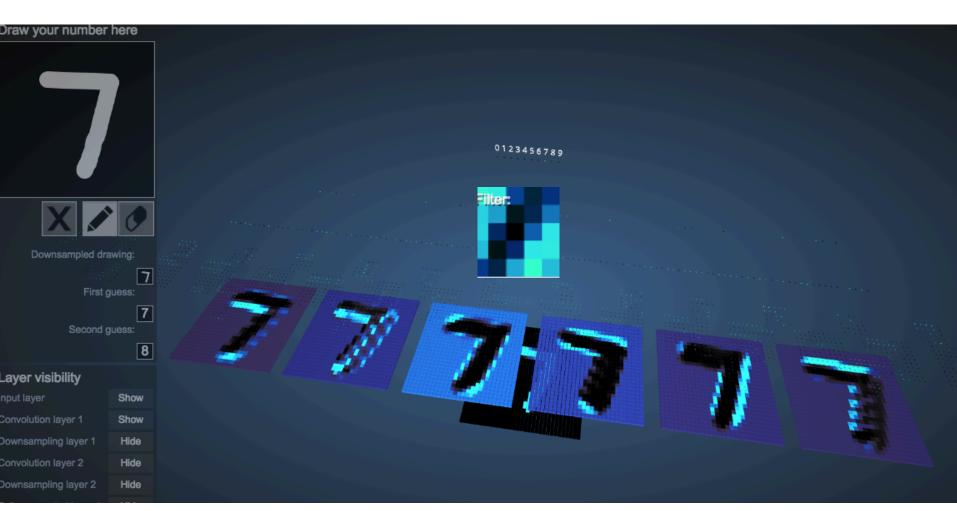
Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

36

7

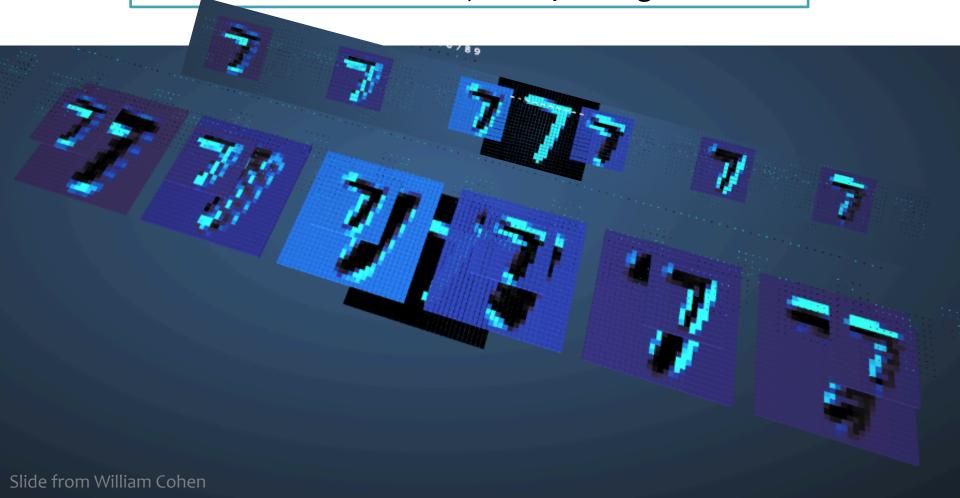
Example: 6 convolutions of a digit

http://scs.ryerson.ca/~aharley/vis/conv/



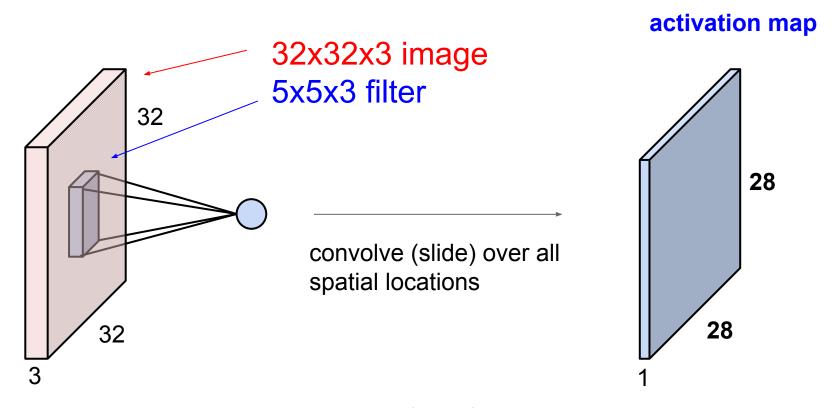
CNNs typically alternate convolutions, non-linearity, and then downsampling

Downsampling is usually averaging or (more common in recent CNNs) max-pooling



Convolution of a Color Image

- Color images consist of 3 floats per pixel for RGB (red, green blue) color values
- Convolution must also be 3-dimensional



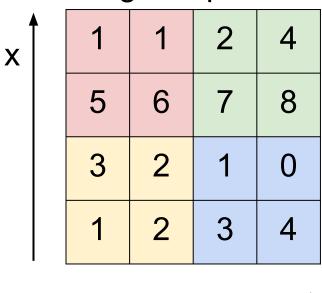
Convolution of a Color Image

Animation of 3D convolution

http://cs231n.github.io/convolutional-networks/

Max-pooling

Single depth slice

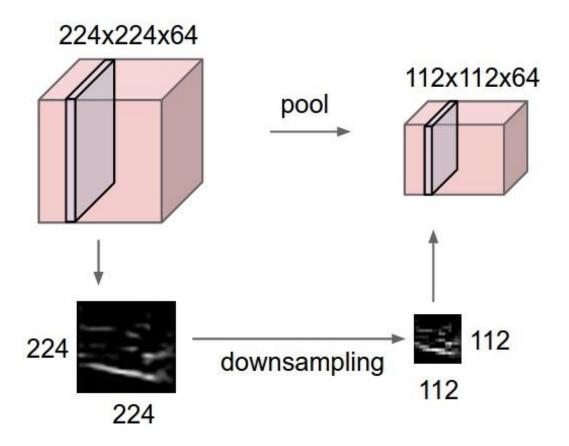


max pool with 2x2 filters and stride 2

6	8		
3	4		

У

Max-pooling



Why do max-pooling?

- Saves space
- Reduces overfitting?
- Because I'm going to add more convolutions after it!
 - Allows the short-range convolutions to extend over larger subfields of the images
 - So we can spot larger objects
 - Eg, a long horizontal line, or a corner, or ...

PROC. OF THE IEEE, NOVEMBER 1998

7

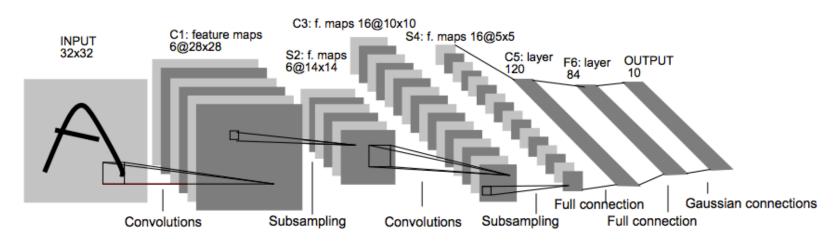
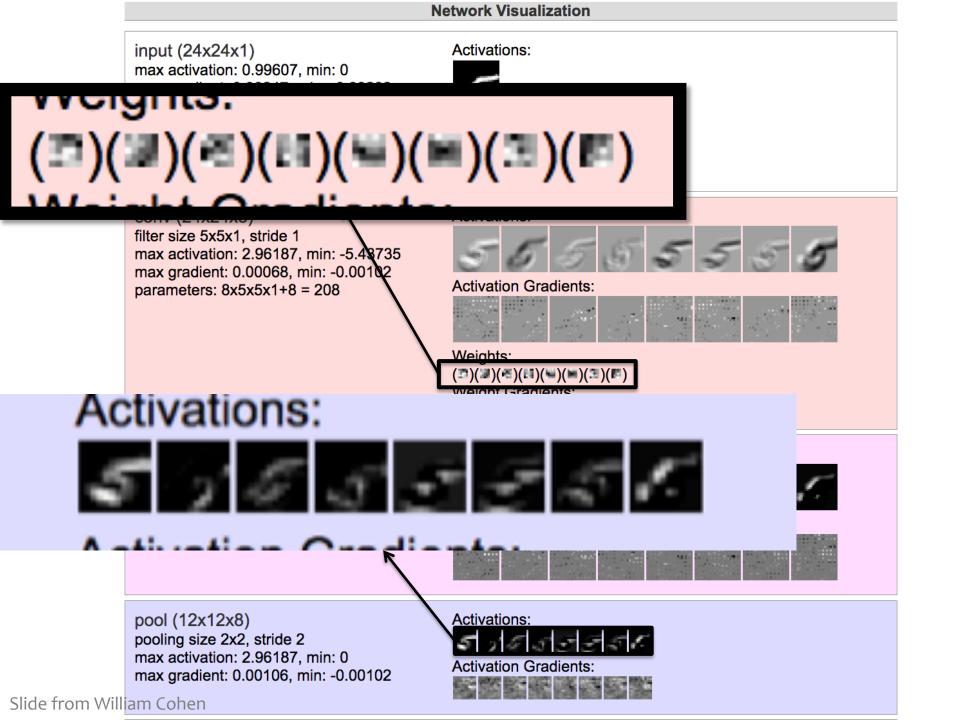


Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

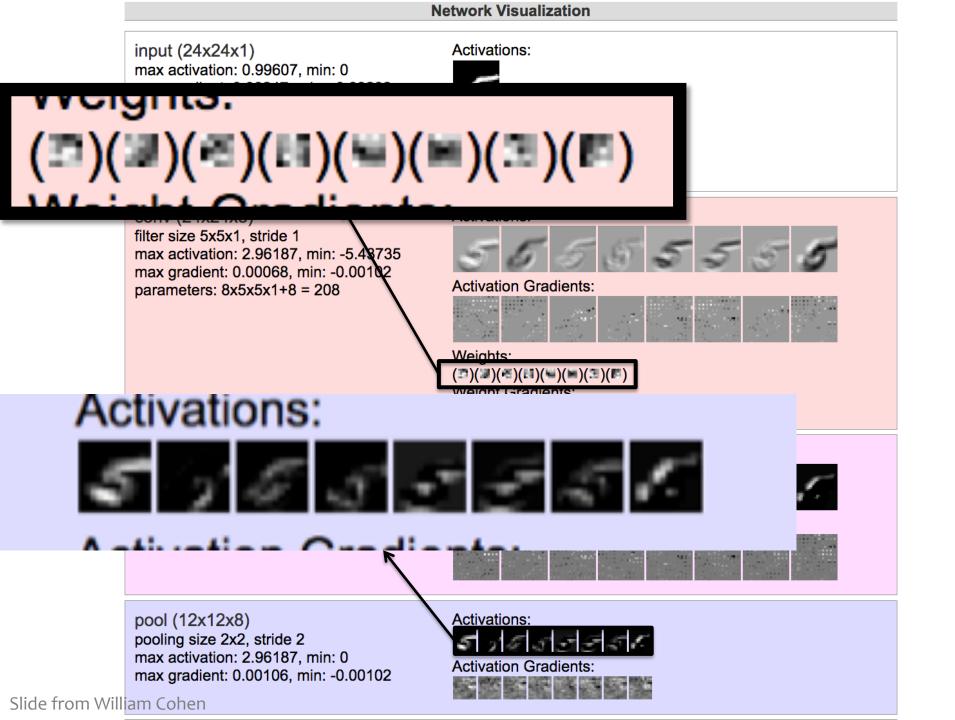
Another CNN visualization

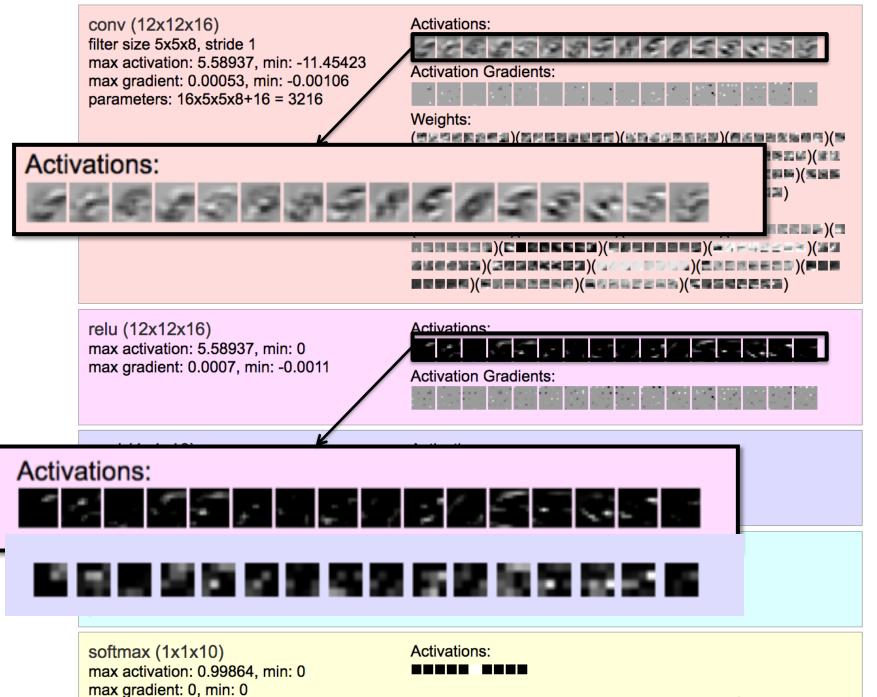
https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html



Why do max-pooling?

- Saves space
- Reduces overfitting?
- Because I'm going to add more convolutions after it!
 - Allows the short-range convolutions to extend over larger subfields of the images
 - So we can spot larger objects
 - Eg, a long horizontal line, or a corner, or ...
- At some point the feature maps start to get very sparse and blobby – they are indicators of some semantic property, not a recognizable transformation of the image
- Then just use them as features in a "normal" ANN





Slide from William Cohen

Why do max-pooling?

- Saves space
- Reduces overfitting?
- Because I'm going to add more convolutions after it!
 - Allows the short-range convolutions to extend over larger subfields of the images
 - So we can spot larger objects
 - Eg, a long horizontal line, or a corner, or ...

PROC. OF THE IEEE, NOVEMBER 1998

7

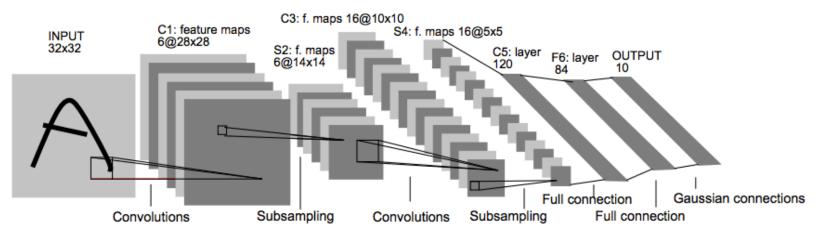
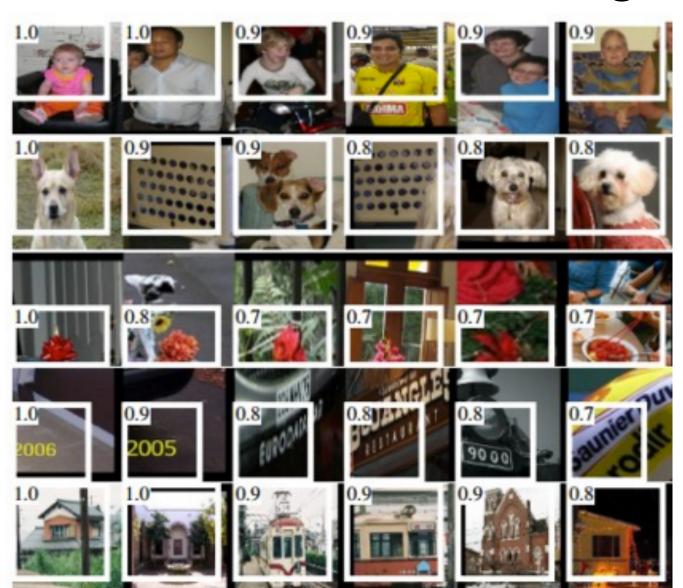


Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Alternating convolution and downsampling



5 layers up

The subfield in a large dataset that gives the strongest output for a neuron

Example: Image Classification

- ImageNet LSVRC-2011 contest:
 - Dataset: 1.2 million labeled images, 1000 classes
 - Task: Given a new image, label it with the correct class
 - Multiclass classification problem
- Examples from http://image-net.org/

Bird

IM . GENET

Warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings

2126 pictures 92.85% Popularity Percentile Wordnet

marine animal, marine creature, sea animal, sea creature (1)	
⊩ scavenger (1)	
- biped (0)	
r predator, predatory animal (1)	
⊩ larva (49)	
- acrodont (0)	
- feeder (0)	
- stunt (0)	
chordate (3087)	
tunicate, urochordate, urochord (6)	
cephalochordate (1)	
vertebrate, craniate (3077)	
mammal, mammalian (1169)	
bird (871)	
dickeybird, dickey-bird, dickybird, dicky-bird (0)	
cock (1)	П
- hen (0)	
- nester (0)	П
night bird (1)	
- bird of passage (0)	
- protoavis (0)	
archaeopteryx, archeopteryx, Archaeopteryx lithographi	ı
- Sinornis (0)	ı
- Ibero-mesornis (0)	ı
- archaeornis (0)	U
ratite, ratite bird, flightless bird (10)	
- carinate, carinate bird, flying bird (0)	
passerine, passeriform bird (279)	
nonpasserine bird (0)	
bird of prey, raptor, raptorial bird (80)	
gallinaceous bird, gallinacean (114)	



Not logged in. Login I Signup

German iris, Iris kochii

IM GENET

Iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica

469 pictures 49.6% Popularity Percentile

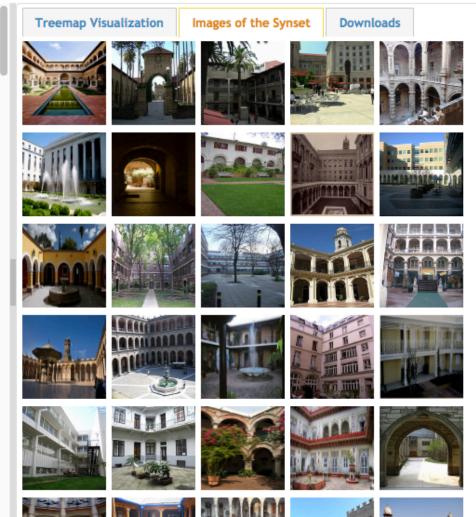
Not logged in. Login I Signup

Court, courtyard

An area wholly or partly surrounded by walls or buildings; "the house was built around an inner court"

165 pictures 92.61% Popularity Percentile

Numbers in brackets: (the number of synsets in the subtree).
∜ ImageNet 2011 Fall Release (32326)
plant, flora, plant life (4486)
geological formation, formation (175)
natural object (1112)
- sport, athletics (176)
artifact, artefact (10504)
instrumentality, instrumentation (5494)
structure, construction (1405)
airdock, hangar, repair shed (0)
altar (1)
arcade, colonnade (1)
arch (31)
rea (344)
aisle (0)
auditorium (1)
- baggage claim (0)
▶- box (1)
breakfast area, breakfast nook (0)
- bullpen (0)
- chancel, sanctuary, bema (0)
- choir (0)
corner, nook (2)
court, courtyard (6)
atrium (0)
- bailey (0)
- cloister (0)
- food court (0)
- forecourt (0)
narvis (0)



Example: Image Classification

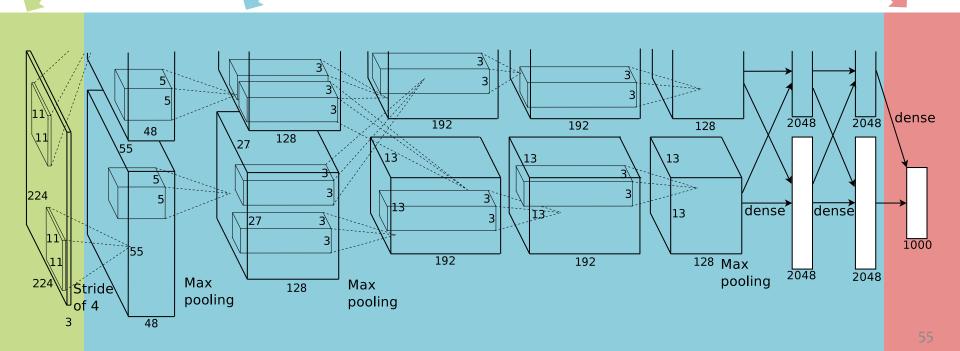
CNN for Image Classification

(Krizhevsky, Sutskever & Hinton, 2012) 15.3% error on ImageNet LSVRC-2012 contest

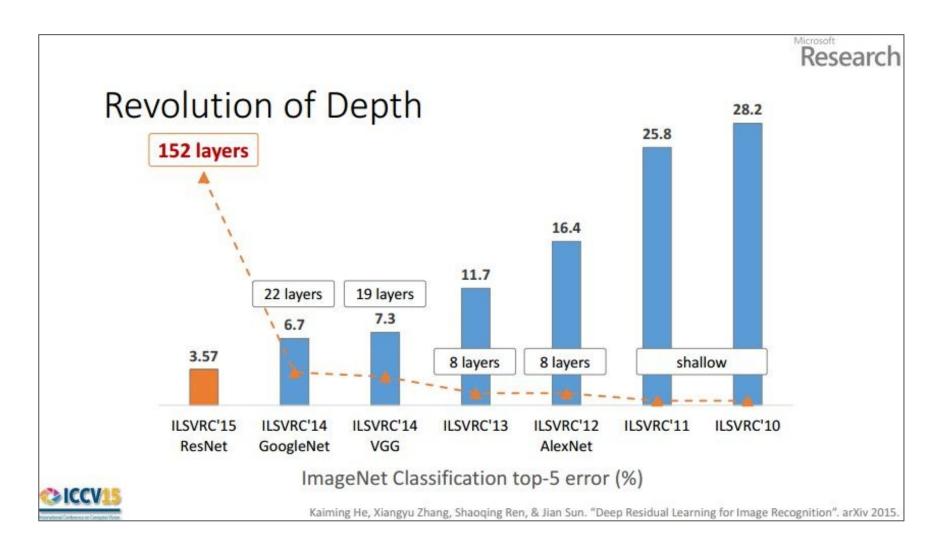
Input image (pixels)

- Five convolutional layers (w/max-pooling)
- Three fully connected layers

1000-way softmax



CNNs for Image Recognition



RECURRENT NEURAL NETWORKS

Dataset for Supervised Part-of-Speech (POS) Tagging

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

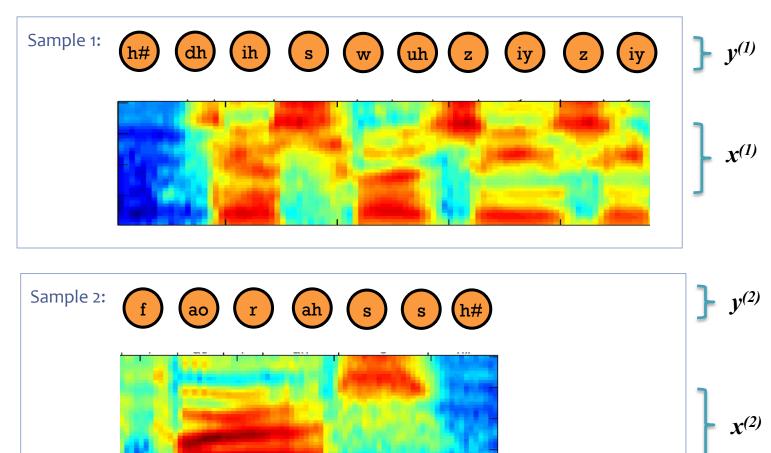
Sample 1:	n	flies	p like	an	$ \begin{array}{c c} $
Sample 2:	n	n	v like	d	$ \begin{array}{c c} $
Sample 3:	n	v fily	with	n	$ \begin{array}{c c} $
Sample 4:	with	n	you	will	$\begin{cases} y^{(4)} \\ x^{(4)} \end{cases}$

Dataset for Supervised Handwriting Recognition

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

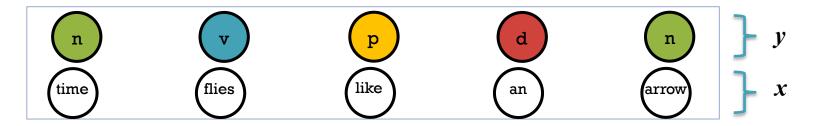
Dataset for Supervised Phoneme (Speech) Recognition

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$



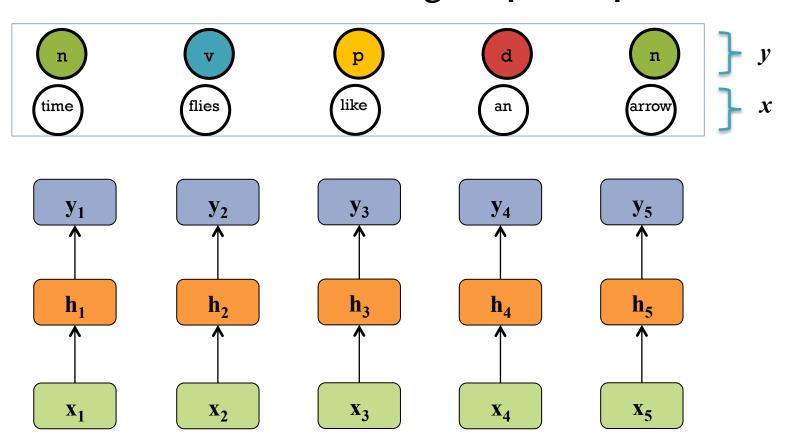
Time Series Data

Question 1: How could we apply the neural networks we've seen so far (which expect **fixed size input/output**) to a prediction task with **variable length input/output**?



Time Series Data

Question 1: How could we apply the neural networks we've seen so far (which expect **fixed size input/output**) to a prediction task with **variable length input/output**?



Time Series Data

Question 2: How could we incorporate context (e.g. words to the left/right, or tags to the left/right) into our solution?

$\begin{pmatrix} y_I \\ x_I \end{pmatrix}$	$\begin{pmatrix} y_2 \\ x_2 \end{pmatrix}$	$\begin{pmatrix} y_3 \\ x_3 \end{pmatrix}$	y_4 x_4	$\begin{pmatrix} y_5 \\ x_5 \end{pmatrix}$	} y } x

Multiple Choice:

Working leftto-right, use features of...

	x_{i-1}	x_i	x_{i+1}	y_{i-1}	y_i	y_{i+1}
А	✓					
В				✓		
C	1			✓		
D	1			✓	✓	✓
Е	1	1		✓	✓	✓
F	✓	1	✓	✓		
G	✓	✓	✓	✓	✓	
Н	✓	1	✓	✓	✓	✓

inputs: $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$

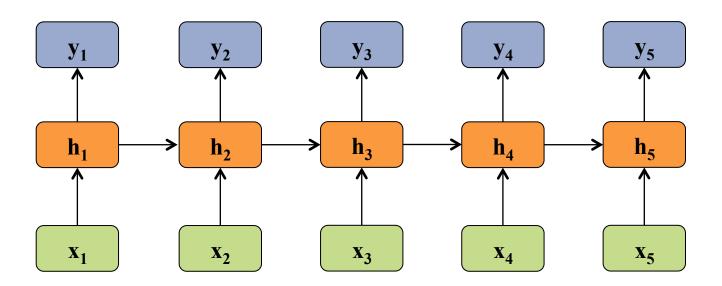
hidden units: $\mathbf{h} = (h_1, h_2, \dots, h_T), h_i \in \mathcal{R}^J$

outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$

nonlinearity: \mathcal{H}

$$h_t = \mathcal{H}\left(W_{xh}x_t + W_{hh}h_{t-1} + b_h\right)$$

$$y_t = W_{hy}h_t + b_y$$



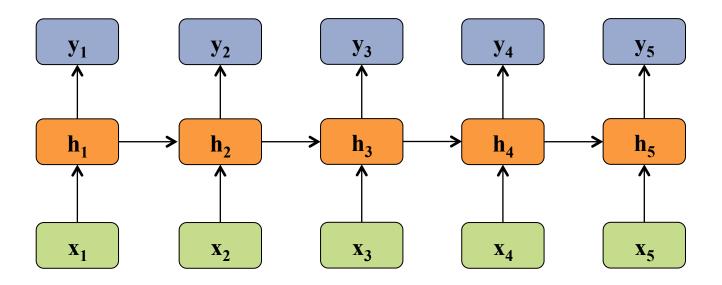
inputs: $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$

hidden units: $\mathbf{h} = (h_1, h_2, \dots, h_T), h_i \in \mathcal{R}^J$

outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$

nonlinearity: \mathcal{H}

$$h_t = \mathcal{H}(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$
$$y_t = W_{hy}h_t + b_y$$

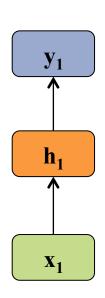


inputs:
$$\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$$

hidden units: $\mathbf{h} = (h_1, h_2, \dots, h_T), h_i \in \mathcal{R}^J$
outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$

nonlinearity: \mathcal{H}

$$h_t = \mathcal{H}(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$
$$y_t = W_{hy}h_t + b_y$$



- If T=1, then we have a standard feed-forward neural net with one hidden layer
- All of the deep nets from last lecture required fixed size inputs/outputs

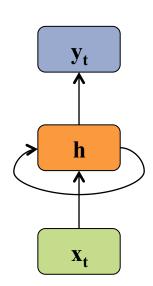
inputs:
$$\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$$

hidden units:
$$\mathbf{h} = (h_1, h_2, \dots, h_T), h_i \in \mathcal{R}^J$$

outputs:
$$\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$$
 $y_t = W_{hy}h_t + b_y$

nonlinearity: \mathcal{H}

$$h_t = \mathcal{H}\left(W_{xh}x_t + W_{hh}h_{t-1} + b_h\right)$$

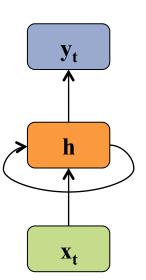


inputs:
$$\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$$

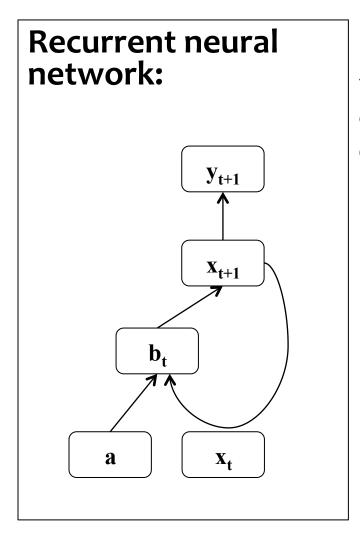
hidden units: $\mathbf{h} = (h_1, h_2, \dots, h_T), h_i \in \mathcal{R}^J$
outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$
nonlinearity: \mathcal{H}

$$h_t = \mathcal{H}(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$
$$y_t = W_{hy}h_t + b_y$$

- By unrolling the RNN through time, we can share parameters and accommodate arbitrary length input/output pairs
- Applications: time-series data such as sentences, speech, stock-market, signal data, etc.



Background: Backprop through time



BPTT:

1. Unroll the computation over time

 X_4 $\mathbf{b_3}$ $\mathbf{X_3}$ $\mathbf{b_2}$ \mathbf{X}_{2} $\mathbf{b_1}$ a $\mathbf{X_1}$

2. Run backprop through the resulting feed-forward network

Bidirectional RNN

inputs: $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$

hidden units: $\overrightarrow{\mathbf{h}}$ and $\overleftarrow{\mathbf{h}}$

nonlinearity: \mathcal{H}

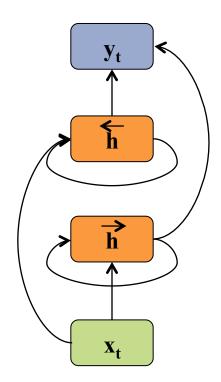
Recursive Definition:

Inputs.
$$\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{K}$$
len units: $\overrightarrow{\mathbf{h}}$ and $\overleftarrow{\mathbf{h}}$
outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$
linearity: \mathcal{H}

$$\overrightarrow{h}_t = \mathcal{H}\left(W_x \overrightarrow{h} x_t + W_{\overrightarrow{h}} \overrightarrow{h} \overrightarrow{h}_{t-1} + b_{\overrightarrow{h}}\right)$$

$$\overleftarrow{h}_t = \mathcal{H}\left(W_x \overleftarrow{h} x_t + W_{\overleftarrow{h}} \overrightarrow{h} \overrightarrow{h}_{t+1} + b_{\overleftarrow{h}}\right)$$

$$y_t = W_{\overrightarrow{h}y} \overrightarrow{h}_t + W_{\overleftarrow{h}y} \overleftarrow{h}_t + b_y$$



Bidirectional RNN

inputs: $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$

hidden units: $\overrightarrow{\mathbf{h}}$ and $\overleftarrow{\mathbf{h}}$

outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$

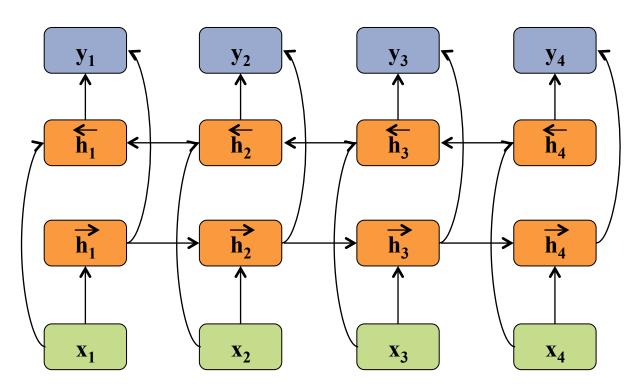
nonlinearity: \mathcal{H}

Recursive Definition:

$$\overrightarrow{h}_{t} = \mathcal{H}\left(W_{x\overrightarrow{h}}x_{t} + W_{\overrightarrow{h}}\overrightarrow{h}\overrightarrow{h}\overrightarrow{h}_{t-1} + b_{\overrightarrow{h}}\right)$$

$$\overleftarrow{h}_{t} = \mathcal{H}\left(W_{x\overleftarrow{h}}x_{t} + W_{\overleftarrow{h}}\overleftarrow{h}\overleftarrow{h}_{t+1} + b_{\overleftarrow{h}}\right)$$

$$y_{t} = W_{\overrightarrow{h}y}\overrightarrow{h}_{t} + W_{\overleftarrow{h}y}\overleftarrow{h}_{t} + b_{y}$$



Bidirectional RNN

inputs: $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$

hidden units: $\overrightarrow{\mathbf{h}}$ and $\overleftarrow{\mathbf{h}}$

outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$

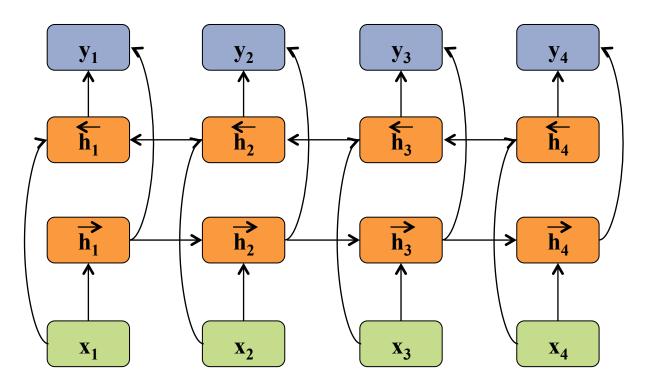
nonlinearity: \mathcal{H}

Recursive Definition:

$$\overrightarrow{h}_{t} = \mathcal{H}\left(W_{x\overrightarrow{h}}x_{t} + W_{\overrightarrow{h}}\overrightarrow{h}\overrightarrow{h}\overrightarrow{h}_{t-1} + b_{\overrightarrow{h}}\right)$$

$$\overleftarrow{h}_{t} = \mathcal{H}\left(W_{x\overleftarrow{h}}x_{t} + W_{\overleftarrow{h}}\overleftarrow{h}\overleftarrow{h}_{t+1} + b_{\overleftarrow{h}}\right)$$

$$y_{t} = W_{\overrightarrow{h}y}\overrightarrow{h}_{t} + W_{\overleftarrow{h}y}\overleftarrow{h}_{t} + b_{y}$$



Bidirectional RNN

inputs: $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$

hidden units: $\overrightarrow{\mathbf{h}}$ and $\overleftarrow{\mathbf{h}}$

outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$

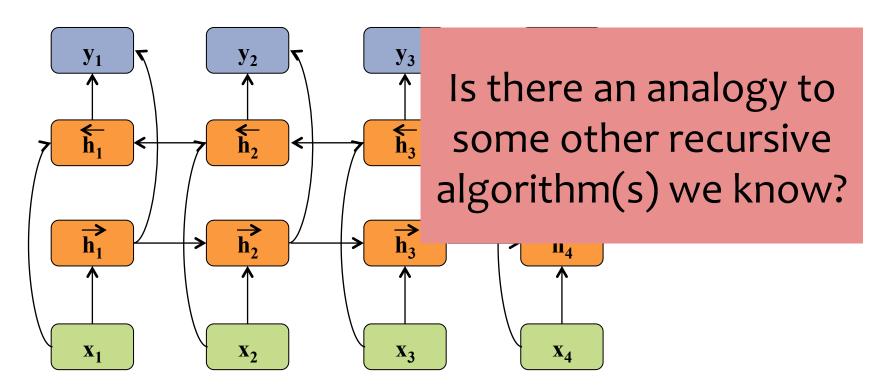
nonlinearity: \mathcal{H}

Recursive Definition:

$$\overrightarrow{h}_{t} = \mathcal{H}\left(W_{x\overrightarrow{h}}x_{t} + W_{\overrightarrow{h}}\overrightarrow{h}\overrightarrow{h}\overrightarrow{h}_{t-1} + b_{\overrightarrow{h}}\right)$$

$$\overleftarrow{h}_{t} = \mathcal{H}\left(W_{x\overleftarrow{h}}x_{t} + W_{\overleftarrow{h}}\overleftarrow{h}\overleftarrow{h}_{t+1} + b_{\overleftarrow{h}}\right)$$

$$y_{t} = W_{\overrightarrow{h}y}\overrightarrow{h}_{t} + W_{\overleftarrow{h}y}\overleftarrow{h}_{t} + b_{y}$$



Deep RNNs

inputs: $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$

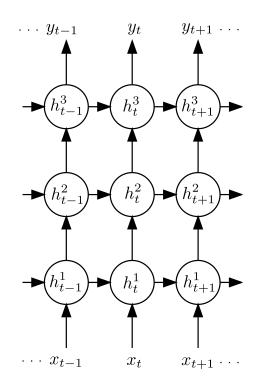
outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$

nonlinearity: \mathcal{H}

Recursive Definition:

$$h_t^n = \mathcal{H}\left(W_{h^{n-1}h^n}h_t^{n-1} + W_{h^nh^n}h_{t-1}^n + b_h^n\right)$$

$$y_t = W_{h^N y} h_t^N + b_y$$



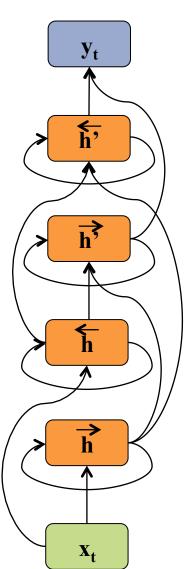
Deep Bidirectional RNNs

inputs: $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$

outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$

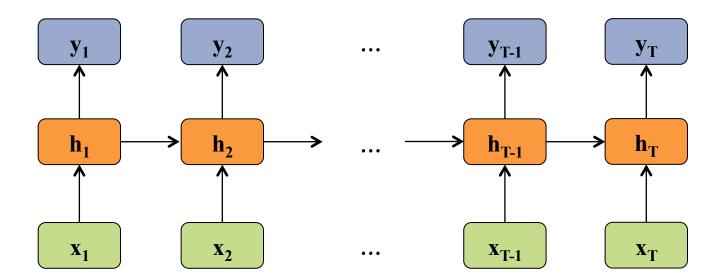
nonlinearity: \mathcal{H}

- Notice that the upper level hidden units have input from two previous layers (i.e. wider input)
- Likewise for the output layer
- What analogy can we draw to DNNs, DBNs, DBMs?



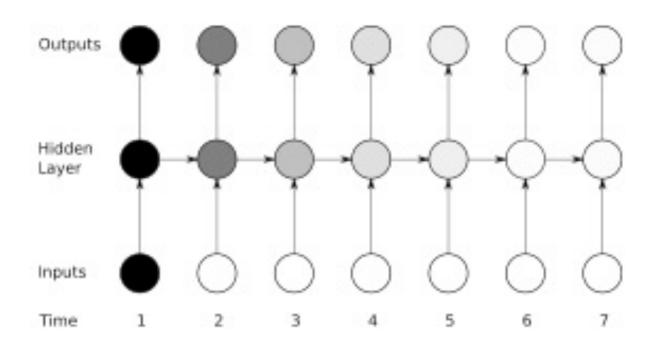
Motivation:

- Standard RNNs have trouble learning long distance dependencies
- LSTMs combat this issue



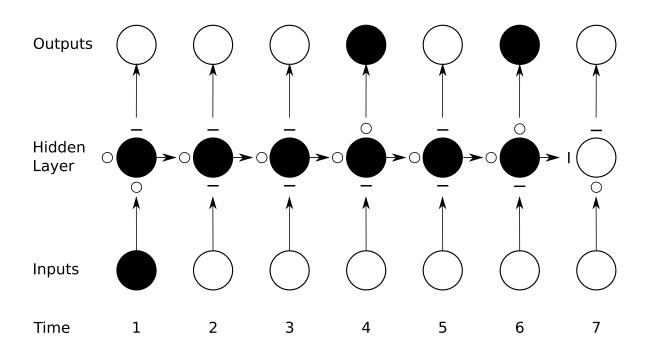
Motivation:

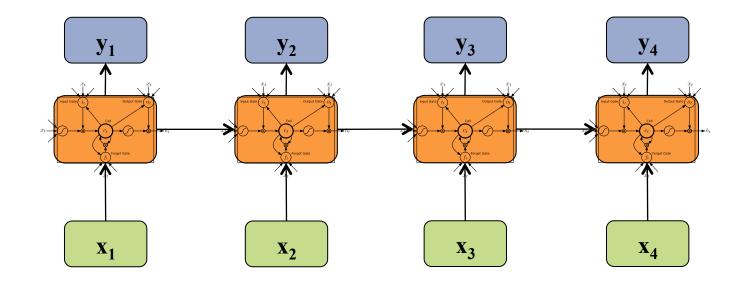
- Vanishing gradient problem for Standard RNNs
- Figure shows sensitivity (darker = more sensitive) to the input at time t=1



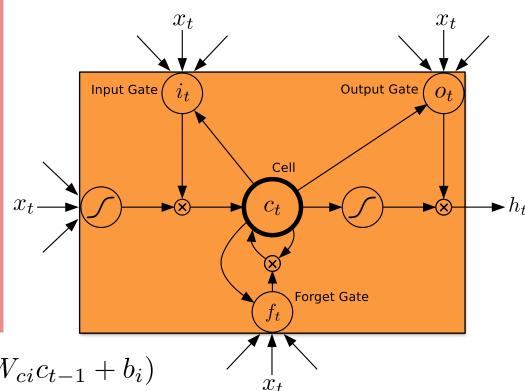
Motivation:

- LSTM units have a rich internal structure
- The various "gates" determine the propagation of information and can choose to "remember" or "forget" information





- Input gate: masks out the standard RNN inputs
- Forget gate: masks out the previous cell
- Cell: stores the input/ forget mixture
- Output gate: masks out the values of the next hidden



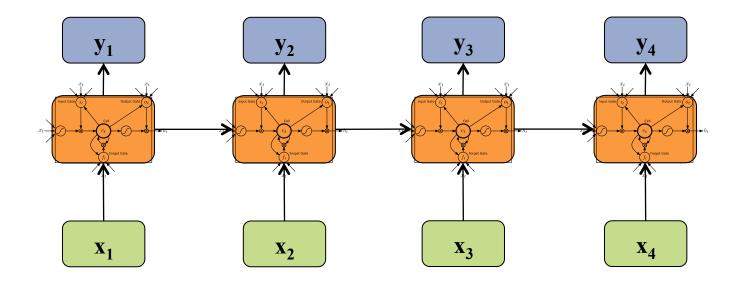
$$i_{t} = \sigma (W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_{i})$$

$$f_{t} = \sigma (W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_{f})$$

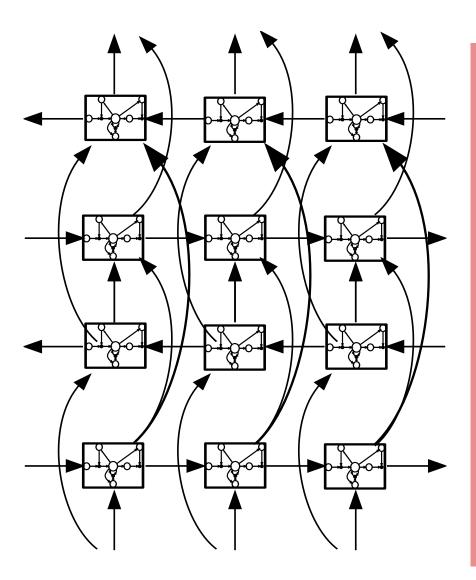
$$c_{t} = f_{t}c_{t-1} + i_{t} \tanh (W_{xc}x_{t} + W_{hc}h_{t-1} + b_{c})$$

$$o_{t} = \sigma (W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_{t} + b_{o})$$

$$h_{t} = o_{t} \tanh(c_{t})$$

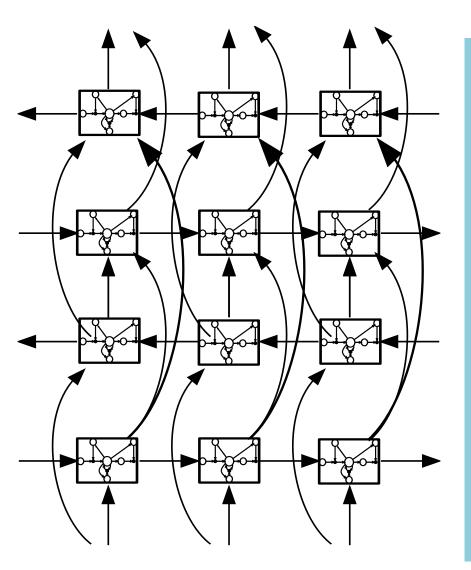


Deep Bidirectional LSTM (DBLSTM)



- Figure: input/output layers not shown
- Same general topology as a Deep Bidirectional RNN, but with LSTM units in the hidden layers
- No additional representational power over DBRNN, but easier to learn in practice

Deep Bidirectional LSTM (DBLSTM)



How important is this particular architecture?

Jozefowicz et al. (2015)
evaluated 10,000
different LSTM-like
architectures and
found several variants
that worked just as
well on several tasks.

Summary

CNNs

- Are used for all aspects of computer vision, and have won numerous pattern recognition competitions
- Able learn interpretable features at different levels of abstraction
- Typically, consist of convolution layers, pooling layers, nonlinearities, and fully connected layers

RNNs

- Applicable to tasks such as sequence labeling, speech recognition, machine translation, etc.
- Able to learn context features for time series data
- Vanishing gradients are still a problem but LSTM units can help

Tutorials

- LSTMs
 - Christopher Olah's blog
 - http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- Convolutional Neural Networks
 - Andrej Karpathy, CS231n Notes
 - http://cs231n.github.io/convolutional-networks/