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Example Application: 

Nuclear Threat Detection 

• Border control: vehicles are scanned 

• Human in the loop interpreting results 

vehicle scan 

prediction 

feedback 

3 



Boosted Decision Stumps 
• Accurate, but hard to interpret 

How is the 
prediction 
derived from 
the input? 

4 



Decision Tree – More Interpretable 

Radiation > x% 

Payload type = ceramics 

Uranium level > max. 
admissible for ceramics 

Consider balance of 
Th232, Ra226 and 

Co60  

Clear 

yes no 

yes 

no 

Threat 

yes 

no 
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Motivation 
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Many users are willing to trade accuracy to 

better understand the system-yielded results 

  

 Need: simple, interpretable model 

 

 Need: explanatory prediction process 



Analysis Tools – Black-box 

 

• Very accurate tree ensemble 
• L. Breiman,‘Random Forests’, 2001 Random Forests 

 
• Guarantee: decreases training error 
• R. Schapire, ‘The boosting 

approach to machine learning’  

Boosting 

• Bagged boosting 
• G. Webb, ‘MultiBoosting: A 

Technique for Combining Boosting 
and Weighted Bagging’ 

Multi-boosting 
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Analysis Tools – White-box 

 
• Decision tree based on the Gini 

Impurity criterion 

 

CART 

• Dec. tree with leaf classifiers 
• K. Ting, G. Webb, ‘FaSS: Ensembles 

for Stable Learners’ 
Feating 

• Ensemble: each discriminator trained 
on a random subset of  features 

• R. Bryll, ‘Attribute bagging ’ 
Subspacing 

 
• Builds a decision list that selects the 

classifier to deal with a query point 
EOP 
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Explanation-Oriented Partitioning 
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2 Gaussians Uniform cube 

-4 -3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4

5  

 

(X,Y) plot 
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EOP Execution Example – 3D data 

  
  

  
  

  

Step 1: Select a projection - (X1,X2) 
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Step 1: Select a projection - (X1,X2) 
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EOP Execution Example – 3D data 



  
  

  
  

  

Step 2: Choose a good classifier - call it h1 

 

h1 
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EOP Execution Example – 3D data 



  
  

  
  

  

Step 2: Choose a good classifier - call it h1 
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EOP Execution Example – 3D data 



  
  

  
  

  

Step 3: Estimate accuracy of h1 at each point 

OK NOT OK 
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EOP Execution Example – 3D data 



  
  

  
  

  

Step 3: Estimate accuracy of h1 for each point 
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EOP Execution Example – 3D data 



  
  

  
  

  

Step 4: Identify high accuracy regions 
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EOP Execution Example – 3D data 



  
  

  
  

  

Step 4: Identify high accuracy regions 
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EOP Execution Example – 3D data 



  
  

  
  

  

Step 5:Training points - removed from consideration 
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EOP Execution Example – 3D data 
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Step 5:Training points - removed from consideration 

EOP Execution Example – 3D data 



          

Finished first iteration 
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EOP Execution Example – 3D data 
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EOP Execution Example – 3D data 

Finished second iteration 



          

          

          

Iterate until  all data is accounted for  
                       or  error cannot be decreased 
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EOP Execution Example – 3D data 



Learned Model –  

Processing query [x1x2x3] 

[x1x2] in R1                 ? 

[x2x3] in R2                 ? 

[x1x3] in R3                 ? 

h1(x1x2) 

h2(x2x3) 

h3(x1x3) 

Default 
Value 

yes 

yes 

yes 

no 

no 

no 
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Parametric / Nonparametric Regions 

Bounding Polyhedra Nearest-neighbor Score 

Enclose points in convex shapes 
(hyper-rectangles /spheres). 
 

Consider the k-nearest neighbors 
Region: { X | Score(X) > t} 
t – learned threshold  

Easy to test inclusion Easy to test inclusion 

Visually appealing Can look insular 

Inflexible Deals with irregularities 
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decision 

p 

n1 

n2 

n3 

n4 

n5 

Incorrectly classified Correctly classified Query point 

decision 



Feating and EOP 
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Decision 
Structures to 
pick right 
classification 
model 

Flexible 
Regions 

Tiles in feature 
space 

Decision Tree Decision List 

Models trained 
on all features 

Models trained 
on subspaces 

EOP Feating 
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Overview of datasets 

• Real valued features, binary output 

• Artificial data – 10 features 
▫ Low-d Gaussians/uniform cubes 

• UCI repository 

• Application-related datasets 

 

• Results by k-fold cross validation 
▫ Complexity = expected number of vector 

operations  performed for a classification task 
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EOP vs AdaBoost - SVM base classifiers 

• EOP is often less accurate, but not significantly 

• the reduction of complexity is statistically significant 

 p-value of 2-sided test: 0.832  p-value of 2-sided test: 0.003 
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Boosting 

EOP (nonparametric) 
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Accuracy Complexity 
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mean diff in accuracy: 0.5% mean diff in complexity: 85 



EOP (stumps as base classifiers) vs 

CART on data from the UCI repository 

0 0.5 1 

BCW  

MB  

V  

BT  

Accuracy 
0 20 

Complexity 

CART 

EOP N. 

EOP P. 
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Dataset # of Features # of Points 

Breast Tissue 10 1006 
Vowel 9 990 
MiniBOONE 10 5000 
Breast Cancer 10 596 

 CART is 
the most 
accurate  

 Parametric 
EOP yields 
the simplest 
models 

 



Typical XOR dataset 
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Why are EOP models less complex? 



Typical XOR dataset 

CART 
• is accurate 
• takes many iterations 
• does not uncover or 
leverage structure of data  
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Why are EOP models less complex? 



Typical XOR dataset 

 EOP 
• equally accurate  
•uncovers structure 

Iteration 1 

Iteration 2 
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CART 
• is accurate 
• takes many iterations 
• does not uncover or 
leverage structure of data  

+ o 

o + 

Why are EOP models less complex? 
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Breast Cancer Wis CART

Breast Cancer Wis EOP

MiniBOONE CART

MiniBOONE EOP

Breast Tissue CART

Breast Tissue EOP

Vowel CART

Vowel EOP

• At low complexities, EOP is typically more accurate 

Error Variation With Model Complexity for EOP and CART 

Depth of decision tree/list 

E
rr

o
r 
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UCI data – Accuracy 

0 0.2 0.4 0.6 0.8 1 1.2 

BCW 

MB 

BT 

Vow 

R-EOP 

N-EOP 

CART 

Feating 

Sub-spacing 

Multiboosting 

Random 
Forests 
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UCI data – Model complexity 

0 20 40 60 80 

BCW 

MB 

BT 

Vow 

R-EOP 

N-EOP 

CART 

Feating 

Sub-spacing 

Multiboosting 
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Complexity of Random 
Forests is huge 
- thousands of nodes - 



Robustness 
• Accuracy-targeting EOP 

▫ identifies which portions of the data can be 
confidently classified with a given rate. 
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Accuracy of EOP when regions do not include noisy data  

Max allowed error 
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Metrics of Explainability 
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Lift 

Bayes 
Factor 

J-Score 

Normalized 
Mutual 

Information 



Evaluation with usefulness metrics  

• For 3 out of 4 metrics, EOP beats CART 

CART EOP 
BF L J NMI BF L J NMI 

MB 1.982 0.004 0.389 0.040 1.889 0.007 0.201 0.502 
BCW 1.057 0.007 0.004 0.011 2.204 0.069 0.150 0.635 

BT 0.000 0.009 0.210 0.000 Inf 0.021 0.088 0.643 

V Inf 0.020 0.210 0.010 2.166 0.040 0.177 0.383 

Mean 1.520 0.010 0.203 0.015 2.047 0.034 0.154 0.541 

BF =Bayes Factor. L = Lift.  J = J-score. NMI = Normalized Mutual Info 
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Higher values are better 
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Spam Detection (UCI ‘SPAMBASE’) 

• 10 features: frequencies of misc. words in e-mails 

• Output: spam or not 

0 
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Spam Detection – Iteration 1 

▫ classifier labels everything as spam 

▫ high confidence regions do enclose mostly spam and: 
 Incidence of the word ‘your’ is low 

 Length of text in capital letters is high 
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Spam Detection – Iteration 2 

▫ the required incidence of 
capitals is increased 

▫ the square region on the left 
also encloses examples that 
will be marked as `not 
spam' 
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Spam Detection – Iteration 3 
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word_frequency_hi 

▫ Classifier marks everything as spam 

▫ Frequency of ‘your’ and ‘hi’ determine the regions 



Effects of Cell Treatment 

• Monitored population of cells 

• 7 features: cycle time, area, perimeter ... 

• Task: determine which cells were  treated 
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Complexity 
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Mimic Medication Data 

• Information about administered medication 

• Features: dosage for each drug 

• Task: predict patient return to ICU 
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Complexity 
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Predicting Fuel Consumption 

• 10 features: vehicle and driving style characteristics 

• Output: fuel consumption level (high/low) 
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Complexity 
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Nuclear threat detection data 

• Random Forests accuracy: 0.94 

• Rectangular EOP accuracy: 0.881 

… but 

 

Regions found in 1st iteration for Fold 0: 

▫ incident.riidFeatures.SNR [2.90,9.2] 

▫ Incident.riidFeatures.gammaDose [0,1.86]*10-8 

Regions found in 2st iteration for Fold 1: 

▫ incident.rpmFeatures.gamma.sigma [2.5, 17.381] 

▫ incident.rpmFeatures.gammaStatistics.skewdose 
[1.31,…] 
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Summary 
• White box models (CART, Feating, Sub-spacing) 

▫ ~ as accurate as typical black-box models - B, MB 

• In most cases EOP: 

▫  maintains accuracy 

▫ reduces complexity 

▫ identifies useful aspects of the data 

• EOP wins in terms of expressiveness 

• Trade-offs 

▫ Accuracy vs Complexity 

▫ Accuracy vs Coverage 

• Open questions: 

▫ What if no good low-dimensional projections found? 

▫ What to do with inconsistent models in different folds of cv? 
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