

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Bayesian Networks (Part I)

Graphical Model Readings:

Murphy 10 – 10.2.1 Bishop 8.1, 8.2.2 HTF --Mitchell 6.11 Matt Gormley Lecture 22 April 10, 2017

Reminders

- Peer Tutoring
- Homework 7: Deep Learning
 - Release: Wed, Apr. 05
 - Part I due Wed, Apr. 12
 - Part II due Mon, Apr. 17

Start Early

CONVOLUTIONAL NEURAL NETS

Deep Learning Outline

Background: Computer Vision

- Image Classification
- ILSVRC 2010 2016
- Traditional Feature Extraction Methods
- Convolution as Feature Extraction

Convolutional Neural Networks (CNNs)

- Learning Feature Abstractions
- Common CNN Layers:
 - Convolutional Layer
 - Max-Pooling Layer
 - Fully-connected Layer (w/tensor input)
 - Softmax Layer
 - ReLU Layer
- Background: Subgradient
- Architecture: LeNet
- Architecture: AlexNet

Training a CNN

- SGD for CNNs
- Backpropagation for CNNs

Convolutional Neural Network (CNN)

- Typical layers include:
 - Convolutional layer
 - Max-pooling layer
 - Fully-connected (Linear) layer
 - ReLU layer (or some other nonlinear activation function)
 - Softmax
- These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998

7

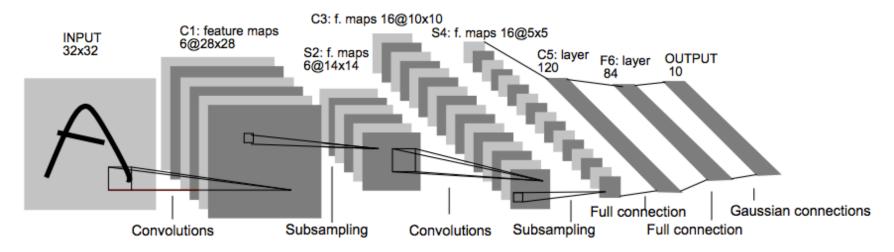


Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Convolutional Layer

CNN key idea:

Treat convolution matrix as parameters and learn them!

Input Image

0	0	0	0	0	0	0
О	1	1	1	1	1	0
О	1	0	0	1	0	0
О	1	0	1	0	0	0
О	1	1	0	0	0	0
О	1	0	0	0	0	0
0	0	0	0	0	0	О

Learned Convolution

θ_{11}	θ ₁₂	θ ₁₃
θ_{21}	θ_{22}	θ_{23}
θ_{31}	θ_{32}	θ_{33}

Convolved Image

.4	•5	•5	•5	.4
.4	.2	•3	.6	•3
.5	.4	.4	.2	.1
•5	.6	.2	.1	0
.4	.3	.1	0	0

Downsampling by Averaging

- Downsampling by averaging used to be a common approach
- This is a special case of convolution where the weights are fixed to a uniform distribution
- The example below uses a stride of 2

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolution

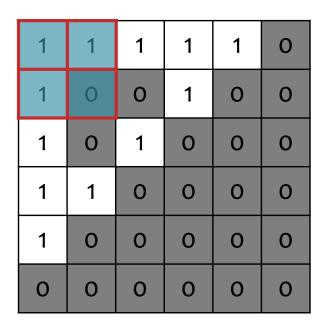
Convolved Image

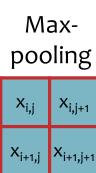
3/4	3/4	1/4
3/4	1/4	0
1/4	0	0

Max-Pooling

- Max-pooling is another (common) form of downsampling
- Instead of averaging, we take the max value within the same range as the equivalently-sized convolution
- The example below uses a stride of 2

Input Image

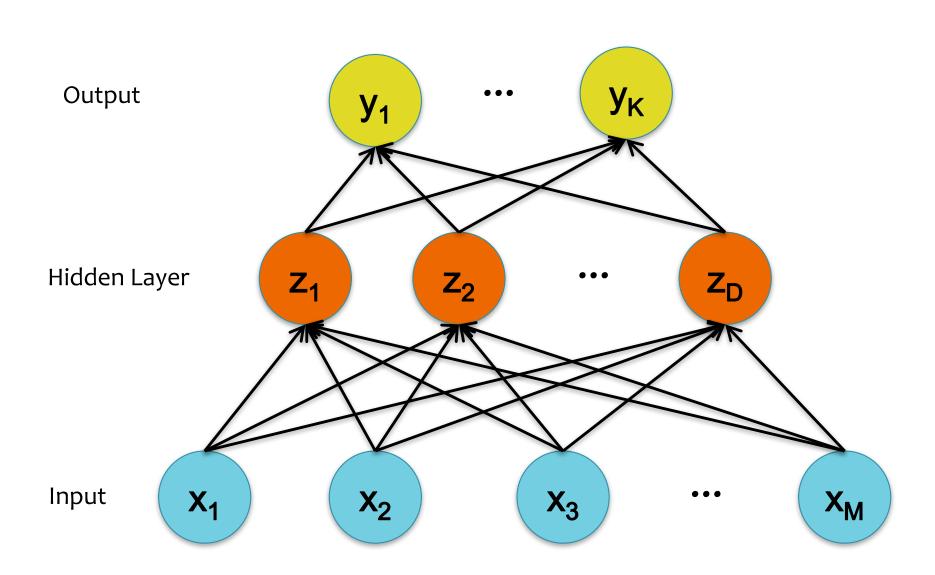




1	1	1
1	1	0
1	0	0

$$y_{ij} = \max(x_{ij},$$
 $x_{i,j+1},$
 $x_{i+1,j},$
 $x_{i+1,j+1})$

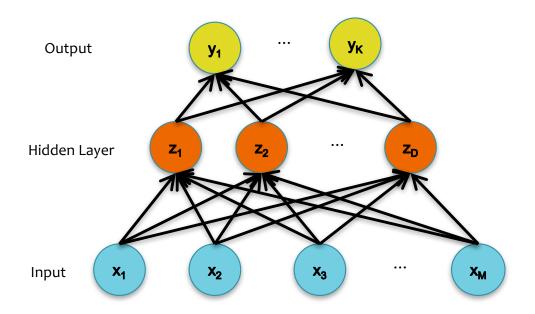
Multi-Class Output

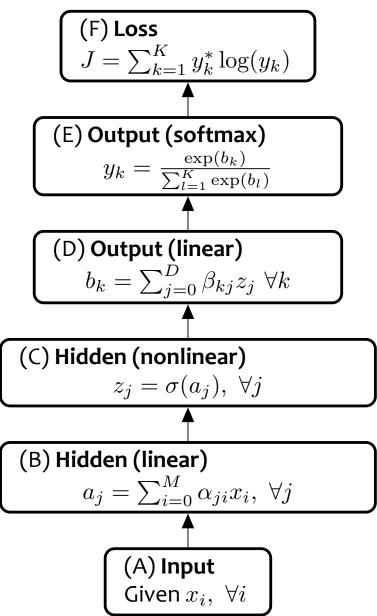


Multi-Class Output

Softmax Layer:

$$y_k = \frac{\exp(b_k)}{\sum_{l=1}^K \exp(b_l)}$$





Training a CNN

Whiteboard

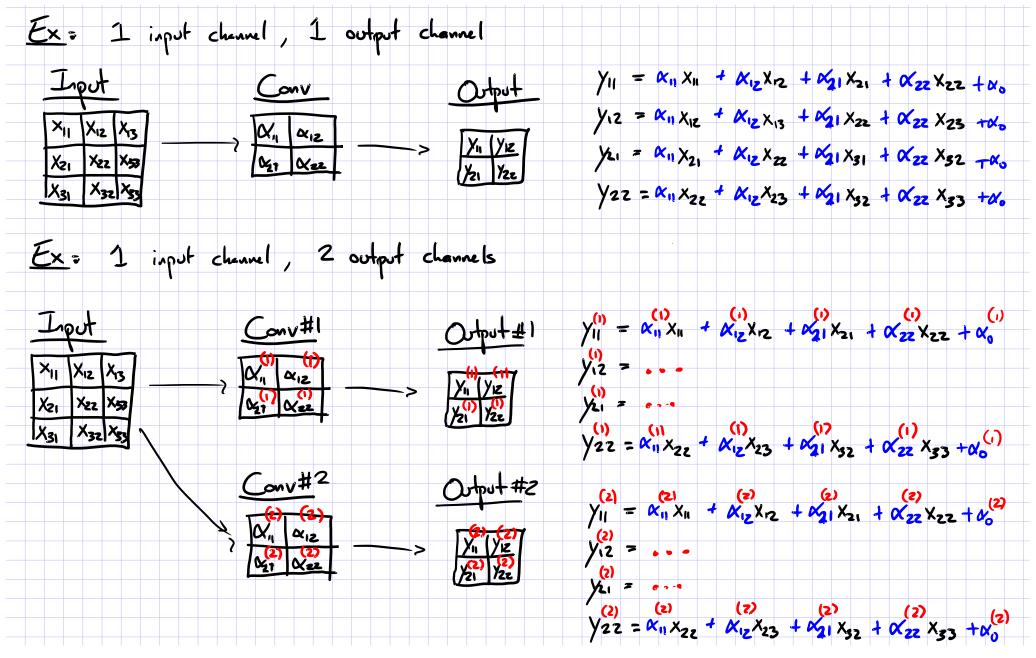
- SGD for CNNs
- Backpropagation for CNNs

Common CNN Layers

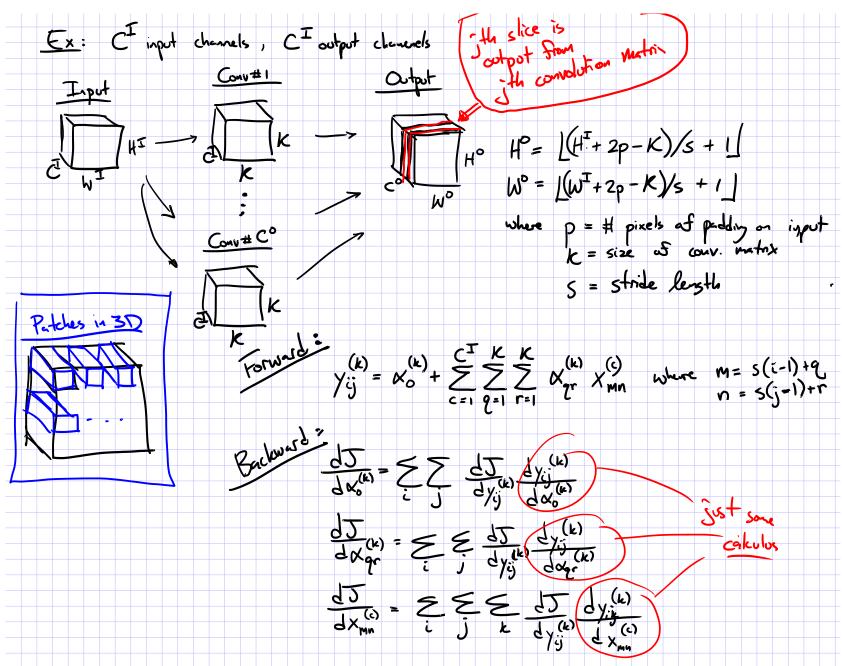
Whiteboard

- ReLU Layer
- Background: Subgradient
- Fully-connected Layer (w/tensor input)
- Softmax Layer
- Convolutional Layer
- Max-Pooling Layer

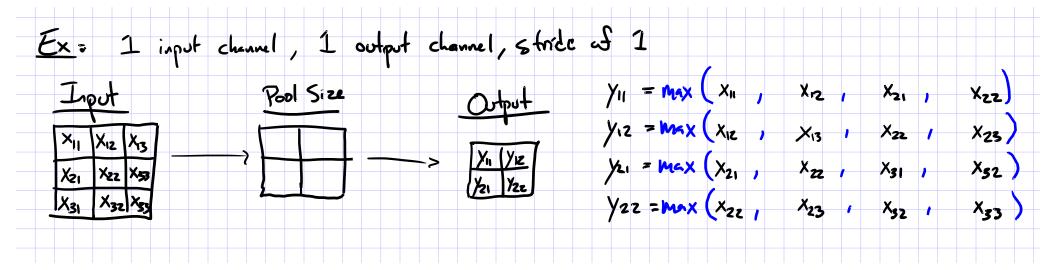
Convolutional Layer



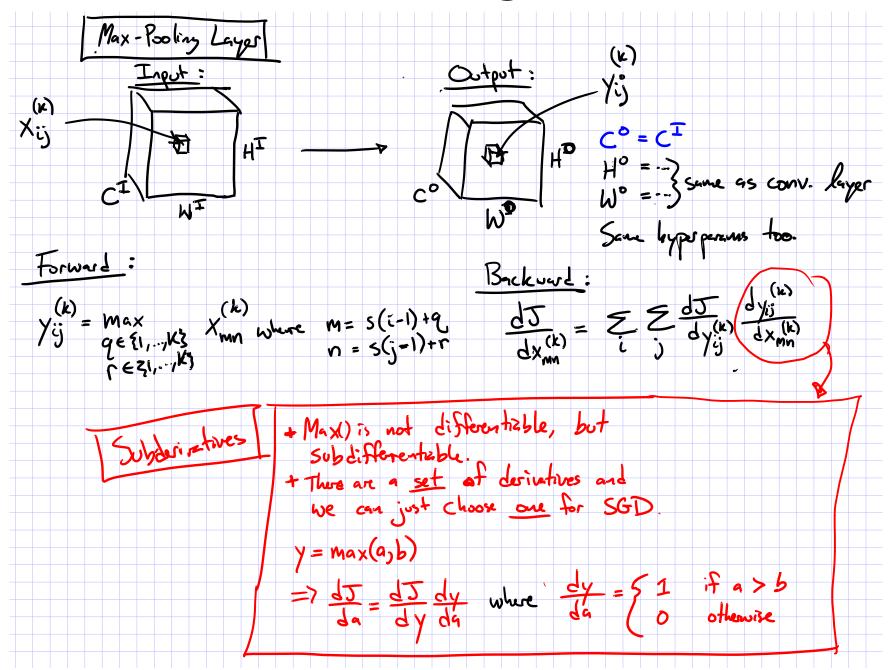
Convolutional Layer



Max-Pooling Layer



Max-Pooling Layer



Convolutional Neural Network (CNN)

- Typical layers include:
 - Convolutional layer
 - Max-pooling layer
 - Fully-connected (Linear) layer
 - ReLU layer (or some other nonlinear activation function)
 - Softmax
- These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998

7

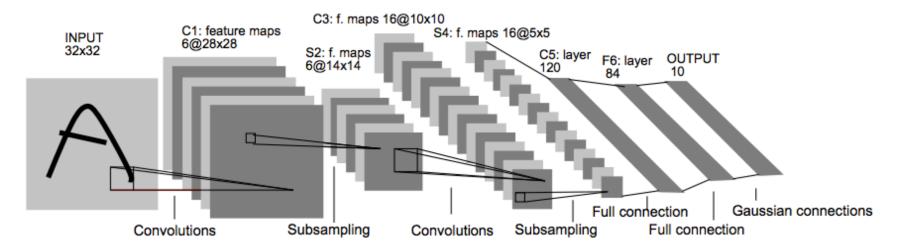


Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Architecture #2: AlexNet

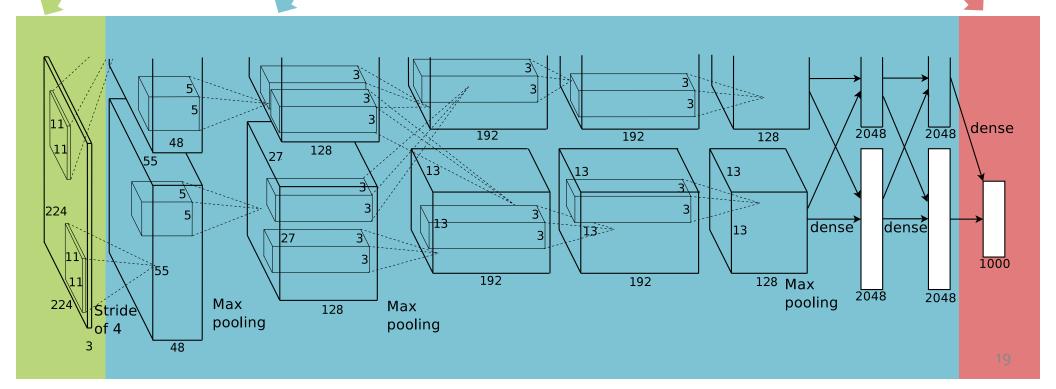
CNN for Image Classification

(Krizhevsky, Sutskever & Hinton, 2012) 15.3% error on ImageNet LSVRC-2012 contest

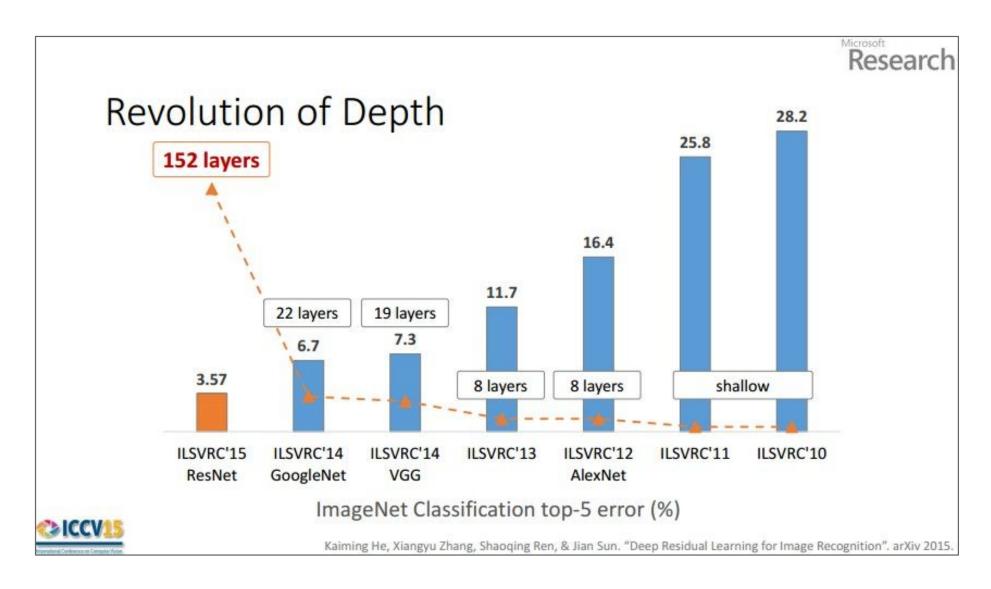
Input image (pixels)

- Five convolutional layers (w/max-pooling)
- Three fully connected layers

1000-way softmax



CNNs for Image Recognition



Mini-Batch SGD

Gradient Descent:

Compute true gradient exactly from all N examples

Mini-Batch SGD:

Approximate true gradient by the average gradient of K randomly chosen examples

Stochastic Gradient Descent (SGD):

Approximate true gradient by the gradient of one randomly chosen example

Mini-Batch SGD

while not converged: $\theta \leftarrow \theta - \lambda \mathbf{g}$

Three variants of first-order optimization:

Gradient Descent:
$$\mathbf{g} = \nabla J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^N \nabla J^{(i)}(\boldsymbol{\theta})$$

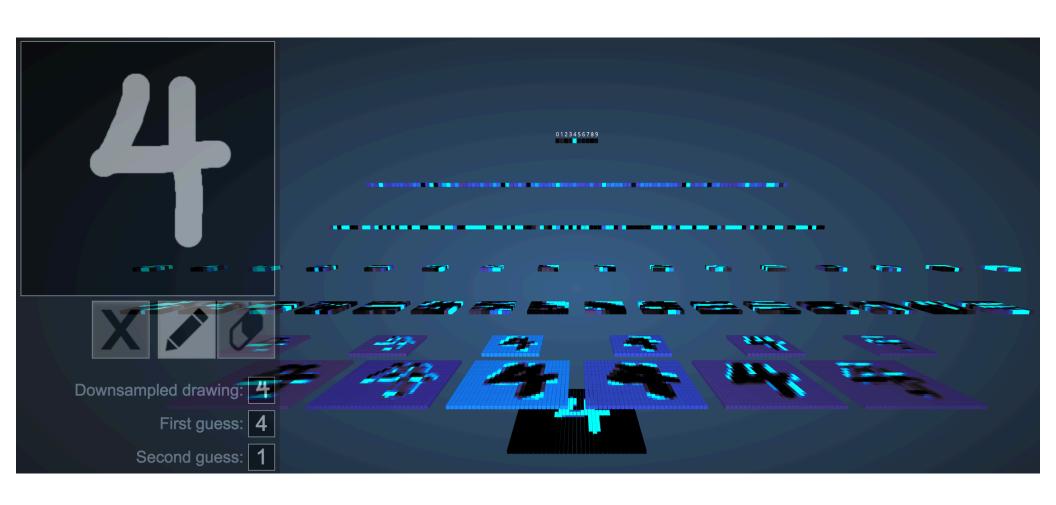
SGD:
$$\mathbf{g} = \nabla J^{(i)}(\boldsymbol{\theta})$$
 where i sampled uniformly

Mini-batch SGD:
$$\mathbf{g} = \frac{1}{S} \sum_{s=1}^S \nabla J^{(i_s)}(\pmb{\theta})$$
 where i_s sampled uniformly $\forall s$

CNN VISUALIZATIONS

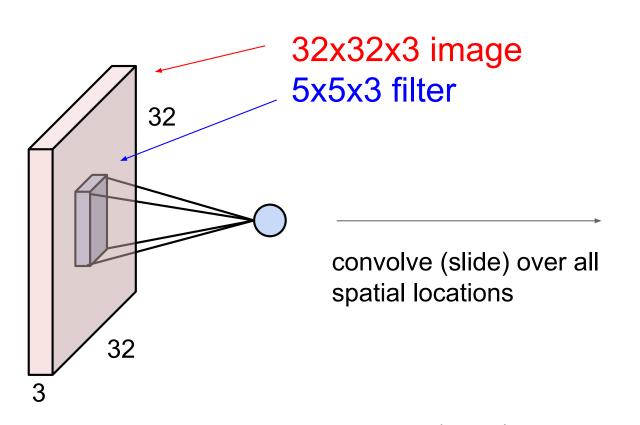
3D Visualization of CNN

http://scs.ryerson.ca/~aharley/vis/conv/

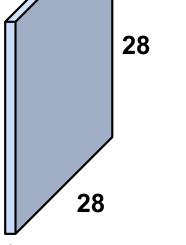


Convolution of a Color Image

- Color images consist of 3 floats per pixel for RGB (red, green blue) color values
- Convolution must also be 3-dimensional

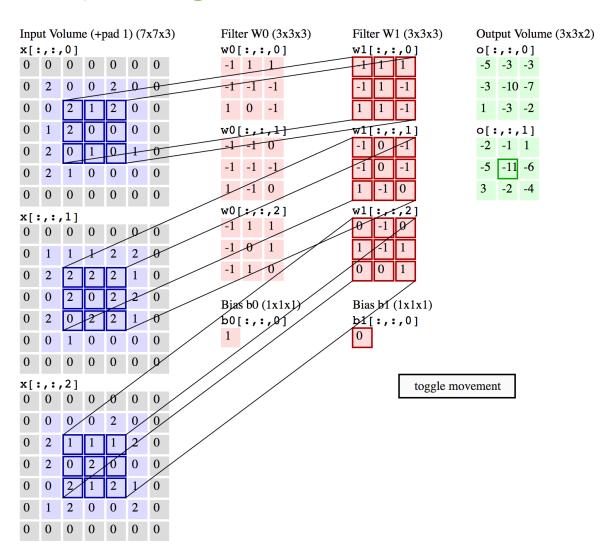


activation map



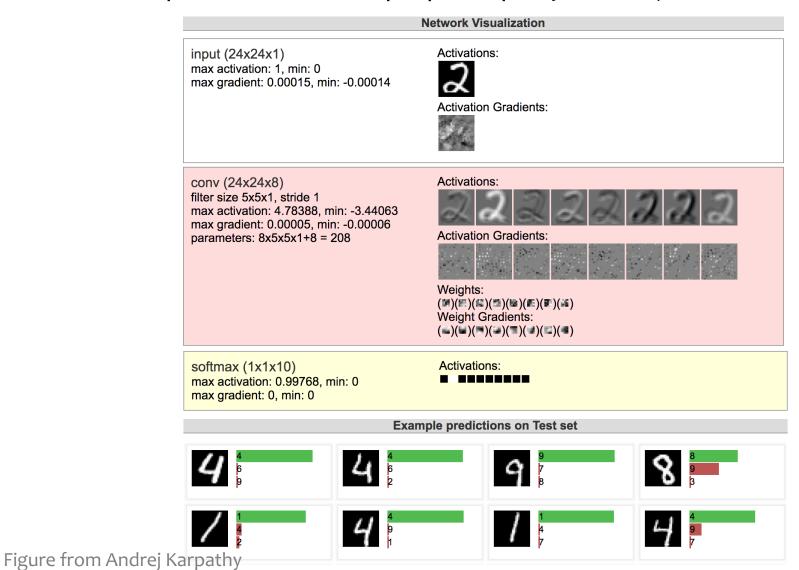
Animation of 3D Convolution

http://cs231n.github.io/convolutional-networks/



MNIST Digit Recognition with CNNs (in your browser)

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html



CNN Summary

CNNs

- Are used for all aspects of computer vision, and have won numerous pattern recognition competitions
- Able learn interpretable features at different levels of abstraction
- Typically, consist of convolution layers, pooling layers, nonlinearities, and fully connected layers

Other Resources:

- Readings on course website
- Andrej Karpathy, CS231n Notes
 http://cs231n.github.io/convolutional-networks/

BAYESIAN NETWORKS

Bayes Nets Outline

Motivation

Structured Prediction

Background

- Conditional Independence
- Chain Rule of Probability

Directed Graphical Models

- Writing Joint Distributions
- Definition: Bayesian Network
- Qualitative Specification
- Quantitative Specification
- Familiar Models as Bayes Nets

Conditional Independence in Bayes Nets

- Three case studies
- D-separation
- Markov blanket

Learning

- Fully Observed Bayes Net
- (Partially Observed Bayes Net)

Inference

- Sampling directly from the joint distribution
- Gibbs Sampling

MOTIVATION: STRUCTURED PREDICTION

Structured Prediction

 Most of the models we've seen so far were for classification

- Given observations: $\mathbf{x} = (x_1, x_2, ..., x_K)$
- Predict a (binary) label: y
- Many real-world problems require structured prediction
 - Given observations: $\mathbf{x} = (x_1, x_2, ..., x_K)$
 - Predict a structure: $y = (y_1, y_2, ..., y_J)$
- Some classification problems benefit from latent structure

Structured Prediction Examples

Examples of structured prediction

- Part-of-speech (POS) tagging
- Handwriting recognition
- Speech recognition
- Word alignment
- Congressional voting

Examples of latent structure

Object recognition

Dataset for Supervised Part-of-Speech (POS) Tagging

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

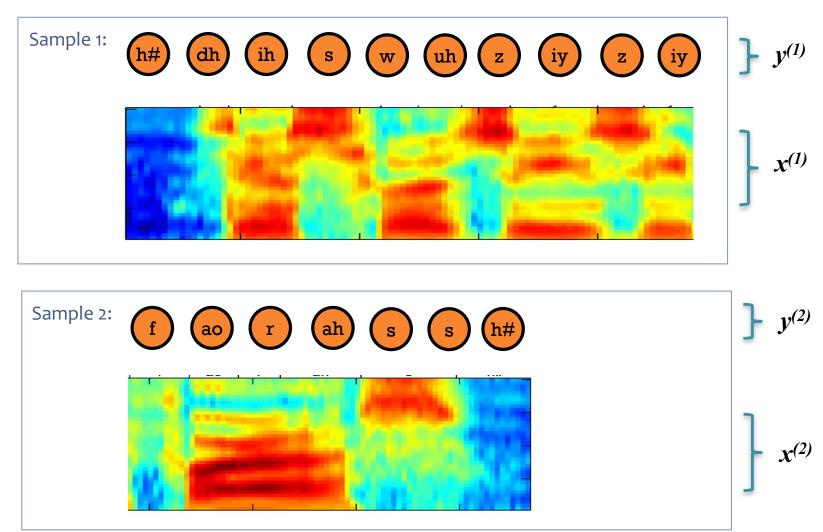
Sample 1:	n	flies	p like	d	$\begin{array}{c c} & & \\ & &$
Sample 2:	n	n	like	an	$\begin{array}{c c} & & \\ & &$
Sample 3:	n	fly	with	heir	$\begin{cases} n \\ \text{vings} \end{cases} = y^{(3)}$
Sample 4:	with	n	you	will	$\begin{cases} \mathbf{v} \\ \mathbf{see} \end{cases} = \mathbf{y}^{(4)}$

Dataset for Supervised Handwriting Recognition

Data: $\mathcal{D} = \{ oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)} \}_{n=1}^N$

Dataset for Supervised Phoneme (Speech) Recognition

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

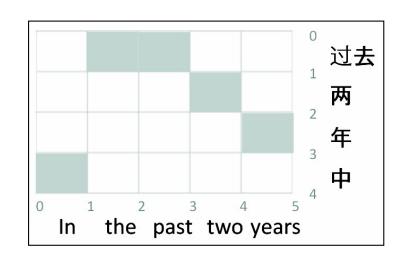


Application:

Word Alignment / Phrase Extraction

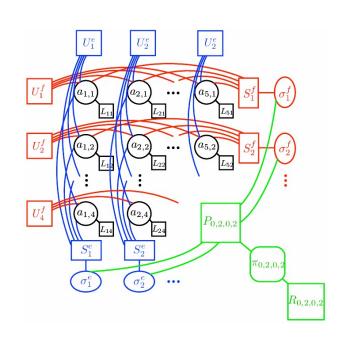
Variables (boolean):

 For each (Chinese phrase, English phrase) pair, are they linked?



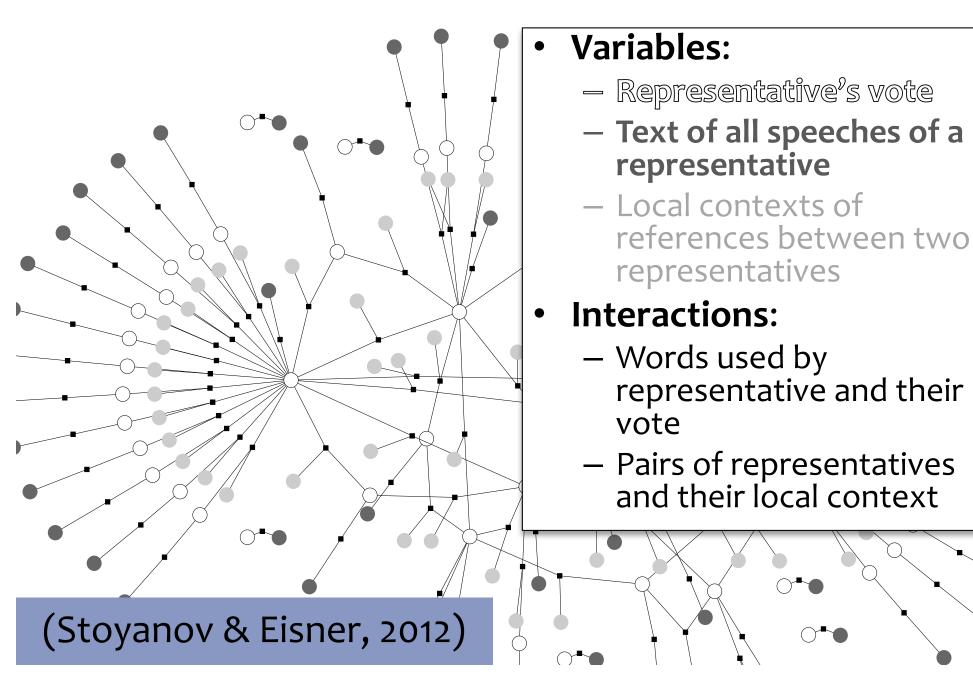
Interactions:

- Word fertilities
- Few "jumps" (discontinuities)
- Syntactic reorderings
- "ITG contraint" on alignment
- Phrases are disjoint (?)



Application:

Congressional Voting



Structured Prediction Examples

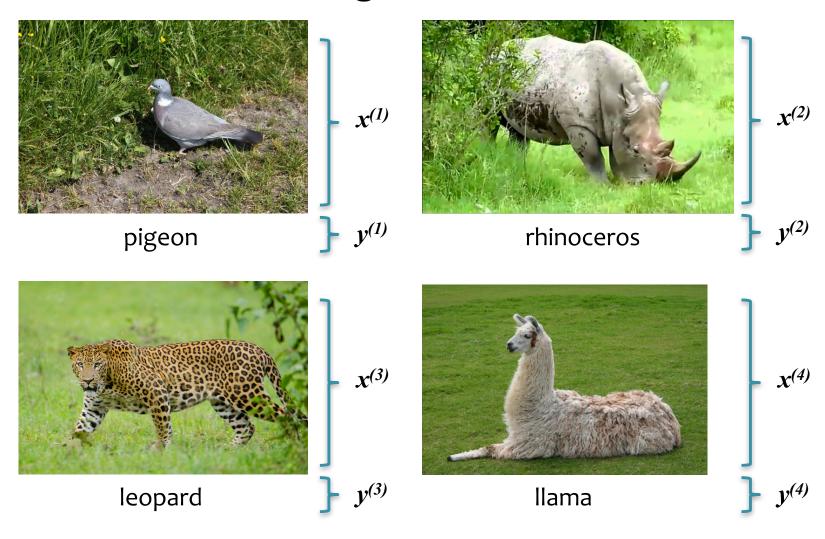
Examples of structured prediction

- Part-of-speech (POS) tagging
- Handwriting recognition
- Speech recognition
- Word alignment
- Congressional voting

Examples of latent structure

Object recognition

Data consists of images x and labels y.



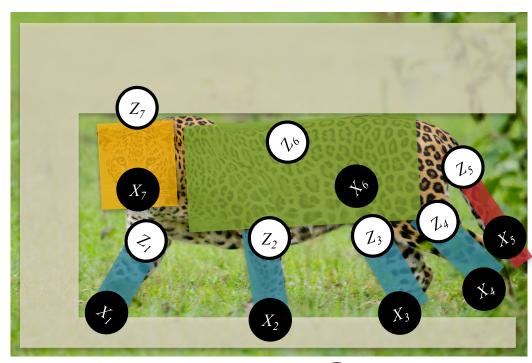
Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z
 describing the object's
 parts (e.g. head, leg,
 tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time

leopard

Data consists of images x and labels y.

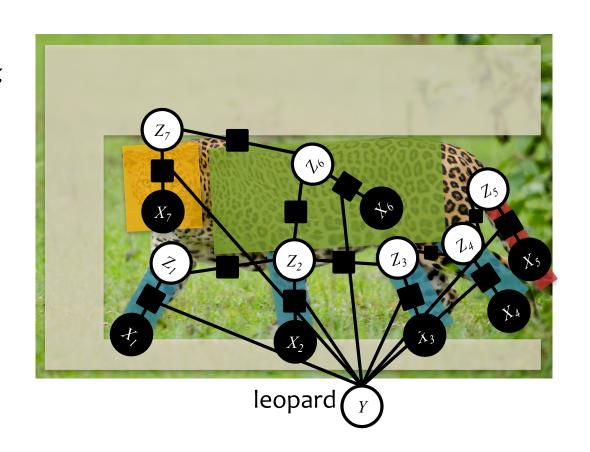
- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time



leopard (y)

Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z
 describing the object's
 parts (e.g. head, leg,
 tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time



Structured Prediction

Preview of challenges to come...

Consider the task of finding the most probable assignment to the output

Classification
$$\hat{y} = \operatorname*{argmax}_{y} p(y|\mathbf{x})$$
 where $y \in \{+1, -1\}$

Structured Prediction
$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y}} p(\mathbf{y}|\mathbf{x})$$

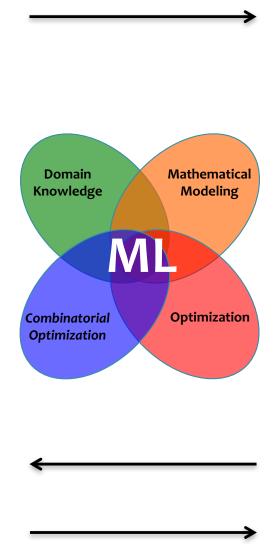
$$\mathbf{y}$$
 where $\mathbf{y} \in \mathcal{Y}$ and $|\mathcal{Y}|$ is very large

Machine Learning

The data inspires
the structures
we want to
predict

{best structure, marginals, partition function} for a new observation

(Inference is usually called as a subroutine in learning)

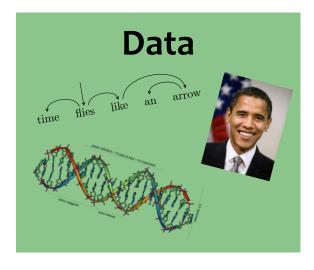


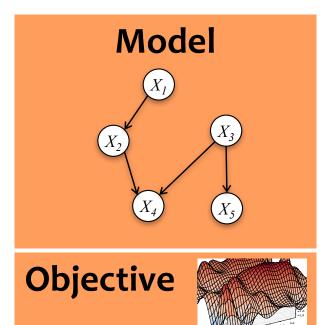
Our **model**defines a score
for each structure

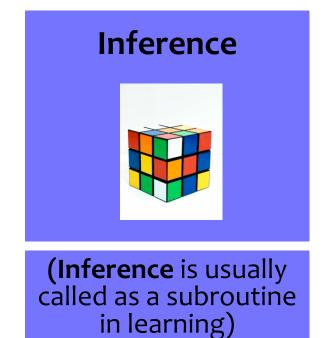
It also tells us what to optimize

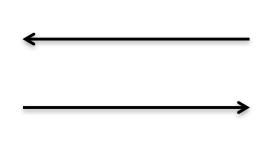
Learning tunes the parameters of the model

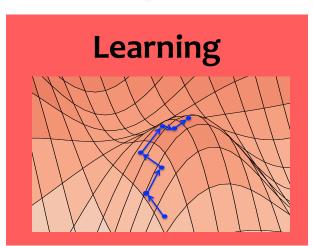
Machine Learning











BACKGROUND

Background

Whiteboard

- Chain Rule of Probability
- Conditional Independence

Background: Chain Rule of Probability

For random variables A and B:

$$P(A,B) = P(A|B)P(B)$$

For random variables X_1, X_2, X_3, X_4 :

$$P(X_1, X_2, X_3, X_4) = P(X_1 | X_2, X_3, X_4)$$

$$P(X_2 | X_3, X_4)$$

$$P(X_3 | X_4)$$

$$P(X_4)$$

Background: Conditional Independence

Random variables A and B are conditionally independent given C if:

$$P(A,B|C) = P(A|C)P(B|C)$$
 (1)

or equivalently:

$$P(A|B,C) = P(A|C) \tag{2}$$

We write this as:

$$A \perp \!\!\! \perp B | C$$

Later we will also write: I < A, $\{C\}$, B >

Bayesian Networks

DIRECTED GRAPHICAL MODELS

Example: Tornado Alarms

- Imagine that you work at the 911 call center in Dallas
- 2. You receive six calls informing you that the Emergency Weather Sirens are going off
- 3. What do you conclude?

Example: Tornado Alarms

Hacking Attack Woke Up Dallas With Emergency Sirens, Officials Say

By ELI ROSENBERG and MAYA SALAM APRIL 8, 2017

Warning sirens in Dallas, meant to alert the public to emergencies like severe weather, started sounding around 11:40 p.m. Friday, and were not shut off until 1:20 a.m. Rex C. Curry for The New York Times

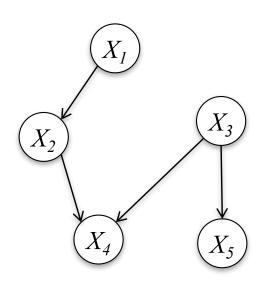
- Imagine that you work at the 911 call center in Dallas
- 2. You receive six calls informing you that the Emergency Weather Sirens are going off
- 3. What do you conclude?

Directed Graphical Models (Bayes Nets)

Whiteboard

- Example: Tornado Alarms
- Writing Joint Distributions
 - Idea #1: Giant Table
 - Idea #2: Rewrite using chain rule
 - Idea #3: Assume full independence
 - Idea #4: Drop variables from RHS of conditionals
- Definition: Bayesian Network
- Observed Variables in Graphical Models

Bayesian Network



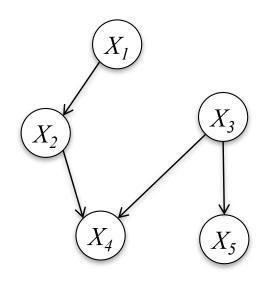
$$p(X_1, X_2, X_3, X_4, X_5) =$$

$$p(X_5|X_3)p(X_4|X_2, X_3)$$

$$p(X_3)p(X_2|X_1)p(X_1)$$

Bayesian Network

Definition:



$$P(X_1...X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$$

- A Bayesian Network is a directed graphical model
- It consists of a graph G and the conditional probabilities P
- These two parts full specify the distribution:
 - Qualitative Specification: G
 - Quantitative Specification: P