

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Logistic Regression

Matt Gormley Lecture 8 Feb. 12, 2018

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Logistic Regression Probabilistic Learning

Matt Gormley Lecture 8 Feb. 12, 2018

Reminders

- Homework 3: KNN, Perceptron, Lin.Reg.
 - Out: Wed, Feb 7
 - Due: Wed, Feb 14 at 11:59pm

STOCHASTIC GRADIENT DESCENT

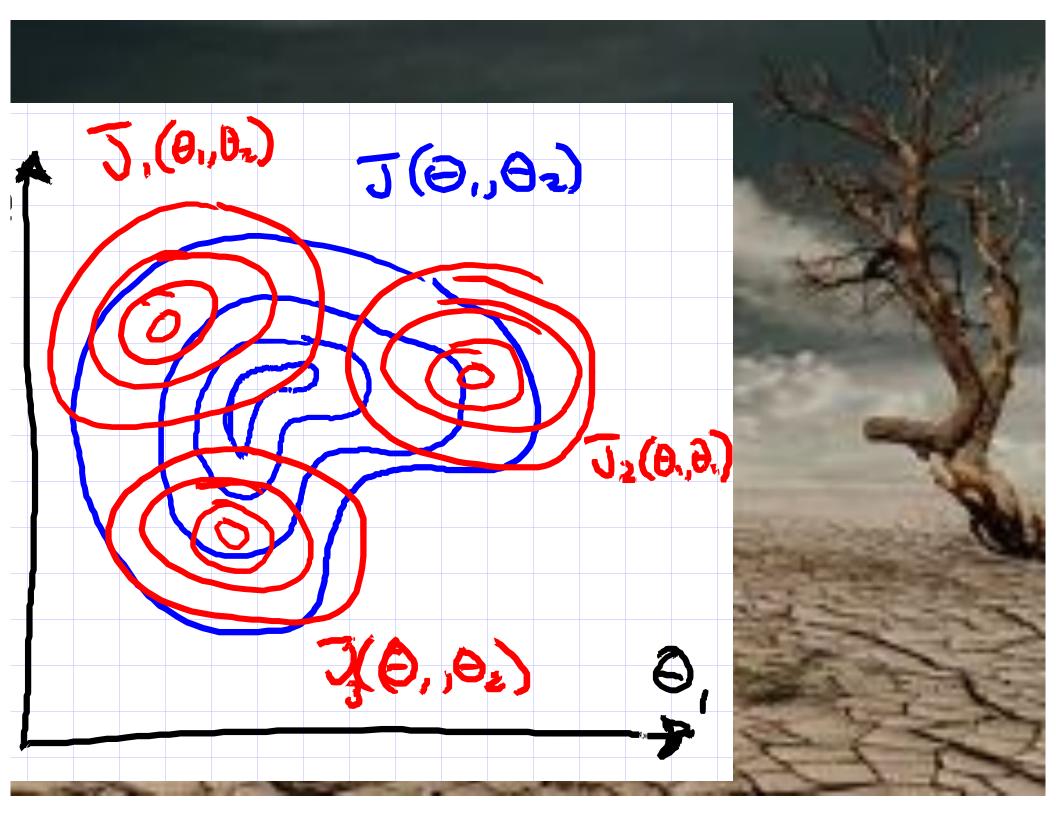
Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

```
1: procedure SGD(\mathcal{D}, \boldsymbol{\theta}^{(0)})
2: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}
3: while not converged do
4: for i \in \text{shuffle}(\{1, 2, \dots, N\}) do
5: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})
6: return \boldsymbol{\theta}
```

We need a per-example objective:

Let
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$



Expectations of Gradients

$$\frac{JJ(\vec{\theta})}{J(\vec{\theta})} = \frac{J}{J(\vec{\theta})} = \frac{J}$$

Recall: for any discrete r.v.
$$X$$

$$E_{X}[f(x)] \triangleq P(X=x)f(x)$$

Qibbat is the expectal value of a randomly chosen
$$\nabla J_i(\Theta)$$
?

Let $I \sim U_{ni} Sorm(\{1, ..., N\})$

$$\Rightarrow P(I=i) = \frac{1}{N} \text{ if } ie\{1, ..., N\}$$

$$E_I[\nabla J_I(\Theta)] = \bigotimes_{i=1}^{N} P(I=i) \nabla J_i(\Theta)$$

$$= \underbrace{V_J(\Theta)}_{N} \nabla J_i(\Theta)$$

$$= \nabla J(\Theta)$$

Convergence of Optimizers

Ca	onversence Analys	<i>i</i> }:	tre volemen union
	Def:	conveyence is when J(B)	-J(6*) < E
No verce	Methods	Steps to Converge	Composition per iteration
	Newlor's Method	O(lala/e) O(la/6)	7J(0) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	SED	O(lu 1/6)	$\nabla \mathcal{J}(\Theta) \leftarrow \mathcal{O}(NM)$
		0(1/6)	$\nabla J_{\tilde{c}}(\Theta) \leftarrow O(M)$
		"almost sure" lots ef caveats	Lory less make
	<u> </u>	· SET I	Jak h
	ahean	y: SGD has well sk but is often faster	1) Octor

Optimization Objectives

You should be able to...

- Apply gradient descent to optimize a function
- Apply stochastic gradient descent (SGD) to optimize a function
- Apply knowledge of zero derivatives to identify a closed-form solution (if one exists) to an optimization problem
- Distinguish between convex, concave, and nonconvex functions
- Obtain the gradient (and Hessian) of a (twice) differentiable function

Linear Regression Objectives

You should be able to...

- Design k-NN Regression and Decision Tree Regression
- Implement learning for Linear Regression using three optimization techniques: (1) closed form, (2) gradient descent, (3) stochastic gradient descent
- Choose a Linear Regression optimization technique that is appropriate for a particular dataset by analyzing the tradeoff of computational complexity vs. convergence speed
- Distinguish the three sources of error identified by the bias-variance decomposition: bias, variance, and irreducible error.

PROBABILISTIC LEARNING

Probabilistic Learning

Function Approximation

Previously, we assumed that our output was generated using a deterministic target function:

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$

$$y^{(i)} = c^*(\mathbf{x}^{(i)})$$

Our goal was to learn a hypothesis h(x) that best approximates c*(x)

Probabilistic Learning

Today, we assume that our output is **sampled** from a conditional **probability distribution**:

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$

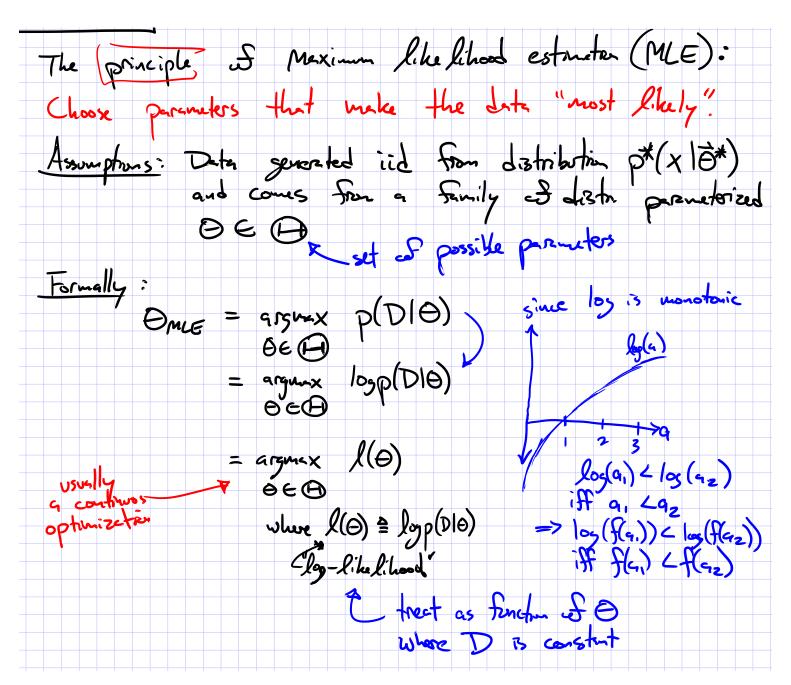
$$y^{(i)} \sim p^*(\cdot|\mathbf{x}^{(i)})$$

Our goal is to learn a probability distribution p(y|x) that best approximates $p^*(y|x)$

Robotic Farming

	Deterministic	Probabilistic
Classification (binary output)	Is this a picture of a wheat kernel?	Is this plant drought resistant?
Regression (continuous output)	How many wheat kernels are in this picture?	What will the yield of this plant be?

Maximum Likelihood Estimation



Learning from Data (Frequentist)

Whiteboard

- Principle of Maximum Likelihood Estimation (MLE)
- Strawmen:
 - Example: Bernoulli
 - Example: Gaussian
 - Example: Conditional #1
 (Bernoulli conditioned on Gaussian)
 - Example: Conditional #2
 (Gaussians conditioned on Bernoulli)

Outline

Motivation:

- Choosing the right classifier
- Example: Image Classification

Logistic Regression

- Background: Hyperplanes
- Data, Model, Learning, Prediction
- Log-odds
- Bernoulli interpretation
- Maximum Conditional Likelihood Estimation

Gradient descent for Logistic Regression

- Stochastic Gradient Descent (SGD)
- Computing the gradient
- Details (learning rate, finite differences)

MOTIVATION: LOGISTIC REGRESSION

Example: Image Classification

- ImageNet LSVRC-2010 contest:
 - Dataset: 1.2 million labeled images, 1000 classes
 - Task: Given a new image, label it with the correct class
 - Multiclass classification problem
- Examples from http://image-net.org/

HE MARKET THE TAXABLE PROPERTY.

Rind

Harm bloomed aggraphing variablesma characterized by Nachena and Exelectic residied as using

2125

22.00

- Parties primed, Reprint treatment, and primed, was chapter (71)
(manager (1)
- Inpet (It)
- prelatio pendetny serva ITT.
Service (Art)
andert (III
New St.
A44100
(Personal Editor)
1. Salicata, Usulishbita, washed (k)
- material residence (3)
- senious, curios (3075)
Harris, Perriase (1192)
+ 164 (1851)
STANDER, STANDARD, SOUTHER, STANDARD STANDARD
+ mail (2)
L April (II)
- www.do
1 mgm that (2)
and of passage (it)
printe (II)
Anhanquirys, anhaupings, Anhananaya Integraph
\$100 (C)
Sero resorte (II)
echeins (i):
- retries, retries bend, Rightman (end (743) -
Comments, Comments for the Spring State (19)
passerie, passerbrie sant (27%)
Torigonapolina (Ind. (III)
- and of proj. Imploor, Imploorance (AR)

=

些

HERE MISSESS R. LAUR P. R. SHOOL

German iris, Iris kochii

yes of northern thely having less blue purels freezes strette to but smaller than the perhantal

THE REAL PROPERTY.

Court, courtyard

All arise wholly or partly burnished to walk of buildings, "this hause are built around an inner count"

165

\$2.61N

III Bullion, in American Discholar of spendar in Occadional I

Competers 2011 Pad National (SYSTED)

- provide Nova, provide Na LANSES
- pertupos formatios, formation (175);
 - retire disel (2.115)
- 5 sport, whires 1576):
- within white cities.
- I removement instrumental (2484)

Walter, commission (1905)

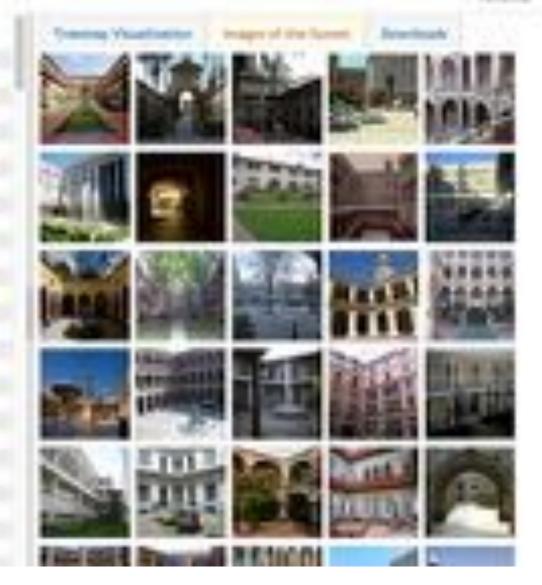
- I selected, harton, report after (2)
- when the
- grade, printered (3)
- 445-011

--

- Acres 17.5
- desiration (C)
- Regulate them (5)
- -- Dow 170
- tron/or ero treation rost (III
- TARGET CO.
- directi, sentures, term (5)
- VMAP (55
- server, more (II)

SHAPE, DISAPPEARED BY

- minimum (1)
- Nodes (Str.
- DOMENT CELL
- (Red H44)(0)
- Johnson, III
- manage first



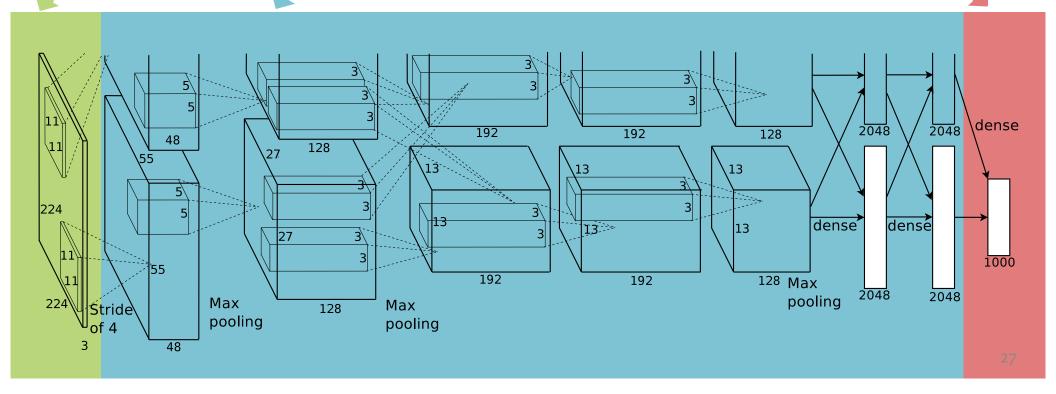
Example: Image Classification

CNN for Image Classification (Krizhevsky, Sutskever & Hinton, 2011) 17.5% error on ImageNet LSVRC-2010 contest

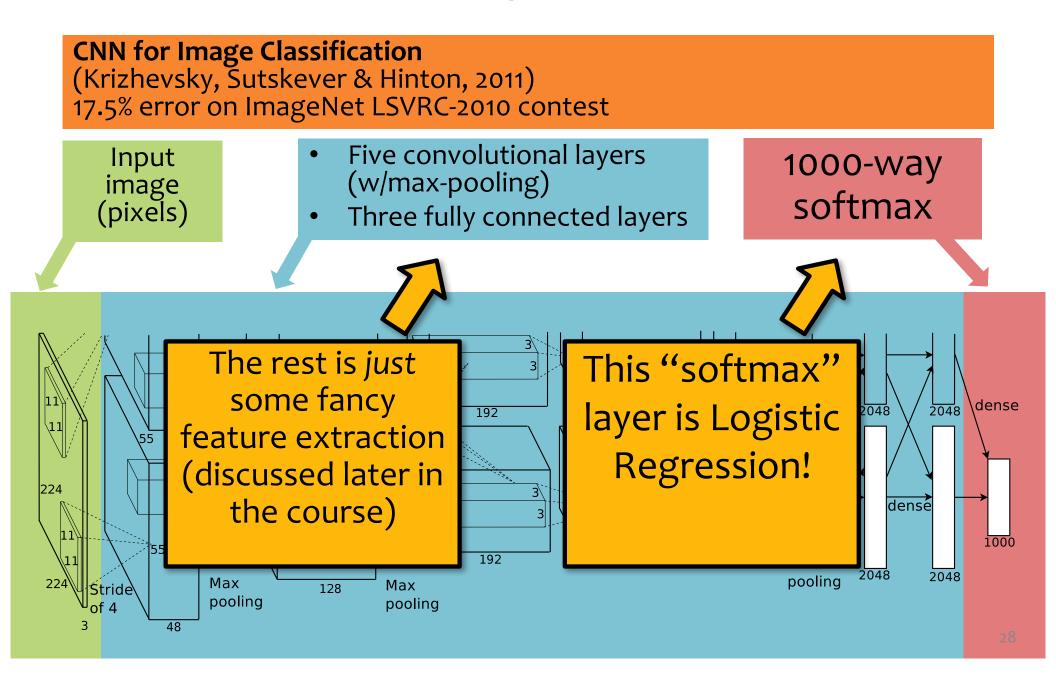
Input image (pixels)

- Five convolutional layers (w/max-pooling)
- Three fully connected layers

1000-way softmax



Example: Image Classification



LOGISTIC REGRESSION

Data: Inputs are continuous vectors of length K. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$$
 where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \{0, 1\}$

We are back to classification.

Despite the name logistic regression.

Linear Models for Classification

Key idea: Try to learn this hyperplane directly

Looking ahead:

- We'll see a number of commonly used Linear Classifiers
- These include:
 - Perceptron
 - Logistic Regression
 - Naïve Bayes (under certain conditions)
 - Support Vector Machines

Directly modeling the hyperplane would use a decision function:

$$h(\mathbf{x}) = \mathsf{sign}(\boldsymbol{\theta}^T \mathbf{x})$$

for:

$$y \in \{-1, +1\}$$

Background: Hyperplanes

Notation Trick: fold the bias b and the weights w into a single vector $\boldsymbol{\theta}$ by prepending a constant to x and increasing dimensionality by one!

Hyperplane (Definition 1):

$$\mathcal{H} = \{\mathbf{x} : \mathbf{w}^T \mathbf{x} = b\}$$

Hyperplane (Definition 2):

$$\mathcal{H} = \{ \mathbf{x} : \boldsymbol{\theta}^T \mathbf{x} = 0 \}$$

$$\boldsymbol{\theta} = [b, w_1, \dots, w_M]^T$$

Half-spaces:

$$\mathcal{H}^+ = \{\mathbf{x} : \boldsymbol{\theta}^T \mathbf{x} > 0 \text{ and } x_0 = 1\}$$

$$\mathcal{H}^- = \{\mathbf{x} : \boldsymbol{\theta}^T \mathbf{x} < 0 \text{ and } x_0 = 1\}$$

Using gradient ascent for linear classifiers

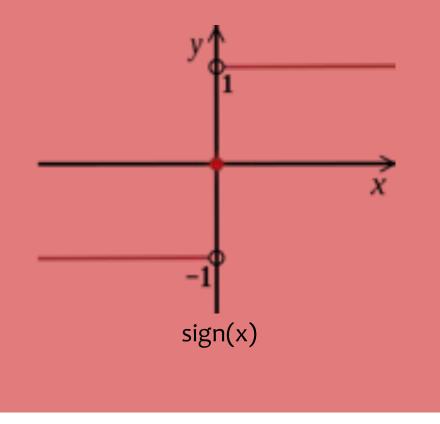
Key idea behind today's lecture:

- 1. Define a linear classifier (logistic regression)
- 2. Define an objective function (likelihood)
- Optimize it with gradient descent to learn parameters
- 4. Predict the class with highest probability under the model

Using gradient ascent for linear classifiers

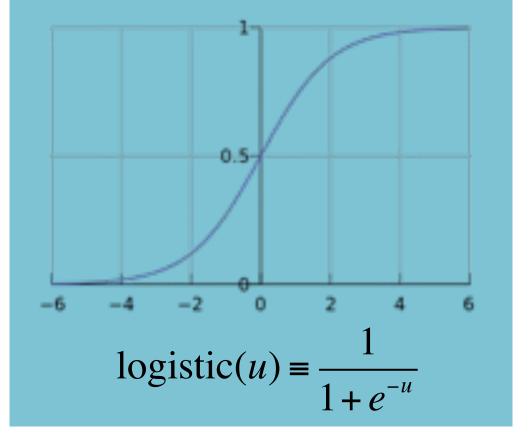
This decision function isn't differentiable:

$$h(\mathbf{x}) = \mathsf{sign}(\boldsymbol{\theta}^T \mathbf{x})$$



Use a differentiable function instead:

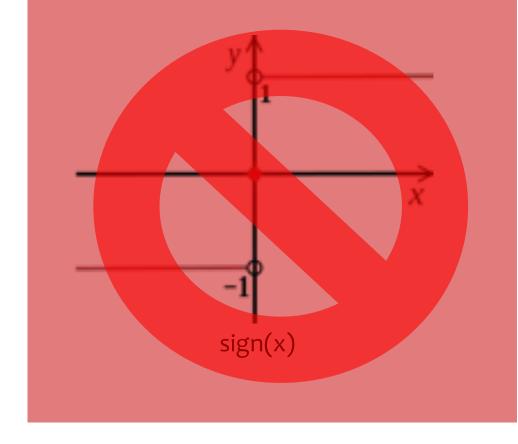
$$p_{\theta}(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$



Using gradient ascent for linear classifiers

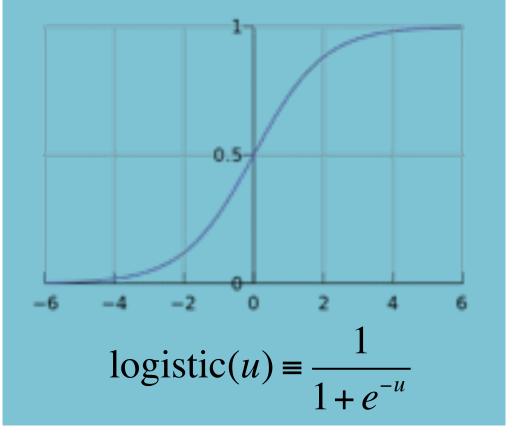
This decision function isn't differentiable:

$$h(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$$



Use a differentiable function instead:

$$p_{\theta}(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$



Data: Inputs are continuous vectors of length K. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$$
 where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \{0, 1\}$

Model: Logistic function applied to dot product of parameters with input vector.

$$p_{\boldsymbol{\theta}}(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$

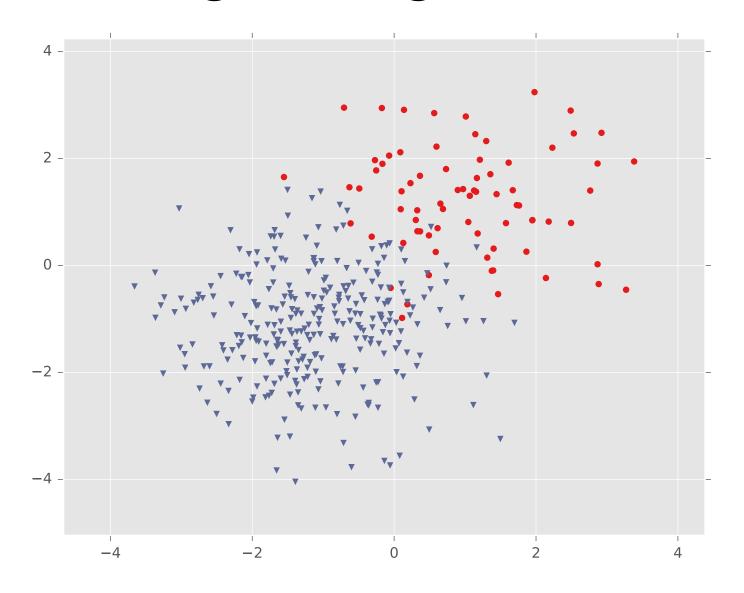
Learning: finds the parameters that minimize some objective function. ${m heta}^* = rgmin J({m heta})$

Prediction: Output is the most probable class.

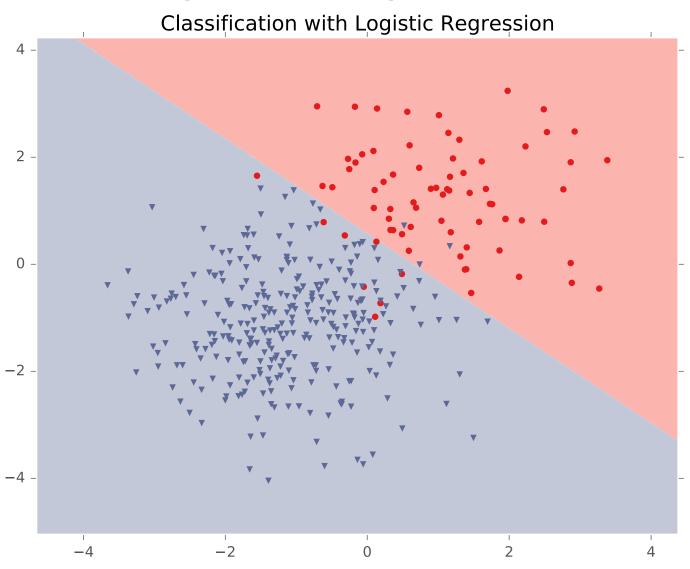
$$\hat{y} = \underset{y \in \{0,1\}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(y|\mathbf{x})$$

Whiteboard

- Bernoulli interpretation
- Logistic Regression Model
- Decision boundary







LEARNING LOGISTIC REGRESSION

Maximum **Conditional**Likelihood Estimation

Learning: finds the parameters that minimize some objective function.

$$\boldsymbol{\theta}^* = \operatorname*{argmin} J(\boldsymbol{\theta})$$

We minimize the negative log conditional likelihood:

$$J(\boldsymbol{\theta}) = -\log \prod_{i=1}^{N} p_{\boldsymbol{\theta}}(y^{(i)}|\mathbf{x}^{(i)})$$

Why?

- 1. We can't maximize likelihood (as in Naïve Bayes) because we don't have a joint model p(x,y)
- 2. It worked well for Linear Regression (least squares is MCLE)

Maximum **Conditional**Likelihood Estimation

Learning: Four approaches to solving $\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta)$

Approach 1: Gradient Descent (take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD) (take many small steps opposite the gradient)

Approach 3: Newton's Method (use second derivatives to better follow curvature)

Approach 4: Closed Form??? (set derivatives equal to zero and solve for parameters)

Maximum **Conditional** Likelihood Estimation

Learning: Four approaches to solving $\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta)$

Approach 1: Gradient Descent (take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD) (take many small steps opposite the gradient)

Approach 3: Newton's Method (use second derivatives to better follow curvature)

(set derivatives equal to zero and solve for parameters)

Logistic Regression does not have a closed form solution for MLE parameters.

Gradient Descent

Algorithm 1 Gradient Descent

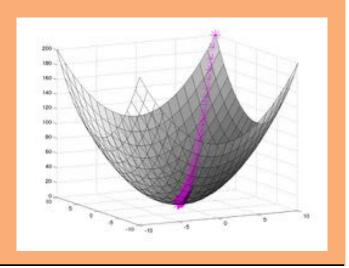
1: **procedure** $GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$

2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$

3: while not converged do

4: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

5: return θ

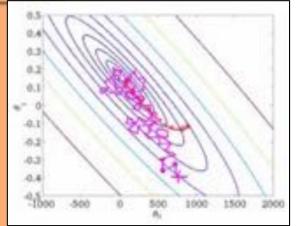


In order to apply GD to Logistic Regression all we need is the **gradient** of the objective function (i.e. vector of partial derivatives).

Stochastic Gradient Descent (SGD)

Algorithm 1 Stochastic Gradient Descent (SGD)

```
1: procedure SGD(\mathcal{D}, \theta^{(0)})
2: \theta \leftarrow \theta^{(0)}
3: while not converged do
4: for i \in \text{shuffle}(\{1, 2, ..., N\}) do
5: \theta \leftarrow \theta - \lambda \nabla_{\theta} J^{(i)}(\theta)
6: return \theta
```



We can also apply SGD to solve the MCLE problem for Logistic Regression.

We need a per-example objective:

Let
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$
 where $J^{(i)}(\boldsymbol{\theta}) = -\log p_{\boldsymbol{\theta}}(y^i|\mathbf{x}^i)$.

GRADIENT FOR LOGISTIC REGRESSION

Learning for Logistic Regression

Whiteboard

- Partial derivative for Logistic Regression
- Gradient for Logistic Regression

Details: Picking learning rate

- Use grid-search in log-space over small values on a tuning set:
 - e.g., 0.01, 0.001, ...
- Sometimes, decrease after each pass:
 - e.g factor of 1/(1 + dt), t=epoch
 - sometimes $1/t^2$
- Fancier techniques I won't talk about:
 - Adaptive gradient: scale gradient differently for each dimension (Adagrad, ADAM,)

SGD for Logistic Regression

```
Algorithm 1 SGD for Logistic Regression

1: procedure SGD(\mathcal{D}, \theta^{(0)})

2: \theta \leftarrow \theta^{(0)}

3: while not converged do

4: for i \in \text{shuffle}(\{1, 2, \dots, N\}) do

5: \theta \leftarrow \theta - \lambda(y^{(i)} - \rho^{(i)})\mathbf{x}^{(i)}

6: where \rho^{(i)} := 1/(1 + \exp(-\theta^T \mathbf{x}))

7: return \theta
```

We can also apply SGD to solve the MCLE problem for Logistic Regression.

We need a per-example objective:

Let
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$
 where $J^{(i)}(\boldsymbol{\theta}) = -\log p_{\boldsymbol{\theta}}(y^i|\mathbf{x}^i)$.

Summary

- 1. Discriminative classifiers directly model the conditional, p(y|x)
- Logistic regression is a simple linear classifier, that retains a probabilistic semantics
- Parameters in LR are learned by iterative optimization (e.g. SGD)

Probabilistic Interpretation of Linear Regression

Whiteboard

- Conditional Likelihood
- Case #1: 1D Linear Regression
- Case #2: Multiple Linear Regression
- Equivalence: Predictions
- Equivalence: Learning