21st of February 2012

# Trade-offs in Explanatory Model Learning

Data Analysis Project Madalina Fiterau

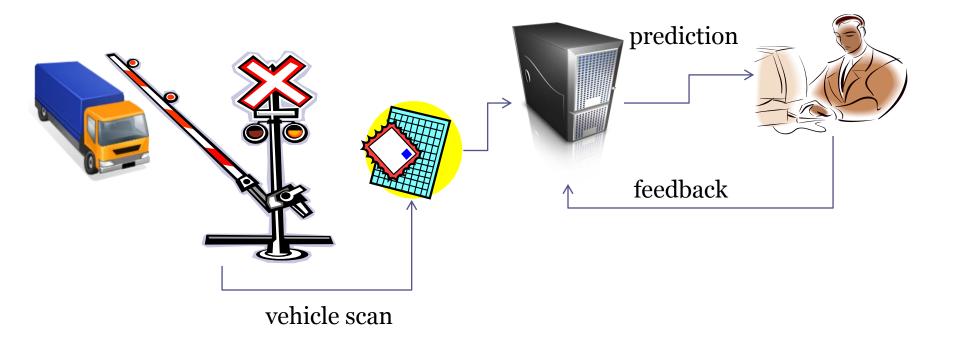
DAP Committee
Artur Dubrawski
Jeff Schneider
Geoff Gordon

#### Outline

- Motivation: need for interpretable models
- Overview of data analysis tools
- Model evaluation accuracy vs complexity
- Model evaluation understandability
- Example applications
- Summary

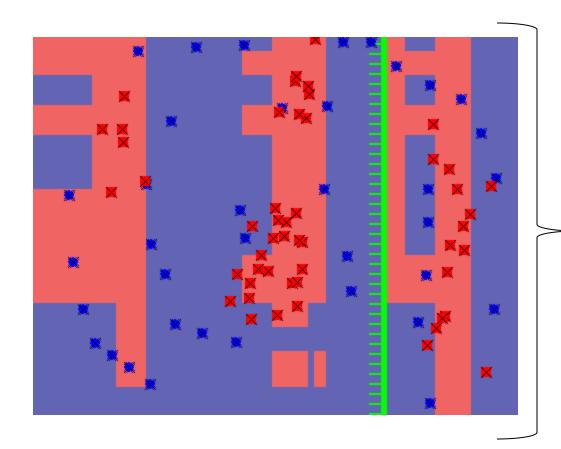
## Example Application: Nuclear Threat Detection

- Border control: vehicles are scanned
- Human in the loop interpreting results



### **Boosted Decision Stumps**

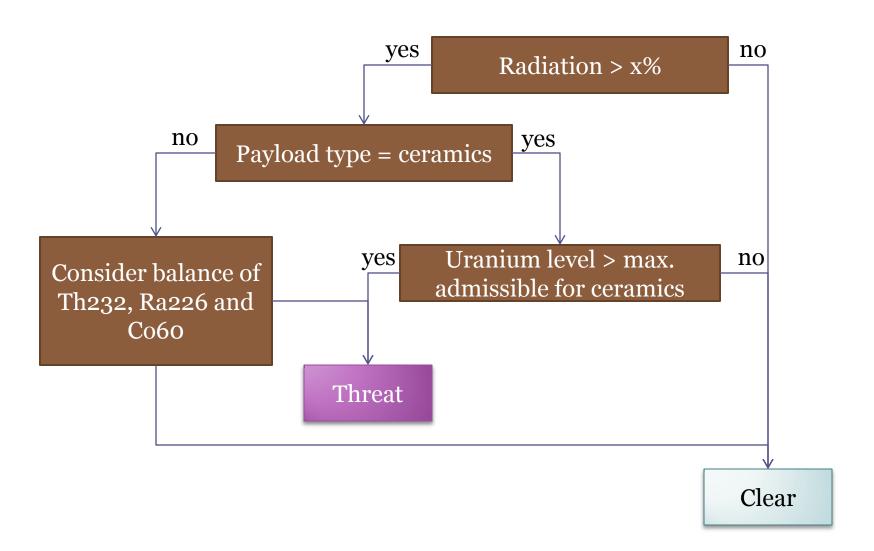
Accurate, but hard to interpret





How is the prediction derived from the input?

### Decision Tree - More Interpretable



#### Motivation

Many users are willing to trade accuracy to better understand the system-yielded results

*Need*: simple, interpretable model

*Need*: explanatory prediction process

### Analysis Tools - Black-box

#### Random Forests

- Very accurate tree ensemble
- L. Breiman, 'Random Forests', 2001

#### Boosting

- Guarantee: decreases training error
- R. Schapire, 'The boosting approach to machine learning'

#### Multi-boosting

- Bagged boosting
- G. Webb, 'MultiBoosting: A Technique for Combining Boosting and Weighted Bagging'

### Analysis Tools - White-box

#### **CART**

 Decision tree based on the Gini Impurity criterion

#### Feating

- Dec. tree with leaf classifiers
- K. Ting, G. Webb, 'FaSS: Ensembles for Stable Learners'

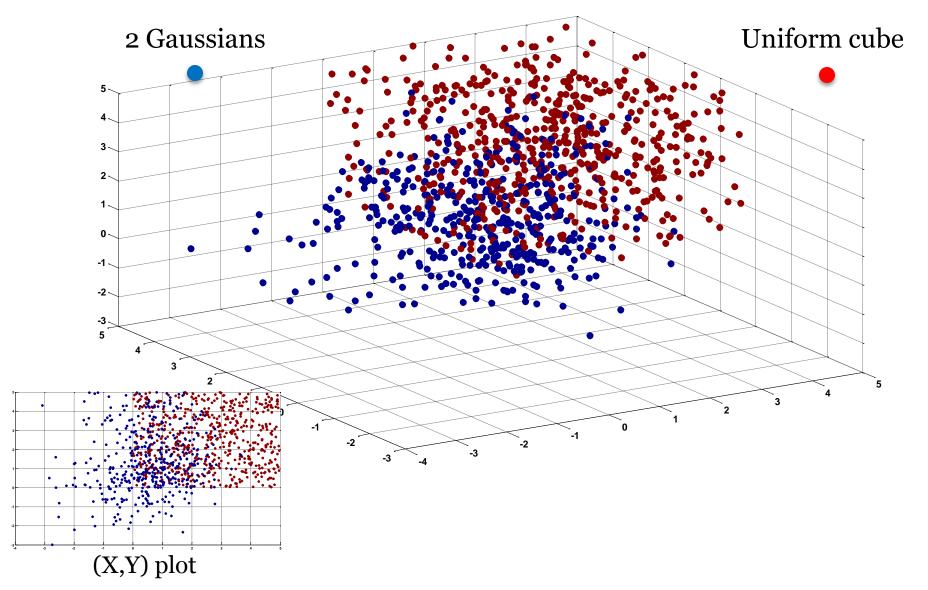
### Subspacing

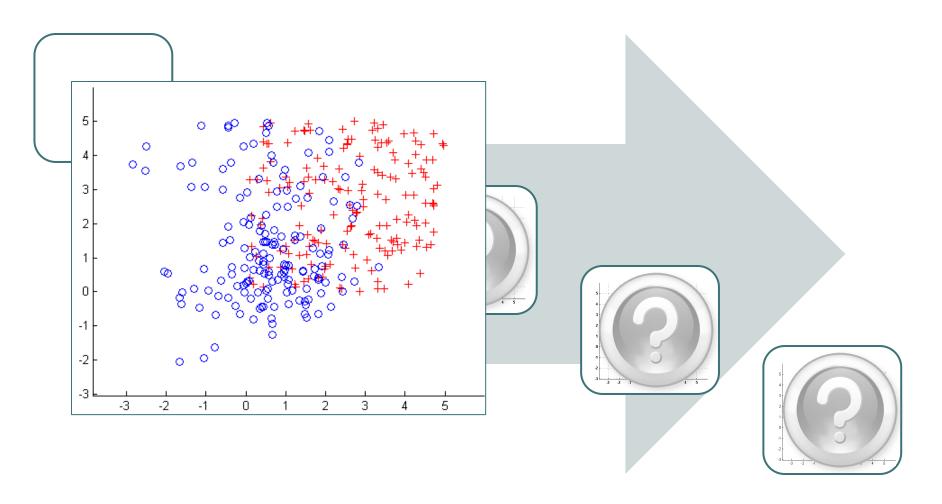
- Ensemble: each discriminator trained on a random subset of features
- R. Bryll, 'Attribute bagging'

#### EOP

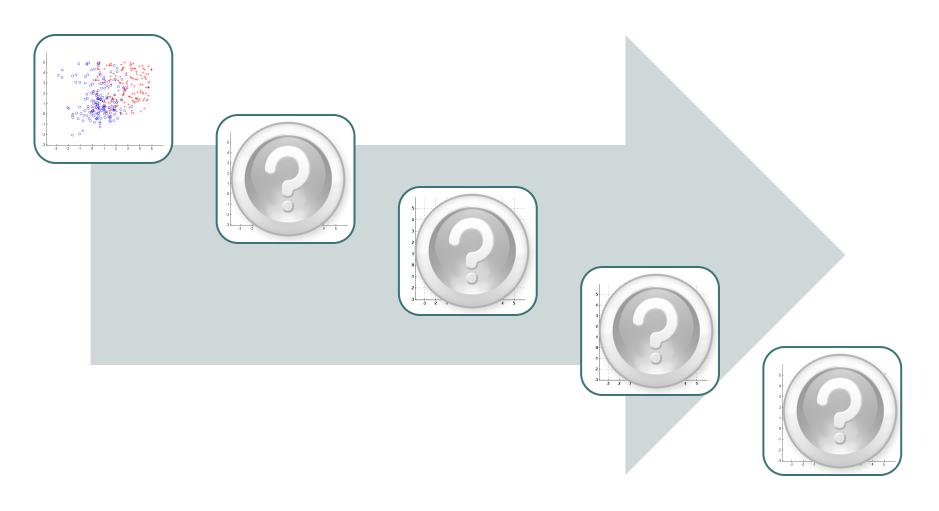
• Builds a decision list that selects the classifier to deal with a query point

## **Explanation-Oriented Partitioning**

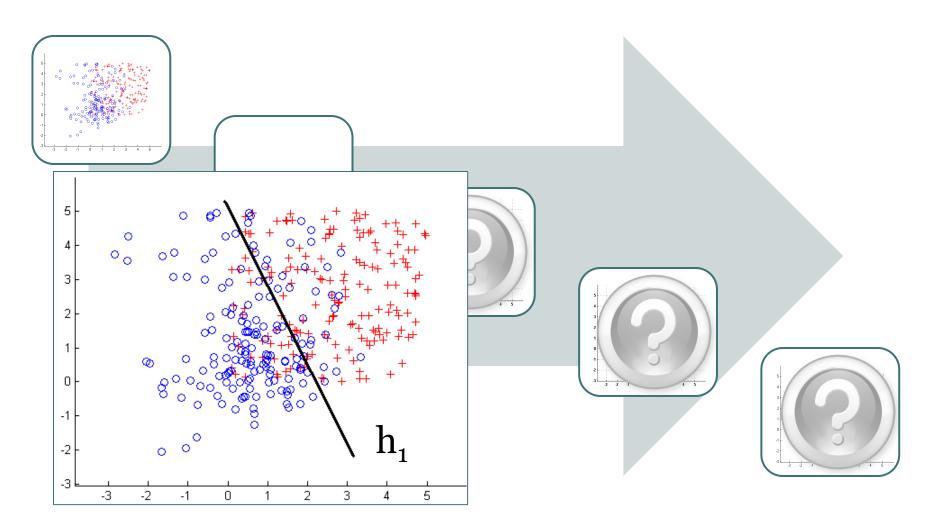




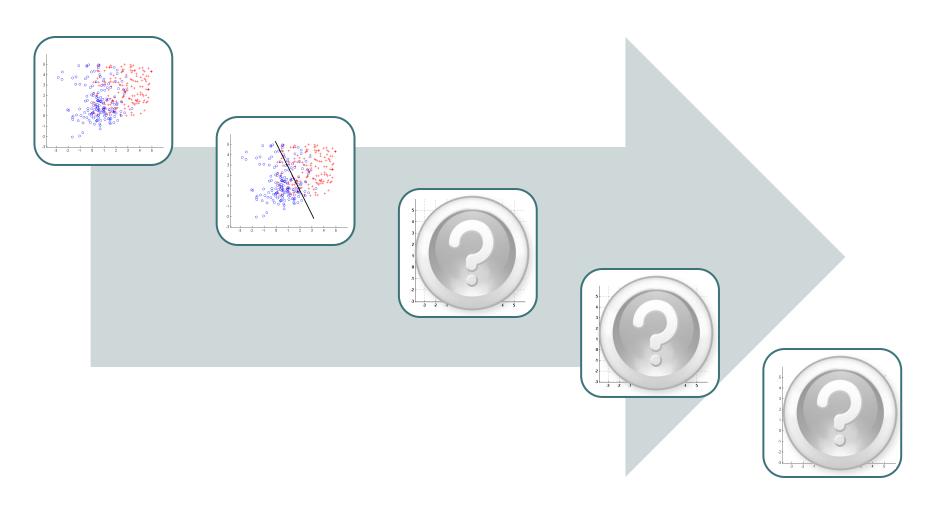
Step 1: Select a projection -  $(X_1, X_2)$ 



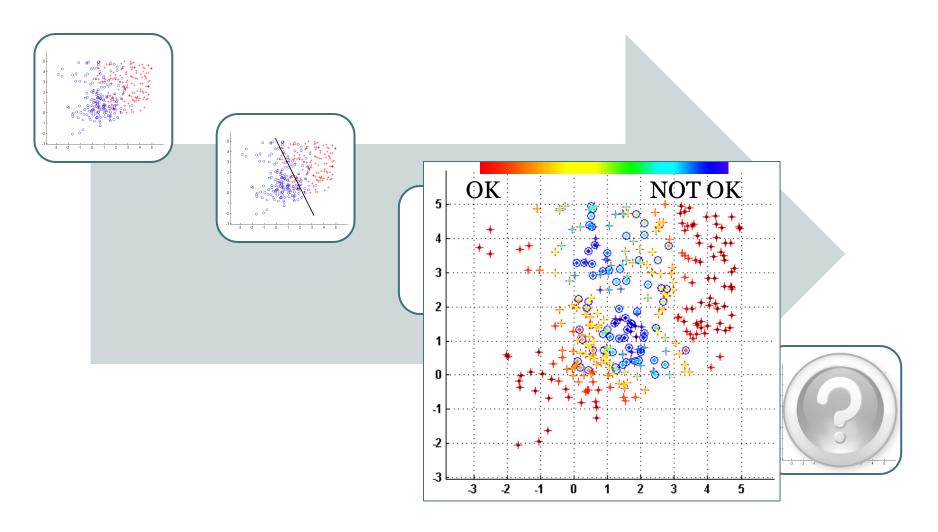
Step 1: Select a projection -  $(X_1, X_2)$ 



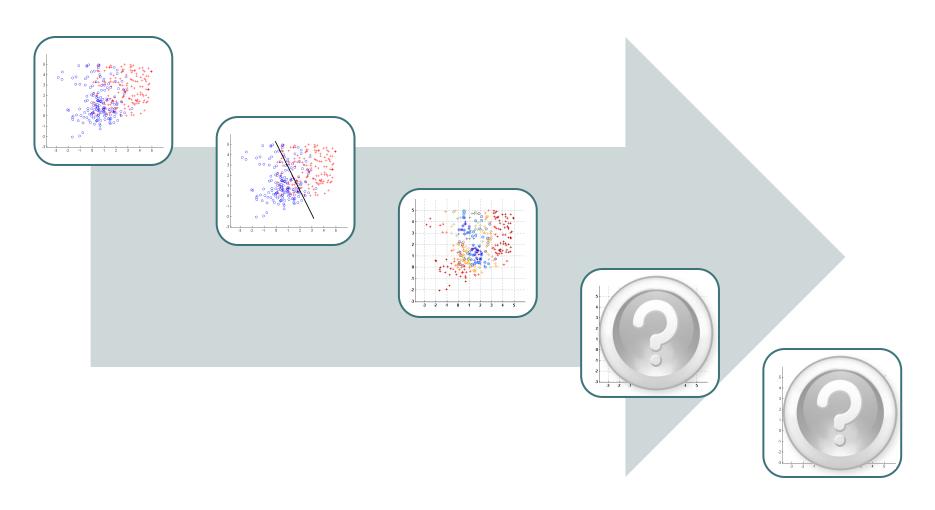
Step 2: Choose a good classifier - call it h<sub>1</sub>



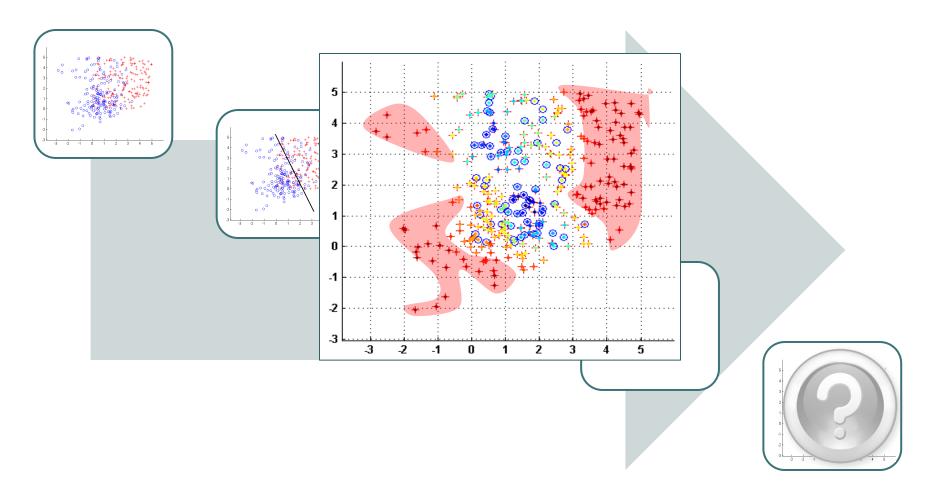
Step 2: Choose a good classifier - call it h<sub>1</sub>



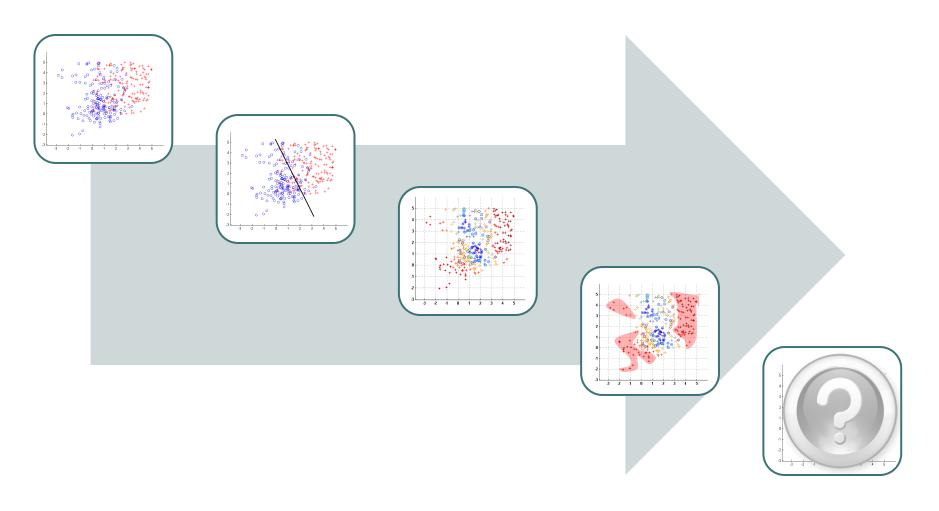
Step 3: Estimate accuracy of h<sub>1</sub> at each point



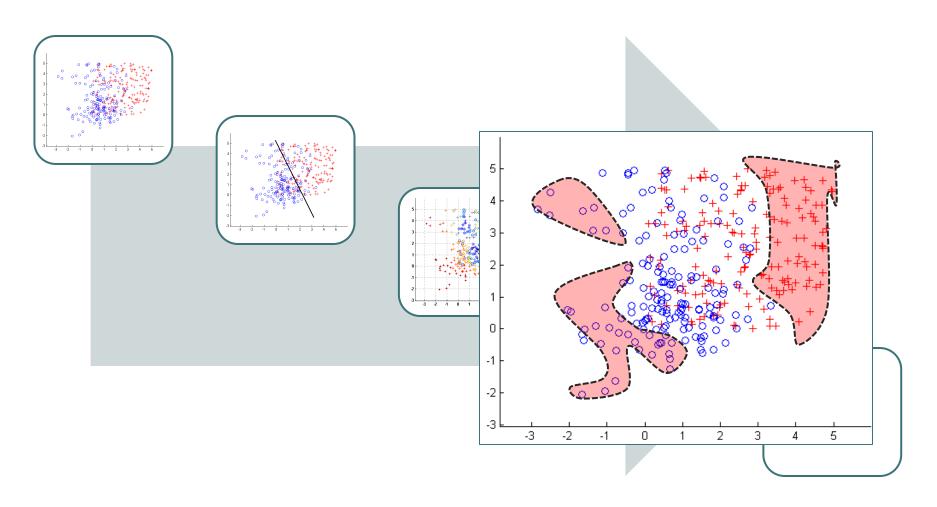
Step 3: Estimate accuracy of h<sub>1</sub> for each point



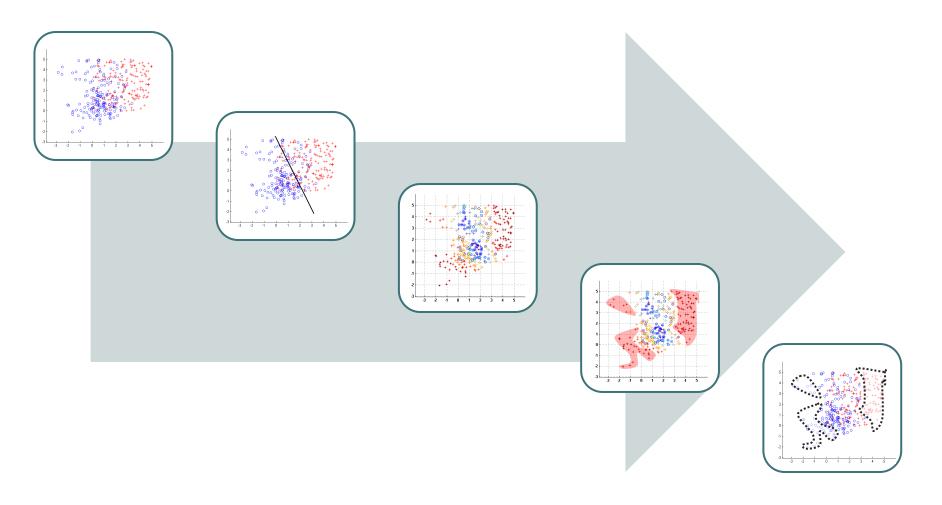
Step 4: Identify high accuracy regions



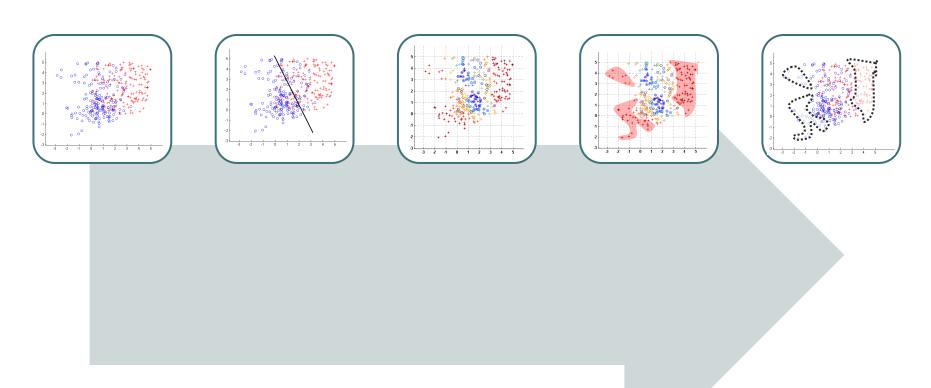
Step 4: Identify high accuracy regions



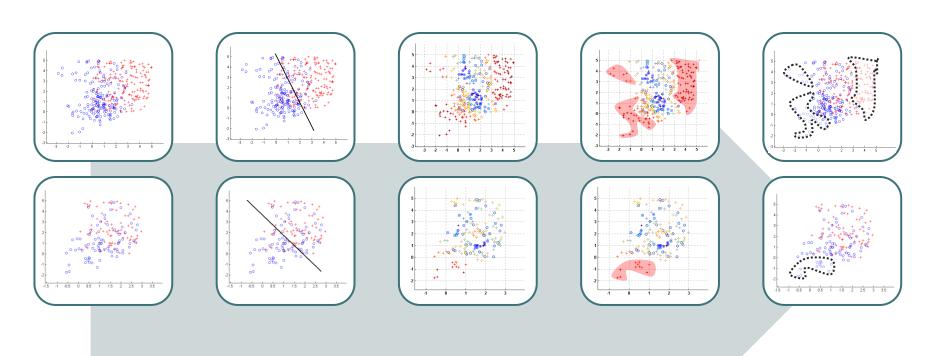
Step 5:Training points - removed from consideration



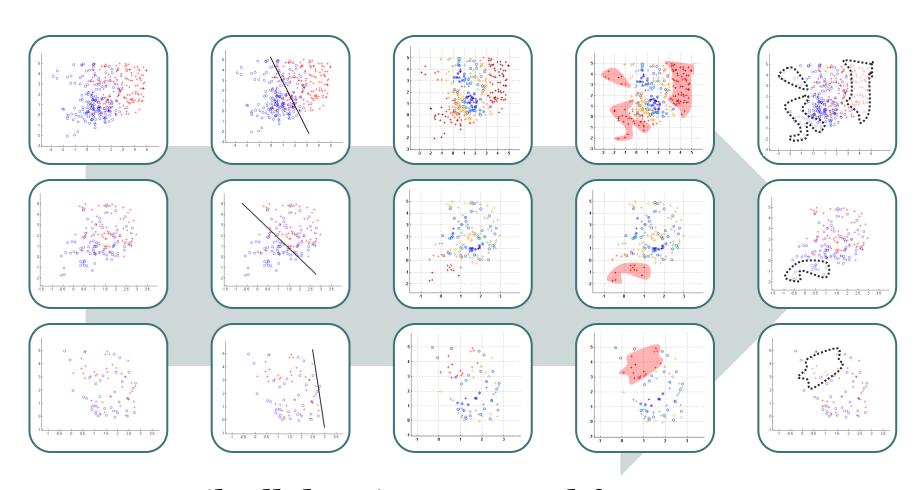
Step 5:Training points - removed from consideration



#### Finished first iteration

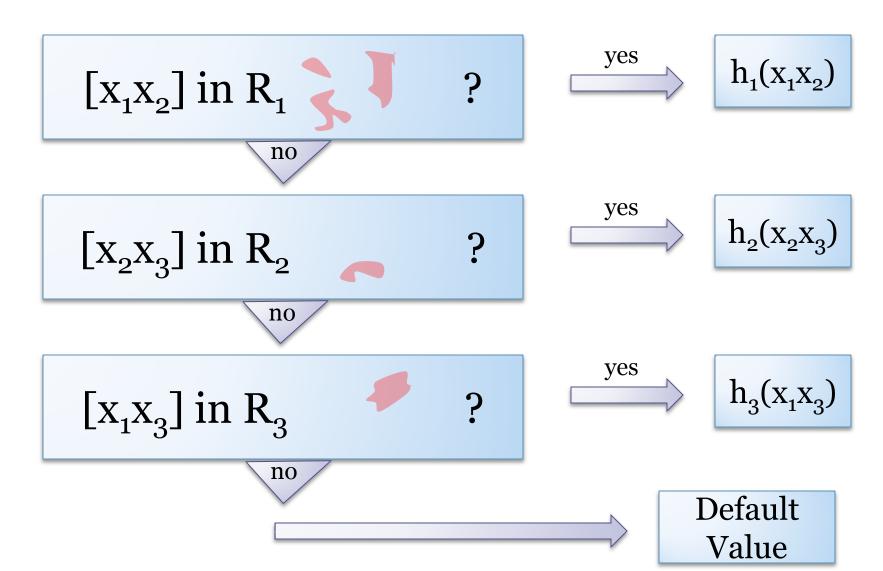


Finished second iteration



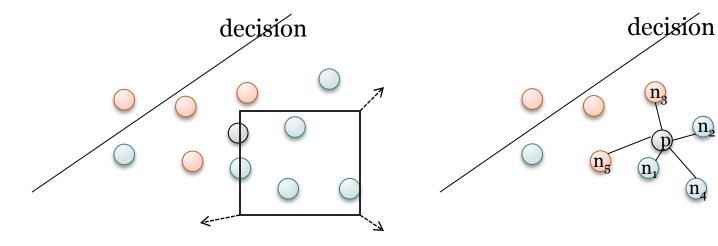
Iterate until all data is accounted for or error cannot be decreased

## Learned Model - Processing query [x<sub>1</sub>x<sub>2</sub>x<sub>3</sub>]

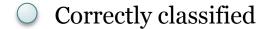


### Parametric / Nonparametric Regions

| Bounding Polyhedra                                           |                        | Nearest-neighbor Score                                                                   |                           |
|--------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------|---------------------------|
| Enclose points in convex shapes (hyper-rectangles /spheres). |                        | Consider the k-nearest neighbors<br>Region: { X   Score(X) > t}<br>t - learned threshold |                           |
|                                                              | Easy to test inclusion |                                                                                          | Easy to test inclusion    |
|                                                              | Visually appealing     |                                                                                          | Can look insular          |
|                                                              | Inflexible             |                                                                                          | Deals with irregularities |









### Feating and EOP

Feating EOP Decision Tiles in feature Flexible Structures to Regions space pick right classification Models trained Models trained model on all features on subspaces **Decision List Decision Tree** 

#### Outline

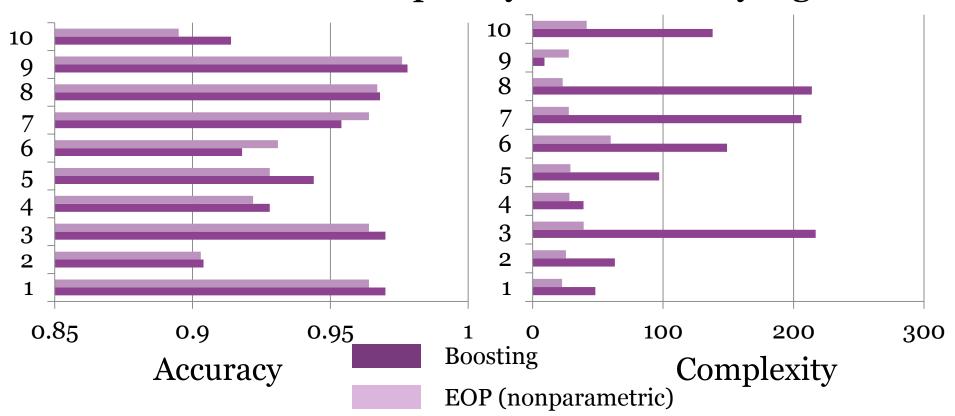
- Motivation: need for interpretable models
- Overview of data analysis tools
- Model evaluation accuracy vs complexity
- Model evaluation understandability
- Example applications
- Summary

#### Overview of datasets

- Real valued features, binary output
- Artificial data 10 features
  - Low-d Gaussians/uniform cubes
- UCI repository
- Application-related datasets
- Results by k-fold cross validation
  - Complexity = expected number of vector
     operations performed for a classification task

#### EOP vs AdaBoost - SVM base classifiers

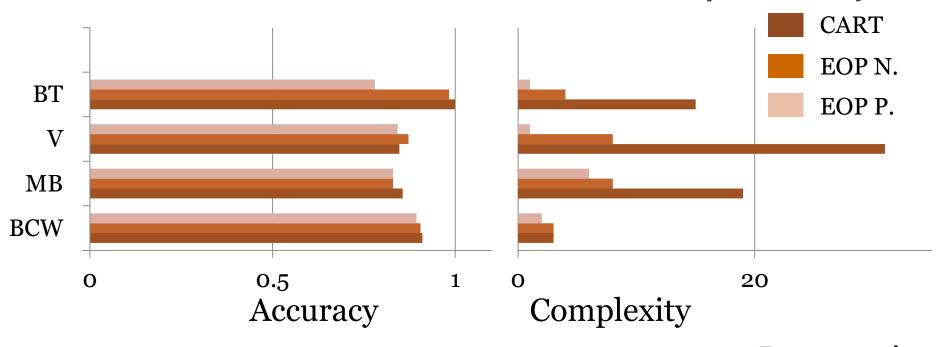
- EOP is often less accurate, but not significantly
- the reduction of complexity is statistically significant



mean diff in accuracy: 0.5% p-value of 2-sided test: 0.832

mean diff in complexity: 85 p-value of 2-sided test: 0.003

### EOP (<u>stumps</u> as base classifiers) vs CART on data from the UCI repository



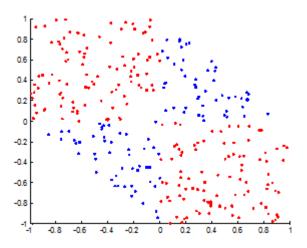
• CART is the most accurate

| Dataset       | # of Features | # of Points |
|---------------|---------------|-------------|
| Breast Tissue | 10            | 1006        |
| Vowel         | 9             | 990         |
| MiniBOONE     | 10            | 5000        |
| Breast Cancer | 10            | 596         |

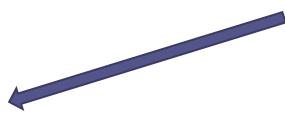
ParametricEOP yieldsthe simplestmodels

### Why are EOP models less complex?

#### Typical XOR dataset



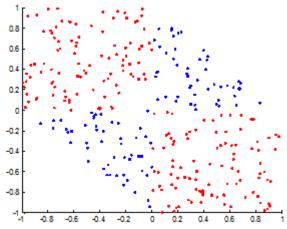
### Why are EOP models less complex?

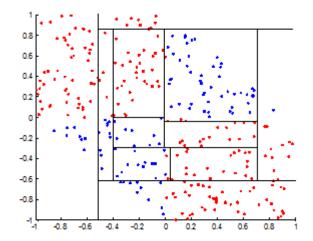


#### **CART**

- is accurate
- takes many iterations
- does not uncover or leverage structure of data

#### Typical XOR dataset

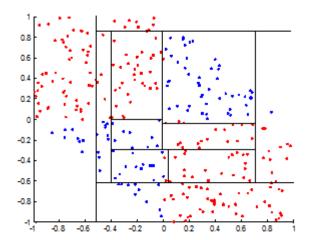




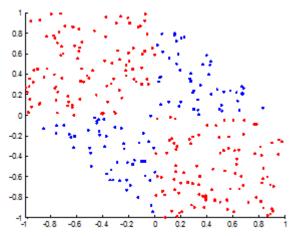
### Why are EOP models less complex?

#### **CART**

- is accurate
- takes many iterations
- does not uncover or leverage structure of data

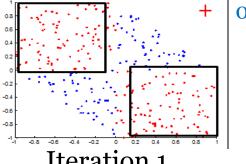




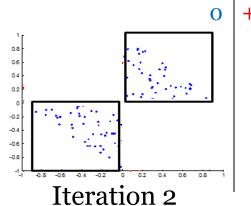


#### **EOP**

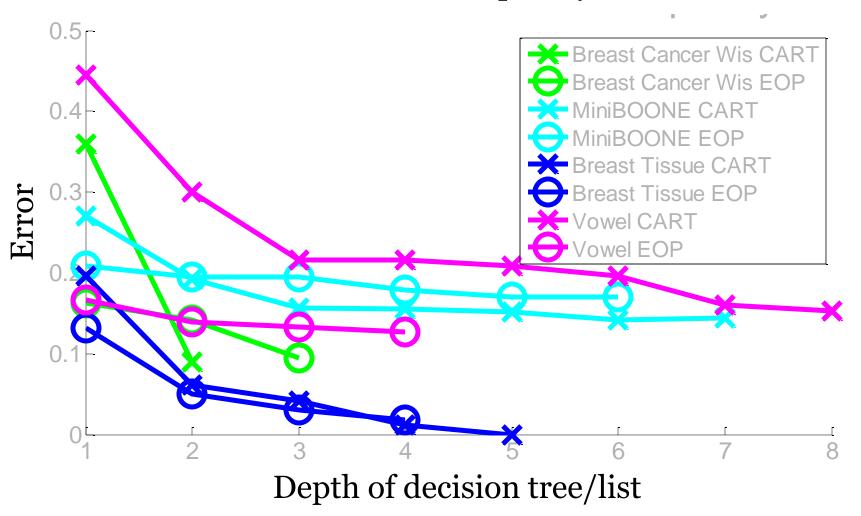
- equally accurate
- •uncovers structure



#### Iteration 1

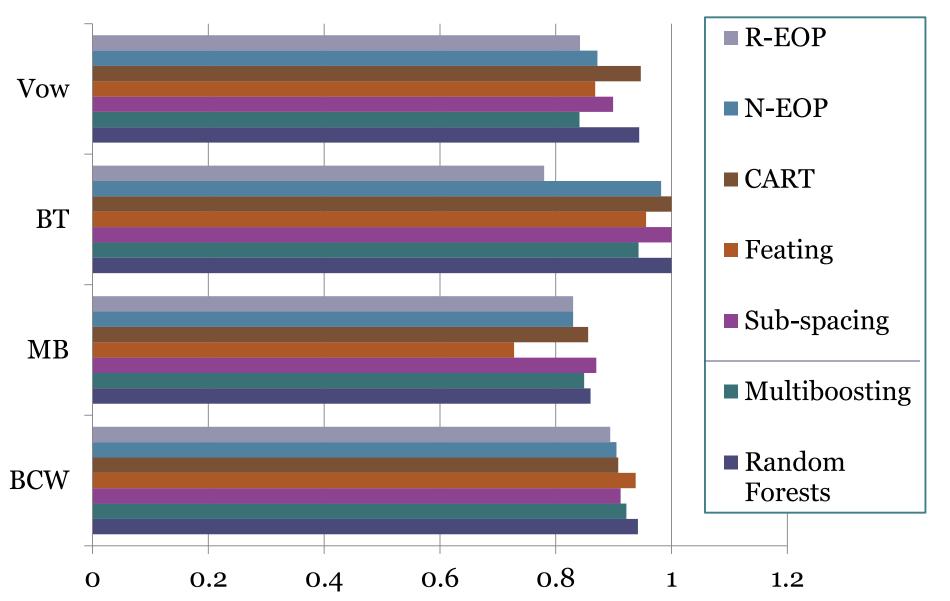


#### Error Variation With Model Complexity for EOP and CART

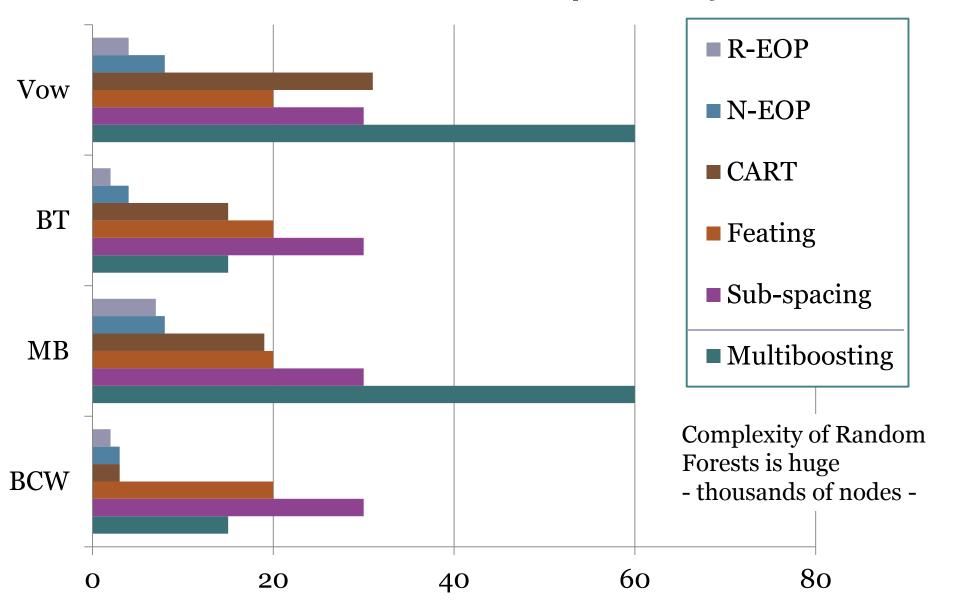


• At low complexities, EOP is typically more accurate

### UCI data - Accuracy



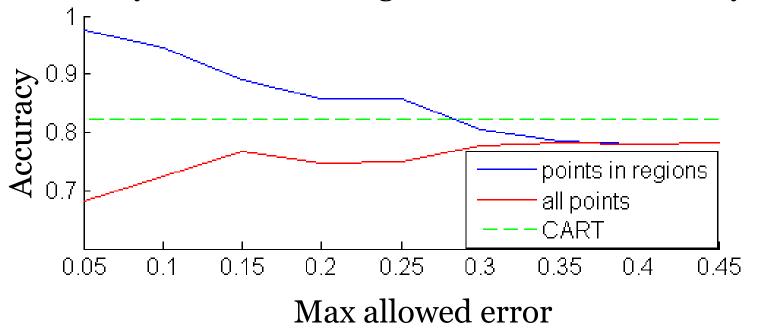
### UCI data - Model complexity



#### Robustness

- Accuracy-targeting EOP
  - identifies which portions of the data can be confidently classified with a given rate.

Accuracy of EOP when regions do not include noisy data



#### Outline

- Motivation: need for interpretable models
- Overview of data analysis tools
- Model evaluation accuracy vs complexity
- Model evaluation understandability
- Example applications
- Summary

### Metrics of Explainability

Lift

$$L(A \to B) = \frac{p(B|A)}{p(B)} = \frac{n \cdot n_{AB}}{n_A n_B}$$

Bayes Factor

$$BF(A \to B) = \frac{p(A|B)}{p(A|\overline{B})} = \frac{n_{AB}n_{\overline{B}}}{n_{B}n_{A\overline{B}}}$$

J-Score

$$J(A \to B) = p(A) \Big( p(B|A) \log \frac{p(B|A)}{p(B)} + (1 - p(B|A)) \log \frac{1 - p(B|A)}{1 - p(B)} \Big)$$

Normalized Mutual Information

$$NMI(A \to B) = \frac{\left(\sum_{i=1}^{d} p(a_i, b) \log_2 \frac{p(a_i, B)}{p(a_i)p(b)}\right)}{-\sum_{i=1}^{d} p(a_i) \log_2 p(a_i)}$$

#### Evaluation with usefulness metrics

For 3 out of 4 metrics, EOP beats CART

|      | CART  |       |       |       | EOP   |       |       |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
|      | BF    | L     | J     | NMI   | BF    | L     | J     | NMI   |
| MB   | 1.982 | 0.004 | 0.389 | 0.040 | 1.889 | 0.007 | 0.201 | 0.502 |
| BCW  | 1.057 | 0.007 | 0.004 | 0.011 | 2.204 | 0.069 | 0.150 | 0.635 |
| BT   | 0.000 | 0.009 | 0.210 | 0.000 | Inf   | 0.021 | 0.088 | 0.643 |
| V    | Inf   | 0.020 | 0.210 | 0.010 | 2.166 | 0.040 | 0.177 | 0.383 |
| Mean | 1.520 | 0.010 | 0.203 | 0.015 | 2.047 | 0.034 | 0.154 | 0.541 |

BF =Bayes Factor. L = Lift. J = J-score. NMI = Normalized Mutual Info

Higher values are better •••

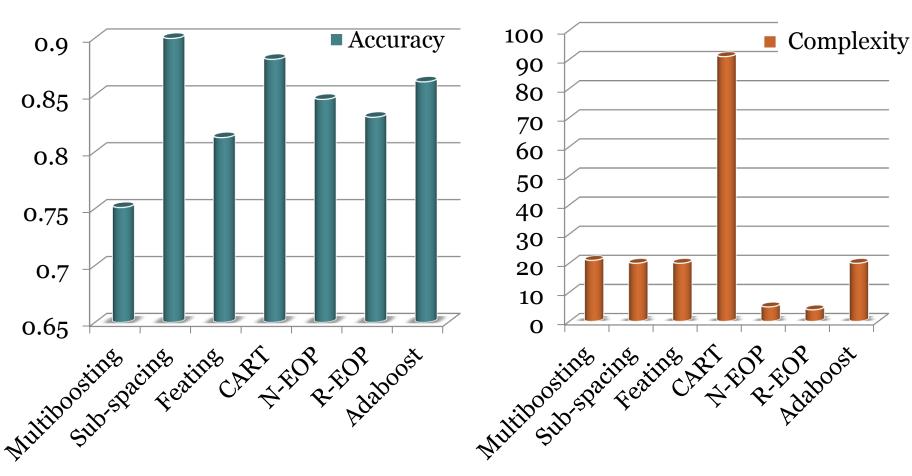


#### Outline

- Motivation: need for interpretable models
- Overview of data analysis tools
- Model evaluation accuracy vs complexity
- Model evaluation understandability
- Example application
- Summary

# Spam Detection (UCI 'SPAMBASE')

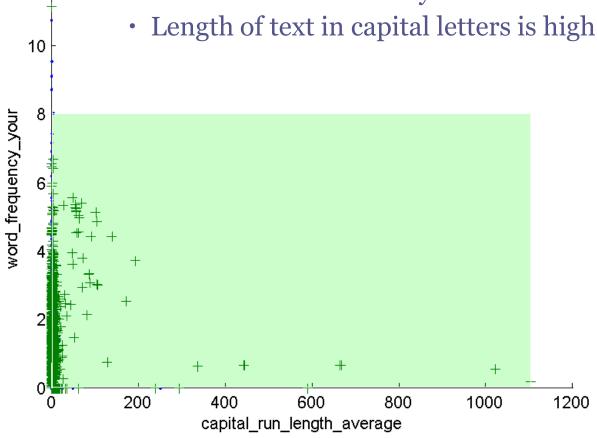
- 10 features: frequencies of misc. words in e-mails
- Output: spam or not



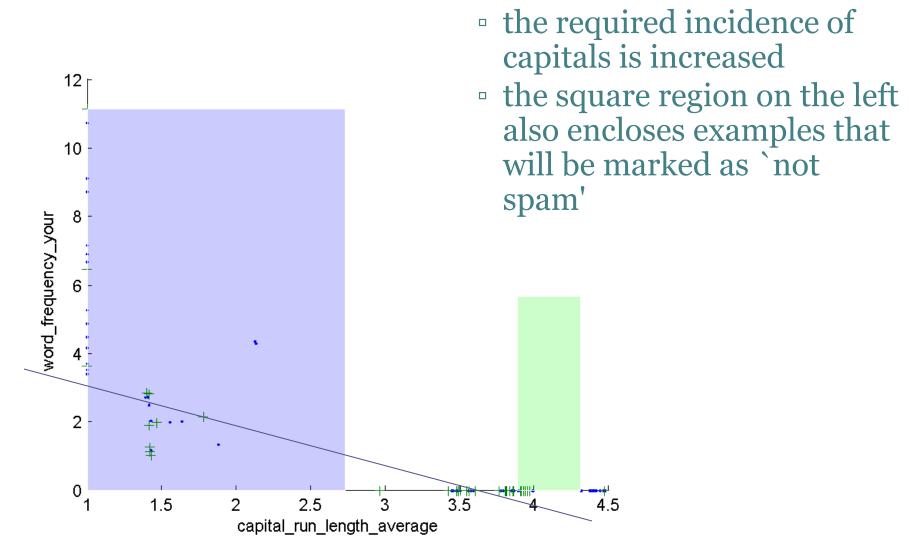
12

## Spam Detection - Iteration 1

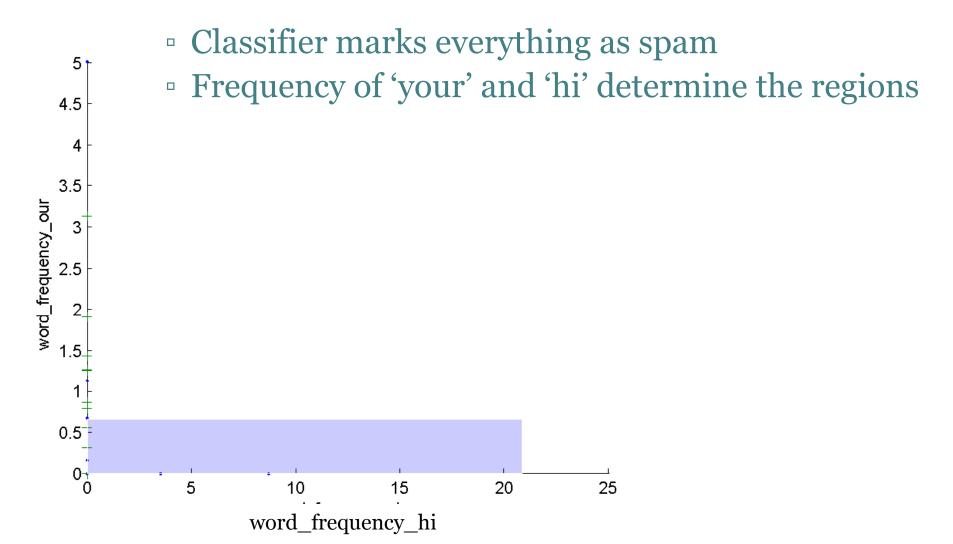
- classifier labels everything as spam
- high confidence regions do enclose mostly spam and:
  - Incidence of the word 'your' is low



### Spam Detection - Iteration 2

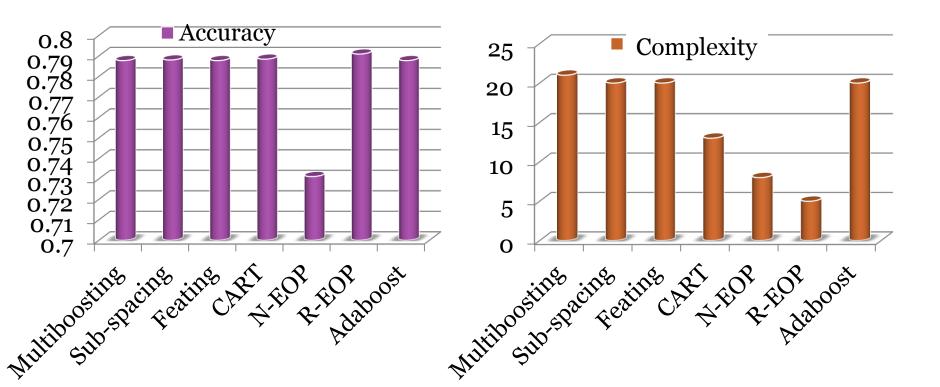


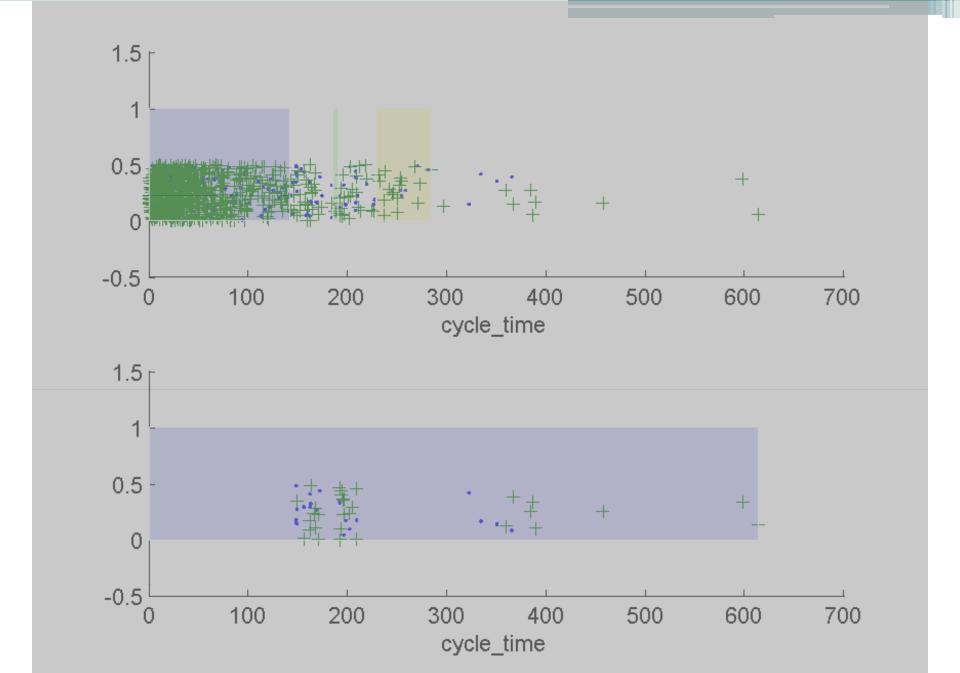
### Spam Detection - Iteration 3



### Effects of Cell Treatment

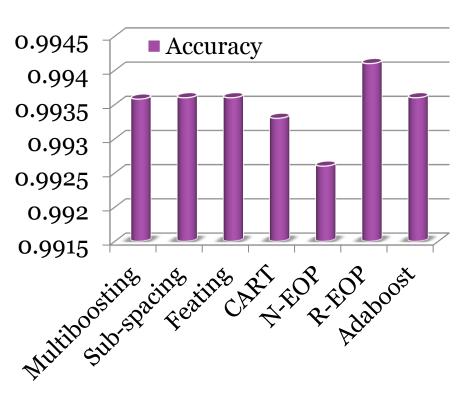
- Monitored population of cells
- 7 features: cycle time, area, perimeter ...
- Task: determine which cells were treated

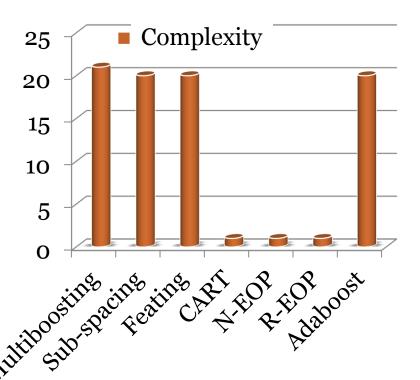


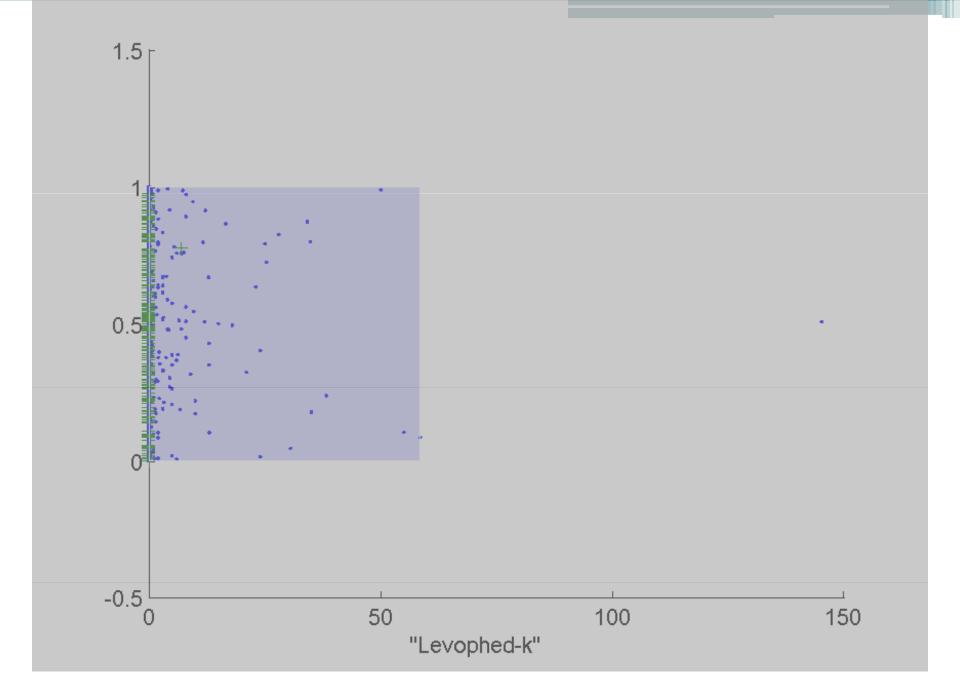


#### Mimic Medication Data

- Information about administered medication
- Features: dosage for each drug
- Task: predict patient return to ICU

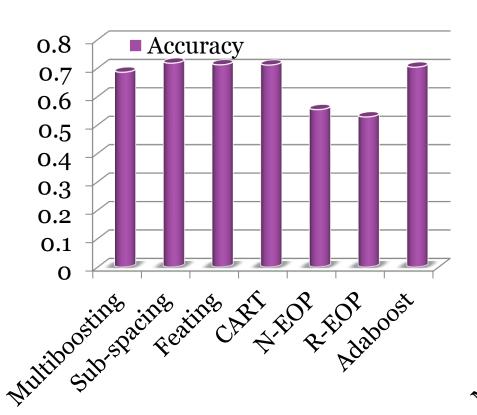


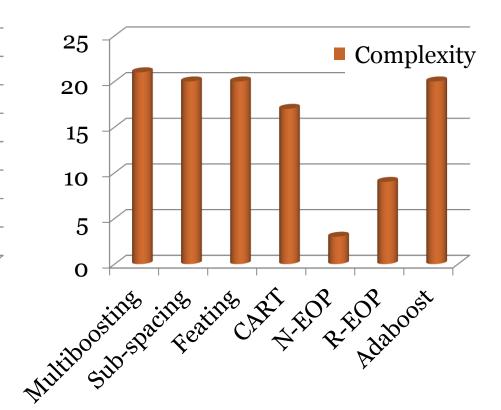


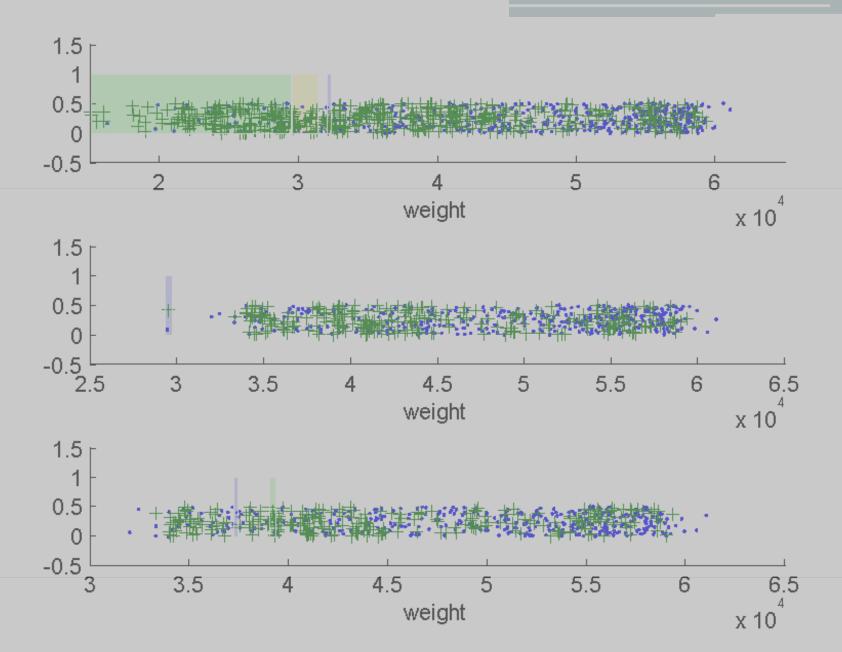


## **Predicting Fuel Consumption**

- 10 features: vehicle and driving style characteristics
- Output: fuel consumption level (high/low)







### Nuclear threat detection data

- Random Forests accuracy: 0.94
- Rectangular EOP accuracy: 0.881

... but

#### Regions found in 1st iteration for Fold o:

- incident.riidFeatures.SNR [2.90,9.2]
- Incident.riidFeatures.gammaDose [0,1.86]\*10-8

#### Regions found in 2st iteration for Fold 1:

- incident.rpmFeatures.gamma.sigma [2.5, 17.381]
- incident.rpmFeatures.gammaStatistics.skewdose[1.31,...]

### Summary

- White box models (CART, Feating, Sub-spacing)
  - as accurate as typical black-box models B, MB
- In most cases EOP:
  - maintains accuracy
  - reduces complexity
  - identifies useful aspects of the data
- EOP wins in terms of expressiveness
- Trade-offs
  - Accuracy vs Complexity
  - Accuracy vs Coverage
- Open questions:
  - What if no good low-dimensional projections found?
  - What to do with inconsistent models in different folds of cv?