

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Backpropagation

Matt Gormley Lecture 12 Feb 23, 2018

Neural Networks Outline

- Logistic Regression (Recap)
 - Data, Model, Learning, Prediction
- Neural Networks
 - A Recipe for Machine Learning
 - Visual Notation for Neural Networks
 - Example: Logistic Regression Output Surface
 - 2-Layer Neural Network
 - 3-Layer Neural Network
- Neural Net Architectures
 - Objective Functions
 - Activation Functions
- Backpropagation
 - Basic Chain Rule (of calculus)
 - Chain Rule for Arbitrary Computation Graph
 - Backpropagation Algorithm
 - Module-based Automatic Differentiation (Autodiff)

Last Lecture

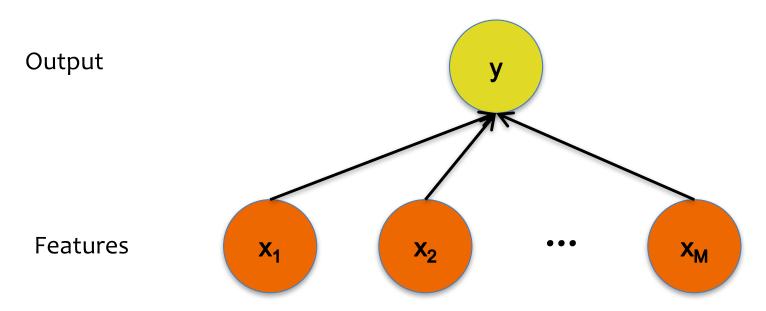
This Lecture

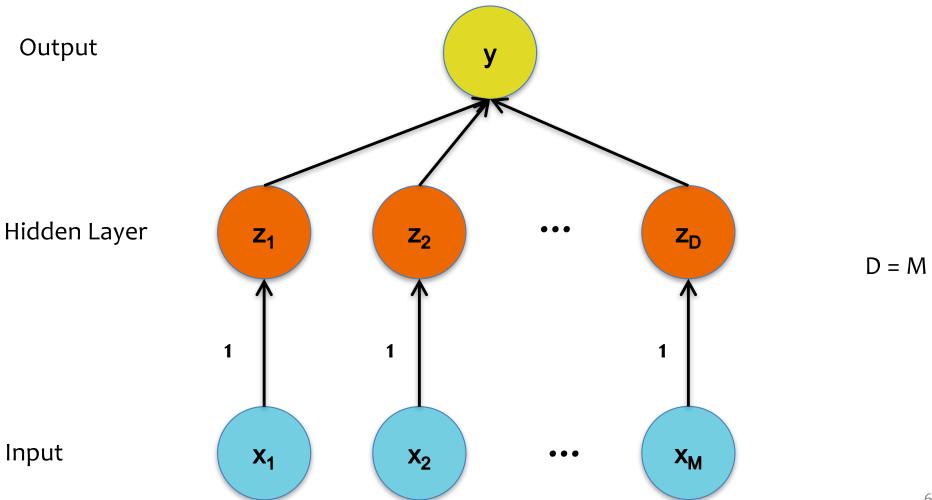
ARCHITECTURES

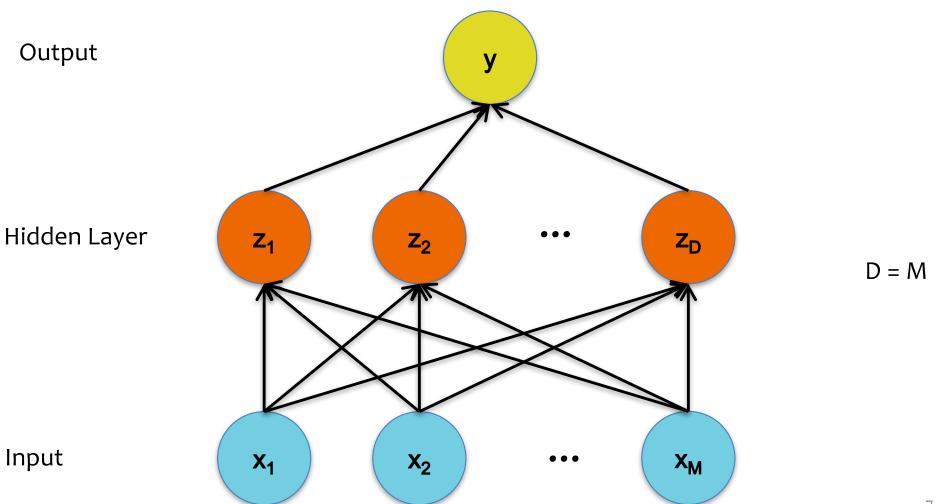
Neural Network Architectures

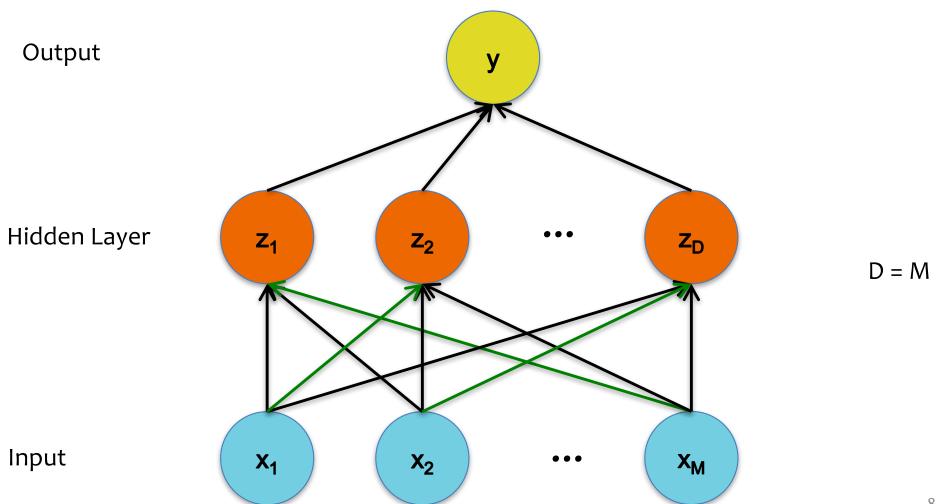
Even for a basic Neural Network, there are many design decisions to make:

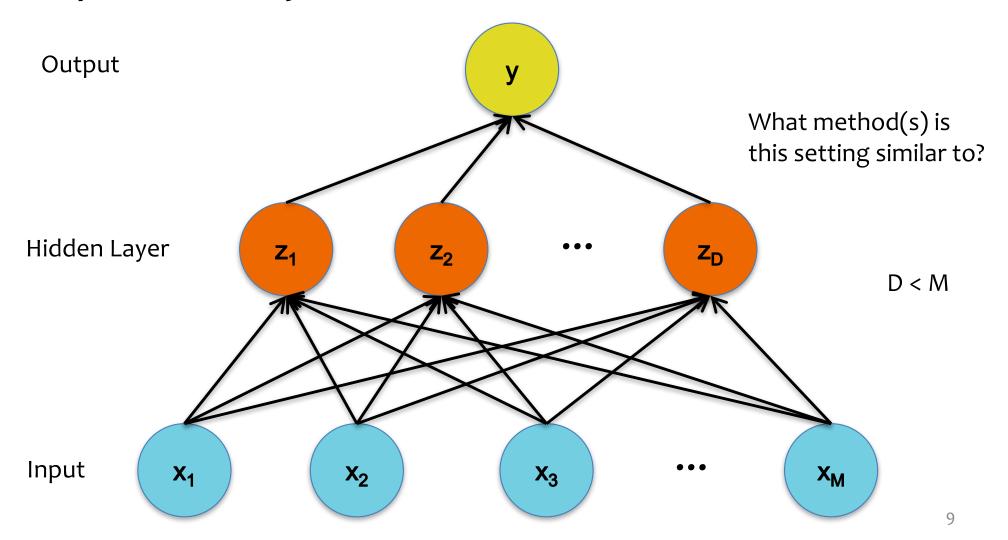
- # of hidden layers (depth)
- 2. # of units per hidden layer (width)
- 3. Type of activation function (nonlinearity)
- 4. Form of objective function

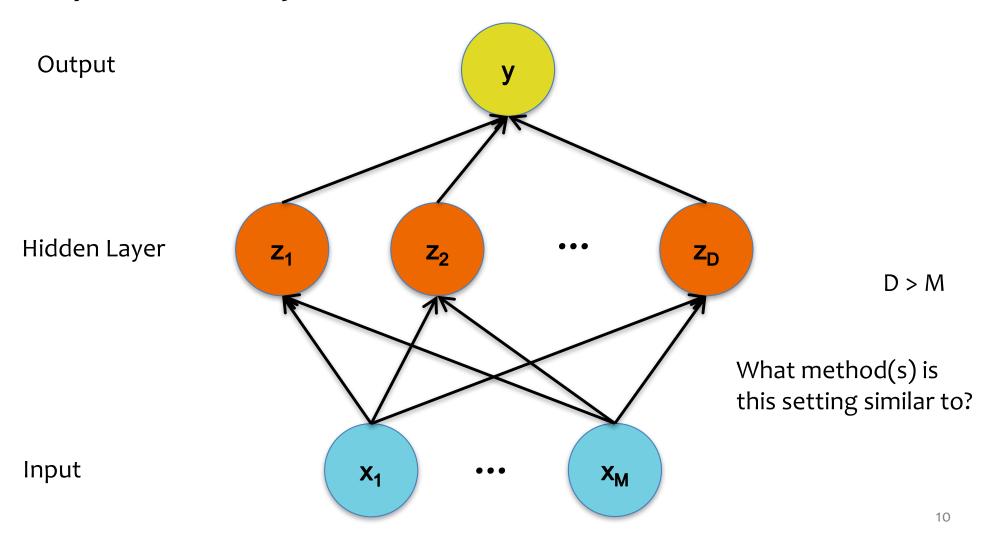






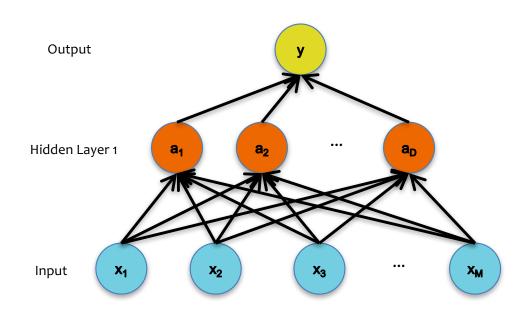






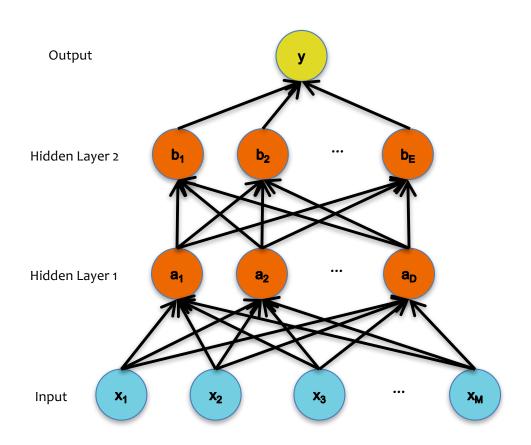
Deeper Networks

Q: How many layers should we use?



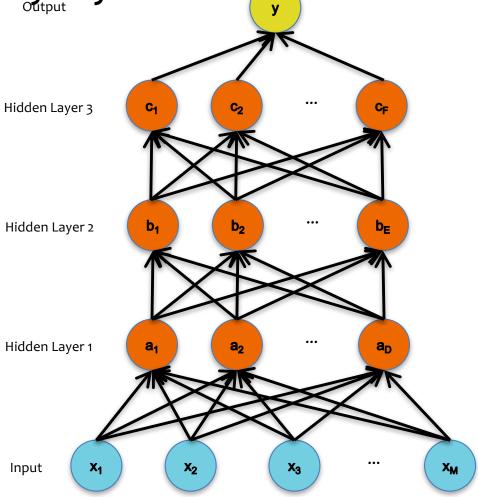
Deeper Networks

Q: How many layers should we use?



Deeper Networks

Q: How many layers should we use?



Deeper Networks

Q: How many layers should we use?

Theoretical answer:

- A neural network with 1 hidden layer is a universal function approximator
- Cybenko (1989): For any continuous function g(x), there exists a 1-hidden-layer neural net $h_{\theta}(x)$ s.t. $|h_{\theta}(x) g(x)| < \epsilon$ for all x, assuming sigmoid activation functions

Empirical answer:

- Before 2006: "Deep networks (e.g. 3 or more hidden layers) are too hard to train"
- After 2006: "Deep networks are easier to train than shallow networks (e.g. 2 or fewer layers) for many problems"

Big caveat: You need to know and use the right tricks.

Different Levels of Abstraction

- We don't know the "right" levels of abstraction
- So let the model figure it out!

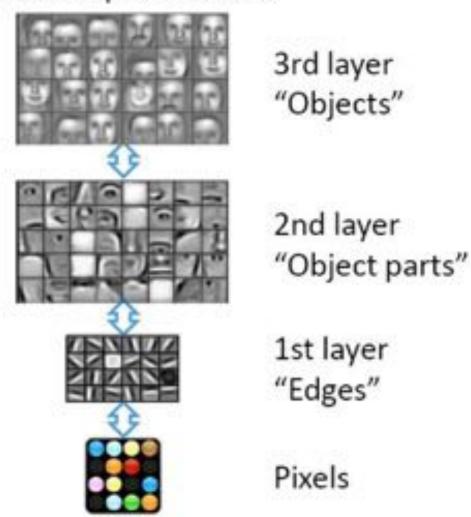
Feature representation 3rd layer "Objects" 2nd layer "Object parts" 1st layer "Edges" **Pixels**

Different Levels of Abstraction

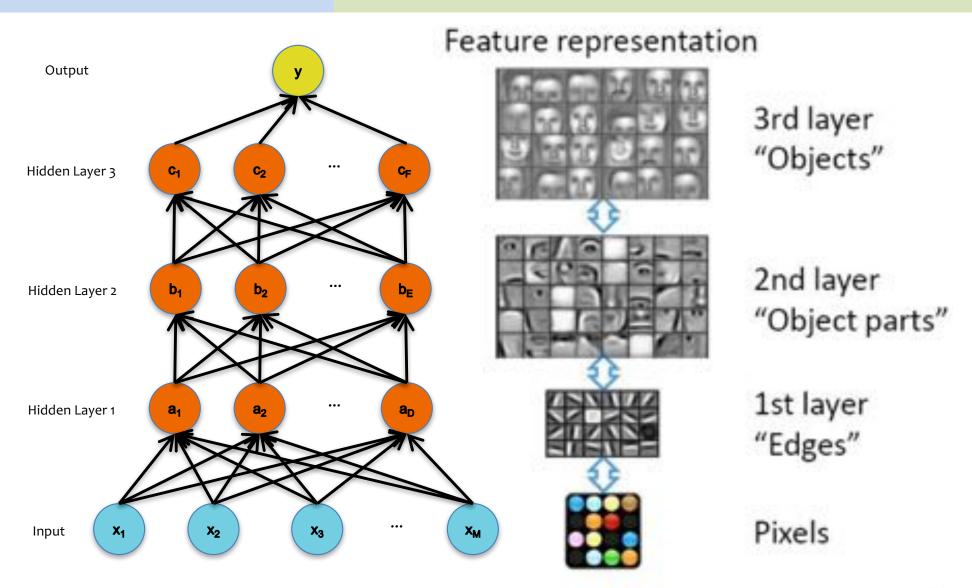
Face Recognition:

- Deep Network
 can build up
 increasingly
 higher levels of
 abstraction
- Lines, parts, regions

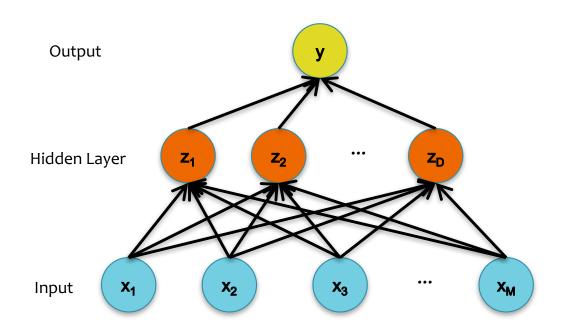
Feature representation

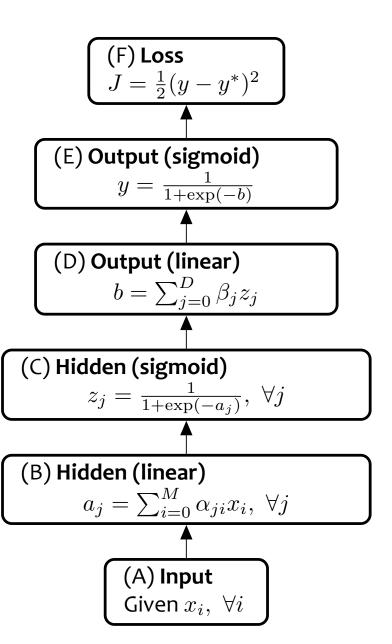


Different Levels of Abstraction

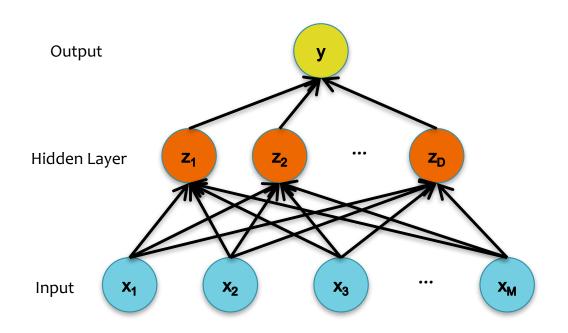


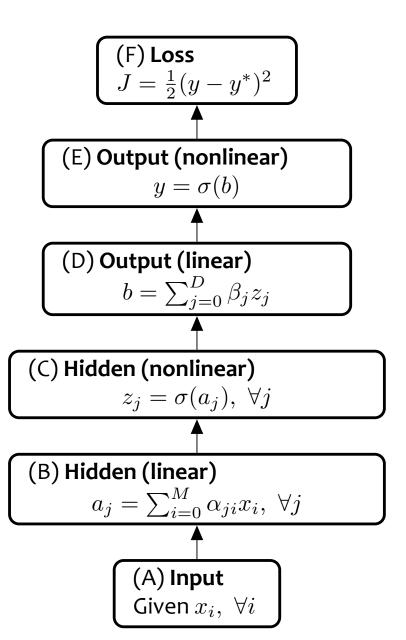
Neural Network with sigmoid activation functions





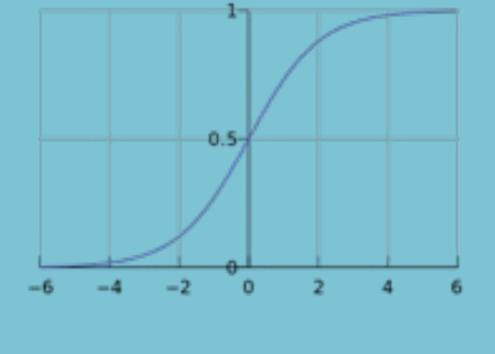
Neural Network with arbitrary nonlinear activation functions



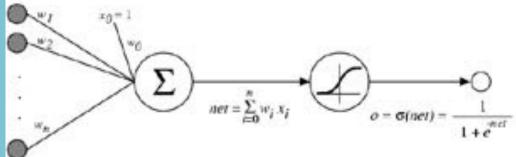


Sigmoid / Logistic Function

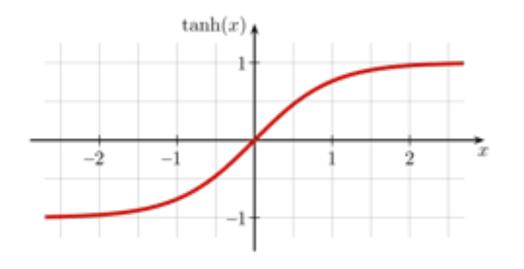
$$logistic(u) = \frac{1}{1 + e^{-u}}$$



So far, we've assumed that the activation function (nonlinearity) is always the sigmoid function...

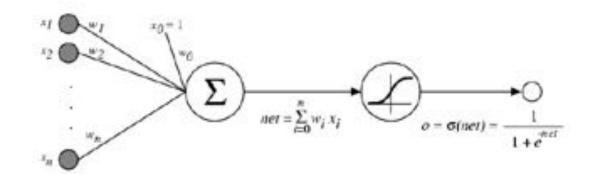


- A new change: modifying the nonlinearity
 - The logistic is not widely used in modern ANNs



Alternate 1: tanh

Like logistic function but shifted to range [-1, +1]



Understanding the difficulty of training deep feedforward neural networks

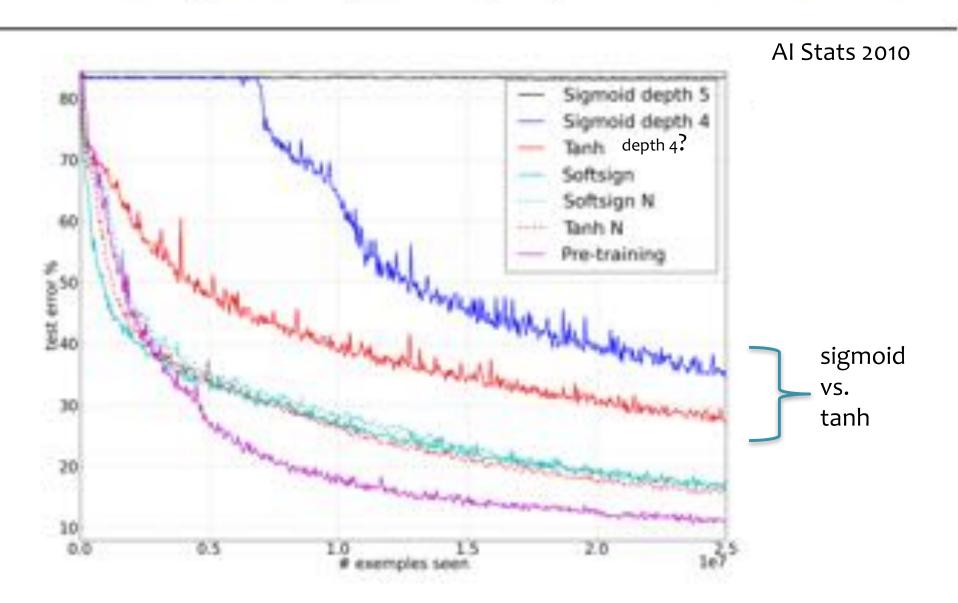
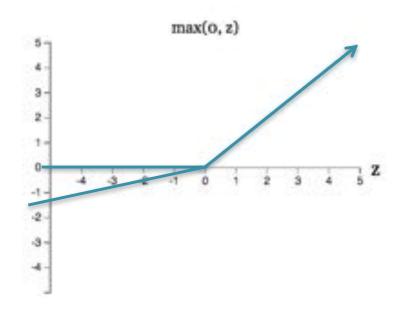


Figure from Glorot & Bentio (2010)

- A new change: modifying the nonlinearity
 - reLU often used in vision tasks

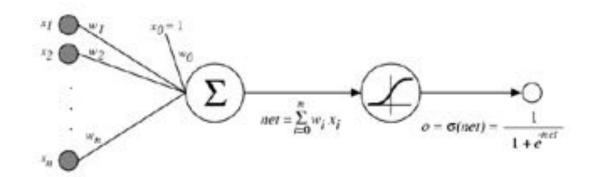


 $\max(0, w \cdot x + b)$.

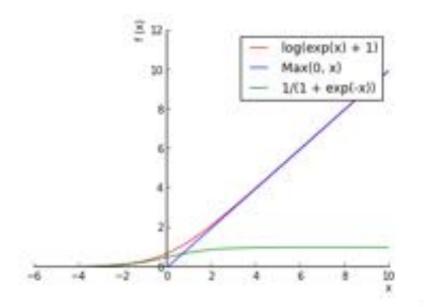
Alternate 2: rectified linear unit

Linear with a cutoff at zero

(Implementation: clip the gradient when you pass zero)



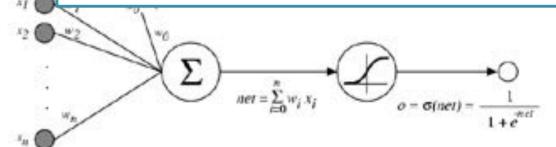
- A new change: modifying the nonlinearity
 - reLU often used in vision tasks



Alternate 2: rectified linear unit

Soft version: log(exp(x)+1)

Doesn't saturate (at one end) Sparsifies outputs Helps with vanishing gradient



Objective Functions for NNs

Quadratic Loss:

- the same objective as Linear Regression
- i.e. mean squared error

2. Cross-Entropy:

- the same objective as Logistic Regression
- i.e. negative log likelihood
- This requires probabilities, so we add an additional "softmax" layer at the end of our network

Forward

Quadratic
$$J = \frac{1}{2}(y - y^*)^2$$

Cross Entropy
$$J = y^* \log(y) + (1 - y^*) \log(1 - y)$$

Backward

$$\begin{array}{ll} {\rm Quadratic} & J = \frac{1}{2} (y - y^*)^2 & \frac{dJ}{dy} = y - y^* \\ {\rm Cross \ Entropy} & J = y^* \log(y) + (1 - y^*) \log(1 - y) & \frac{dJ}{dy} = y^* \frac{1}{y} + (1 - y^*) \frac{1}{y - 1} \end{array}$$

Objective Functions for NNs

Cross-entropy vs. Quadratic loss

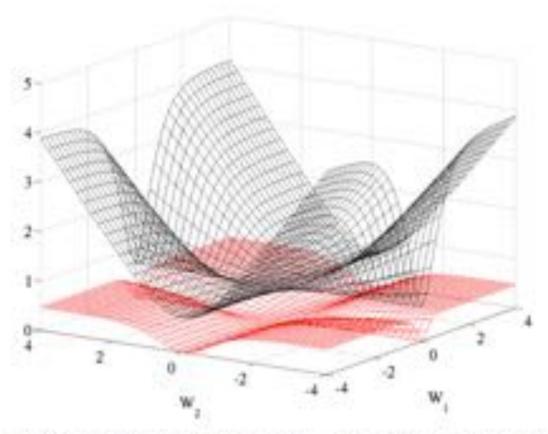
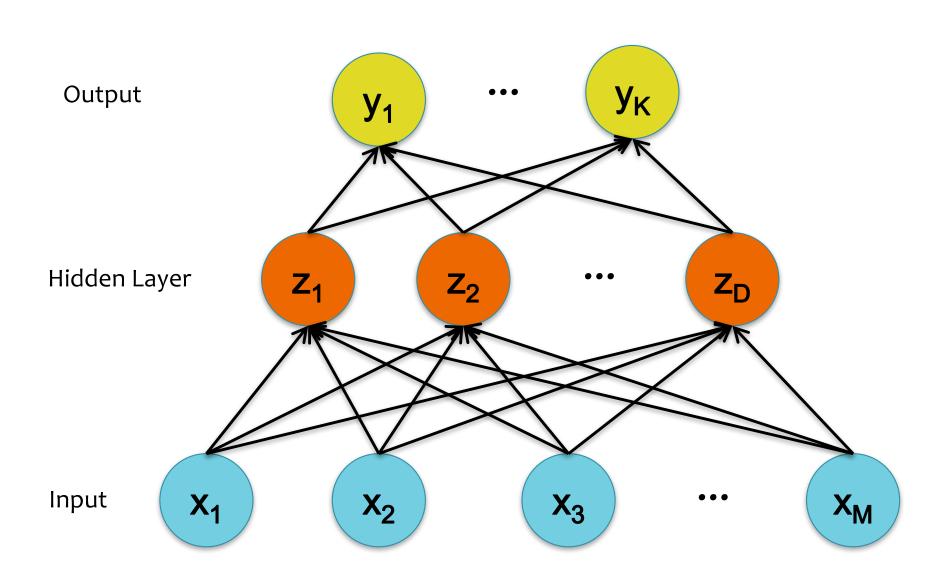


Figure 5: Cross entropy (black, surface on top) and quadratic (red, bottom surface) cost as a function of two weights (one at each layer) of a network with two layers, W₁ respectively on the first layer and W₂ on the second, output layer.

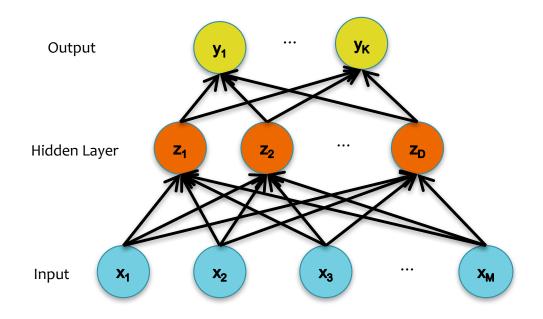
Multi-Class Output

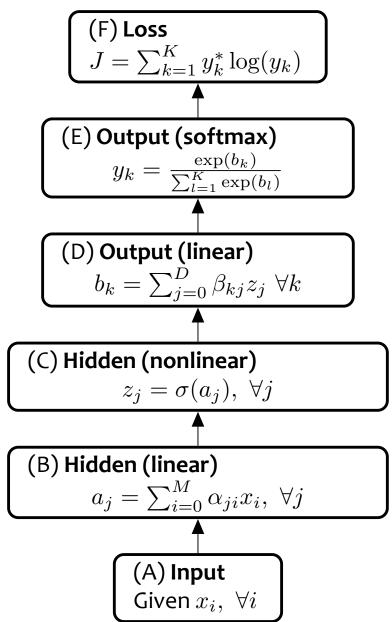


Multi-Class Output

Softmax:

$$y_k = \frac{\exp(b_k)}{\sum_{l=1}^K \exp(b_l)}$$





BACKPROPAGATION

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

3. Define goal:

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

4. Train with SGD:

(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Approaches to Differentiation

Question 1:

When can we compute the gradients of the parameters of an arbitrary neural network?

Question 2:

When can we make the gradient computation efficient?

Approaches to Differentiation

1. Finite Difference Method

- Pro: Great for testing implementations of backpropagation
- Con: Slow for high dimensional inputs / outputs
- Required: Ability to call the function f(x) on any input x

2. Symbolic Differentiation

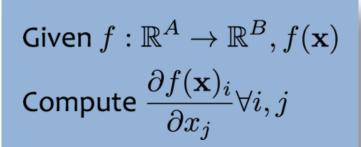
- Note: The method you learned in high-school
- Note: Used by Mathematica / Wolfram Alpha / Maple
- Pro: Yields easily interpretable derivatives
- Con: Leads to exponential computation time if not carefully implemented
- Required: Mathematical expression that defines f(x)

3. Automatic Differentiation - Reverse Mode

- Note: Called Backpropagation when applied to Neural Nets
- Pro: Computes partial derivatives of one output $f(x)_i$ with respect to all inputs x_j in time proportional to computation of f(x)
- Con: Slow for high dimensional outputs (e.g. vector-valued functions)
- Required: Algorithm for computing f(x)

4. Automatic Differentiation - Forward Mode

- Note: Easy to implement. Uses dual numbers.
- Pro: Computes partial derivatives of all outputs $f(x)_i$ with respect to one input x_j in time proportional to computation of f(x)
- Con: Slow for high dimensional inputs (e.g. vector-valued x)
- Required: Algorithm for computing f(x)



Finite Difference Method

The centered finite difference approximation is:

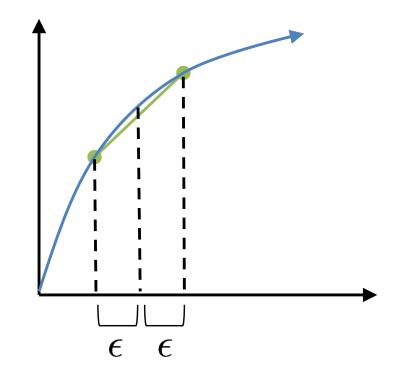
$$\frac{\partial}{\partial \theta_i} J(\boldsymbol{\theta}) \approx \frac{(J(\boldsymbol{\theta} + \epsilon \cdot \boldsymbol{d}_i) - J(\boldsymbol{\theta} - \epsilon \cdot \boldsymbol{d}_i))}{2\epsilon} \tag{1}$$

where $oldsymbol{d}_i$ is a 1-hot vector consisting of all zeros except for the ith

entry of d_i , which has value 1.

Notes:

- Suffers from issues of floating point precision, in practice
- Typically only appropriate to use on small examples with an appropriately chosen epsilon



Symbolic Differentiation

Chain Rule Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the function below?

$$y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{\exp(xz)}$$

Symbolic Differentiation

Calculus Quiz #2:

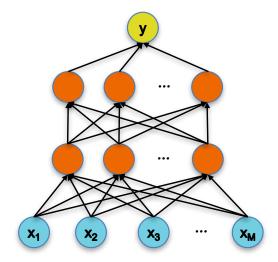
A neural network with 2 hidden layers can be written as:

$$y = \sigma(\boldsymbol{\beta}^T \sigma((\boldsymbol{\alpha}^{(2)})^T \sigma((\boldsymbol{\alpha}^{(1)})^T \mathbf{x}))$$

where $y \in \mathbb{R}$, $\mathbf{x} \in \mathbb{R}^{D^{(0)}}$, $\boldsymbol{\beta} \in \mathbb{R}^{D^{(2)}}$ and $\boldsymbol{\alpha}^{(i)}$ is a $D^{(i)} \times D^{(i-1)}$ matrix. Nonlinear functions are applied elementwise:

$$\sigma(\mathbf{a}) = [\sigma(a_1), \dots, \sigma(a_K)]^T$$

Let σ be sigmoid: $\sigma(a)=\frac{1}{1+exp-a}$ What is $\frac{\partial y}{\partial \beta_j}$ and $\frac{\partial y}{\partial \alpha_j^{(i)}}$ for all i,j.



Chain Rule

Whiteboard

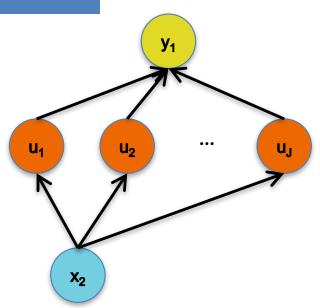
Chain Rule of Calculus

Chain Rule

Given: y = g(u) and u = h(x).

Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$



Chain Rule

Given: y = g(u) and u = h(x).

Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Backpropagation is just repeated application of the chain rule from Calculus 101.

