

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Optimization for ML

Matt Gormley Lecture 7 Feb. 7, 2018

Reminders

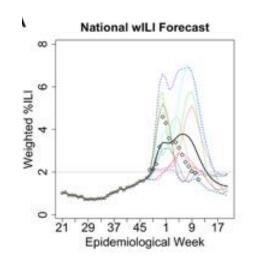
- Homework 3: KNN, Perceptron, Lin.Reg.
 - Out: Wed, Feb 7
 - Due: Wed, Feb 14 at 11:59pm

OPTIMIZATION FOR LINEAR REGRESSION

Regression

Example Applications:

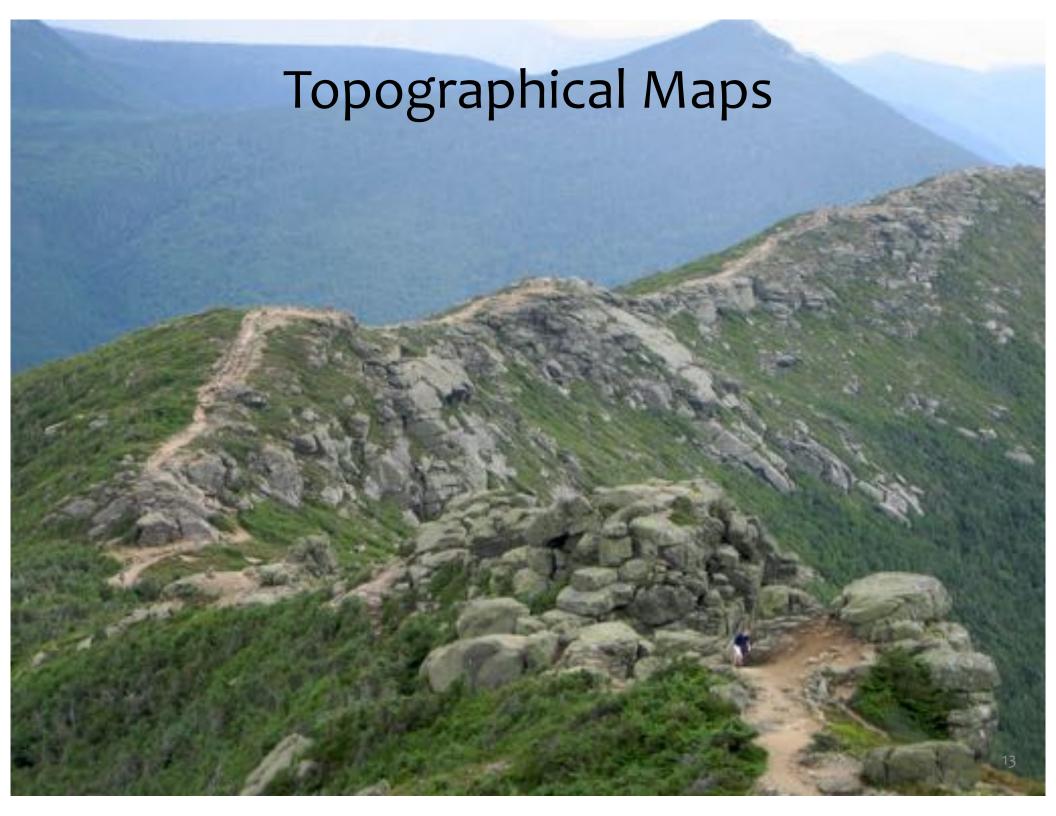
- Stock price prediction
- Forecasting epidemics
- Speech synthesis
- Generation of images (e.g. Deep Dream)
- Predicting the number of tourists on Machu Picchu on a given day



Optimization for Linear Regression

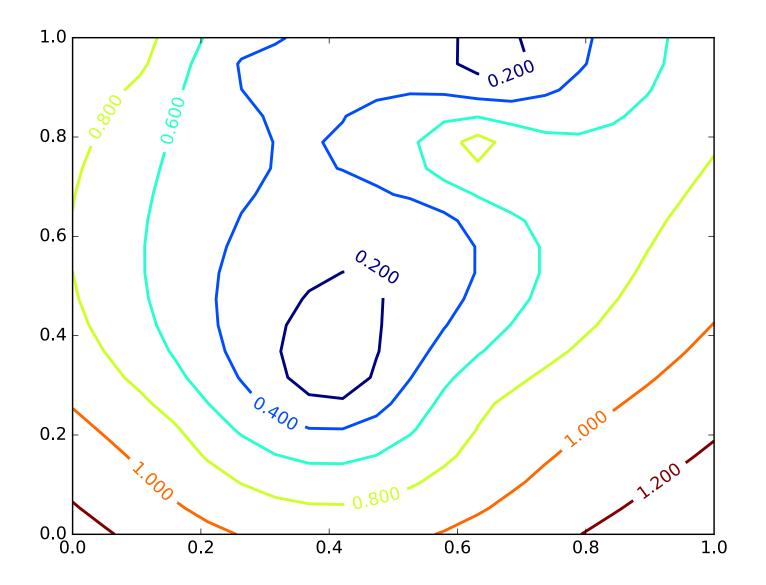
Whiteboard

- Closed-form (Normal Equations)
 - Computational complexity
 - Stability
- Gradient Descent for Linear Regression

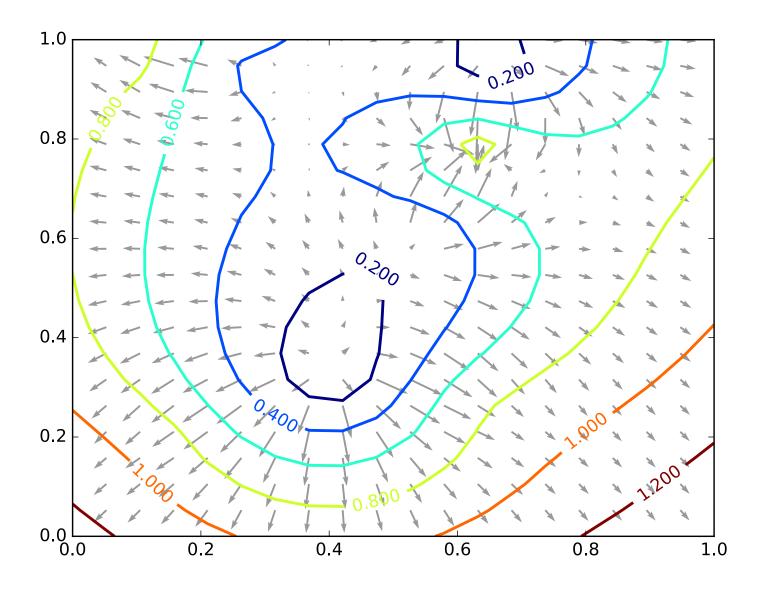


Topographical Maps

Gradients

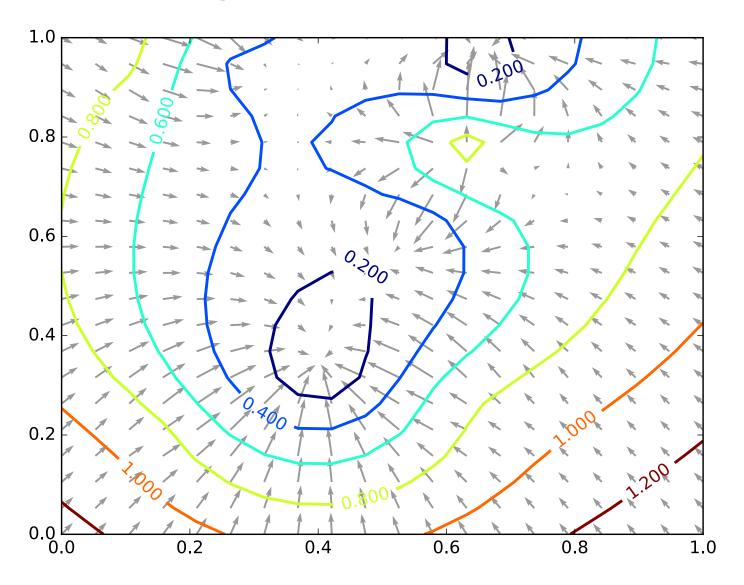


Gradients



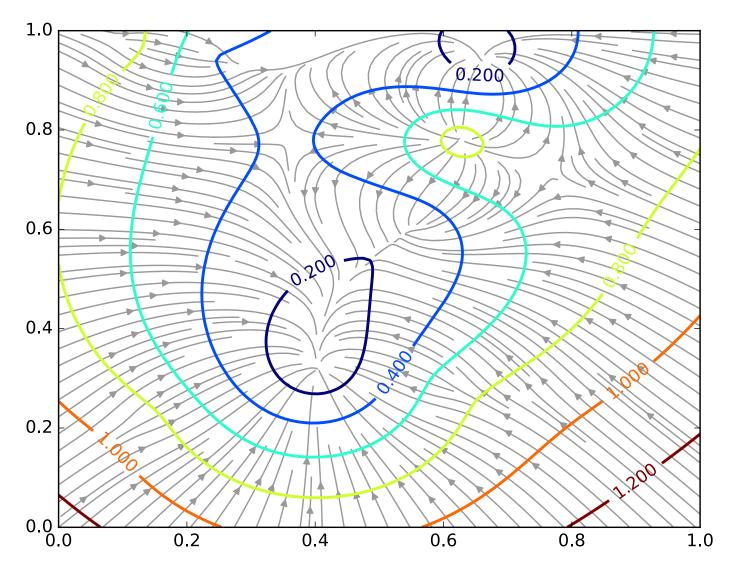
These are the **gradients** that Gradient **Ascent** would follow.

(Negative) Gradients



These are the **negative** gradients that Gradient **Descent** would follow.

(Negative) Gradient Paths



Shown are the **paths** that Gradient Descent would follow if it were making **infinitesimally small steps**.

Gradient Descent

Algorithm 1 Gradient Descent

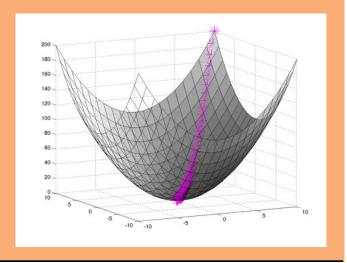
1: **procedure** $GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$

2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$

3: while not converged do

4: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

5: return θ



In order to apply GD to Linear Regression all we need is the gradient of the objective function (i.e. vector of partial derivatives).

$$abla_{m{ heta}} J(m{ heta}) = egin{bmatrix} rac{d}{d} J(m{ heta}) \ rac{d}{d} J(m{ heta}) \ rac{d}{d} J(m{ heta}) \end{bmatrix}$$

Gradient Descent

Algorithm 1 Gradient Descent

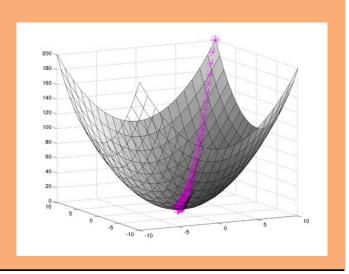
1: **procedure** $GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$

2:
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$$

3: while not converged do

4:
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

5: return θ



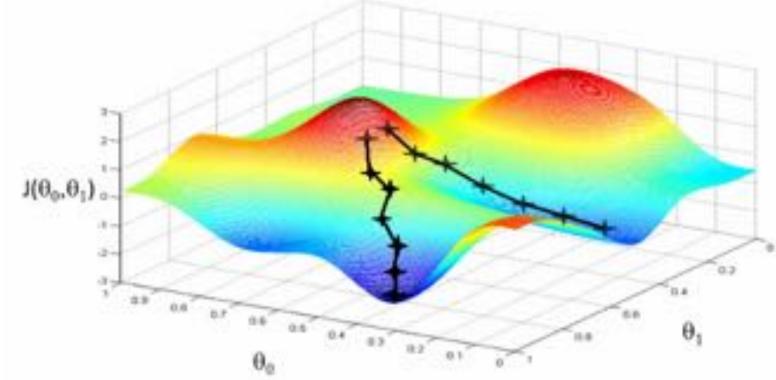
There are many possible ways to detect **convergence**. For example, we could check whether the L2 norm of the gradient is below some small tolerance.

$$||\nabla_{\boldsymbol{\theta}}J(\boldsymbol{\theta})||_2 \leq \epsilon$$

Alternatively we could check that the reduction in the objective function from one iteration to the next is small.

Pros and cons of gradient descent

- Simple and often quite effective on ML tasks
- Often very scalable
- Only applies to smooth functions (differentiable)
- Might find a local minimum, rather than a global one



Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

```
1: procedure SGD(\mathcal{D}, \boldsymbol{\theta}^{(0)})
2: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}
3: while not converged do
4: for i \in \text{shuffle}(\{1, 2, \dots, N\}) do
5: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})
6: return \boldsymbol{\theta}
```

We need a per-example objective:

Let
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

```
1: procedure SGD(\mathcal{D}, \boldsymbol{\theta}^{(0)})
2: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}
3: while not converged do
4: for i \in \text{shuffle}(\{1, 2, \dots, N\}) do
5: \boldsymbol{\theta}_k \leftarrow \boldsymbol{\theta}_k - \lambda \frac{d}{d\boldsymbol{\theta}_k} J^{(i)}(\boldsymbol{\theta})
7: return \boldsymbol{\theta}
```

We need a per-example objective:

Let
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

Stochastic Gradient Descent (SGD)

Whiteboard

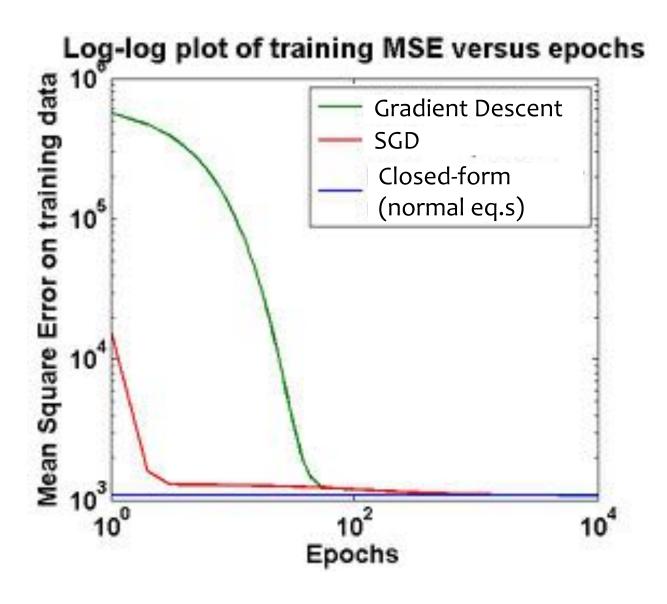
- Expectations of gradients
- Algorithm
- Mini-batches
- Details: mini-batches, step size, stopping criterion
- Problematic cases for SGD

Convergence

Whiteboard

- Comparison of Newton's method, Gradient Descent, SGD
- Asymptotic convergence
- Convergence in practice

Convergence Curves



- Def: an epoch is a single pass through the training data
- For GD, only one update per epoch
- For SGD, N updates
 per epoch
 N = (# train examples)
- SGD reduces MSE much more rapidly than GD
- For GD / SGD, training MSE is initially large due to uninformed initialization

Optimization Objectives

You should be able to...

- Apply gradient descent to optimize a function
- Apply stochastic gradient descent (SGD) to optimize a function
- Apply knowledge of zero derivatives to identify a closed-form solution (if one exists) to an optimization problem
- Distinguish between convex, concave, and nonconvex functions
- Obtain the gradient (and Hessian) of a (twice) differentiable function

Linear Regression Objectives

You should be able to...

- Design k-NN Regression and Decision Tree Regression
- Implement learning for Linear Regression using three optimization techniques: (1) closed form, (2) gradient descent, (3) stochastic gradient descent
- Choose a Linear Regression optimization technique that is appropriate for a particular dataset by analyzing the tradeoff of computational complexity vs. convergence speed
- Distinguish the three sources of error identified by the bias-variance decomposition: bias, variance, and irreducible error.