

10-418 / 10-618 Machine Learning for Structured Data

Machine Learning Department School of Computer Science Carnegie Mellon University

Neural Potential Functions

Matt Gormley Lecture 11 Oct. 2, 2019

Reminders

- Homework 2: BP for Syntax Trees
 - Out: Sat, Sep. 28
 - Due: Sat, Oct. 12 at 11:59pm
- Last chance to switch between 10-418 / 10-618 is October 7th (drop deadline)

BACKPROPAGATION AND BELIEF PROPAGATION

Whiteboard:

- Gradient of MRF log-likelihood with respect to log potentials
- Gradient of MRF log-likelihood with respect to potentials

Factor Derivatives

Log-probability:

$$\log p(\mathbf{y}) = \left[\sum_{\alpha} \log \psi_{\alpha}(\mathbf{y}_{\alpha})\right] - \log \sum_{\mathbf{y}' \in \mathcal{Y}} \prod_{\alpha} \psi_{\alpha}(\mathbf{y}'_{\alpha}) \tag{1}$$

Derivatives:

$$\frac{\partial \log p(\mathbf{y})}{\partial \log \psi_{\alpha}(\mathbf{y}'_{\alpha})} = \mathbb{1}(\mathbf{y}_{\alpha} = \mathbf{y}'_{\alpha}) - p(\mathbf{y}'_{\alpha}) \tag{2}$$

$$\frac{\partial \log p(\mathbf{y})}{\partial \psi_{\alpha}(\mathbf{y}'_{\alpha})} = \frac{\mathbb{1}(\mathbf{y}_{\alpha} = \mathbf{y}'_{\alpha}) - p(\mathbf{y}'_{\alpha})}{\psi_{\alpha}(\mathbf{y}'_{\alpha})} \tag{3}$$

Outline of Examples

Hybrid NN + HMM

- Model: neural net for emissions
- Learning: backprop for end-to-end training
- Experiments: phoneme recognition (Bengio et al., 1992)

Hybrid RNN + HMM

- Model: neural net for emissions
- Experiments: phoneme recognition (Graves et al., 2013)

Hybrid CNN + CRF

- Model: neural net for factors
- Experiments: natural language tasks (Collobert & Weston, 2011)
- Experiments: pose estimation

Tricks of the Trade

HYBRID: NEURAL NETWORK + HMM

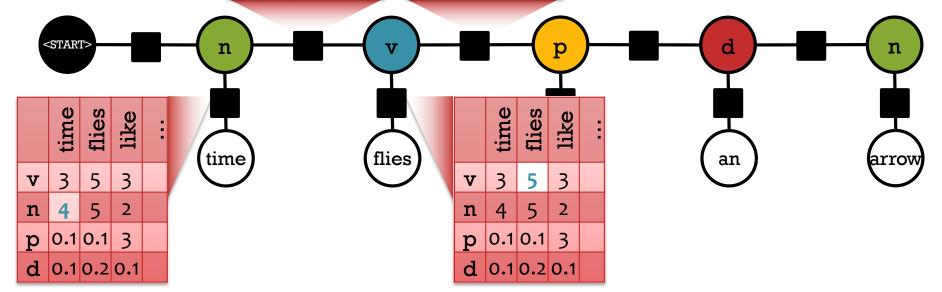
Markov Random Field (MRF)

Joint distribution over tags Y_i and words X_i The individual factors aren't necessarily probabilities.

$$p(n, v, p, d, n, time, flies, like, an, arrow) = \frac{1}{Z}(4*8*5*3*...)$$

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0



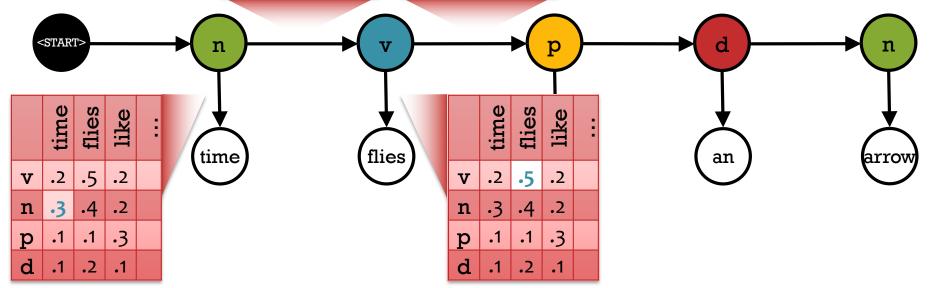
Hidden Markov Model

But sometimes we *choose* to make them probabilities. Constrain each row of a factor to sum to one. Now Z = 1.

$$p(n, v, p, d, n, time, flies, like, an, arrow) = (.3 * .8 * .2 * .5 * ...)$$

		v	n	р	d
V	-	.1	.4	.2	.3
n	L	.8	.1	.1	0
p)	.2	.3	.2	.3
d	L	.2	.8	0	0

	v	n	р	d
v	.1	.4	.2	.3
n	.8	.1	.1	0
р	.2	.3	.2	.3
d	.2	.8	0	0



(Bengio et al., 1992)

Discrete HMM state: $S_t \in \{/p/,/t/,/k/,/b/,/d/,\ldots,/g/\}$

Continuous HMM emission: $Y_t \in \mathcal{R}^K$

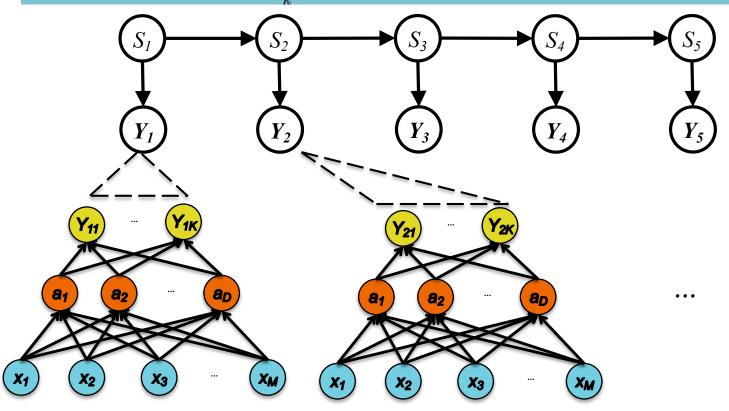
T

HMM: $p(\mathbf{Y}, \mathbf{S}) = \prod_{t=0}^{T} p(Y_{t}|S_{t})p(S_{t}|S_{t-1})$

 $\overline{t}=\overline{1}$

Gaussian emission:

$$p(Y_t|S_t = i) = b_{i,t} = \sum_{k} \frac{Z_k}{((2\pi)^n |\Sigma_k|)^{1/2}} \exp(-\frac{1}{2}(Y_t - \mu_k)\Sigma_k^{-1}(Y_t - \mu_k)^T)$$



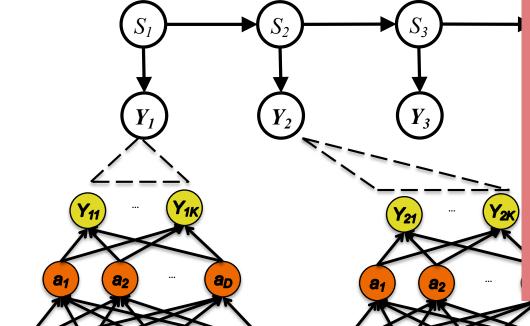
(Bengio et al., 1992)

Discrete HMM state: $S_t \in \{/p/, /t/, /k/, /b/, /d/, ..., /a/\}$ Lots of oddities to this picture:

Continuous HMM emission: $Y_t \in \mathcal{R}^K$

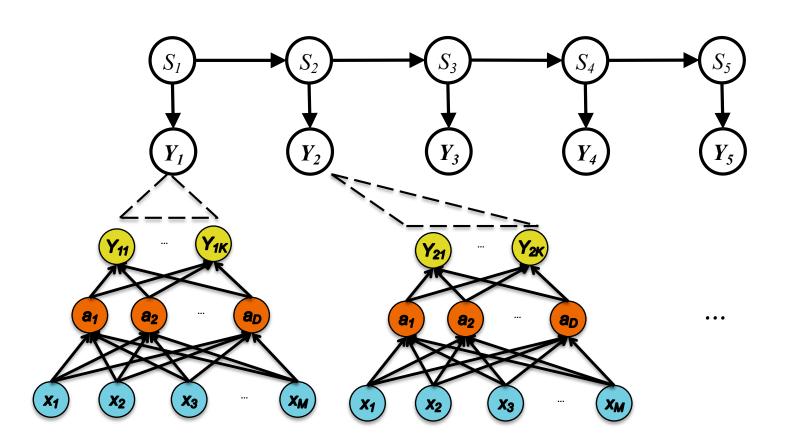
HMM:
$$p(\mathbf{Y}, \mathbf{S}) = \prod_{t=1}^{n} p(Y_t|S_t) p(S_t|S_{t-1})$$

$$p(Y_t|S_t = i) = b_{i,t} = \sum_k \frac{Z_k}{((2\pi)^n \mid \Sigma_k \mid)^{1/2}} \epsilon$$



- **Clashing visual notations** (graphical model vs. neural net)
- HMM generates data topdown, NN generates bottom-up and they meet in the middle.
- The "observations" of the HMM are not actually observed (i.e. x's appear in NN only)

So what are we missing?



$$a_{i,j} = p(S_t = i | S_{t-1} = j)$$

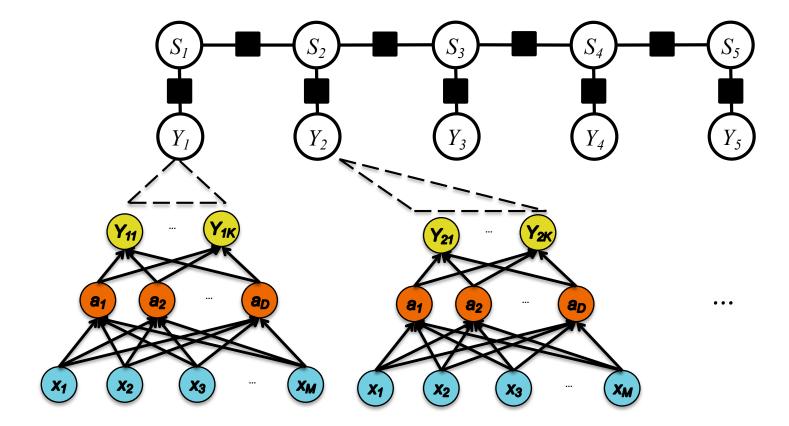
 $b_{i,t} = p(Y_t | S_t = i)$ Hybrid: NN + HMM

Forward-backward algorithm: a "feed-forward" algorithm for computing alpha-beta probabilities.

$$\begin{aligned} \alpha_{i,t} &= P(Y_1^t \text{ and } S_t = i \mid model) &= b_{i,t} \sum_j a_{ji} \alpha_{j,t-1} \\ \beta_{i,t} &= P(Y_{t+1}^T \mid S_t = i \text{ and } model) &= \sum_j a_{ij} b_{j,t+1} \beta_{j,t+1} \\ \gamma_{i,t} &= P(S_t = i \mid Y_1^t \text{ and } model) &= \alpha_{i,t} \beta_{i,t} \end{aligned}$$

Log-likelihood: a "feed-forward" objective function.

$$\log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END}, T}$$



A Recipe for

Graphical Models

Decision / Loss Function for Hybrid NN + HMM

1. Given training data:

$$\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of hes
 - Decision fr

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

Forward-backward algorithm: a "feed-forward" algorithm for computing alpha-beta probabilities.

$$\alpha_{i,t} = P(Y_1^t \text{ and } S_t = i \mid model) = b_{i,t} \sum_j a_{ji} \alpha_{j,t-1}$$

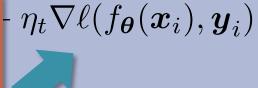
$$\beta_{i,t} = P(Y_{t+1}^T \mid S_t = i \text{ and } model) = \sum_j a_{ij} b_{j,t+1} \beta_{j,t+1}$$

$$\gamma_{i,t} = P(S_t = i \mid Y_1^t \text{ and } model) = \alpha_{i,t} \beta_{i,t}$$

Log-likelihood: a "feed-forward" objective function.

$$\log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END}, T}$$
 ht)

 $\ell(\hat{m{y}}, m{y}_i) \in \mathbb{I}$ How do we compute the gradient?



Training

Backpropagation

Graphical Model and Log-likelihood

Neural Network

Backpropagation is just repeated application of the

chain rule from Calculus 101.

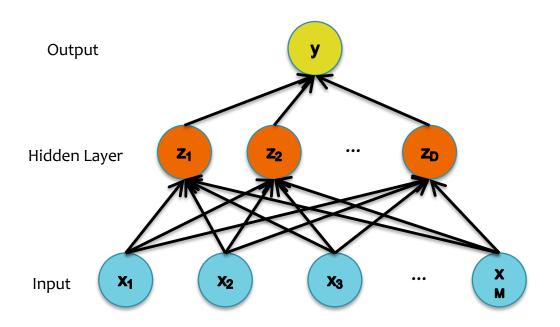
$$y = g(u)$$
 and $u = h(x)$.

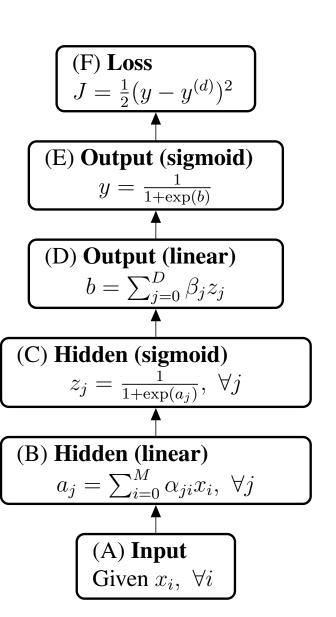
How to compute these partial derivatives?

Chain Rule:
$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Training Backpropagation

What does this picture actually mean?





Training

Backpropagation

Case 2: Neural Network

Forward

$$J = y^* \log q + (1 - y^*) \log(1 - q)$$

$$q = \frac{1}{1 + \exp(-b)}$$

$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$

$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Backward

$$\frac{dJ}{dq} = \frac{y^*}{q} + \frac{(1-y^*)}{q-1}$$

$$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \frac{dy}{db} = \frac{\exp(b)}{(\exp(b)+1)^2}$$

$$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$$

$$\frac{dJ}{dz_j} = \frac{dJ}{db}\frac{db}{dz_j}, \, \frac{db}{dz_j} = \beta_j$$

$$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \ \frac{dz_j}{da_j} = \frac{\exp(a_j)}{(\exp(a_j) + 1)^2}$$

$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \ \frac{da_j}{d\alpha_{ji}} = x_i$$

$$\frac{dJ}{dx_i} = \frac{dJ}{da_j} \frac{da_j}{dx_i}, \ \frac{da_j}{dx_i} = \sum_{j=0}^{D} \alpha_{ji}$$

Computing the Gradient: $abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$

Forward computation

$$\log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END}, T}$$

$$\alpha_{i,t} = \dots$$
 (forward prob)

$$\beta_{i,t} = \dots$$
 (backward prop)

$$\gamma_{i,t} = \dots$$
 (marginals)

$$a_{i,j} = \dots$$
 (transitions)

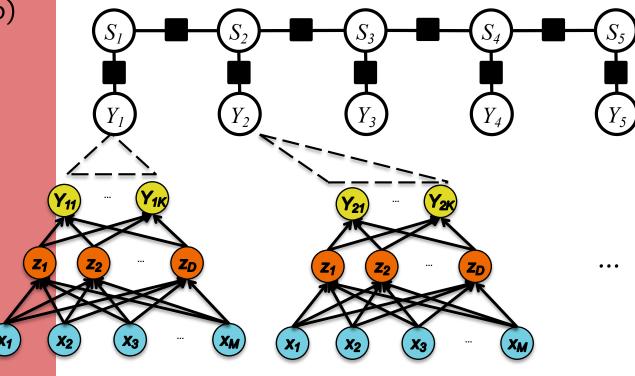
$$b_{i,t} = \dots$$
 (emissions)

$$y_{tk} = \frac{1}{1 + \exp(-b)}$$

$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$

$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$



Computing the Gradient: $abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$

Forward computation

$$J = \log p(\mathbf{S}, \mathbf{Y}) = lpha_{\mathsf{END}, T}$$
 $lpha_{i,t} = \ldots$ (forward prob) $eta_{i,t} = \ldots$ (backward prop) $\gamma_{i,t} = \ldots$ (marginals) $a_{i,j} = \ldots$ (transitions)

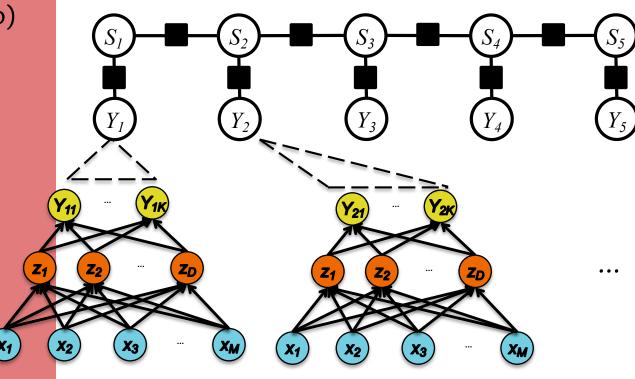
 $b_{i,t} = \dots$ (emissions)

$$y_{tk} = \frac{1}{1 + \exp(-b)}$$

$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$

$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$



Computing the Gradient: $abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$

Forward computation

$$J = \log p(\mathbf{S}, \mathbf{Y}) = lpha_{\mathsf{END}, T}$$
 $lpha_{i,t} = \ldots$ (forward prob)
 $eta_{i,t} = \ldots$ (backward prop)
 $\gamma_{i,t} = \ldots$ (marginals)
 $a_{i,j} = \ldots$ (transitions)
 $b_{i,t} = \ldots$ (emissions)
 $y_{tk} = \frac{1}{1 + \exp(-b)}$
 $b = \sum_{j=0}^{D} \beta_j z_j$
 $z_j = \frac{1}{1 + \exp(-a_j)}$
 $a_j = \sum_{i=0}^{M} lpha_{ji} x_i$

Backward computation

$$\frac{dJ}{db_{i,t}} = \frac{\partial \alpha_{F_{model},T}}{\partial \alpha_{i,t}} \frac{\partial \alpha_{i,t}}{\partial b_{i,t}} = \left(\sum_{j} \frac{\partial \alpha_{j,t+1}}{\partial \alpha_{i,t}} \frac{\partial L_{model}}{\partial \alpha_{j,t+1}}\right) \left(\sum_{j} a_{ji} \alpha_{j,t-1}\right)$$
$$= \left(\sum_{j} b_{j,t+1} a_{ji} \frac{\partial \alpha_{F_{model},T}}{\partial \alpha_{j,t+1}}\right) \left(\sum_{j} a_{ji} \alpha_{j,t-1}\right) = \beta_{i,t} \frac{\alpha_{i,t}}{b_{i,t}} = \frac{\gamma_{i,t}}{b_{i,t}}$$

Computing the Gradient: $abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$

Forward computation $J = \log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END},T}$ $\alpha_{i,t} = \dots$ (forward prob) $\beta_{i,t} = \dots$ (backward prop) $\gamma_{i,t} = \dots$ (marginals) $a_{i,j} = \dots$ (transitions) $b_{i,t} = \dots$ (emissions) $y_{tk} = \frac{1}{1 + \exp(-b)}$ $b = \sum \beta_j z_j$ $z_j = \frac{1}{1 + \exp(-a_j)}$ $a_j = \sum \alpha_{ji} x_i$

$$\begin{split} & \frac{dJ}{db_{i,t}} = \frac{\gamma_{i,t}}{b_{i,t}} \\ & \frac{dJ}{dy_{t,k}} = \sum_{b_{i,t}} \frac{dJ}{db_{i,t}} \frac{db_{i,t}}{dy_{t,k}} \\ & \frac{\partial^{b_{i,t}}}{\partial Y_{jt}} = \sum_{k} \frac{Z_{k}}{((2\pi)^{n} | \Sigma_{k}|)^{1/2}} (\sum_{l} d_{k,lj}(\mu_{kl} - Y_{lt})) \exp(-\frac{1}{2}(Y_{t} - \mu_{k})\Sigma_{k}^{-1}(Y_{t} - \mu_{k})^{T}) \\ & \frac{dJ}{db} = \frac{dJ}{dy} \frac{dy}{db}, \ \frac{dy}{db} = \frac{\exp(b)}{(\exp(b) + 1)^{2}} \\ & \frac{dJ}{d\beta_{j}} = \frac{dJ}{db} \frac{db}{d\beta_{j}}, \ \frac{db}{d\beta_{j}} = z_{j} \\ & \frac{dJ}{da_{j}} = \frac{dJ}{db} \frac{db}{dz_{j}}, \ \frac{db}{dz_{j}} = \beta_{j} \\ & \frac{dJ}{da_{j}} = \frac{dJ}{dz_{j}} \frac{dz_{j}}{da_{j}}, \ \frac{dz_{j}}{da_{j}} = \frac{\exp(a_{j})}{(\exp(a_{j}) + 1)^{2}} \\ & \frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_{j}} \frac{da_{j}}{d\alpha_{ji}}, \ \frac{da_{j}}{d\alpha_{ji}} = x_{i} \end{split}$$

Computing the Gradient: $abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$

Forward computation

$$J = \log p(\mathbf{S}, \mathbf{Y}) = lpha_{\mathsf{END}, T}$$
 $lpha_{i,t} = \ldots$ (forward prob) $eta_{i,t} = \ldots$ (backward prop) $\gamma_{i,t} = \ldots$ (marginals)

The derivative of the log-likelihood with respect to the neural network parameters!

$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Backward computation

$$\frac{dJ}{db_{i,t}} = \frac{\gamma_{i,t}}{b_{i,t}}$$

$$\frac{dJ}{dy_{t,k}} = \sum_{b_{i,t}} \frac{dJ}{db_{i,t}} \frac{db_{i,t}}{dy_{t,k}}$$

$$\frac{\partial b_{i,t}}{\partial Y_{jt}} = \sum_{k} \frac{Z_{k}}{((2\pi)^{n} | \Sigma_{k}|)^{1/2}} (\sum_{l} d_{k,lj}(\mu_{kl} - Y_{lt})) \exp(-\frac{1}{2}(Y_{t} - \mu_{k})\Sigma_{k}^{-1}(Y_{t} - \mu_{k})^{T})$$

$$\frac{dJ}{db} = \frac{dJ}{dy} \frac{dy}{db}, \frac{dy}{db} = \frac{\exp(b)}{(\exp(b) + 1)^{2}}$$

$$\frac{dJ}{d\beta_{j}} = \frac{dJ}{db} \frac{db}{d\beta_{j}}, \frac{db}{d\beta_{j}} = z_{j}$$

$$\frac{dJ}{da_{j}} = \frac{dJ}{db} \frac{db}{dz_{j}}, \frac{db}{dz_{j}} = \beta_{j}$$

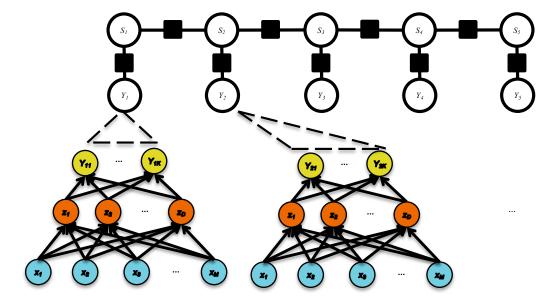
$$\frac{dJ}{da_{j}} = \frac{dJ}{dz_{j}} \frac{dz_{j}}{da_{j}}, \frac{dz_{j}}{da_{j}} = \frac{\exp(a_{j})}{(\exp(a_{j}) + 1)^{2}}$$

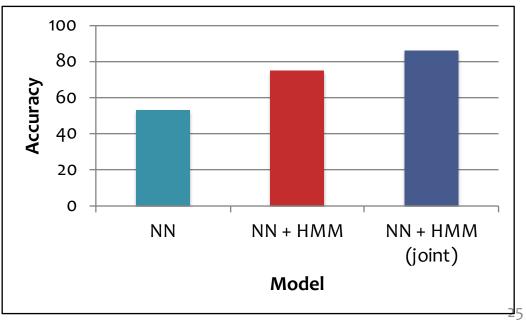
$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_{j}} \frac{da_{j}}{d\alpha_{ji}}, \frac{da_{j}}{d\alpha_{ji}} = x_{i}$$

$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_{j}} \frac{da_{j}}{d\alpha_{ji}}, \frac{da_{j}}{d\alpha_{ji}} = x_{i}$$

Experimental Setup:

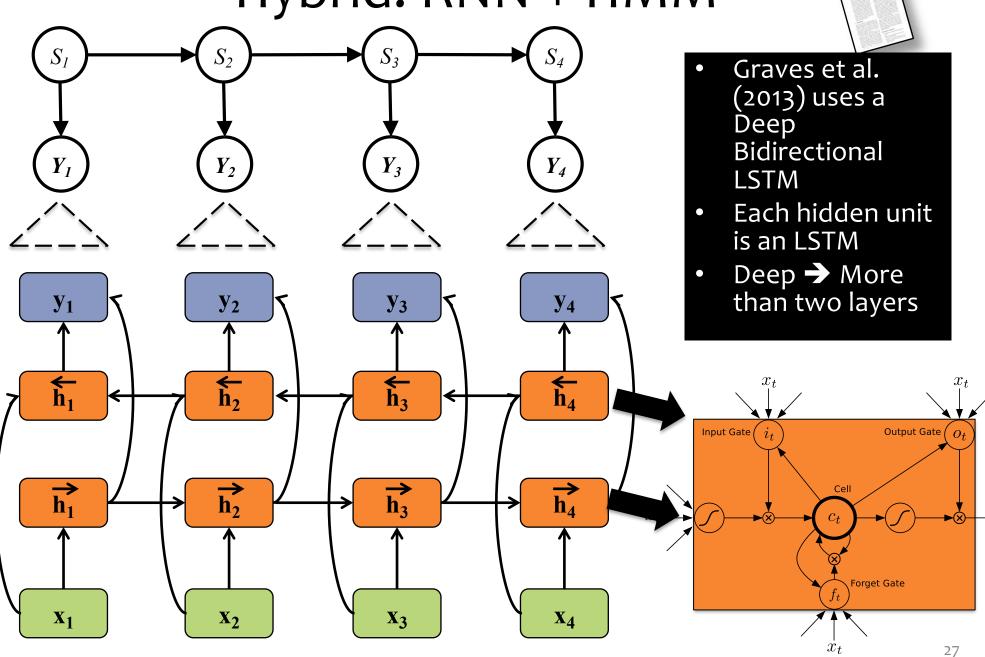
- Task: Phoneme Recognition (aka. speaker independent recognition of plosive sounds)
- Eight output labels:
 - /p/, /t/, /k/, /b/, /d/, /g/, /dx/, /all other phonemes/
 - These are the HMM hidden states
- Metric: Accuracy
- 3 Models:
 - 1. NN only
 - 2. NN + HMM (trained independently)
 - 3. NN + HMM (jointly trained)





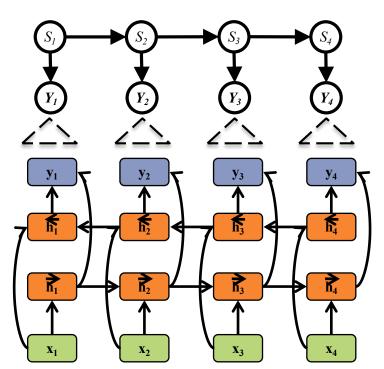
HYBRID: RNN + HMM

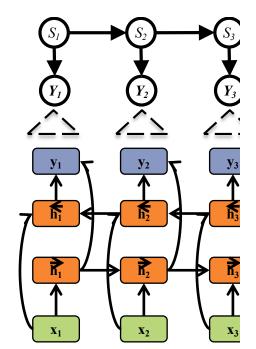
(Graves et al., 2013)



The model, inference, and learning can be **analogous** to our NN + HMM hybrid

- Objective: log-likelihood
- Model: HMM/Gaussian emissions
- Inference: forwardbackward algorithm
- Learning: SGD with gradient by backpropagation





Experimental Setup:

• Task: Phoneme Recognition

Dataset: TIMIT

Metric: Phoneme Error

Rate

Two classes of models:

1. Neural Net only

2. NN + HMM hybrids

TRAINING METHOD	TEST PER
CTC	21.57 ± 0.25
CTC (NOISE)	18.63 ± 0.16
TRANSDUCER	$\textbf{18.07} \pm \textbf{0.24}$

1. Neural Net only

NETWORK	DEV PER TEST PER
DBRNN	19.91 ± 0.22 21.92 ± 0.35
DBLSTM	17.44 ± 0.156
	19.34 ± 0.15
DBLSTM	16.11 ± 0.15
(NOISE)	$ \hspace{0.1cm} 17.99 \pm 0.13 \hspace{0.1cm} $

2. NN + HMM hybrids

HYBRID: CNN + CRF

Markov Random Field (MRF)

Joint distribution over tags Y_i and words X_i

$$p(n, v, p, d, n, time, flies, like, an, arrow) = \frac{1}{Z} (4 * 8 * 5 * 3 * ...)$$

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

	<star< th=""><th>RT></th><th></th><th></th><th>n</th><th>v</th><th></th><th>-</th><th>-(</th><th>p</th><th>)—</th><th>- d</th><th>n</th></star<>	RT>			n	v		-	-(p) —	- d	n
	time	flies	like	i	time	flies		time	flies	like	i	an	arrow
v	3	5	3		time	ines	v	3	5	3			arrow
n	4	5	2				n	4	5	2			
р	0.1	0.1	3				р	0.1	0.1	3			
d	0.1	0.2	0.1				d	0.1	0.2	0.1			

Conditional Random Field (CRF)

Conditional distribution over tags Y_i given words x_i . The factors and Z are now specific to the sentence x.

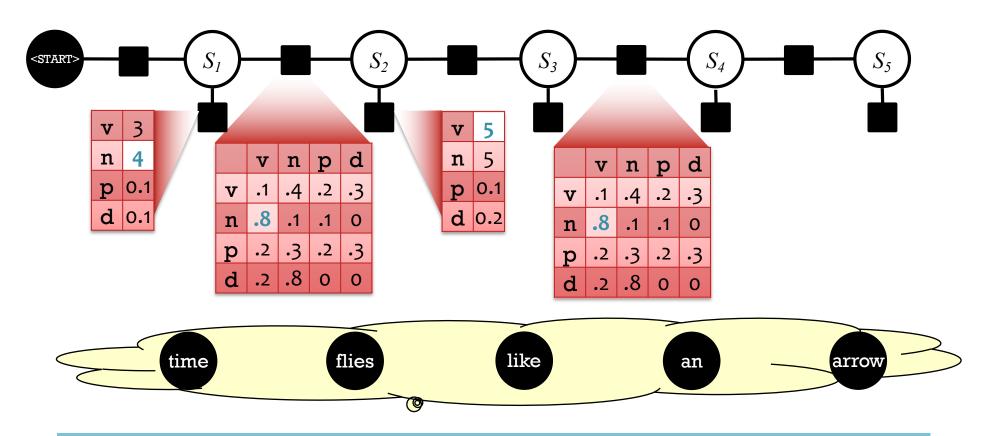
$$p(n, v, p, d, n | time, flies, like, an, arrow) = \frac{1}{Z} (4*8*5*3*...)$$

	v	n	р	d	
v	1	6	3	4	
n	8	4	2	0.1	
р	1 3		1	3	
d	0.1	8	0	0	

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0



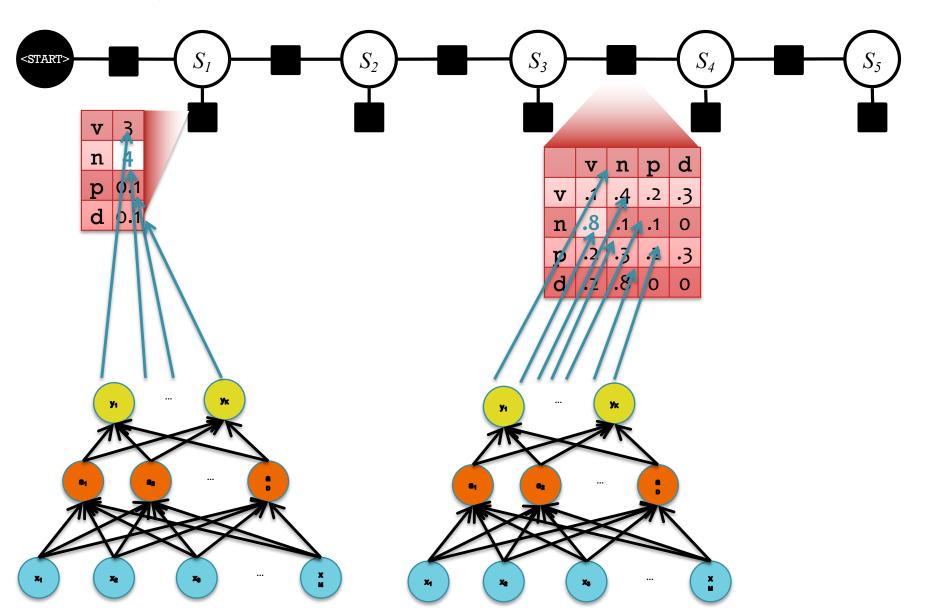
Hybrid: Neural Net + CRF



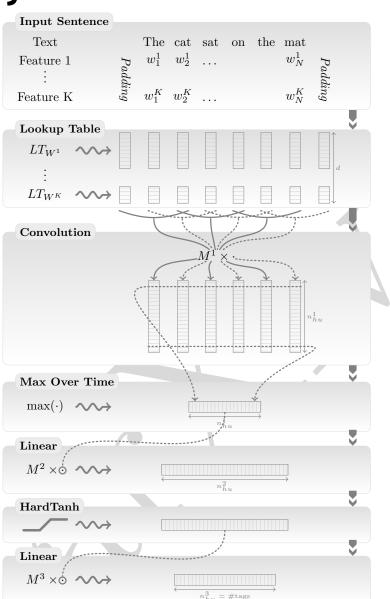
- In a standard CRF, each of the factor cells is a parameter (e.g. transition or emission)
- In the hybrid model, these values are computed by a neural network with its own parameters

Hybrid: Neural Net + CRF

Forward computation

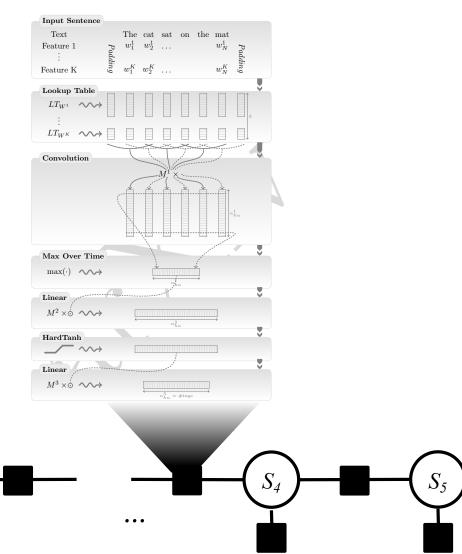


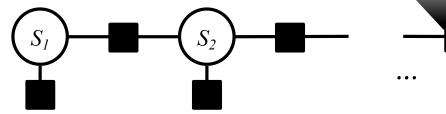
- For computer vision,
 Convolutional
 Neural Networks
 are in 2-dimensions
- For natural language, the CNN is 1-dimensional



"NN + SLL"

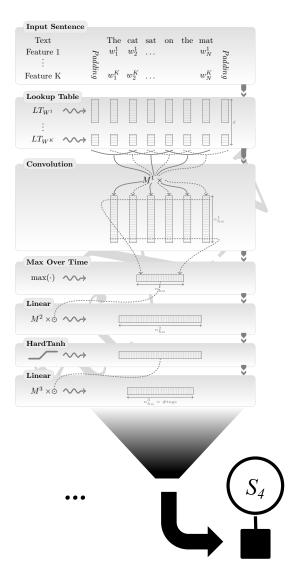
- Model: Convolutional Neural Network (CNN) with linearchain CRF
- Training objective: maximize sentencelevel likelihood (SLL)





"NN + WLL"

- Model: Convolutional Neural Network (CNN) with logistic regression
- Training objective: maximize word-level likelihood (WLL)



Experimental Setup:

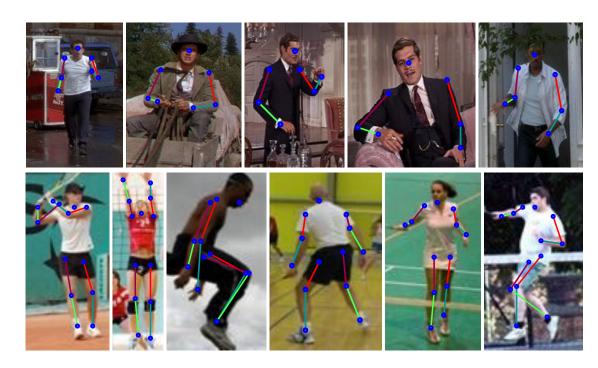
- Tasks:
 - Part-of-speech tagging (POS),
 - Noun-phrase and Verb-phrase Chunking,
 - Named-entity recognition (NER)
 - Semantic Role Labeling (SRL)
- Datasets / Metrics: Standard setups from NLP literature (higher PWA/F1 is better)
- Models:
 - Benchmark systems are typical non-neural network systems
 - NN+WLL: hybrid CNN with logistic regression
 - NN+SLL: hybrid CNN with linear-chain CRF

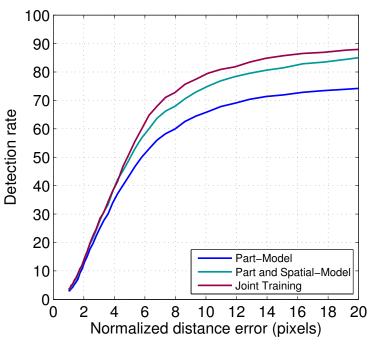
${f Approach}$	POS	Chunking	NER	\mathbf{SRL}
	(PWA)	(F1)	(F1)	(F1)
Benchmark Systems	97.24	94.29	89.31	77.92
NN+WLL	96.31	89.13	79.53	55.40
NN+SLL	96.37	90.33	81.47	70.99

Hybrid: CNN + MRF

Experimental Setup:

- Task: pose estimation
- Model: Deep CNN + MRF





TRICKS OF THE TRADE

Backprop in Practice

- Use ReLU non-linearities (tanh and logistic are falling out of favor)
- Use cross-entropy loss for classification
- Use Stochastic Gradient Descent on minibatches
- Shuffle the training samples
- Normalize the input variables (zero mean, unit variance)
- Schedule to decrease the learning rate
- Use a bit of L1 or L2 regularization on the weights (or a combination)
 - But it's best to turn it on after a couple of epochs
- Use "dropout" for regularization
 - Hinton et al 2012 http://arxiv.org/abs/1207.0580
- Lots more in [LeCun et al. "Efficient Backprop" 1998]
- Lots, lots more in "Neural Networks, Tricks of the Trade" (2012 edition) edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

Deep Learning Tricks of the Trade

- Y. Bengio (2012), "Practical Recommendations for Gradient-Based Training of Deep Architectures"
 - Unsupervised pre-training
 - Stochastic gradient descent and setting learning rates
 - Main hyper-parameters
 - Learning rate schedule & early stopping
 - Minibatches
 - Parameter initialization
 - Number of hidden units
 - L1 or L2 weight decay
 - Sparsity regularization

 - How to efficiently search for hyper-parameter configurations

Tricks of the Trade

Lots of them:

- Pre-training helps (but isn't always necessary)
- Train with adaptive gradient variants of SGD (e.g. Adam)
- Use max-margin loss function (i.e. hinge loss) though only sub-differentiable it often gives better results

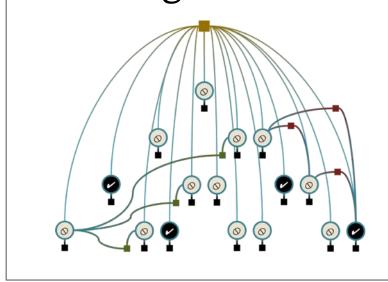
– ...

- A few years back, they were considered "poorly documented" and "requiring great expertise"
- Now there are lots of good tutorials that describe (very important) specific implementation details
- Many of them also apply to training graphical models!

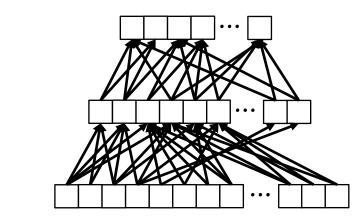
SUMMARY

Summary: Hybrid Models

Graphical models let you encode domain knowledge



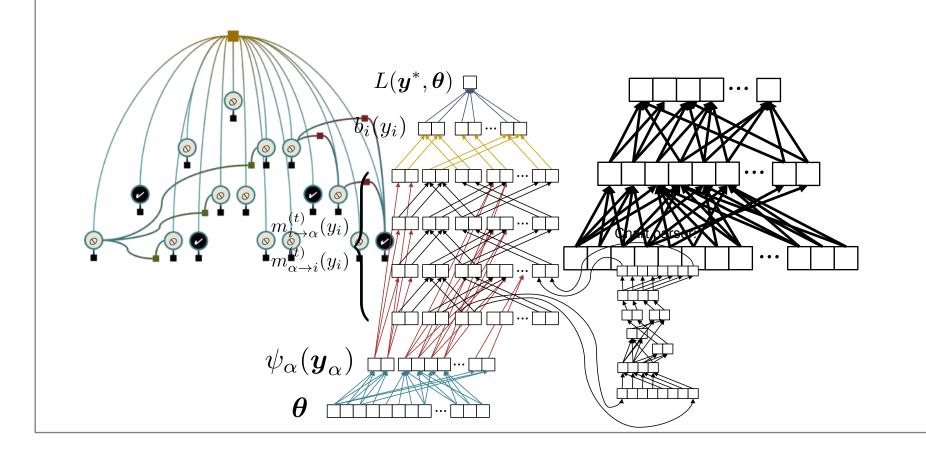
Neural nets are really good at fitting the data discriminatively to make good predictions



Could we define a neural net that incorporates domain knowledge?

Summary: Hybrid Models

Key idea: Use a NN to learn features for a GM, then train the entire model by backprop



MBR DECODING

Minimum Bayes Risk Decoding

- Suppose we given a loss function l(y', y) and are asked for a single tagging
- How should we choose just one from our probability distribution p(y|x)?
- A minimum Bayes risk (MBR) decoder h(x) returns the variable assignment with minimum **expected** loss under the model's distribution

$$egin{aligned} h_{m{ heta}}(m{x}) &= \underset{\hat{m{y}}}{\operatorname{argmin}} & \mathbb{E}_{m{y} \sim p_{m{ heta}}(\cdot | m{x})}[\ell(\hat{m{y}}, m{y})] \ &= \underset{\hat{m{y}}}{\operatorname{argmin}} & \sum_{m{y}} p_{m{ heta}}(m{y} \mid m{x})\ell(\hat{m{y}}, m{y}) \end{aligned}$$

Minimum Bayes Risk Decoding

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \ \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot | \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]$$

Consider some example loss functions:

The **Hamming loss** corresponds to accuracy and returns the number of incorrect variable assignments:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \sum_{i=1}^{V} (1 - \mathbb{I}(\hat{y}_i, y_i))$$

The MBR decoder is:

$$\hat{y}_i = h_{\boldsymbol{\theta}}(\boldsymbol{x})_i = \underset{\hat{y}_i}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{y}_i \mid \boldsymbol{x})$$

This decomposes across variables and requires the variable marginals.

Minimum Bayes Risk Decoding

$$h_{m{ heta}}(m{x}) = \operatorname*{argmin}_{\hat{m{y}}} \; \mathbb{E}_{m{y} \sim p_{m{ heta}}(\cdot | m{x})}[\ell(\hat{m{y}}, m{y})]$$

Consider some example loss functions:

The 0-1 loss function returns 1 only if the two assignments are identical and 0 otherwise:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = 1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})$$

The MBR decoder is:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \sum_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) (1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y}))$$
$$= \underset{\hat{\boldsymbol{y}}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{\boldsymbol{y}} \mid \boldsymbol{x})$$

which is exactly the MAP inference problem!