

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

(Multinomial) Logistic Regression

Feature Engineering

Matt Gormley Lecture 9 Feb. 14, 2018

Reminders

- Homework 3: KNN, Perceptron, Lin.Reg.
 - Out: Wed, Feb 7
 - Due: Wed, Feb 14 at 11:59pm
- Homework 4: Logistic Regression
 - Out: Wed, Feb 14
 - Due: Fri, Feb 23 at 11:59pm

MULTINOMIAL LOGISTIC REGRESSION

Multinomial Logistic Regression

Chalkboard

- Background: Multinomial distribution
- Definition: Multi-class classification
- Geometric intuitions
- Multinomial logistic regression model
- Generative story
- Reduction to binary logistic regression
- Partial derivatives and gradients
- Applying Gradient Descent and SGD
- Implementation w/ sparse features

Debug that Program!

In-Class Exercise: Think-Pair-Share

Debug the following program which is (incorrectly) attempting to run SGD for multinomial logistic regression

Buggy Program:

```
while not converged:
for i in shuffle([1,...,N]):
  for k in [1,...,K]:
     theta[k] = theta[k] - lambda * grad(x[i], y[i], theta, k)
```

Assume: grad(x[i], y[i], theta, k) returns the gradient of the negative log-likelihood of the training example (x[i],y[i]) with respect to vector theta [k]. lambda is the learning rate. N = # of examples. K = # of output classes. M = # of features. theta is a K by M matrix.

Debug that Program!

In-Class Exercise: Think-Pair-Share

Debug the following program which is (incorrectly) attempting to run SGD for multinomial logistic regression

Buggy Program:

```
while not converged:
 for i in shuffle([1,...,N]):
     for k in [1,...,K]:
         for m in [1,..., M]:
             theta[k,m] = theta[k,m] + lambda * grad(x[i], y[i], theta, k,m)
```

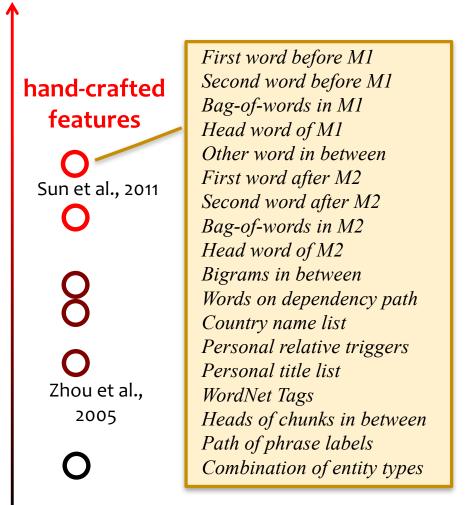
Assume: grad(x[i], y[i], theta, k, m) returns the partial derivative of the negative log-likelihood of the training example (x[i],y[i]) with respect to theta[k,m]. lambda is the learning rate. N = # of examples. K = # of output classes. M = # of features. theta is a K by M matrix.

FEATURE ENGINEERING

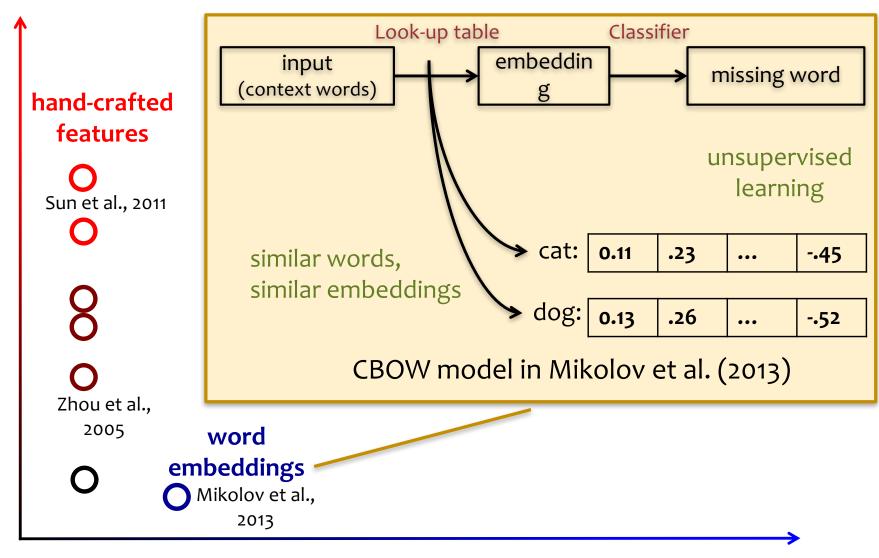
Handcrafted Features



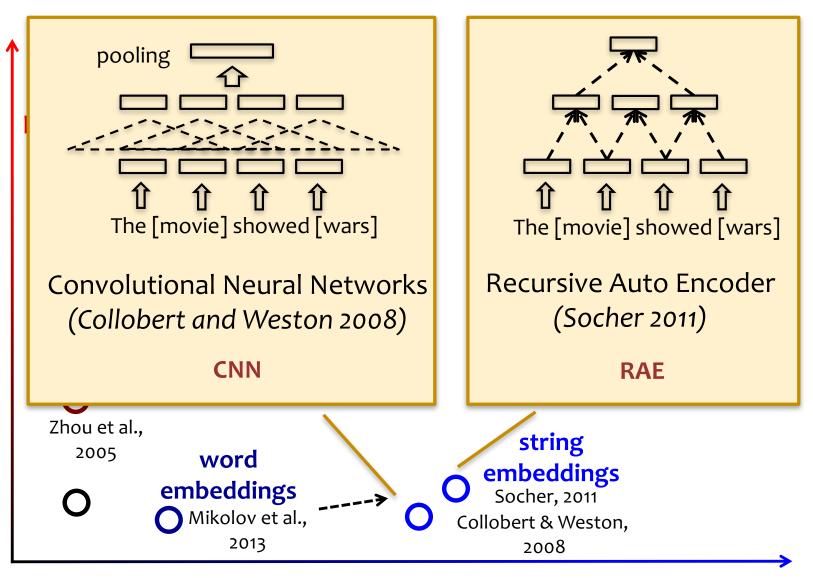
Feature Engineering



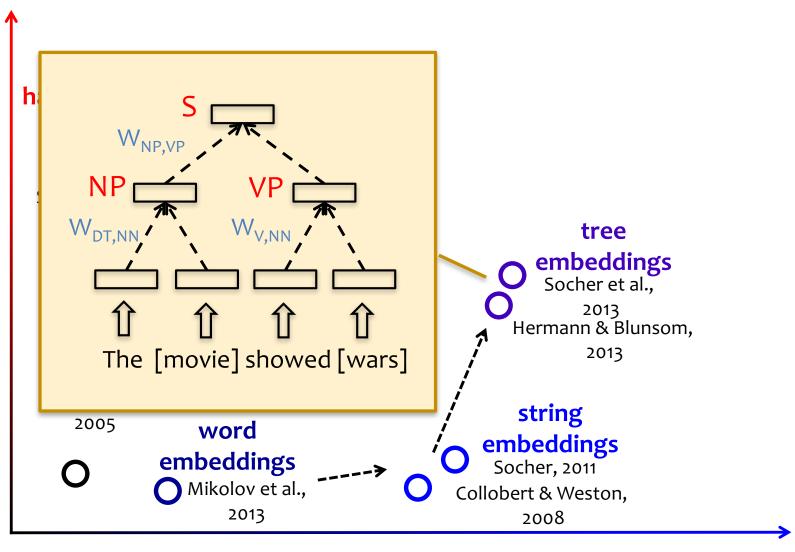
Feature Engineering



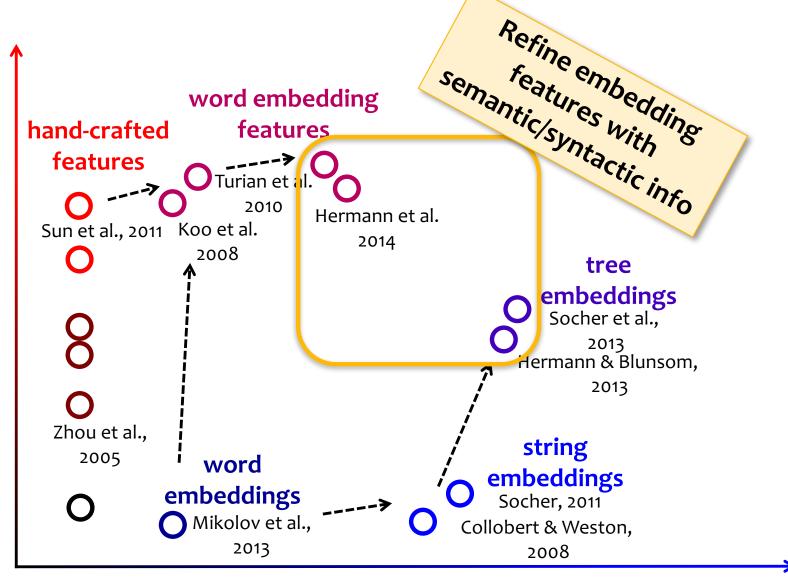
Feature Learning



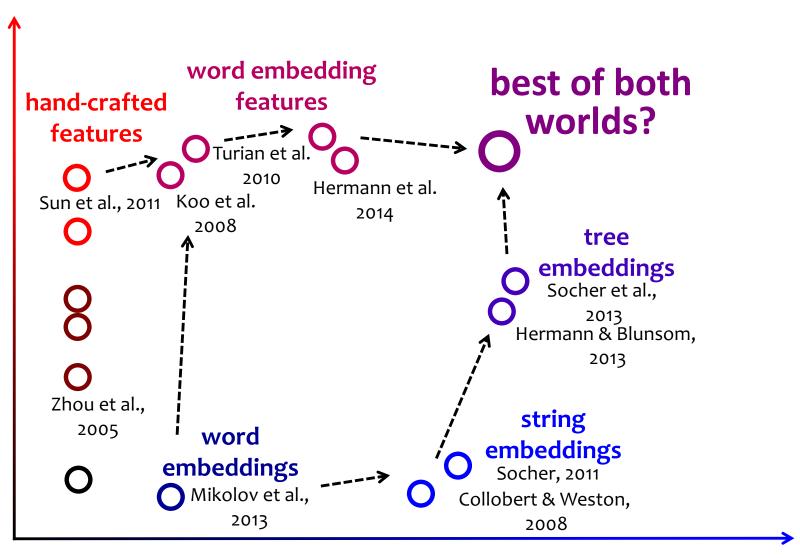
Feature Learning



Feature Learning



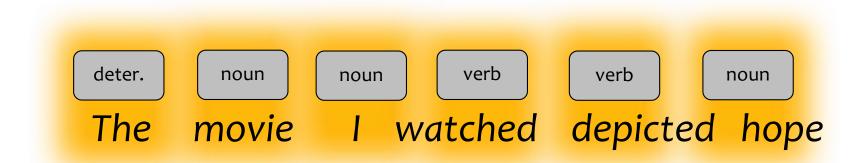
Feature Learning



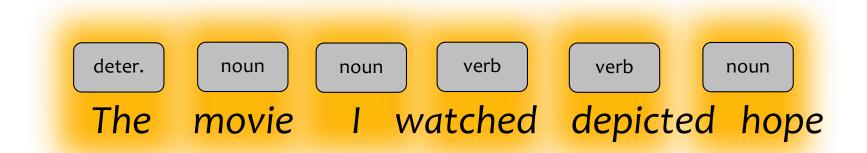
Feature Learning

Suppose you build a logistic regression model to predict a part-of-speech (POS) tag for each word in a sentence.

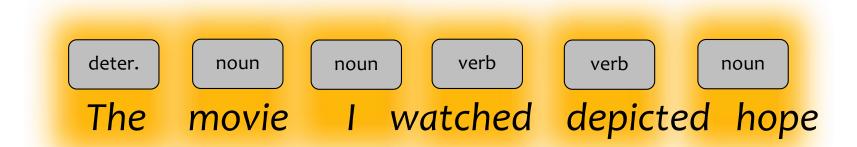
What features should you use?



Per-word Features:



Context Features:



Context Features:

... $w_{i} == "I"$ $w_{i+1} == "I"$ $w_{i-1} == "I"$ $w_{i+2} == "I"$ $w_{i-2} == "I"$

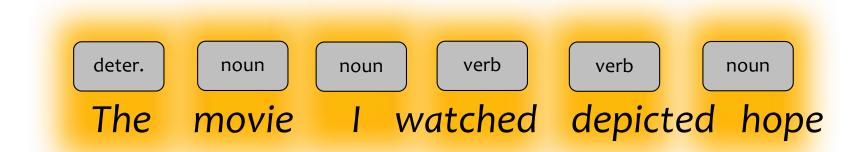
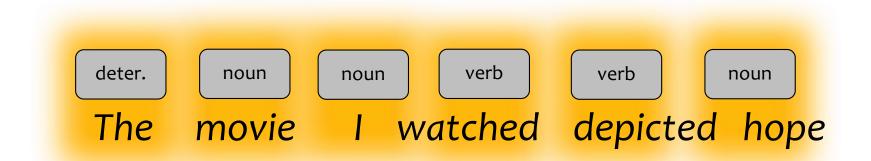


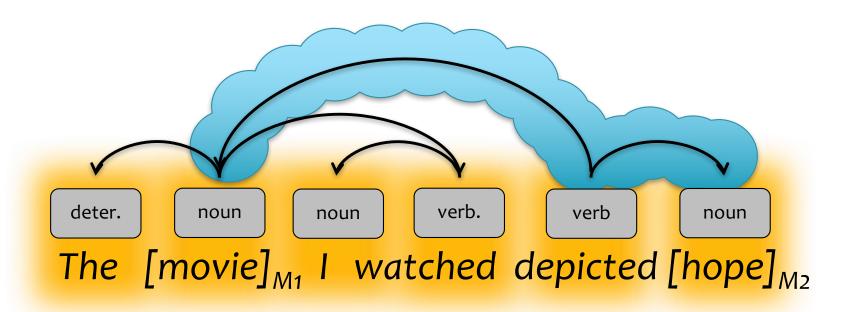
Table 3. Tagging accuracies with different feature templates and other changes on the WSJ 19-21 development set.

Model	Feature Templates	#	Sent.	Token	Unk.
		Feats	Acc.	Acc.	Acc.
3GRAMMEMM	See text	248,798	52.07%	96.92%	88.99%
NAACL 2003	See text and [1]	$460,\!552$	55.31%	97.15%	88.61%
Replication	See text and [1]	$460,\!551$	55.62%	97.18%	88.92%
Replication'	+rareFeatureThresh = 5	$482,\!364$	55.67%	97.19%	88.96%
$5 \mathrm{W}$	$+\langle t_0, w_{-2}\rangle, \langle t_0, w_2\rangle$	730,178	56.23%	97.20%	89.03%
5wShapes	$+\langle t_0, s_{-1}\rangle, \langle t_0, s_0\rangle, \langle t_0, s_{+1}\rangle$	731,661	56.52%	97.25%	89.81%
5wShapesDS	+ distributional similarity	737,955	56.79%	97.28%	90.46%

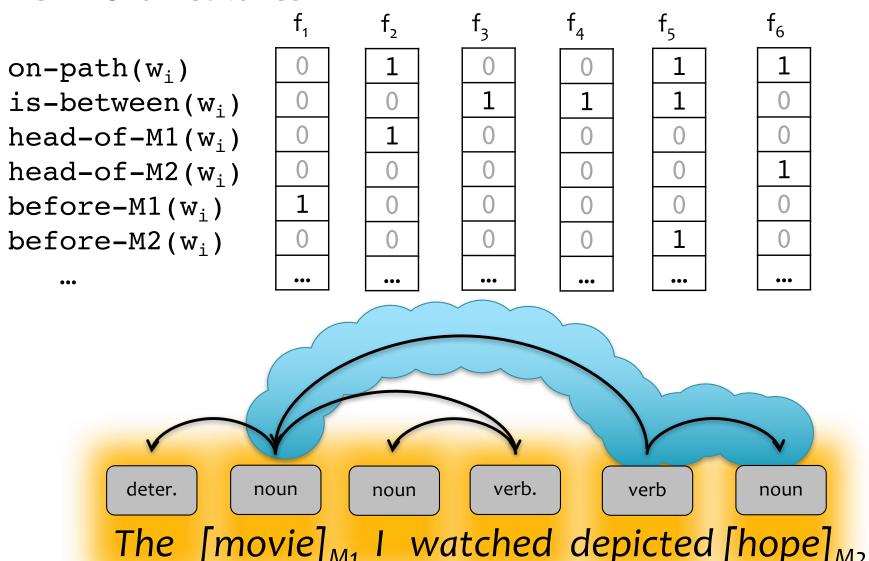


Suppose you want to predict whether the word is the root (i.e. predicate) of the sentence.

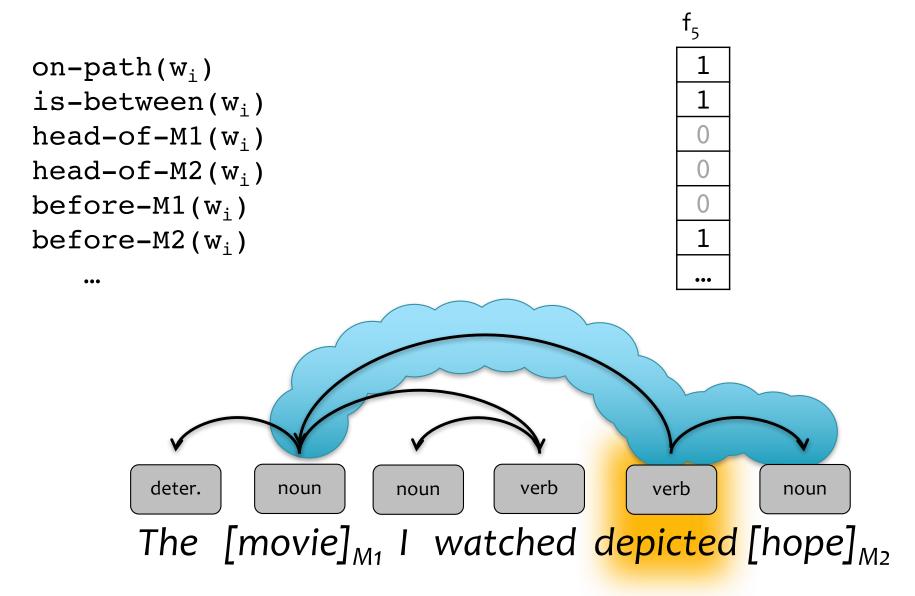
What features should you use?



Per-word Features:

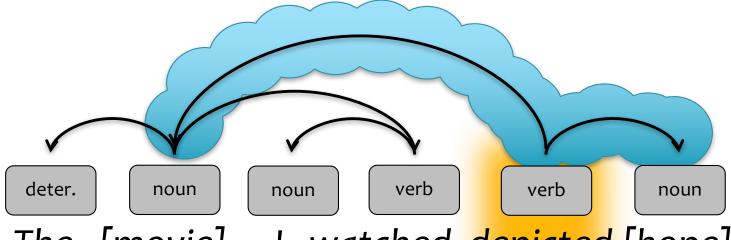


Per-word Features:



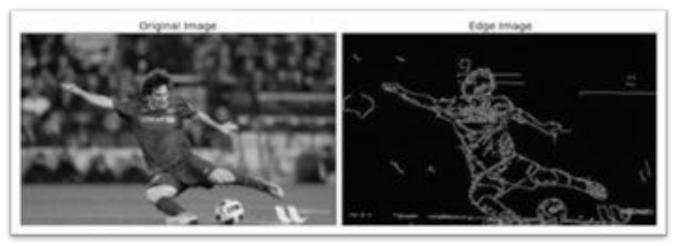
Per-word Features: (with conjunction)

```
on-path(w_i) && w_i== "depicted" is-between(w_i) && w_i== "depicted" head-of-M1(w_i) && w_i== "depicted" head-of-M2(w_i) && w_i== "depicted" before-M1(w_i) && w_i== "depicted" before-M1(w_i) && w_i== "depicted"
```



The $[movie]_{M_1}$ I watched depicted $[hope]_{M_2}$

Edge detection (Canny)



Corner Detection (Harris)

Scale Invariant Feature Transform (SIFT)

