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Abstract

The reliable detection of an object of interest in an input image with arbitrary
background clutter and occlusion has to a large extent remained an elusive goal
in computer vision. Traditional model-based approaches are inappropriate for a
multi-class object detection task primarily due to difficulties in modeling arbitrary
object classes. Instead, we develop a detection framework whose core component
is a nearest neighbor search over object parts. The performance of the overall
system is critically dependent on the distance measure used in the nearest neighbor
search.

A distance measure that minimizes the mis-classification risk for the 1-nearest
neighbor search can be shown to be the probability that a pair of input measure-
ments belong to different classes. This pair-wise probability is not in general a
metric distance measure. Furthermore, it can out-perform any metric distance,
approaching even the Bayes optimal performance.

In practice, we seek a model for the optimal distance measure that combines
the discriminative powers of more elementary distance measures associated with
a collection of simple feature spaces that are easy and efficient to implement; in
our work, we use histograms of various feature types like color, texture and local
shape properties. We use a linear logistic model combining such elementary dis-
tance measures that is supported by observations of actual data for a representative
discrimination task. For performing efficient nearest neighbor search over large
training sets, the linear model was extended to discretized distance measures that
combines distance measures associated with discriminators organized in a tree-
like structure. The discrete model was combined with the continuous model to
yield a hierarchical distance model that is both fast and accurate.

Finally, the nearest neighbor search over object parts was integrated into a
whole object detection system and evaluated against both an indoor detection task
as well as a face recognition task yielding promising results.
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Chapter 1

| ntroduction

The reliable detection of an object of interest in an input image with arbitrary
background clutter and occlusion has to a large extent remained an elusive goal in
computer vision since the beginning. In the most common formulation of a multi-
class object detection task, we would like to detect the presence or absence of an
object of interest in an input image, given a prior training set (2D or 3D data) for
the objects of interest. The factors that confound reliable detection include back-
ground clutter, occlusion of the objects of interest and the variability in viewing
conditions. Figure 1.1 shows examples of the kind of objects that we would like
to detect as well as examples of clutter that we would like the detection scheme to
be robust against.

Previous approaches to object detection can be grouped under various crite-
ria. For our purposes, we shall make the distinction between model-based or
generative-based approaches on the one hand (Roberts, 1965; Chin and Dyer,
1986; Kane et al., 1991; Arman and Aggarwal, 1993b; Huttenlocher and UlI-
man, 1990) and exemplar-based or appearance-based approaches on the other
hand (Mel, 1997; Murase and Nayar, 1997; Nayar et al., 1996; Shapiro and Costa,
1995; Selinger and Nelson, 2001; Nelson and Selinger, 1998; Worthington and
Hancock, 2000; Schiele, 1997; Huang et al., 1999). Broadly speaking, in the for-
mer class of approaches, a model for each object of interest is assumed that can
generate new images of the objects by varying the parameters of the model. An
extreme example is a 3D CAD model for each object of interest (Arman and Ag-
garwal, 1993a) along with a model-independent imaging process parametrized by



Figure 1.1: Sample object classes (top row) along with sample scenes (middle
row) with one of the objects of interest under clutter and occlusion. The bottom
row shows more sample scenes for one the objects.

viewing and lighting conditions. New views of the object are generated by spec-
ifying parameters for the viewing and lighting conditions. As another example,
the class of faces can be modeled quite well by a low-dimensional linear subspace
in image space (Turk and Pentland, 1991). New views of a face are generated by
linearly combining the basis vectors spanning the subspace. As a last example,
objects can be modeled using a linear combination of views (Ullman and Basri,
1991) where the model is a set of prototype images for the object along with the
locations for a set of features in the prototype views. The locations of the features
in novel views of the object can be obtained by linearly combining the locations
of the features in the prototype views.

The main difficulty in such generative approaches is the development of good
generative models and their estimation from training data. This is especially a
problem for a general object detection task in which we are interested in detecting



an arbitrary set of objects. Each object of interest might require a different gener-
ative model, each of which needs to be estimated. For example, it is reasonable to
expect that the class of chairs might require a different type of generative model
than the class of cars. Furthermore, it is not clear that all objects of interest can be
easily modeled with some generative model.

Exemplar-based approaches on the other hand avoid the need for explicit mod-
els of objects. Instead, a training set of images under various viewing directions
and scene illumination is acquired for each object of interest. Perhaps the sim-
plest exemplar-based approach is to use the training images as templates that are
matched against the input image. The object class label of the training image that
best matches the input image is reported. In other words, the input image is clas-
sified by a nearest neighbor search among the training images, where the distance
between the template and the input image is based on some feature space like
color, texture or shape, or more generally a combination of elementary features.
Unlike generative approaches where different object classes might in general re-
quire different generative models, exemplar-based approaches can be typically
applied uniformly to all objects of interest.

1.1 Nearest Neighbor Framework

Nearest neighbor search is one of the simplest forms of an exemplar-based method
(Dasarathy, 1991). Formally, we are given a training set S = {(x1,v1), (%2, y2),

.y (xn,yn)} where the z; are training images and y; are corresponding class
labels. We are also given a distance measure d(x,z’) that is used to find the
nearest neighbor in S of an input image. The one nearest neighbor rule reports
the class label y; of the training image x; that is the nearest neighbor of the input
image. Thus the classification performance of the nearest neighbor rule is solely
determined by the training set S and the distance measure d. More generally, the
nearest neighbor rule can depend on the K nearest neighbors.

Most work on nearest neighbor search assumes a fixed distance measure.
However, it is easy to show that the choice for a distance measure can signifi-
cantly affect the classification performance of the nearest neighbor rule. More
recent work (Short and Fukanaga, 1981; Fukanaga and Flick, 1984; Hastie and
Tibshirani, 1996; Blanzieri and Ricci, 1999; Friedman, 1994) has begun to ex-



ploit the gain in classification performance possible by using good distance mea-
sures. The optimal distance measure depends on the task at hand. In the case
of object detection, the search for an optimal distance measure is confounded by
the fact that we might want to use a combination of features to discriminate ob-
jects, since in a multi-class object detection task, no one feature type will likely
be suitable for discriminating all objects from each other. Instead, it is more likely
that different feature types and/or their combinations are required for discriminat-
ing different pairs of object classes from each other. For example, two different
object classes A and B may be distinguished by color alone, while class A and
yet another object class C maybe of the same color but can be distinguished by
shape properties. It is not clear a priori how to construct a single optimal distance
measure between images when the representation uses a combination of different
features like color and shape. Furthermore, different features may have differing
discriminative powers and a good distance measure should take into account such
differences.

What should the optimal distance measure be ? Intuitively a distance mea-
sure that ignores variations within the same class (for example, variations due to
lighting and viewing conditions) while enhancing variations between images from
different classes should be ideal for use in a nearest neighbor search. Objectively,
the optimal distance measure should be the one that maximizes the classification
performance of the nearest neighbor rule. We will show in the next chapter that
a distance measure that directly optimizes the classification performance can be
expressed simply in terms of the odds ratio that a pair of images x and =’ belong
to the same class :

ply #y' | z,2') (1.1)

d(z,z") = log
) =18 =y, )

where y and i’ are the corresponding class labels. Clearly, this distance measure
satisfies the intuitive requirement that pairs of images from the same object class
should be close to each other compared with pairs of images from different object
classes.

Thus the problem of finding the optimal distance measure reduces to the prob-
lem of modeling and estimating the probability distribution that a pair of images
belong to the same class or to different classes. This pair-wise “discriminative”
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distribution p(y # v’ | =,2’) can in principle be computed from a generative
model p(x|y) for each class. So in principle, the problem can further be reduced
to first estimating the generative models for each class. However, we are then
faced with all the pitfalls of modeling and estimating generative models discussed
above.

In our work instead, we propose to model and estimate the pair-wise distri-
bution directly. The basic intuition for why this direct approach should be more
feasible in practice is that the pair-wise likelihood depends only on the discrimi-
native features whereas estimating a generative model first requires modeling the
role of all features irrespective of their discriminative value.

How do we model the pair-wise distribution directly ? In general, for an arbi-
trary multi-class detection task, the optimal distance measure cannot be expected
to assume any particular parametric model. Any choice for modeling the distance
measure should be dictated by what the data suggests for a particular detection
task as well as other factors like ease of implementation and analyzability.

Our basic approach will be to model the optimal distance measure by com-
bining more “elementary” distance measures. An elementary distance measure
is defined on simple feature spaces like color, local shape properties or texture.
Our motivation for basing our approach on combining such elementary distance
measures is primarily the ease of implementation for such an approach since there
are plenty of choices for such simple feature spaces that have been well-studied
in the literature that are easy and efficient to implement in practice. For example,
we can consider simple histograms of features, for which one choice for the ele-
mentary distance measure is the y? distance. Other simple feature spaces include
edge maps with the Hausdorff distance measure (Huttenlocher et al., 1993), shape
contexts (Belongie et al., 2002), or normalized pixel intensities with the simple
euclidean distance measure (Nayar et al., 1996).

In general, each of the simple feature spaces by itself cannot be expected to
be sufficient at the discrimination task at hand. Thus we seek to combine the
discriminative powers of a set of such simple feature spaces in our model. The
ideal set of feature spaces to use is that which complements each other well for
the discrimination task at hand.



How should the elementary distance measures be combined ? We can motivate
our answer to this question by first taking a look at some actual data from an indoor
discrimination task that we are interested in. In this thesis, we will use histograms
of various features like color, local shape properties and texture as the simple
feature spaces that we would like to combine in our model. Histograms were
chosen since they can be efficiently computed from an input image and are stable
representations with respect to a fair amount of distortions in viewing conditions.
See Chapter 6 for details.

The distribution p(y # ' | x,2’) that we wish to model is a function of
pairs of images. Figure 1.2(a) shows the distribution of distances in a local shape
histogram feature space between images of object parts sampled from a collection
of 15 objects and randomly sampled image patches of background clutter (see
Chapter 7 for a description of these objects, and Chapter 6 for how objects are
decomposed into parts). The elementary distance measure chosen is the simple
L, distance measure. See § 3.2 for the distribution of distances in the other feature
spaces that we use, namely color and texture.

As can be seen from the figure, the distance scores between images falls into
two distributions depending on whether the pair of images come from the same
object part class or from different classes (including clutter). The distance score
in this feature space can be roughly divided into three intervals along the x-axis.
It can be claimed with high confidence that if a pair of images has a distance score
that falls in either of the two extreme intervals, then the images come from either
the same class (in the case of the left-most interval) or from different classes (in
the case of the right-most interval). For the middle interval, the within-class or
out-of-class membership is more uncertain.

Figure 1.2(b) plots the empirically determined log odds ratio (1.1) which is
the transform of the pair-wise distribution p(y # v’ | =, z") that we wish to model.
As illustrated in Figure 1.2(c), the uncertain middle interval of the log odds ra-
tio plot can be well-modeled as a linear function of the distance score. Similar
observations hold true for each of the other feature spaces that we use (color and
texture), see § 3.2. These observations are used to justify approximating the op-
timal distance measure by linearly combining the elementary distance measures
associated with the simple feature spaces that we use in our work. See Chapter 3.

It will turn out that the optimal coefficients in the linear combination of such
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Figure 1.2: (a) Distribution of distances in a local shape histogram feature space between
images of object parts from a collection of 15 objects described in Chapter 7 and randomly
sampled image patches of background clutter. The distance scores fall into two distribu-
tions labeled “intra-class” and “extra-class”. The distance score can be split roughly into
three intervals along the x-axis: the middle interval is where uncertainty is greatest as
to which distribution the distance score comes from. (b) plot of the log odds ratio (1.1).
Note that the plot is quite linear in the middle uncertain interval. (c) a linear model fits
the middle interval quite well. (d) a discretization of the distance measure that is induced
by a simple discriminator that uses a threshold 6 on the distance score.



elementary distance measures can be interpreted as indicating the discriminative
power of each elementary distance measure. See Chapter 4.

The need for a hierarchical distance measure. We have thus far described a
continuous linear model for the optimal distance measure. Although we find that
in practice this continuous model is accurate at retrieving the nearest neighbor, it is
expensive to use at run-time when searching over a large training set. Any kind of
efficient nearest neighbor search implicitly requires a discrete distance measure.
Consequently we will investigate the construction of discrete distance measures
that are appropriate for efficiently performing the nearest neighbor search for our
discrimination tasks.

Although we can show that, in theory, the optimal distance measure can be
replaced by using only a discrete distance measure without sacrificing the clas-
sification performance (see Chapter 3), in practice we find that discrete distance
measures are only useful for coarse discrimination among object classes. Thus
in practice, discrete distance measures are most useful for reporting a small set
of candidate neighbors, one of which is likely to be the optimal nearest neighbor.
On the other hand, we show how the nearest neighbor search can be implemented
efficiently by using a discrete distance measure that combines elementary discrete
distance measures associated with discriminators in a tree-like structure, where
each of the discriminators is constructed in simple feature spaces like color, tex-
ture or local shape properties. The elementary discrete distance measures will turn
out to be discretizations of the same elementary distance measures over simple
feature spaces used in the continuous linear model, and where the discretization
is induced by discriminators. Returning to our one-dimensional example feature
space in Figure 1.2, we can construct a simple discriminator that thresholds the
distance between a pair of images. The optimal threshold will be such that im-
age pairs with distance scores that fall below the threshold most likely belong to
the same class, otherwise they most likely belong to different classes. The cor-
responding discretized distance measure associated with such a discriminator is
shown in Figure 1.2(d). Again, just as in the case for continuous distance mea-
sures, we will consider a linear model for combining the discrete distance mea-
sures.

Compared with the discrete model, the continuous model is more expensive
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to use at run-time for searching over a large training set but also more accurate
as noted above. Thus both distance models are problematic to use in an efficient
as well as accurate nearest neighbor search for different reasons, when each is
used in isolation. Instead, our strategy will be to combine the complementary
aspects of the two models to create a distance measure that is both accurate and
efficient to compute at run-time. The basic idea will be to first use the discrete
model to efficiently search for a small list of candidate neighbors, which is then
further pruned using the finer discriminative power of the continuous distance
measure (see § 3.3).

How do we estimate the distance measure from training data ? A linear com-
bination model for the distance measure, either discrete or continuous, implies an
exponential family for the pair-wise discriminative distribution p(y # v’ | z,2’)
in (1.1). Thus we seek to estimate the optimal model for the distribution from
the family of exponential models given the training data. We use the maximum
likelihood framework (see Chapter 4) for estimating the parameters of the optimal
exponential model.

1.2 Sketch of our Detection Scheme

We have thus far discussed only the issue of utilizing an optimal distance measure
for nearest neighbor search for object detection. In practice, there are several other
issues that need to be addressed when using a nearest neighbor search framework
in the context of an overall scheme for object detection. Since the main focus of
this thesis is on developing an optimal distance measure for object detection, for
the rest of the object detection system, we will seek the simplest implementation
that we can get away with, but yet which is sufficient and realistic enough for
evaluating the distance measures that we develop.

Figure 1.3 outlines our overall scheme for object detection. In general, we
might use attentional mechanisms or interest operators (Grimson et al., 1994;
Burt, 1988; Abbott and Zheng, 1995; Westlius et al., 1996; Grove and Fisher,
1996; Stough and Brodley, 2001; Culhane and Tsotsos, 1992; Itti et al., 1998;
Baluja and Pomerleau, 1997; Tomasi and Shi, 1994; Ruzon and Tomasi, 1999;
Mikolajczyk and Schmid, 2002) to focus on only the locations in the input image
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that are likely to correspond to an object of interest. However, such techniques are
beyond the scope of this thesis whose main focus is on using the nearest neigh-
bor framework for object detection. Instead, we use a simple strategy where we
sub-sample locations in the image at various positions and scales and classify the
sub-image at each location. Such a “brute” force approach has been used in the
literature with reasonable run-time performance (Rowley et al., 1998; Schneider-
man, 2000; Viola and Jones, 2001). Clearly, any attentional mechanism will be
complementary to such a naive approach and can only improve run-time perfor-
mance.

In practice, the objects that we are interested in detecting can be of varying
sizes and shapes. The naive approach of performing a nearest neighbor search
at each location over a training set with whole object views will result in poor
performance since no single choice for the size and shape of the support window
to be used when performing the nearest neighbor search can be expected to be
optimal for all objects. A single choice for the support window will typically be
either too small for some objects, in which case some discriminative information
will likely be lost, or will be too large in which case the object can be confounded
with background clutter.

The solution that we pursue is to find a decomposition of object training im-
ages in terms of parts, each of which has a support window with the same size and
shape. The nearest neighbor search is then performed over parts rather than whole
object views. A decomposition into parts is also useful for robustness against par-
tial occlusion which is expected to affect only some but not all of the parts. Since
different parts will in general have different discriminative powers, and we would
like to use as few parts as possible for run-time efficiency, an important issue that
we need to deal with is that of finding a good decomposition of training views into
a few parts. See Chapter 6 for details.

Our detection scheme is composed of the following steps (detailed in Chap-
ter 6):

e Aninputimage is first pre-processed to extract the various histograms (color,
shape, texture) at each location.

e The sub-image at every location is labeled by the nearest neighbor part clas-
sifier with a few number of parts from the training data that are nearest to

12



Extract Features

Input Image

Figure 1.3: Outline of our approach. The input image is pre-processed to extract features
at various locations sub-sampled across the image. In our work, we extract color, local
shape and texture histograms. Next the nearest neighbor part classifier is run at each loca-
tion. As outlined in Figure 3.3, the NN search first uses the efficient but coarse discretized
distance measure to return a small list of candidate neighbors for each location. This list is
then pruned by the more accurate continuous distance measure. Note that in the illustra-
tion, only a few parts detected are shown. Also note that neighboring locations can give
multiple part detections that overlap. Each part is used to generate a hypothesis for an
object of interest at that location. The locations of the other parts (shown by the triangles)
in the hypothesized object class is searched for the corresponding part expected at those
locations. Possible occlusions of parts are handled by rejecting outliers. The scores for
all such non-outlier parts are accumulated and thresholded to give an object detection. In
the illustration, part hypotheses that could not be verified are shown in red.
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the sub-image. The distance measure used is the hierarchical distance mea-
sure discussed above. Part labels corresponding to clutter training samples
are ignored in subsequent processing.

e Each part label at a location is used to generate a hypothesis for the presence
of an object viewed under conditions closest to a training image containing
the part. A “score” for the hypothesis is computed by first predicting the
locations of all other parts belonging to the same training image and accu-
mulating the scores (the nearest neighbor similarity) of all the parts.

e Finally, the various object hypotheses at each location are pruned by thresh-
olding their scores, after which local non-maximal suppression is performed
resulting in non-overlapping hypotheses. The operating characteristic (char-
acterized by the false positive and detection rates) of the whole detection
scheme is determined by the threshold used for the pruning. Thus the fi-
nal output consists of one or more non-overlapping locations in the image
labeled with an object of interest.

1.3 Outline of the Thesis

We conclude this chapter with an outline of the rest of the thesis.

Chapter 2 discusses in detail the nearest neighbor framework. We first derive
the optimal nearest neighbor distance measure that maximizes the classification
performance, in terms of the probability distribution that a pair of images belong
to the same class. We then show how precisely the optimal distance measure is
different from the more familiar metric distance measures that are commonly used
in the literature. We also compare the classification performance of the optimal
distance measure with the Bayes optimal risk as well as the best performance
possible for any metric distance. Finally, we survey related work in the literature
on finding optimal distance measures for nearest neighbor search.

Chapter 3discusses how we model and estimate the optimal distance measure
in practice. We first argue for the advantages of directly modeling the pair-wise
distribution rather than the alternative approach of first estimating a generative
model for each class and then deriving the pair-wise distribution. We then consider
a linear model for the optimal distance measure that combines elementary distance
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measures acting on simple feature spaces. Discrete and continuous linear models
are then considered in detail as well as their use in a hierarchical distance measure
that is both efficient and accurate.

A linear model for the distance measure implies an exponential model for the
pair-wise distribution, the estimation of which is considered under the maximum
likelihood framework in Chapter 4. We then note the relationship with the max-
imum entropy framework that gives us an alternative view of our approach. We
re-examine a natural selection scheme under the maximum entropy framework
that has been proposed in the literature in a different context (Zhu et al., 1998)
and show that, although they look very different, the maximum entropy selec-
tion procedure is the same as the selection procedure under the maximum likeli-
hood framework. We also discuss similarities between our work and the boosting
framework.

In Chapter 5, we discuss the construction of candidate discriminators required
for the maximum likelihood selection scheme presented in Chapter 4 for dis-
crete distance measures. We first present a very general approach for constructing
discriminators that is simple to implement and applicable to any feature space
equipped with an arbitrary distance measure : the nearest prototype discrimina-
tor. To generate such discriminators efficiently, we develop a simple sampling
strategy with provable performance guarantees. For linear feature spaces (for ex-
ample, normalized pixel intensities), we propose another approach for generating
good discriminators that can be posed as optimizing an objective function encod-
ing various criteria for good discrimination. The optimization can be performed
by iteratively solving two associated eigenproblems.

Chapter 6 deals with the training phase for the nearest neighbor classifier. We
first discuss the choice of feature types that will be used. We discuss the efficient
construction of histograms of various feature types (color, contour, texture). Next,
we discuss the decomposition of each training image into a few spatially non-
overlapping discriminative parts. The chapter also discusses how discriminators
that are used to form the discrete distance measure can be organized in a tree-like
structure for run-time efficiency. The chapter concludes by describing in detail the
complete object detection system that we have implemented to test our approach.

Chapter 7 reports results on two detection tasks: an indoor task and a face
recognition task. The chapter includes a detailed empirical analysis of the vari-
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ous parameters and issues that affect classification performance when using the
proposed hierarchical distance measure.

Chapter 8 concludes with a discussion on possible directions for future re-
search.
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Chapter 2

Optimal NN Distance M easure

In this chapter we present our approach for finding good distance measures that
maximize the classification performance or equivalently minimize the mis-classification
risk for the nearest neighbor search. The optimal distance measure that minimizes
the risk is the pair-wise distribution that indicates how likely two images come
from the same or different object classes. In general, this distance measure is not
a metric distance which is the most popular distance measure assumed in the liter-
ature. We will investigate precisely where and how the metric axioms are violated.
Next, we will study the nearest neighbor classification performance under the op-
timal distance measure and compare it with the performance of metric distances as
well as the Bayes optimal classification performance. We conclude the chapter by
surveying prior work on optimal distance measures for nearest neighbor search.

2.1 The Setting

We assume that we have a training set S,, = {(z1,v1), (x2,92), ..., (n,yn)} Of
size n where each tuple (z;,y;) is chosen i.i.d. from some unknown distribution
over X x Y where X is the space of all image measurements and Y is some dis-
crete finite set of class labels. A measurement is the representation of the image in
terms of a set of features like color, shape or texture. We are also given a distance
measure d : X x X — IR between any two image measurements. The distance
measure is assumed to be symmetric and has the following qualitative interpreta-
tion: for three images z, 2/, ", if d(z,2’) < d(x,z"), then 2’ is considered to be
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“closer” to = than z”. In a nearest neighbor search, only such relative values of
the distance measure are of interest and thus we do not impose any restrictions on
a distance measure other than symmetry. In particular, we do not assume a metric
distance (for definition see discussion below), in contrast with most work in the
literature (Dasarathy, 1991).

When given a new input image x € X, the 1-nearest neighbor rule reports
the class label ¢’ associated with the training image ' € S,, that is closest to x
according to the distance measure d. Let L(y, y’) be some loss function that gives
the loss incurred by the NN rule if y is the true class label of = rather than y’. Let
p(z,y) be the joint distribution over image measurements and class labels. Given
that 2’ € S, is the nearest neighbor to input x, we can then define the conditional
risk (x, 2 to be the conditional expectation over the loss function L as follows:

T(l’,[lj'/) = Ey7y’L(y>y/)
= Y L.y )ply. v | z,2)
u,y’

= Y Lyy)ply | 2)ply' | o) 2.1)

where the last equation follows from the i.i.d. assumption.
The n-sample NN risk R(n) is defined as:

R(n) = E@y)s, [Ly,Y)] (2.2)

where the expectation is taken over all inputs x as well as all training sets S,, of
size n. Note that 2’ is the nearest neighbor of x in S,, and therefore 2’ is a function
of z, however x’ does vary with S,,. Due to the i.i.d. assumption, given a nearest
neighbor 2/, the corresponding class label 3’ is dependent only on z’. Thus we can
express the NN risk in terms of the conditional risk r(z, z’) as follows:

R(n) = E.x,[r(z,2) (2.3)

where X, is the set of only the training measurements x; from S,,, excluding the
corresponding class labels y;. The large sample or asymptotic risk is defined as:

R = lim R(n) (2.4)

n—oo
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2.2 Optimal 1-NN Distance Measure

Consider a 0-1 loss function given by L(y,y') = 1ify # ¢ and L(y,y’) = 0
otherwise. Then the conditional risk r(z, z") measures the probability of mis-
classifying x if 2’ is assigned as its nearest neighbor, while the risk R(n) measures
the average mis-classification error of the NN rule for a training set of size n. It can
be verified that for the 0-1 loss, the conditional risk (2.1) reduces to the following:

r(z, ) = Y ply|2)ply | 2)
y#y’

= ply # Y|, o) (2.5)

The risk r(z,z") = p(y # y'|z,2") defined on any two measurements z and z’
can be thought of as a “discriminative” measure between the two image measure-
ments, since it indicates the probability that the two measurements comes from
the same object class or not.

For a given training set size of n, the risk R(n) depends only on the distance
measure d used for the nearest neighbor search. Thus, it is natural to ask for the
distance measure that minimizes the risk. The discriminative distribution p(y #
y'|z, 2") can itself be thought of as a distance measure for which two images are
“closer” to each other if they are both likely to come from the same class rather
than from different classes. We can in fact easily show that this discriminative
distribution when considered as a distance measure minimizes the NN risk.

For a given input z and training set S, using d = p(- | -,-) as the dis-
tance measure gives the training example =’ that minimizes the conditional risk
r(x,2") = p(y # y'|x,2") over the training set .S,, since by construction the dis-
tance measure used is also the conditional risk and thus finding =’ € S, that
minimizes the distance measure also minimizes the conditional risk. Since the
conditional risk r(x, z) is minimized for any input = by the chosen distance mea-
sure, the unconditional risk R(n) is also minimized. We have thus shown the
following:

Theorem 1 The distance measure d(z,z’) = p(y # y'|x, «") minimizes the risk
R(n) for any n.

Note that the above result remains true even if we transform the discrimina-
tive distribution by any monotonically strictly increasing function f. This is true
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because using d = f(p(-|-,-)) as the distance measure returns the same nearest
neighbor as when using d = p(-|-,-). We will use this fact later when modeling
the optimal distance measure (see § 3.2).

2.2.1 The Pair-Wise Distribution is not a Metric Distance

Most previous work in the literature (Dasarathy, 1991) was interested in finding
an optimal metric distance. A distance measure d(z, z’) is a metric distance if it
satisfies positivity: d(z,z’) > 0 with equality iff x = 2/, symmetry: d(x,z') =
d(2',x) and the triangle inequality: d(x, ') + d(2',2") > d(z,2"). In general,
there is no reason to expect that the pair-wise distribution is a metric distance.
Nevertheless, it is instructive to see which of the conditions above are not satisfied
by the pair-wise likelihood when considered as a distance measure. Typically, it
is assumed that the most common reason that a distance measure is non-metric is
because it violates the triangle inequality. Surprisingly, this is not the case for the
pair-wise distribution.

As before, let p(z,y) be the distribution over X x Y under which measure-
ments x and corresponding class labels y are drawn i.i.d. An expression for the
pair-wise distribution that is equivalent to the one in (2.5) but is more convenient
for the present discussion is given by:

ply#y =2’y =) plyle)(1 - p(ylr)) (2.6)

Positivity. It can easily be shown that positivity is not satisfied by the pair-wise
distribution in general. As a simple counter-example, let p(y|z) = 1/|Y| be uni-
formly distributed over all class labels for all z € X (|Y'| is the number of classes).
Then p(y # y'|x,2’) =1 —1/|Y| > 0 even when z = 2/,

More generally, when = = 2, p(y # v/'|x,2") = 0 iff « belongs to one of the
classes with complete certainty, i.e. p(y|z) = 1 for some y and p(y'|z) = 0 for
y' # y. The if part is immediate from the r.h.s. of (2.6). For the converse, we have
>, pylz)(1 = p(ylz)) = 0, from which p(y|z)(1 — p(y|z)) = 0 for each y since
each term in the sum is non-negative. Thus either p(y|xz) = 0 or p(y|z) = 1 for
each y. Finally, since 3 p(y|z) = 1, we have the desired result. In other words,
lack of positivity for any measurement x is due to lack of complete certainty about
its class membership which will be the case in most real tasks.
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Lack of positivity leads to the the most important difference between the pair-
wise distribution and any metric distance measure: the nearest neighbor of a given
measurement = over the whole space X under the pair-wise distribution distance
measure need not be z itself. This property will turn out to be the reason why the
optimal distance measure out-performs any metric distance measure in general, as
discussed in the next subsection.

Symmetry. Next, symmetry is satisfied since the order of the two measurements x
and 2’ in the pair-wise distribution is immaterial.

Triangle Inequality. Lastly, it might seem that the triangle inequality will not be
satisfied by the pair-wise distribution distance measure in general for an arbitrary
distribution p(z, y). Surprisingly, this is not the case as we show next.

Since p is a probability measure and thus takes values in [0,1], p(y|z) >

p(ylz)(1 — p(y|z")) as well as (1 — p(y|z")) > p(ylz)(1 — p(y|z")). Using
these two relations,

p(ylz)(1 = p(ylz") + p(yla") (1 = p(y|z"))
> plyle) (1 —pyl=")(1 = plylz")) + p(yl2)p(y|z) (1 — p(ylz"))
= pylz)(1 —p(ylz"))

Summing over y on both sides and using (2.6) yields the desired triangle inequality
for the pair-wise likelihood.

Symmetry and the triangle inequality implies that if 2’ is close to both x and
2", then x and 2” should also be close to each other. This property is useful
for some applications like efficient image retrieval (Berman and Shapiro, 1997,
Barros et al., 1996).

Finally, we note that Jacobs et al. (2000) have investigated the properties of
robust distance measures used in computer vision. They show that most robust
distance measures do not satisfy the metric axioms - in particular the triangle in-
equality. However they were not concerned with the issue of whether the distance
measure used is optimal as is the case in our work.

2.2.2 Classification Performance Comparison

As mentioned before, most of the work in the literature has assumed a metric
distance. An important question is if the pair-wise distribution distance measure
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can outperform any metric distance in the limit as the size of the training set
grows to infinity. It was shown in (Cover and Hart, 1967) that the asymptotic risk
for any metric distance is at most twice the Bayes optimal risk. Given an input x,
the Bayes optimal decision assigns x to the class y that maximizes the posterior
p(y|x). Of course, in general the posterior distribution is not known in practice,
but the Bayes risk indicates the optimal performance that any classifier can hope to
achieve. Denoting the Bayes optimal risk by R?, (Cover and Hart, 1967) showed
the following when the distance measure used is any metric:

RB < RM < 2RB

where RM is the asymptotic risk defined in (2.4) for the nearest neighbor rule us-
ing any metric distance. Since the class of metric distance measures is a subset
of the class of all distance measures, and since the pair-wise distribution distance
measure p(y # v’ | =, 2) minimizes the risk over all distance measures (see the-
orem 1 where no restrictions on the distance measures were made), we conclude
that no metric distance can outperform the pair-wise distribution distance measure.
On the other hand we give an example where the pair-wise distribution distance
measure outperforms any metric, in fact it achieves the Bayes optimal risk for the
example.

Example. We use the same example presented in (Cover and Hart, 1967) for
which the NN asymptotic risk as well as the Bayes optimal risk can be easily
determined. The measurements x are real-valued and come from two classes
and y, with triangular densities p(z|y,) = 2z, p(x|y2) = 2(1 — z) respectively
with priors p(y1) = p(y2) = 1/2. For these densities and priors, the density on x
(p(z)) is uniformon [0, 1]. See Figure 2.1.

The pair-wise distribution for two measurements z, ' is then given by:

ply#y |z,2") =2(l —2) + (1 —x)a (2.7)
Let S, be a training set of size n. For two measurements, z; and x5 from the
training set, the conditions under which another measurement z is closer to z;
than it is to x5, when using the pair-wise distribution as the distance measure is
given by:
r(l—a)+(1—2)r; < z(1—2x9)+ (1 —2)
= (1 —x2)(1—=22) < O
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0 X 1

Figure 2.1: A two class example from (Cover and Hart, 1967), that we reuse for
illustrating the classification performance of nearest neighbor performance under
various distance measures. Note that at x = 0 and 1, the class membership is
completely certain.
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Thus when 0 < z < 1/2, the smaller of z; and = is closer to z, whereas for
1/2 < x < 1, the greater of =; and z, is closer to x. Thus given a training set of
size n with measurements X,, = {x1,... ,x,}, the nearest neighbor z/, in X, for
a query point x is given by the rule:

n

/ min z;, z; € X,, ifz <1/2
Tn = max z;, z; € X, ifz>1/2

It can be seen that since the density for x is uniform on [0, 1], in the limitas n —
00 mm x;, x; € X, converges to 0 with probability one. Similarly, max z;, ; €
X, converges to 1 with probability one. This example illustrates a claim we made
in the previous subsection, namely the lack of positivity for the pair-wise dis-
tribution implies that in general the nearest neighbor for a measurement x over
the whole space X need not be z itself. In this example, only 0 and 1 are their
own nearest neighbors. Note that 0 and 1 have complete certainty as to their
class membership. More generally, for a discrimination task with more than two
classes, the nearest neighbor of an input measurement will be the measurement
from the training set whose class membership is most certain.
With these limits, we have from (2.7):

r  ifz<1/2

! — min{z,1 -
l—z ifz>1/2 min{z, 7}

p@#yWL$7={

The expression on the right hand side above can also be shown to be the condi-

tional Bayes risk for a given input x. The Bayes decision assigns x to the class

that minimizes the mis-classification probability. In other words, it assigns x to

the class y that minimizes 1—p(y|x). It can be verified that the Bayes risk incurred
is indeed the right hand side of the equation above.

The total risk R using the pair-wise distribution as distance measure (or equiv-
alently the Bayes risk for this example) is given by:

! 1
= / min{z, 1 — z}dr = -
0 4

On the other hand, using any metric as a distance measure, the nearest neighbor
can be shown to converge to = as n — oo under quite general conditions (Cover
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and Hart, 1967). Thus from (2.7), which is also the expression for the risk incurred
when z’ is the nearest neighbor of x, the conditional risk incurred for a given input
x when using any distance metric is 2x(1 — z) in the limit as n — oo. The total
asymptotic risk R for any metric is then given by:

1
1

RM = / 2z(1 —x)dx = =
0 3

Thus RZ = R < RM for this example.

In summary, for this example the pair-wise distribution distance measure out-
performs any metric distance measure in the large sample limit and furthermore
attains the least possible risk that can be achieved by any classification procedure,
namely the Bayes optimal risk Z2. The reason why the pair-wise distribution dis-
tance was able to outperform any metric distance measure was precisely because
of its lack of positivity. In the example, there was at least one measurement (0 and
1 in this example) for which there was complete certainty as to which class it be-
longs to and the nearest neighbor under the optimal distance measure approaches
one of these two measurements in the large sample limit. As expressed in (2.6),
the mis-classification risk can be seen to be proportional to the class label uncer-
tainty of the nearest neighbor z” as well as the uncertainty of the query z. Since the
query is given, the only strategy for reducing the risk is to choose the the nearest
neighbor with the least class label uncertainty, which is precisely what the optimal
distance measure does. Any metric distance measure on the other hand returns a
nearest neighbor 2’ that approaches the query x in the large sample limit, whose
class label uncertainty is thus given and cannot be reduced.

In general, there need not be any measurement with complete class label cer-
tainty for a given task. Thus the asymptotic risk attained by using the optimal
distance measure can be anywhere between the Bayes optimal risk and the risk
obtained using a metric distance, i.e.:

RBSRSRJ\/I

In practice, we will have to estimate the optimal distance measure from train-
ing data. Before taking up this issue, we first survey previous work on finding
good distance measures for the nearest neighbor rule.
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2.3 Prior Work

Our survey can be considered to be quite comprehensive since little work has
been done on finding good distance measures compared with other aspects of the
nearest neighbor rule. Most work to date has focused on finding good metric
distance measures. Typically, the metric distance assumed is euclidean for which
a linear transform that optimizes some criterion is found. In our case, we cannot
assume that the measurements are embedded in any metric space, especially since
an image may be represented using measurements from different feature spaces
(color, shape, texture) that cannot be combined using a common metric distance
measure.

Short and Fukunaga (1981) find a metric distance measure that reduces the
discrepancy between the finite sample NN risk (2.2) and the asymptotic risk (2.4).
The distance measure is approximated by a local metric that is estimated from
the training data for every query point. Since estimating a local metric anew for
every query point is expensive, in subsequent work (Fukanaga and Flick, 1984)
the authors presented a globally optimal quadratic metric that minimizes the same
error criteria above.

Hastie and Tibshirani (1996) also find a local metric for a given query point.
Their approach draws inspiration from the traditional work on linear discriminant
analysis (LDA) but applied locally. The local metric is derived from local esti-
mates of the within class and between class scatter matrices just as for LDA. The
local metric emphasizes between class variations while suppressing within class
variations.

Friedman (1994) estimates the relevance of each component of the measure-
ment or linear combinations of the components for any given classification task.
The relevance is estimated locally for each query point using a tree-structured re-
cursive partitioning technique. The relevance of a component is proportional to
how useful the component is for discriminating classes. Essentially, the method
finds a locally adapted metric for each query point.

Mel (1997) approaches the object detection task using the nearest neighbor
framework just as we do. Object views are represented in terms of color, shape
and texture histograms, which is the same basic representation that we will also
use in our work (see Chapter 6 for details). The author determines a weighted
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L, distance measure using the intuitive heuristic that the optimal metric should
cluster object views from the same class while separating views from different
classes. However, the metric is determined using an intuitive but ad-hoc objective
function that encodes the heuristic above. The objective function is optimized
for the optimal weights for the L, distance measure using gradient descent. The
weighted L, metric found is global with no local adaptation to a query point.

Blanzieri and Ricci (1999) propose to use the same pair-wise distribution dis-
tance measure as we do. However, they justify using the pair-wise distribution
as a simpler alternative compared with estimating the distance measure in Short
and Fukunaga’s (1981) work. The authors do not seem to have realized that the
pair-wise distribution measure is in fact the optimal measure to use. Furthermore
in their work, the pair-wise distribution distance measure is constructed by first
estimating a generative model p(z|y) for each class from the training data and
then using (2.5) to express the pair-wise distribution distance measure in terms of
the posteriors p(y|x) (which can be obtained from the generative models p(z|y)
and the priors p(y) using Bayes rule).

Lastly, we survey work done on the so-called Canonical Distance Measures
(CDM) (Baxter and Bartlett, 1998; Minka, 2000). The motivation for this work
is to find a distance measure for use in a nearest neighbor rule that minimizes the
mis-classification risk over a distribution of classification tasks rather than just a
single task. For example, the measurement space might be the height of a person,
and two classification tasks might then be the gender and ethnicity of the person.

Similar in spirit to the argument we made for theorem (1), the optimal distance
measure, called the CDM in (Baxter and Bartlett, 1998), that finds the nearest
neighbor that gives the least mis-classification risk when using the nearest neigh-
bor rule was shown to be the expected risk over all classification tasks:

d(z,2') = Ef[L(f(x), f(2))]

where each f gives the class label for an input measurement for a given task, and
L is a loss function.

We are not wholly convinced of the need for a distance measure that is op-
timal over a distribution of classification tasks. Certainly at run-time, we will
know which particular classification task that we need to tackle. Thus, at training
time, if we had estimated the optimal distance measure for each classification task
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and use these individually tailored distance measures at run-time, the resulting
average classification performance over all tasks will be better than the average
classification performance of the CDM. Nevertheless, for a single task, the CDM
framework is related to our work as follows.

In the original formulation, the classifiers f are assumed to be perfect, that
is, they give the true class label for each input measurement. More recently, this
requirement has been relaxed and generalized such that the classifiers can give a
distribution over class labels for each input measurement.

If we assume that we have only one classification task, then under the 0-1
loss function, the above generalization to the CDM framework can be shown to
give the pair-wise distribution (2.6)— which is the optimal distance measure in our
work— as also the optimal distance measure in the CDM framework, see (Baxter
and Bartlett, 1998; Minka, 2000). However, just as in (Blanzieri and Ricci, 1999)
discussed above, this pair-wise distribution is still determined in (Minka, 2000)
by first estimating a generative model p(y|z) for each class.

We argue in the next chapter that if the generative models p(y|x) can be es-
timated reliably, then we are better off using the Bayes optimal decision rule to
assign an input measurement x to the class with the highest posterior p(y|x). If
the generative models are learned using an unbiased estimator, then asymptoti-
cally as the number of samples in the training set increases, we will achieve the
Bayes optimal risk. Thus, there is no advantage in using a 1-NN decision rule.
In fact, non-parametric decision rules like the nearest neighbor rule are used pre-
cisely when we cannot hope to reliably estimate generative models for each class.
This is certainly the case for object detection tasks where it is not obvious what a
good generative model would be for an arbitrary object class, much less obvious
whether we will be able to reliably estimate the model from training data.
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Chapter 3

Modeling the Optimal Distance
M easure

Unlike previous approaches, we will directly model and estimate the pair-wise dis-
tribution from training data, using a simple additive logistic model. The logistic
model linearly combines elementary distance measures, each of which is defined
over simple feature spaces like color, texture and local shape properties. Two
types of distance models are investigated: discrete and continuous models. Dis-
crete distance models combine discretized elementary distance measures that are
associated with discriminators constructed in simple feature spaces. Even though
we show the somewhat surprising result that there exists discrete distance mea-
sures that give the same performance as the optimal distance measure, in practice
the linear discrete model will only be good enough for performing coarse dis-
crimination. On the other hand, they also permit an implementation that leads to
efficient neareast neighbor search. In comparison, continuous distance model are
typically more accurate in practice but more expensive when used for searching
over a large training set. Thus the two models complement each other. We use this
fact to develop a hierarchical distance measure which combines the two models
to yield a nearest neighbor search that is both efficient as well as accurate.
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3.1 Our Approach

As noted at the end of the last chapter, one approach to estimating the pair-wise
distribution p(y # y'|z, 2’) is to first estimate a generative model p(x|y) for each
class and then use (2.5). Instead, in our approach we directly estimate the pair-
wise distribution p(y # y'|z, 2") from training data. We will argue that this direct
approach is more appropriate and stable for the object detection task than the
indirect approach where the generative models p(z|y) are first estimated.

Specifying a generative model p(x|y) might require many more parameters
than is required for specifying the pair-wise distribution distance measure that we
are ultimately after. The classic example is the two class case y € {+1,—1},
where the generative model for each class is assumed to be Gaussian p(z|y) =
N (z; v, X) parametrized by a mean v, for each class and a covariance matrix
) that is the same for both classes. Suppose the measurements x lie in an n
dimensional vector space, then we require O(n?) parameters to specify the mean
and covariance. However, it can be shown that only O(n) parameters is sufficient
to specify the pair-wise distribution distance measure. For two classes, the pair-
wise distribution distance measure is given by:

ply # Y|z, 2") = ply=+1x)p(y’ = —1]2") + ply = —1|2)p(y’ = +1]2")
(3.1)

again under the i.i.d assumption. The posteriors p(y|x) are expressed in terms of
the generative models as follows:

plz|y=+1)ply = +1)

p(x)
1

1+ aexp(—=ITx + b)
[ = 2_1(1/+1 — V_l)

ply=+1]z) =

b = u?lz—lu_l—uflz—luﬂ
. - Ply=-1)
ply = +1)

ply=—1]z) = 1-ply=+1]|2)

In the above, the hyper-plane /, known as the Fisher discriminant (Bishop, 1995;
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Dudaetal., 2001), and thus also the pair-wise distribution distance measure, needs
only O(n) parameters to specify.

In general, given a limited amount of training data, the estimation of model
parameters from the data is more well-conditioned, the fewer the parameters in
the model (Bishop, 1995). For a more in-depth argument for directly estimating
parameters for a discriminative task rather than first estimating generative models
as an intermediate step, see (Vapnik, 1999). Below we corroborate this claim with
a simple synthetic experiment.

We consider two classes with equal prior, each of which have Gaussian distri-
butions with the same unit covariance defined over a vector space. The dimension
n of the the vector space was varied from 5 to 100 in steps of 5 in the experiments
below. In each case, the means of the two Gaussians were separated by two units.
A trial experiment consisted of a training set of 20 samples from each of the two
classes and a testing set of 500 samples. The results reported below were averaged
over 20 such trials.

For each dimension n of the measurement space, the maximum likelihood
estimates for the two means and the common covariance of the Gaussian distri-
butions for the two classes were estimated. As mentioned before, this required
the estimation of O(n?) parameters. The resulting estimated generative models
for the two classes were used to classify the testing set using the Bayes decision
rule. For comparison, we also estimated the maximum likelihood parameters for
the optimal NN distance measure (3.1) directly from the training data. This re-
quired the estimation of only O(n?) parameters. The resulting estimated distance
measure was then used to classify the testing set using the NN rule.

Figure 3.1 compares the performance for the generative versus the direct ap-
proach as the dimension of the measurement space is varied. As can be seen, both
approaches perform quite a bit worse than the ground truth performance due to the
very limited number of training examples. However, as the dimension increases
the direct approach quickly outperforms the generative approach.

In the case of an object detection task, the above considerations are even more
pertinent. Typically, for a general object detection task we can easily think of a
few features that might be sufficient for discrimination while these same features
may not be sufficient for specifying a generative model for any class of objects.
For example, cars and humans may be sufficiently discriminated from each other
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Figure 3.1: Comparison of the generative vs. discriminative approach in a synthetic
experiment. See text for details.
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by the presence or absence of wheels or legs. However, wheels and legs alone are
not sufficient for specifying a generative model for cars and humans respectively.
More generally, we have the further difficulty of being unable to easily come up
with a generative model for an arbitrary object class in the first place. In the worst
case, each new object of interest might require a different generative model. On
the other hand, the same few features (say based on color, shape and texture) might
be sufficient for discriminating all object classes of interest from each other.

3.2 Modeling the Optimal Distance Measure

Keeping in mind the arguments in the previous section, we now discuss our ap-
proach for directly modeling the pair-wise distribution p(y # y’|x,2"). A prob-
ability measure is constrained to lie between 0 and 1 on the real line. Instead
of working with the pair-wise distribution directly, we will instead find it more
convenient to work with a transform of the distribution that is unconstrained on
the real line. Recall from theorem 1 that we can use any monotonically strictly
increasing transform without changing the nearest neighbor returned.

The particular transform of the distance measure that we will use is the logit
transform (Hastie and Tibshirani, 1990; McCullagh and Nelder, 1989):

ply #y' | =)
p(y =y | IL‘,[L',)
As desired, the logit transform is unconstrained on the real line —oco < H(z,2') <

oo, and will thus be easier to work with. Inverting the transform, the pair-wise
distribution and its inverse can be expressed in terms of H as:

H(z,2') = log

, . 6H(m,z’)
p(y #y | z,T ) = W (3.2)
1
p(y = y' | xz, xl) = m (3.3)

We now discuss how we model the distance measure H (z, z’). Chapter 4 will
discuss the estimation of the model from training data.

For a general object detection task with an arbitrary collection of objects of
interest, there is no prior expectation that the optimal distance measure will as-
sume any particular form. Different discrimination tasks may require different
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models. On the other hand, whatever model we consider should be feasible to
implement in practice. One simple approach that we adopt in this thesis is to
approximate the optimal distance measure by combining more “elementary” dis-
tance measures, each of which is defined over simple feature spaces like color,
local shape or texture. One advantage of adopting such an approach is the ease
with which such simple feature spaces can be implemented in practice, along with
the variety of simple feature spaces that we can choose from. For example, we
can consider simple histograms of features as we do in this thesis, for which one
choice for the elementary distance measure is the y? distance or we could use the
simpler L, distance as we do in this thesis. Other simple feature spaces include
edge maps with the Hausdorff distance measure (Huttenlocher et al., 1993), shape
contexts (Belongie et al., 2002), or normalized pixel intensities with the simple
euclidean distance measure (Nayar et al., 1996).

We seek to combine a set of simple feature spaces since no one feature space
can be expected to be sufficient for an arbitrary discrimination task. The ideal set
of feature spaces will complement each other for the discrimination task at hand.
Given a set of feature spaces, we next turn to the issue of what is an appropriate
model for combining the elementary distance measures associated with the feature
spaces.

In general, the appropriate model will depend on the discrimination task at
hand as well as the choice for the feature spaces in which images are represented.
Thus we next motivate the appropriate model that we use by first looking at actual
data for the discrimination task at hand.

In our thesis, we will use histograms of various features like color, local shape
properties and texture as the simple feature spaces that we would like to combine
in our model. Histograms were chosen since they can be efficiently computed
from an input image and are stable representations with respect to a fair amount
of distortions in viewing conditions. See Chapter 6 for details.

We wish to model the logit transform H (z, ') (3.2) or the log odds ratio which
is a function of pairs of images. To get an idea for what should be an appropriate
model for combining elementary distance measures associated with simple feature
spaces, we plot in Figure 3.2 the distribution of distance scores in such feature
spaces between images of object parts from a collection of 15 objects of interest
from an indoor detection task described in Chapter 7 and randomly sampled image
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patches from background clutter. The feature spaces considered are histograms of
color, texture and local shape properties. The elementary distance measure used
in these feature spaces is the L, distance.

As can be seen from the left column in the figure, the distance scores between
images fall into one of two overlapping distributions that depend on whether the
pair of images came from the same object part class or from different classes (in-
cluding clutter). The distance score can be divided roughly into three intervals
along the x-axis. The middle interval is where distance scores are hardest to clas-
sify as to whether they come from images belonging to the same object part class
or to different classes.

The right column of the figure plots the empirically determined log odds ratio
(H(x,z")). As can be seen from the plots, in the uncertain middle interval for each
feature space, the log odds ratio is close to linear as a function of the distance
score. Thus at least for this interval, we are justified in using a linear model.
Modeling this region is what is most important for a discrimination task compared
with modeling the other regions where one can be sure of the within-class or
without-class membership of a distance score with high confidence. Thus a linear
model can afford to fit these outer regions poorly compared with fitting the middle
region. It remains to be shown however that the estimation procedure that we use
for learning such a linear model from training data does in fact fit the middle
region at the expense of the outer regions. See Chapter 4.

The above observations hold for each of the feature spaces that we use in our
work. We can thus be justified in approximating the optimal distance measure
with a multi-dimensional model that linearly combines the elementary distance
measures in all of the feature spaces that is used. More formally, we are assuming
an additive logistic model for the pair-wise distribution p(y # v’ | =, «’). Before
proceeding however, it should be emphasized that the observations that led to
the consideration of a linear model in our case need not be valid more generally
when different feature spaces and or their associated distance measures are used
or when the discrimination task is different. The usefulness of such a linear model
for arbitrary choices of discrimination tasks and or feature spaces remains to be
seen.

More generally, let C be a possibly large collection of elementary distance
measures associated with simple feature spaces. We wish to select K elementary

35



— intra-class|
extra—clasg

Probability density
Log odds ratio

9 10 0 1

3 4 5 6 1 2 3 4 5
Distance between image patches Distance between image patches

Local Shape

4|

Probability density
Log odds ratio
b o e
°
o

L
A

°
=
>

25 45 5 75 8

10 15 20 55 6 6.5 7
Distance between image patches Distance between image patches

Color
extra—clasg

Probability density

Log odds ratio

16 18 4

6 8 10 12 25 5
Distance between image patches Distance between image patches

Texture

Figure 3.2: The left column plots the distribution of distances in various histogram fea-
ture spaces that we use in our work, between pairs of images of object parts from 15
objects described in Chapter 7 and randomly sampled image patches from background
clutter. The distance scores fall into two distributions depending on whether the pair of
images come from the same part class or not. The distance score can be split roughly into
three intervals along the x-axis. The middle interval is where uncertainty is greatest as to
which of the two distributions the distance score comes. The right column plots the log
odds ratio (3.2). Note the linearity of the middle interval.
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distance measures d;, € C from the collection that best approximate the optimal
distance measure using the following linear model:

K
H(z,2')~ H(z,2") = ap + Z agdy(x, z') (3.4)
k

In practice, the choice for K will be based on run-time performance considera-
tions.

For a given choice of K elementary distance measures from C the correspond-
ing linear model for H implies a conditional exponential model for the pair-wise
distribution. To see this more clearly, we can rewrite the expressions in (3.3) as
follows:

GH @)
ply#y lza) = e (3.5)
- 2o 0
M=y 157) = e @7)
_ Z(xl’ x/>€—H(r,z’)/2 (3.8)

(3.9)

where Z(z,2') = e H@2)/2 4 oH(=2)/2 js a normalizing constant given a pair
of images x and z’. Thus when H is approximated by a linear model H, we get
a conditional exponential model since the exponent is linear in the parameters
ag, ... ,0K.

3.3 Discrete and Continuous Distance Models

We now consider the types of elementary distance measures that will be consid-
ered in our work. Examples of elementary distance measures include the simple
Euclidean distance measure in a feature space for pixel intensities in an image,
the 2 distance (Schiele, 1997; Press et al., 1992) between histograms of fea-
ture types like color, shape or texture, the Hausdorff distance (Huttenlocher et al.,
1993) between edge maps, etc. All of the above elementary distance measures
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are continuous, the resulting model for the optimal distance measure is thus also
continuous.

We will see in Chapter 7 that the use of the continuous distance model in a
nearest neighbor search leads to good detection performance. However, continu-
ous distance measures can only be used to search over a training set in a brute-
force manner. Such a search is prohibitive for large training sets. Thus we seek
alternative distance models that can be used for efficient NN search.

The basic idea behind most previous attempts (Beis and Lowe, 1997; P. Indyk,
1998) at efficient NN search is to (possibly recursively) partition the measurement
space X. For example, in Kd-trees (Beis and Lowe, 1997), each node of the
tree recursively partitions X based on the component of the measurement with
maximum variance over the training set. However, Kd-trees are not appropriate in
our case since the image measurement will be composed of measurements from
different feature types like color, texture and shape. It does not make sense to
compare variances of measurements from different feature spaces as required for
the construction of Kd-trees.

In (P. Indyk, 1998), the space of measurements is partitioned by a collection of
random hash functions. Our strategy is similar in spirit, but instead uses a collec-
tion of discriminators each of which is constructed in some simple feature space.
Furthermore, the choice of discriminators is not random but is tuned to the partic-
ular discrimination task at hand. As we shall show later, a set of discriminators can
be associated with a hamming distance measure. Thus a set of discrimintors in-
duces a discrete distance model for the optimal distance measure. Such a discrete
distance model can be used to implement an efficient nearest neighbor search by
combining the associated discriminators in a tree-like structure as discussed below
and in detail in Chapter 6.

In practice, the discrete distance model, though efficient, will not be as accu-
rate as the continuous model. The continuous distance model on the other hand
will be expensive to use for performing a nearest neighbor search when the train-
ing set size is large. We thus seek a distance measure that is both accurate and
efficient to compute at run-time. Our strategy will be to combine the best of
both models while overcoming the shortcomings of both at the same time as fol-
lows. We first use the discrete distance model for performing a coarse but efficient
nearest neighbor search to return a small list of candidate neighbors for an input
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measurement, rather than just the nearest neighbor. This small list of candidate
neighbors is then further pruned to find the nearest neighbor by using the more ac-
curate but expensive to use continuous distance model. We will call this combined
model the hierarchical distance model. See Figure 3.3.

3.3.1 Discrete Distance Model

In the rest of the chapter, we discuss in more detail the discrete linear distance
model. We first make the somewhat surprising observation that there exists a
discrete distance measure that gives the same classification performance as the
optimal distance measure. However, the functional form of this discrete distance
measure need not in general be linear. We then discuss a practical linear model
that combines elementary discretized distance measures associated with discrim-
inators, each of which act on simple feature spaces.

What is the best possible discrete distance measure that maximizes the clas-
sification performance for a given training set ? We can easily show that for a
given training set, the optimal distance measure can be replaced by a discretized
distance measure that has the same classification performance. For any distance
measure H and training set .S,,, the discrete distance measure — which we denote
as H¢ — that has the same classification performance as H can be constructed
from H as follows. Given a distance measure H, the Voronoi diagram is a par-
tition of the image space X such that the closest training measurement to each
r € X;under Hisz,. LetX = X; UXoU...UX,, X;NX; =0,i # jbe
the Voronoi diagram induced in measurement space X by the distance measure
H(x,z") and the training measurements {z1, o, ... , z,,}. We now define the dis-
crete distance measure H¢ that has the same classification performance as H by
discretizing H as follows:

HYz,2') = H(z;,2;), ifre X, €X;

In words, the discrete distance measure assigns to any given two measurements,
the distance between the training measurements associated with the Voronoi par-
titions containing the given two measurements. Thus it can be verified that by
construction, H? assigns the same nearest neighbor from the training set to an in-
put measurement as does the original distance measure H. Since the same nearest
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Coarse but Efficient NN search
using discrete distance model

HH g [ Candidate Nei ghboursJ

Accurate but Expensive NN search
using continuous distance model

[Nearest Neighbour]

Figure 3.3: Our strategy for efficient and accurate nearest neighbor search. An
input measurement is matched against each training measurement using the coarse
but efficient discrete approximation to the optimal distance measure, yielding a
small list of candidate neighbors. These candidate neighbors are then searched
for the closest neighbor using the more accurate but expensive to use continuous
model for the optimal distance measure. On the left is shown an actual example
from our experiments (see Chapter 7). We only show the nearest neighbors for the
sub-image from the input that is circled.
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neighbor is returned when using either of the distance measure H and H¢, they
both have the same classification performance for the given training set.

The above construction is obviously not useful in practice since the construc-
tion of H< requires knowledge of the optimal distance measure H. Thus we seek
a practical model for discrete distance measures. Our approach approximates the
optimal distance measure by linearly combining a set of elementary discretized
distance measures associated with discriminators acting on various feature spaces
(color, shape, texture) as detailed below. Even though the above construction for
H< was only of theoretical interest, we will reuse the idea behind the construc-
tion when associating distance measures with discriminators as detailed later. We
choose to use elementary distance measures associated with discriminators so that
we can compose such elementary distance measures in a tree-like structure for ef-
ficient run-time nearest neighbor search, to be used in our hierarchical distance
model (see § 3.3). In Chapter 6, we discuss the details for implementing such a
tree-like structure.

Any discriminator can be characterized by the partition in measurement space
that it induces. For example, a simple discriminator might test whether the aver-
age intensity or some other simple statistic of the input image crosses a threshold,
in which case the the measurement space is split into two parts. A decision tree,
on the other hand, partitions the measurement space into many parts, where each
part corresponds to a leaf node of the decision tree. Another type of discriminator
which we use in our work due to its ease of implementation and wide applica-
bility is the nearest prototype discriminator (see Chapter 5). A nearest prototype
discriminator is specified by the number and locations of a set of prototypes in
some given feature space. The partition induced is the Voronoi diagram associ-
ated with the set of prototypes where each partition contains measurements in the
given feature space that is closest to one of the prototypes. See Figure 3.4 for
examples of nearest prototype discriminators.

A *good” discriminator induces a partition that is aligned well with the class
boundaries, i.e. ideally two measurements from the same class will likely be con-
tained within the same partition while two measurements from different classes
will likely be in different partitions (see Figure 3.4). It is easy to construct a dis-
tance measure associated with a discriminator that shares the same property. The
distance measure is a discretization induced by the discriminator of the underlying
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Image Space

Figure 3.4: Discriminators are characterized by the partitions induced by them in
image space. Shown here are three classes of objects and two simple discrimina-
tors, the one on the left partitions the image space into three parts while the one
on the right partitions the image space into two parts. The image space is denoted
by an ellipse. The discriminator on the left is good with respect to the three object
classes since different object classes are more or less contained in different par-
titions, while the discriminator on the right confuses two of the object classes in
the same partition. Each discriminator can be associated with an elementary dis-
cretized distance measure indicating whether a pair of images belong to the same
partition or not. Such elementary distance measures corresponding to a set of sim-
ple discriminators are combined to approximate the optimal distance measure for
the nearest neighbor search.
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distance measure of the feature space in which the discriminator is constructed.
Such a discrete distance measure will inherit the *“goodness” of the discriminator,
i.e. two measurements falling in the same partition induced by the discriminator
will have a lower distance score than if they fall in different partitions.

The Voronoi construction used above for finding the discrete distance measure
H that has the same classification performance as the optimal distance measure
illustrated how a distance measure H and a set of training measurements induces
a partition of image space and an associated discretized distance measure H¢.
The idea behind this construction can also be used to find the discretized distance
measure associated with a discriminator as follows.

The idea behind the construction for ¢ from H is to design a discretized dis-
tance measure that is smallest for two measurements in the same partition com-
pared with two measurements in different partitions. We can apply the same idea
for associating a distance measure with a discriminator. The distance measure
that we seek should be designed such that two measurements in the same partition
induced by the discriminator is given a lower distance score compared with two
measurements that fall in different partitions. A simple distance measure that sat-
isfies the above requirement can be designed as follows. Let the discriminator i
induce the partition X = X; UXoU...UX,,, X;NX; = 0,7 # j. Oninput z, let
h(x) denote the partition X; that « falls under. The discretized distance measure
associated with discriminator A, denoted by [h(z) = h(z')], is defined by:

—1 ifh(x) = h(2)
+1 otherwise

o) = b = {

Note that the above distance measure is just one of many such distance mea-
sures that can be used. All that is required is for the distance measure to assign
a lower distance score between two measurements from the same partition com-
pared with two measurements from different partitions. The above function is the
simplest such distance measure.

We would also like to note the relationship between the elementary distance
measures used in the discrete distance model and those used in the continuous
distance model. The elementary distance measures used in the discrete model are
discretizations induced by discriminators of the same elementary distance mea-
sures used for the continuous distance model. Different discriminators induce
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different discretizations of the same elementary distance measure. Obviously, the
discretizations induced by good discriminators will be better elementary distance
measures compared with poor discriminators.

In general, we can assume that we have a possibly large collection of discrim-
inators H = {hy, ho, ...}, each of which is constructed in some simple feature
space like color, shape or texture. Corresponding to 7, we have the collection
of elementary distance measures C = {[h(z) = h(z')] | h € H}. The K best
discriminators h, € H,k = 1,..., K are chosen whose corresponding elemen-
tary distance measures in d;, € C give the best linear discretized approximation to
H (3.4):

K

H(z,2') ~ ap+ Z agdy(x, 2" (3.10)
k;l

= ap+ Y aglh(z) = h(a')] (3.11)
k=1

One can think of the set of partition labels {/.(x)} output by each of the dis-
criminators on a measurement x as a “code” for x. Viewed in this light, the above
linear approximation can be thought of as a weighted hamming distance measure
between the “codes” {h(x)} and {hy(z)} for two measurements = and z’. Thus
we seek the K discriminators and combining coefficients that give the best ham-
ming distance measure in “code” space, i.e. separates measurements from differ-
ent classes as much as possible in code space while clustering measurements in
the same class, see Figure 3.5.

In the next chapter, we discuss the selection of the best K elementary dis-
tance measures from C as well as estimating the best corresponding combining
coefficients under the maximum likelihood framework for exponential models.
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Code Space

Figure 3.5: lllustration of the “code” space induced by a set of discriminators. At the
top is the encoding of an input image by a set of discriminators {h1, ha,... ,hx}. As
explained in Figure 3.4, each such discriminator is characterized by the partition in image
space that it induces, shown here above each discriminator with the image space denoted
by an ellipse. The partition in which the input image falls under is marked by a x for each
discriminator. The partition can also be thought of as the label given to the input image
by the discriminator. The resulting set of partition labels over all discriminators can be
thought of as a code for the input image. Our goal is to find a set of good discriminators
and corresponding weights such that in the corresponding code space, the hamming dis-
tance measure clusters together images from the same object class while separating away
as much as possible images from different object classes. Shown above is a code space
with such a “good” hamming distance measure.
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Chapter 4

Estimating the Optimal Distance
M easure

In the last chapter, we presented a linear model for the optimal distance mea-
sure for nearest neighbor search that combines elementary distance measures. As
noted, this model implies a conditional exponential model for the pair-wise dis-
tribution (3.9). In this chapter, we first deal with the issue of estimating the pa-
rameters in the linear model for a given set of elementary distance measures by
employing the maximum likelihood estimation framework for exponential mod-
els. We also discuss the maximum likelihood selection criterion for the optimal
set of elementary distance measures themselves, given a large collection of such
elementary distance measures. We then discuss the maximum entropy framework
that is the dual of the maximum likelihood framework and show that a natural se-
lection criterion under this framework that was proposed in the literature is equiv-
alent to the maximum likelihood criterion. Finally, we describe the relationship of
our work with boosting (Freund and Shapire, 1997; Schapire and Singer, 1999).

4.1 Maximum Likelihood Estimation

In the previous chapter, we had presented two types of linear models: discrete
and continuous. In both cases, the model combines a set of elementary distance
measures. In the case of the continuous model, the elementary distance measures
act upon simple feature space like color, local shape properties, and texture. In
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the case of the discrete model, the elementary distance measures are associated
with discriminators constructed in various simple feature spaces. These distance
measures are discretizations induced by the discriminators of the same elemen-
tary distance measures used for the continuous distance model. The estimation
framework that we present below requires as input only a collection of elemen-
tary distance measures, discrete or continuous. Even though the basic estimation
framework is the same for both cases, for concreteness of presentation, we will
assume a collection of discretized elementary distance measures. This will also
allow us to explore issues that are specific to the discrete distance model. We
will in any case point out at the appropriate places, how the presentation below is
essentially the same for a collection of continuous distance measures as well.

Thus for concreteness, we will assume that we are given a collection C =
{[h(z) = h(2")] | h € H} of elementary distance measures associated with a
large finite set of candidate discriminators H = {h, hs, ... hy}, €ach of which is
constructed in some simple feature space. Recall from (3.3.1) that [h(z) = h(z')]
denotes the distance measure associated with the discriminator 2. The next chap-
ter will discuss how we can generate such a collection of simple discriminators
based on various feature spaces. We wish to choose K < N discriminators from
this collection that gives the best discrete approximation to the distance measure
H. In practice, K will be limited for example by run-time performance consider-
ations.

How good is an approximation to the distance measure? Since the distance
measure H is related to the pair-wise distribution p(y # 4’|z, 2") through the logit
transform (3.2), the task of finding the best approximation reduces to modeling the
distribution using the best K discriminators. We will use the maximum likelihood
framework (Duda et al., 2001; Bishop, 1995) for finding the best discriminators.

First we introduce some useful notation. If y; and y; are the class labels of two
measurements z; and z; respectively, then let y;; be a binary variable taking the
value —1 if y; = y; and +1 otherwise. Using the binary variable y;; we can re-
write the two pair-wise distributions in equation( 3.3) more compactly as follows:

1
1 4+ e—viiH(wiz;)

p(yij | zi, ;) = (4.1)

In the following we will denote the linear approximation (3.4) to H by H and the
corresponding approximation to the pair-wise distribution by p.
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We seek the best approximation p to the pair-wise distribution from a set of
training data. However, the training data that we will be presented with in our task
is a set of measurements and associated class labels S = {(z1,v1), ..., (zn,yn)}-
For estimating p, we need a training set which consists of pairs of measurements
(x;, z;) associated with the label y;; indicating whether the pair comes from the
same class (y;; = —1) or not (y;; = +1). We can easily create such a training set
from the given training set S. One such set which we denote by S? considers all
possible pairs of training measurements from S

52 = {((Ii,ﬂfj),yij) ‘ Yij = —1 if Yi = Yj else + 1 7 ] N} (4 2)

However, this leads to a new training set of size N2 which can be computationally
expensive to use for training. In practice, we sample some manageable number of
pairs instead of all possible pairs of training measurements (see Chapter 6).

Let h = {hg,...,hx} be our current selection of discriminators from the
collection H, where for compactness in the notation below, hy = —1 is the trivial
discriminator that corresponds to the bias and is always assumed to be chosen.
As described in the last chapter, each such discriminator 5, is associated with a
discretized elementary distance measure [hy(x;) = hy(x;)] that takes the value
—1 if a pair of images z; and z; falls under the same partition of measurement
space induced by hy, and takes the value +1 otherwise. Let « = {«v, ... ,ax}
be our current choice for the combining coefficients in the linear approximation

H. The current choice for h and o determines a particular distribution p. The
log-likelihood I(cx, h|S?) indicates how well the current choice for h and o model
the training data S and is defined as:

N
1 .
l(a,h| 5% = @Zlogp(yij | 2, 75) (4.3)
irj
Substituting the linear approximation (3.4), the above expands to:

l(a,h|32) = |S|2 Zlog 1+6_yZJH(IL,xJ))

= —@ Z log (1 + exp (— Z axyij [ () = hk(%)]))
’ ) (4.4)
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4.1.1 Estimating the Continuous Model

The estimation for a linear continuous distance model is exactly the same as above
with [hg(z;) = hi(x;)] replaced by dy(z;, ;) € C where C is now a collection of
elementary continuous distance measures:

N K
1
(o, d]|S?) = “T5F Z log <1 + exp <— Zakyijdk(xi, xj)>> (4.5)
,] k=0
where d = {d, ... ,d} is the current choice of elementary distance measures.
Each choice for the set of discriminators h can be associated with a score that
indicates how well h models the training data. Under the maximum likelihood
estimation framework, the score for h is the maximum likelihood of the data at-
tained by h over all choices of . Overloading the notation, we denote the score
for h by I(h|S?):
I(h] S?) = maxI(a,h | S?) (4.6)

acRX
We can now state the maximum likelihood criterion for choosing the best K dis-
criminators:
Criterion ML. Choose the K discriminators from the collection H that maximize
I(h|S?):
WM = argmax I(h | S?)
hCH,|h|=K
= argmax max/(c, h|S?) 4.7)
hCH,|h|=KacRX
where | - | denotes the size of a set.
In the remainder of the section, we consider various issues that are important
in practice: (a) optimization, (b) interpreting «;, and (c) regularization.

4.1.2 Optimization

Note that the above selection criterion involves two types of optimization. One is
an optimization over a discrete space H for the best discriminators. The other is
an optimization over a continuous space IR” for the combining coefficients o for
each choice of discriminators h in the discrete optimization above. We discuss the
practical issues involved in these two types of optimization.
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Optimization over Discriminators

For the discrete optimization, searching for the best /& discriminators from the col-
lection H in a brute-force manner will in general be computationally prohibitive.
The brute-force approach in which every choice of K discriminators is evalu-
ated takes O(|H|¥) evaluations. Instead we propose a simple sequential greedy
scheme that takes O(K|H|). At the start of each iteration of the greedy scheme,
we have a set of discriminators h* = {h;,... ,h;}, k < K that were selected in
the previous iterations. We choose the discriminator h,,; € ‘H that along with
the previously chosen discriminators h* maximizes the likelihood score of the
data. More precisely, letting hk*1 = h* U {h;,}, we choose the discriminator
hiy1 € H that maximizes the score [(h**1|S?) defined in (4.6).

Here for simplicity, we have assumed that the collection H of discriminators is
fixed over all iterations. In Chapter 6 we discuss how to compose discriminators
in a tree-like structure for efficient run-time performance. We will see that this
will lead to choosing discriminators from a collection H,, that can vary with each
iteration in the greedy scheme.

Optimization over o

The continuous optimization for the optimal combining coefficients a for a given
selection of discriminators h, on the other hand, leads to a convex optimization
problem. This fact is well-known in the literature (Della Pietra et al., 1997;
Schapire and Singer, 1999; Lebanon and Lafferty, 2001), but for completeness
and better insight we prove the convexity result for our task. Using the expanded
form (4.4) for the likelihood [, maximizing the likelihood of the data for a fixed
h amounts to minimizing the following cost function (for convenience, we have
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dropped the normalizing term # which is constant for a given training set):

N
Jn(a) = Zlog(l%—e_y”H(”’%)) (4.8)

2

= Zlog (1 + exp (— Zakyzj[hk(xz’) = hk(%)])) (4.9)

N
= Z log (1 + exp (— Z aw%) ) (4.10)
k

ihj

(4.11)

where we have used the notation uf; = y;; [y (x;) = hi(x;)] for compactness.
The first derivative of this cost function is given by:

a#‘./k = —ZUWU le x“xj))

where o(x) = 1/(1+ e~*) is the sigmoid function. It can be verified that o’(z) =
o(z)(1—o(x)). Thus ¢’(x) > 0since o(x) has range in (0, 1) for —oo < x < oc.
We then get the following for the Hessian:

8ar0as Zu” i ” (4.12)

,J

where we have used the notation o}; = o' (—yi; H(z;, x;)). Since each o;; >0as
shown above, the Hessian of .J is seen to be positive definite as follows: for any
o, we have:

Z 8@,@045 - Z %ij Zaru st
= Zagj(a : uij)2 >0

where u;; = (ujj, ... ,uf;). Thus J is convex in o whose minimum can be found
using well-established iterative techniques like Newton’s method (Press et al.,

1992).
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4.1.3 Interpreting oy,

Given a choice of K discriminators, we might expect that if a discriminator A,. is
“better” than another discriminator h, at the discrimination task, then the optimal
value for the corresponding combining coefficient «,. should be higher than as,
or in other words, «, indicates the relative utility of the discriminator h, at the
discrimination task. In this section, we give some analytical justification for this
intuition. We will see that the best choice for the K discriminators are those that
best “complement” each other in a sense that will be made precise below.

With respect to a given discriminator h; and a fixed pair of training measure-
ments z; and x;, we use the following notations in what follows:

A= ) atyiylhe(a) = he())]

r#k
€5 = QrY;j [hi (i) = hk:(xj)]
Zij = ZZQj -+ €ij

gij(zij) = log (1 + e_z”)
Jlow) = > gi(25)
1]
where o, r # k are the optimal values minimizing the cost function .J in (4.11)
and where g;;(z;;) corresponds to one term in the cost function .J with all of the
a,. except g, set to its optimal value. Also, J has been re-written as a function of
Only 0.

We would like to find a closed form expression for the optimal value of each
ay. As it stands, this is not possible with the cost function J. Instead, we will find
a closed form expression to a quadratic approximation to .J.

Consider the quadratic approximation to each term gij(z?j + ¢;;) about z?j:

2
~ €
9ij(zi5) = 9ii(2) + €59’ (2) + 59" (=)

= gy(2%) — o (=20) + Sa(—20) (1 — o (=2%)

where as in § 4.1.2, o(-) is the sigmoid function. The approximation to the cost
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function J is then:
J(ay) = E Gij (i)
ij

Minimizing the quadratic approximation .J for the optimal value for a, by setting
the derivative to 0, we get:

(Z —yislhi(x:) = hi(z;)]lo(—25;)) (4.13)
| +az<Z<yw[hk<xz) = hi(z;)]) o (=2 (1 —o(=2z5)) = 0 (4.14)
— (Zj—uijo—(—z?j)) + a;;<Z o(—25) (1 —o(—2%) = 0 (4.15)
where as in § 4.1.2, u;; = yyi[hi(a:) = hi(x;)].
We introduce some further notation:

wr = Z o(—zy) >0
uij:—i-l

W, = Z 0(—2?]-)>0
uj;=—1

Wy = > a(=2)(1—o(=2))) >0

ij

The term z?] depends only on the other discriminators h,., r # k and can be rewrit-
ten as 20 = y;; Hy (s, x;) where Hy (i, 2;) = 3,y owlhy(2:) = hy(x)] is the
distance measure using all discriminators except hy. With this rewrite, z?j can
be seen as measuring how well the other discriminators have classified the pair x;
and x;, larger values indicating better classification. The term o (—2;;) can then be
thought of as a weight associated with the pair z; and z; that indicates how well
the other discriminators have classified the pair. Pairs that are incorrectly clas-
sified by the linear combination of the other discriminators are associated with
a large weight. Note that since the sigmoid is bounded above by 1, it does not
over-penalize incorrect classifications. Next, the term wu;; indicates whether the
discriminator Ay, classifies a pair of measurements z; and z; correctly (u;; = +1)
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or incorrectly (u;; = —1). Thus W," denotes the total weight associated with all
pairs that are correctly classified by %, and similarly W, denotes the total weight
associated with all pairs that are incorrectly classified by h;. W on the other
hand is independent of i, and is thus a constant.

Continuing with the minimization of o, in (4.15), we get:

W, =W +aW) = 0

Ak
— ak =

where we have denoted the optimum to the quadratic approximation by &; to dis-
tinguish it from the the true optimum «; obtained by minimizing the true cost
function J (4.11). Substituting this optimum back into the quadratic approxima-
tion .J, we get:

- R W+_w—2
jepy = Jp - We el
k

where J? is the cost due to all the discriminators except h,.

Thus under the quadratic approximation, intuitively speaking, J is minimized
by a choice for the discriminator ;. that correctly classifies pairs associated with
large weights while affording to incorrectly classify pairs associated with low
weights. In this sense, the best choice for Ay is that which “complements” the
other discriminators the most. Since the optimal value for «; is proportional to
the difference W," — W~ in the total weight associated with pairs that %, correctly
classifies and the total weight associated with pairs that h; incorrectly classifies,
we can think of &; as measuring how well hy, correctly classifies those pairs that
were not classified well enough by the other discriminators.

4.1.4 Regularization

Maximum likelihood estimation can suffer from over-training (Duda et al., 2001;
Bishop, 1995; Lebanon and Lafferty, 2001; Chen and Rosenfeld, 2000). As shown
in the last section, in our case this means the optimal estimate for any of the oy,
can be overly confident about the discriminative power of the corresponding dis-
criminator hy, if its value is large in magnitude. The standard approach to dealing
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with over-training is to use priors on the possible values for the parameters being
optimized. This leads to the maximum a posteriori estimation (MAP) framework.
Under MAP, the likelihood (4.4) is replaced by:

N K
1 R
l(a,h | S%) = @Zlogmyﬁ|xi,xj>+§jloqu<ak> (4.16)
2,] k

where ¢ is the prior distribution over the parameter «,.

What should be an appropriate choice for the prior ¢,? The prior should pe-
nalize large values of «y, since as discussed above, large values likely indicate
over-confidence about the discriminative power of the corresponding discrimina-
tor h;. Other than that, we would like to preserve the convexity of the resulting
optimization problem just as was the case for the ML framework (see § 4.1.2
above). A simple prior that satisfies both these constraints is the Gaussian:

“k

where the choice for the variance o, limits the effective range of the parameter
ay. It can be seen that the cost function that needs to be minimized under the
MAP framework is simply the cost function J (4.11) for the ML framework plus
a quadratic term due to the priors on a:

N
Jn(a) = Z log(1 4 e vt (@ies)) o (4.17)

1,J

?er
S5

This new cost function is also convex as was the case for the ML framework as the
Hessian of J is still positive definite since the contribution of the quadratic term is
only an additional positive quantity 1/07% along the diagonal of the Hessian (4.12)
under the ML framework.

4.2 Maximum Entropy Formulation

In this section, we consider an alternative formulation for estimating the pair-wise
distribution p(y;; | z;, z;) that is dual to the maximum likelihood framework dis-
cussed in the previous section. The main reason we consider the dual framework
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is to present new insights into the estimation problem. We also consider a natural
criterion for selecting the best discriminators for modeling the pair-wise distribu-
tion under this framework. This criterion has been previously used in the vision
literature for texture synthesis (Zhu et al., 1998). We are interested in knowing
the relationship between this criterion and the maximum likelihood criterion pre-
sented in the previous section in the hope of using the superior one in practice. On
the surface, the two criteria look quite different. Nevertheless, we prove that they
are in fact the same criterion seen from different perspectives.

For a fixed pair of measurements z; and x;, let y;; be a sample from the pair-
wise distribution p(y;; | x;,z;). Recall that y;; = —1 if z; and z; belong to the
same class and y;; = +1 otherwise. For a given discriminator A, the function
f(yij, xi,xj) = yi;[h(x;) = h(z;)] can be considered as a test as to whether the
discriminator h “classifies” the pair of measurements z; and z; correctly. That
is, f(yij, xi,x;) = +1 if either the pair belongs to the same class (i.e., y;; =
—1) while also falling in the same partition induced by the discriminator A (i.e.,
[h(x;) = h(z;)] = —1) or if the pair belongs to different classes (i.e., y;; = +1)
while also falling in different partitions (i.e., [h(z;) = h(z;)] = +1). On the other
hand, f(yij,z:,z;) = —1 indicates that the discriminator & did not classify the
pair of measurements correctly.

The average classification performance of a discriminator £ is the expected
value of f. If the expected value is +1, we have perfect classification, if it is 0
the performance is random, and if it is —1, the classification is always wrong. In
practice, we do not know the true pair-wise distribution, but the expected value of
the classification performance can be estimated from a training set. Formally, we
define the empirical performance (f) as:

1
(f) 7 > flygm )

((zs,5),yi5)€S?

We seek to estimate the true pair-wise distribution p(y;; | z;,x;) from the
space of all probability measures. What should the constraints be?

Suppose we are given K discriminators hy, k = 1,... , K for each of which
we can determine the empirical performance (f), from the training data. Clearly,
one set of constraints on the estimated distribution p(y;; | x;, x;) is that the classi-
fication performance of the K discriminators under the estimate is the same as the
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empirical performance (f), determined from the training data (ignoring noise in
the estimates). However, we still only have a finite number K of such constraints
and thus the optimal choice for the estimate of the distribution from an infinite set
of possible probability measures is still ill-defined. Clearly we need some other
criterion that is not data driven. The maximum entropy (ME) principle (Jaynes,
1957; Della Pietra et al., 1997) states that we should choose the probability dis-
tribution that satisfies the given constraints, but otherwise should be the *“least
committed” probability distribution.

Intuitively, the least committed probability distribution when there are no con-
straints is the uniform probability distribution. As we add constraints, we would
like to keep the distribution as “close” to uniform as possible while satisfying the
given constraints. More generally, we might like to be as close to a prior distribu-
tion ¢q that may not be uniform and which is task dependent but data independent.
For our task, the “closeness” or distance between two conditional pair-wise dis-
tributions p(y;; | x;,x;) and ¢(y;; | x;,x;) can be measured by the following
conditional Kullback-Leibler (KL) divergence (Della Pietra et al., 1997):

p(ij | i, 7))
D(p.q) = |52 Z Z p(Yij | xi,xj)logﬁ
(w27) €52 yiye{—1+1) QWi 1 i 25
which is non-negative and 0 iff p = q.
Let M be the space of all possible conditional pair-wise distributions p(y;; | z;, x;).
Define the feasible set 7 C M as:

F ={pe M| E,fi] = (fx) forall k} (4.18)

where E,[-] denotes expectation under the likelihood p. Then, the ME framework
requires the solution to the following problem: minimize D(p, qo) Subject to p €
F and a fixed prior measure ¢o. In our task, we assume a uniform prior for ¢,. In
this case it can be shown (Della Pietra et al., 1997; Lebanon and Lafferty, 2001)
that by setting up an appropriate Lagrangian, the optimal pair-wise distribution
which we denote by pyr takes the form of the logistic function:
1

1+ exp (= >y axfr(@i, 75, Yis))
where «y, is the set of Lagrange multipliers, one for each of the constraints £, [ f;] =

(fr)-

puE(Yij | (i, 25)) = (4.19)
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The ME solution pyg(yi; | (i, x;)) takes the same form as the exponential
model (4.1) in the previous section. In fact it is known (Della Pietra et al., 1997)
that the ME solution is dual to the maximum likelihood (ML) exponential model.
We discuss this duality in more detail below.

Consider the family of conditional exponential probability distributions:

Q={peM | plyy| (w1, 25)) < qolyij | (i, x;))eXrrlilmnzivi) - o e REY
(4.20)

where as before ¢q is a prior measure. The exponential model (4.1) consid-
ered in the previous section is a special case where the prior ¢, is uniform. Let
p(yi; | i, 2;) be the empirical distribution determined by the training set S?;
P(yij | @i, ;) simply takes the value 1 if ((z;, z;), v;;) € S? and 0 otherwise. The
log-likelihood L of a probability measure p with respect to the empirical distribu-
tion p is defined as:

L(p,p) = —D(p,p)

It can be verified that when ¢, is uniform and p € @, the above definition reduces
to the likelihood defined in (4.4). It has been shown (Della Pietra et al., 1997) that
the probability distribution py;, that maximizes the likelihood over the exponential
family @ is the same as pye. Thus the two optimization problems are dual to each
other.

4.2.1 ME Selection Criterion

We next consider the problem of selecting good discriminators under the ME
framework just as we did for the ML framework in § 4.1. As in the case for
the ML framework, we assume that we are given a large but finite collection H
of discriminators. We wish to choose K < N discriminators from this collection
that is in some sense “optimal” under the ME framework. We will reexamine a
selection scheme under the ME framework that has been recently proposed (Zhu
et al., 1998). We will then show that despite the very different appearance of this
selection criterion from the ML selection criterion, they are in fact equivalent.
Thus from a practical point of view, there is no gain in considering the ME selec-
tion criterion, although it does bring new perspective to the issue of selecting the
best discriminators.
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Zhu et al. (1998) proposed the use of what they called the mini-max entropy
criterion. The context of their work was the selection of good features for texture
synthesis. In their formulation, the criterion assumes a uniform prior model for ¢q
and chooses the K features such that the resulting maximum entropy probability
distribution pyr has minimum entropy over all choices of K features. This crite-
rion might seem less intuitive at first than the ML criterion presented in the previ-
ous section. It is based on the notion that the entropy of the probability distribution
determined by a given choice of K discriminators indicates how “informative” the
discriminators are in specifying the pair-wise distribution, the discriminators be-
ing more informative the lower the entropy. Thus the mini-max entropy criterion
chooses the K most informative discriminators. Since minimizing the entropy of
a distribution p is the same as maximizing the KL divergence D(p, qo) Where g
is set to the uniform distribution, the original mini-max entropy criterion can be
generalized for arbitrary priors ¢, and formally stated as follows:

Criterion ME. For a fixed choice of K discriminators h = {hy,... ,hx} C H,

let p*(h) be the maximum entropy probability measure with constraints deter-

mined by the corresponding testing functions f1, . .. , fk, i.e. p*(h) = argmin D(p, qo).
peEF

Choose the K discriminators for which D(p*(h), go) is maximum over all choices
of K discriminators from H.

As before, we are assuming that the trivial discriminator h, = —1 is always
chosen.

At first reading, the ME criterion looks quite different from the ML criterion of
the previous section. Nevertheless, we show next that due to the duality between
the ME and ML framework, these two seemingly different criteria are in fact the
same when the ML criterion is applied to the exponential family Q. First, we
generalize and restate the ML criterion from the previous section for arbitrary
priors qq:

Criterion ML (restated). For afixed choice of K discriminatorsh = {hg,... ,hx} C
H, let p*(h) be the probability measure that maximizes the likelihood p*(h) =
argmax L(p, p). Choose the K discriminators for which L(p, p*(h)) is maximum

S

PER
over all choices of K discriminators from H.
It can be verified that this reduces to the same criterion presented in the previ-
ous section if we assume the prior ¢q to be uniform.
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Theorem 2 A set of K discriminators optimizes the ME criterion iff they also
optimize the ML criterion for the exponential family.

Proof. We first state an analogue of the Pythagorean theorem for the KL diver-
gence (Della Pietra et al., 1997):

D(p,q) = D(p,p*) + D(p*,q), forallp € F,q € Q

where Q is the closure of @ and where by the duality theorem (Della Pietra et al.,
1997):

pu = argminD(p, p) = p* = argminD(p, qo) = pmk
pEQ peF
We set p = p, the empirical distribution from the training set S2, and ¢ = ¢ a
prior measure, both of which are fixed for a given learning task and thus D(p, qo)
is constant. Also since the log-likelihood is given by L(p,p) = —D(p,p), we
have:

L(p,p*) = D(p*, qo) + const

Thus choosing the K discriminators that maximize the likelihood L(p, p*) also
maximize the KL distance D(p*, ¢o) and vice-versa. In other words, the K dis-
criminators that optimize the ML criterion also optimize the ME criterion and
vice-versa [

Figure (4.1) is a cartoon illustration of the proof. For clarity of presentation,
we assume a collection of discriminators H = {h;, ho} containing just two dis-
criminators. We seek the best linear model to the optimal distance measure H
based on just one discriminator, either h; or hy. Corresponding to each discrim-
inator h;, the figure shows the feasible set (4.18) F; induced by h; under the ME
framework as well as the one-dimensional exponential family (4.20) @Q; under the
ML framework. Note that the two feasible sets intersect at the empirical distribu-
tion p, while the two exponential families intersect at the prior model .

The sets ); and F; intersect at the unique distribution p; as required by the
duality theorem (Della Pietra et al., 1997). The three points p, p! and g, form
the triangle in the analogue of the Pythagorean theorem above. ML likelihood
is related to the KL divergence between p! and p, while the relative entropy is
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Figure 4.1: lllustrating the proof of theorem 2. See text for details.
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related to the KL divergence between p? and ¢,. Changing the discriminator h;
changes only p?, thus keeping the opposite leg of the triangle constant. Since the
sum of the other two legs equals the leg opposite p;, maximizing the likelihood
is equivalent to minimizing the relative entropy. Thus in the figure, both selection
criteria under the two frameworks would choose the distance model based on the
discriminator h;.

In closing it should be emphasized that the equivalence between the two cri-
teria is not solely caused by the duality between the ML and ME frameworks. To
see this, suppose we modified our selection criteria such that we could also choose
the best prior models ¢, from some collection in addition to choosing the best set
of discriminators. For such selection criteria, all the legs of the triangle can now
vary and thus there is no guarantee that maximizing the likelihood will necessar-
ily minimize the entropy simultaneously, even though the duality between the two
frameworks of course still holds.

4.3 Connections with Boosting

The distance measure h(z;,z;) = [h(z;) = h(z;)] corresponding to a discrim-
inator A can also be thought of as a binary classifier on pairs of measurements
(for convenience, we have abused the notation A to indicate both a discriminator
which acts on a measurement and a classifier that acts on a pair of measurements,
the correct interpretation should be clear from the context). A pair of measure-
ments is classified with the label a(z;, z;) = —1 if both belong to the same par-
tition induced by the discriminator h, otherwise they are classified with the label
h(x;,x;) = +1. A good classifier is one that will more likely output —1 for a pair
of images that belong to the same class, while +1 is more likely to be output if
they belong to different classes.

Consider K such binary classifiers h;, k = 0, ... , K that we wish to combine
using a linear combination:

K
F(x;,x;) = Z aph(z;, ;)
k=0
Using this combination, a pair of measurements is classified with sign(£'(z;, z;)).
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Let S = {((z:,;),vi;)} be a training set on pairs of measurements as be-
fore (4.2). The error of the combined classifier on the training set is given by:

E= Y [sign(F(zi,z;)) # il
(zi,25),yi5)€S?
where for a predicate 7, [r] is 1 if 7 is true, else 0. We wish to find the classifiers
hy and corresponding combining coefficients o, that minimize the training error
E. However, E is a discrete function and thus hard to work with. The boosting
framework (Freund and Shapire, 1997; Schapire and Singer, 1999) uses instead a
continuous upper bound that is easier to work with. The exponential cost function
is commonly used to bound the discrete training error above. Using the exponen-
tial cost function, it can be easily verified that:

[[Slgn(F(ZL’Z,ZE'])) 7& y”]] < e_y’ijF(xivxj)

Thus we can replace the discrete training error £ with the continuous upper
bound:

E < Z e Vi F(wisz;)
((zs,25),yi5)€5?
= Z e~ 2k aryijh(zi,z;)
((zs,25),yi5)€5?
In boosting, this upper bound is minimized with respect to the choice of classifiers
hy. and the corresponding «..

Comparing the upper bound above with the cost function .J, we see that the
only difference is the cost function: the upper bound uses the exponential cost
function whereas the maximum likelihood framework results in the log cost func-
tion. The log cost function is better behaved compared with the exponential cost
function as it does not over-penalize bad classifications. In fact, more recent
work (Mason et al., 2000) uses arbitrary cost functions including the log cost
function for the upper bound above. The criterion for choosing one cost func-
tion over another is based on which one gives a tighter upper bound. On the
other hand, in our case, the ML framework gives rise to a particular cost func-
tion that also happens to be a good choice under the boosting framework. Fur-
thermore, the ML framework can be generalized to avoid over-fitting by regu-
larization (see § 4.1.4), whereas there is no known regularization framework in
boosting (however, see (Lebanon and Lafferty, 2001)).
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Ignoring the choice of cost functions and the issue of regularization however,
from a computational point of view there is no essential difference between the
boosting framework and the ML framework. In fact, it has been recently shown
that the ML framework for exponential models can be precisely related to the
boosting framework by specifying a particular class of constraints in the maximum
entropy formulation that is the dual of the maximum likelihood problem (Lebanon
and Lafferty, 2001).

However, from a conceptual viewpoint, for our task we argue that the nearest
neighbor framework is more natural than the boosting framework. In the boosting
framework, the basic primitives are the simple (or “weak”) classifiers that are
combined. In the development above, the simple or base classifiers act on pairs
of measurements outputting a label indicating whether they are in the same class
or not, while typically one thinks of a classifier as acting on one measurement
and outputting a class label. Furthermore, we are able to interpret the distance
measure [h(x;) = h(z;)] for each discriminator / as a pair-wise classifier only
because of our choice of simple distance measures that give binary values +1 and
—1 for a pair of input measurements. It is not clear whether more general classes
of elementary distance measures that need not be binary can also be interpreted as
pair-wise classifiers.

On the other hand, the nearest neighbor framework naturally leads to the con-
sideration of optimal distance measures that are obviously defined on pairs of
measurements. It was only after we assumed a particular discrete model induced
by discriminators for the optimal distance measure, as well as using the maximum
likelihood framework for estimating the parameters of such a model, that we were
able to draw the connection to boosting. The connection would not have resulted
had we either chosen to model distance measures differently (for example with a
continuous model) or used a different parameter estimation framework. Viewed
in this light, for our task the consideration of distance measures is motivated from
first principles in a nearest neighbor framework, whereas casting the task in a
boosting framework is only coincidental and contingent upon particular choices
made during modeling and estimation.
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Chapter 5

Generating Candidate
Discriminators

The last chapter assumed a collection of candidate discriminators H from which
K < |'H| discriminators were chosen in a greedy manner under the maximum
likelihood estimation framework. In this chapter, we discuss the details for gener-
ating such a collection of discriminators.

We present two approaches to generating discriminators. The first one pre-
sented in § 5.1 is a general approach that can generate candidate discriminators
using any feature space like color, shape or texture in which some distance mea-
sure can be defined. The approach is more appropriate for coarse discrimination
tasks for which gross feature differences are sufficient for discriminating different
classes of objects of interest. However, this approach is computationally expen-
sive primarily because the search space is discrete. The second approach pre-
sented in § 5.2 generates discriminators in linear feature spaces, for example pixel
intensities in a window for which the distance measure between two points in this
feature space is given by the Euclidean distance. The approach takes advantage of
the linearity of the feature space to generate discriminators in a computationally
efficient manner. Both approaches have been implemented and tested in Chap-
ter 7.
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5.1 Nearest Prototype Discriminator

As discussed in § 3.3.1, discriminators can be characterized by the partition they
induce in image space. This relationship between discriminators and partitions
works both ways. Given a partition, we can associate a discriminator with the
partition. The discriminator classifies two measurements as belonging to the same
class if they fall in the same partition, otherwise they are classified as belonging to
different classes. Thus one approach to generating discriminators is to find ways
of partitioning the image space, where each such partitioning corresponds to a
discriminator.

Perhaps the simplest means of creating partitions is to specify the locations of
some number of prototypes in some feature space with a distance measure. An
example of a distance measure is the y? distance for histograms (Schiele, 1997;
Press et al., 1992). The Voronoi diagram induced by the prototypes and the dis-
tance measure in the feature space is a partition of image space. We call the dis-
criminator associated with the Voronoi diagram a nearest prototype discriminator,
which we first introduced in Chapter 3. The construction of the nearest prototype
discriminator is similar in spirit to vector quantization in signal processing (Ger-
sho and Gray, 1992).

Since a nearest prototype discriminator is completely specified by the number
and locations of a set of prototypes in some feature space, we next discuss how
the prototypes are generated.

Let us assume we are interested in constructing a nearest prototype discrimi-
nator with r prototypes in some feature space. For a continuous feature space, the
set of locations for any one of the prototypes is infinite, thus the set of candidate
nearest prototype discriminators H is also infinite. Recall from § 4.1 that under
our greedy scheme, we seek the best discriminator from a set of candidate discrim-
inators that minimizes the cost function J (4.11). However, if the set of candidate
discriminators is continuous then efficiently searching for the best discriminator
from such a set may not be feasible or maybe difficult in general since the pos-
sibility for performing an efficient search in a continuous space will depend on
the distance measure used which may be nonlinear and also the parametrization
used for measurements in the feature space. For example, if the feature space is
histograms over some feature, then the parameters are positive real values, one for
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each bin of the histogram representation, and which are constrained to sum to one.
A possible distance measure would be the nonlinear x? distance (Schiele, 1997
Press et al., 1992). Searching for the best discriminator under such a parametriza-
tion is made difficult due to the huge space of parameters, one for each bin, and
is further complicated by the nonlinear distance measure. For example, common
search techniques that utilize some form of gradient descent over the parameter
space are susceptible to getting trapped in local minima.

To overcome such issues and achieve the widest possible applicability for our
approach, we will adopt a simple-minded approach in which we sample a discrete
number of possible prototype locations from the feature space rather than search
through all possible locations in the continuous feature space. This gives rise to a
finite set H of candidate nearest prototype discriminators.

The simplest approach is to sample the parameter space of measurements in
the feature space (for example, real values for each bin for histograms) uniformly.
Another approach is to sample the same training set .S that is used to estimate
the optimal distance measure under the maximum likelihood framework. For r
prototypes, the set H of all possible nearest prototype discriminators where each
prototype is chosen from the training set S has size ||r!®l. Exhaustively search-
ing such a set for the best discriminator (that which minimizes J (4.11)) will not
scale well if the size | S| of the training set is large.

Instead, we will use a simple sampling technique that trades off the quality of
the discriminator found for a speed-up in the search process. Rather than exhaus-
tively searching over all nearest prototype discriminators that are possible from a
training set, we will instead be satisfied with a discriminator that is among the top
percentile of discriminators minimizing the cost function .J. More precisely, say
we want to find a discriminator that is in the top s percentile, that is if we rank all
the discriminators according to how much the cost function .J is minimized, then
we want to find a discriminator such that no more than s percent of all possible
discriminators have a lower cost J than the selected discriminator. We can show
that with high confidence we can find a discriminator in the top s percentile by
uniformly sampling the finite set of all possible discriminators H a fixed number
of times n that is independent of the size of the training set |.S| and the number of
prototypes r required. Our approach is similar in spirit to the RANSAC algorithm
for the robust estimation of model parameters (Fischler and Bolles, 1981).
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For 0 < 0 < 1, we would like to find the number of samples n such that there
exists at least one discriminator that is in the top s percentile with probability
at least 1 — 4 (in other words, with confidence §). Since each sample is drawn
uniformly from the set of all discriminators, the probability that a given sample
does not fall in any fixed fraction s of the set of all discriminatorsis 1 — s. This
is true irrespective of which fraction s is chosen. In particular, it is true when the
top s percentile is chosen. Since each sample is chosen independently from each
other, if n samples are drawn, the probability that none of them fall in the top
s percentile is (1 — s)™ < e~*". Thus the probability that at least one of the n
samples does fall in the top s percentile is greater than 1 — e~*". Thus, at least one
of the samples is in the top s percentile with probability 1 — 9§ if 1 —e=*" > 1 — 6.
Thus:

o 8119

For example, for s = 0.1% we need n > 46 samples to meet a confidence level
of 99%, for s = 0.01% we need n > 460 samples to meet a confidence level of
99%. The above analysis for our sampling strategy is similar in spirit to that for
the RANSAC algorithm (Fischler and Bolles, 1981).

Note that as stated before, we have shown that the number of samples n that
meet a particular confidence ¢ neither depends on the size of the training set | S|
nor the number of prototypes . However, the evaluation of the cost function J
for each discriminator that is sampled does depend on the training set size and the
number of prototypes.

5.2 Candidate Discriminators in a Linear Feature
Space

The last section presented an approach for constructing candidate discriminators
in a feature space with an arbitrary parametrization and distance measure. Even if
the feature space is continuous, we noted that it might be difficult to use continu-
ous optimization strategies to find the best discriminator that minimizes the cost
function J.
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In this section, we will consider linear feature spaces, for example pixel in-
tensities in a sub-window of the image, where the distance between two measure-
ments in this feature space is the weighted euclidean distance. Instead of sampling
prototypes that are restricted to the training set as in the last section which results
in the consideration of only a discrete set of candidate discriminators, we will in-
stead construct “good” candidate discriminators where the search for such good
discriminators is done over the whole continuous feature space. This global search
is made possible due to the linearity of the feature space.

There will be one such candidate discriminator constructed for each linear
feature space. These discriminators will be the set of candidates H for the greedy
selection scheme presented in § 4.1.2. A discriminator is considered “good” if it
satisfies the following criteria that are relevant to the task at hand:

I. Assume that a set of discriminators has already been selected by the max-
imum likelihood greedy scheme detailed in § 4.1.2. We want to choose a
new discriminator that we would like to add to this set. A good discrimi-
nator should focus on classifying pairs of training measurements that have
been difficult to classify using the previous discriminators selected by the

greedy scheme so far. For a given set of discriminators {hq, ... , hy}, the
probability that a pair of measurements z; and x; is mis-classified is given
by:

wij = 1= plyy | @i, 25) = o(—yi; Y awlhi(wi) = hi(w))]))  (6.2)

Thus in terms of the probability of mis-classification w;;, we want to find a
discriminator in the feature space that focuses on classifying pairs for which

I1. As much as possible, pairs of training measurements from the same object
class (i.e., y;; = —1) should be put in the same partition induced by the
discriminator, while pairs of training measurements from different object
classes (i.e., y;; = +1) should be put in different partitions.

I1l. A good discriminator induces a partition such that the training measure-
ments in the different partitions are separated well, while training measure-
ments in the same partition are tightly clustered. This should make the
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discriminator more robust at run-time in deciding which partition a mea-
surement falls under if the training set is representative of data to be seen at
run-time.

The first two criteria deal only with the training set, while the last one is a heuristic
criterion for finding a discriminator that generalizes well to future unseen data.

Our approach to finding a discriminator which satisfies the above criteria will
be to encode them in an objective function that can be thought of as an unsuper-
vised generalization of the well known Fisher quotient (Fukunaga, 1990). This
objective function is minimized to find a linear discriminant, i.e. a hyper-plane
in the linear feature space for which the projections of training measurements on
the hyper-plane are maximally separated into two groups, while also satisfying
the other criteria above. The linear discriminant along with an optimal threshold
will form the desired candidate discriminator for the linear feature space under
consideration. Unlike the traditional formulation of the Fisher criterion, we use
a purely pair-wise formulation, which allows us to easily bias the optimization to
focus on the pairs of training images that are currently hard to classify using the
discriminants learned so far (criterion (1) above).

Formulating the Objective Function

For concreteness below, we assume an example feature space R™ of pixel inten-
sities in a sub-window of size m x m in an input image. We would like to find a
discriminant 1 in this feature space that satisfies the three criteria discussed above.
One of the criteria (111) is to find a discriminant that partitions training measure-
ments into two well-separated groups, each of which is tightly clustered. The
rationale for this criterion is that such a discriminant can be expected to reliably
determine the partition that unseen images of objects of interest belong to, assum-
ing that the training data is representative of all the images of objects of interest
that will be encountered at run-time. In other words, we want to maximize:

__across-partition separation
~ within-partition separation

If we know the optimal partition that satisfies the above criteria, then the
optimal discriminant can be found by optimizing the Fisher discriminant quo-
tient (Fukunaga, 1990). Let v; be the representation of training image x; in the
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continuous feature space (i.e., v; € R™ in the example above). For a given parti-
tion of the training data, the Fisher quotient is usually formulated in the literature
in terms of the first and second order statistics of the training data as follows:

_ mT —m|]
PO = ot? o2

where m™, m™ are the means of the projections onto the discriminant 1 of the v;’s
in the two partitions, and similarly o™, o~ are the corresponding variances. In our
formulation however, we will instead use a purely pair-wise formulation that will
allow us to easily incorporate the other two criteria discussed above. We denote
a partition of the training images by indicator variables s = {sy, ... ,s,} where
each s; € {—1,+1} indicates the partition that v; belongs to in the feature space.
The pair-wise formulation of the Fisher quotient that we use is then given by:
21— sis)) K (zi, )

F(S7 1) - Zi,j(l + SiSj)K(xiv xj) (52)

where K (z;, z;) =17 (v; —v;)T (v; — v;)lis the separation along the discriminant
hyper-plane 1 between training images z; and x;. Note that, as required, the term
(1 —s;s;)/2 € {0,1} is an indicator function that denotes when z; and x; are in
different partitions, while (1 + s;s;)/2 € {0, 1} denotes when z; and x; are in the
same partition.

In practice, we will have to determine both the optimal partition (i.e., a setting
for s that optimizes eq (5.2)) as well as the optimal discriminant hyper-plane 1.
This is an unsupervised mixed discrete-continuous optimization problem (discrete
in s and continuous in 1). We derive an iterative solution for this optimization
problem in the next subsection. Once the hyper-plane 1 is found, we can form a
linear discriminant h(x) = sgn(1’v — 6) where 0 is the optimal threshold that
separates the two partitions.

With the pair-wise formulation, it is now a simple matter to encode the other
two criteria (l,11) into the optimization.

We can constrain the optimization of eq (5.2) such that training objects that
belong to the same object class are encouraged to be in the same partition (crite-
ria (11)). This is done simply by using the same indicator variable for all training
images belonging to the same object class, i.e. all training examples z;, that have
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the same class label y; will use the same indicator variable s;. Thus any assign-
ment to the indicator variables will put all training images from the same object
class in the same partition.

We can encode criteria (1) by biasing the optimization to focus on pairs of
training images that have been hard to classify with the current set of discrimi-
nants that have been learned so far. Let us assume that & discriminators have been
learned so far and let w;; be the corresponding probability of mis-classification
of a pair of images x; and x; by the k£ discriminators, as defined in (5.1). The
pair-wise formulation of the Fisher quotient eq (5.2) can readily bias the opti-
mization to focus on the hard to classify pairs of images, by weighting each term
in the Fisher quotient by the corresponding probability of mis-classification. Thus
harder to classify pairs of training images will have a correspondingly larger influ-
ence on the optimization of the quotient. The modified expression for the quotient

is:
i (1= sisj)wi; K (z;, ;)

2,
Em’(l + s;85)wii K (4, ;) (5.3)

F(s,1) =

| terative Optimization

In practice, direct optimization of F is hard since it is a discrete-continuous op-
timization problem. To make the optimization feasible, we relax the discrete op-
timization over s to a continuous optimization problem. This approximation is
similar in spirit to the normalized-cut approach for segmentation (Shi and Ma-
lik, 2000). With this relaxation, we propose an iterative maximization scheme,
by alternating between maximizing F' with respect to s keeping 1 fixed and max-
imizing F' with respect to 1 keeping s fixed. We show below that each of these
sub-problems leads to a corresponding generalized eigenvalue problem.

First, consider maximizing F' keeping 1 fixed. Define a matrix 1/ with entries:

W(i,j) =YY wiw, Kz, o1,

4,5 kik;

where k; ranges over all the indices of training images that belong to class 7 and
similarly for k; (the notation takes into account the fact that indicator variables
are shared among training images from the same class, i.e. criteria (I1) above).

72



Let 1 be a vector of 1’s with the same number of components as s. Then F' can be
simplified as follows:

1"W1 —s"Ws

1TW1 4+ sTW's

F(s) =

Let D be a diagonal matrix with D = Diag(1¥'1). Since each component of s
takes values in {—1,+1}, the following equivalence can be verified: 17W1 =
s” Ds. Substituting above, we get:

sT'(D—-W)s

Fis) sT(D+ W)s

(5.4)

As mentioned before, instead of solving for the hard discrete optimization
problem, we solve for an approximate continuous problem. Specifically, instead
of assuming that the indicator variables can take on only binary values {—1, +1},
we let them take on values in the continuous interval [—1, +1]. In other words,
we make “soft” instead of hard assignments. For continuous values of s, F' is
maximized when s is set to the eigenvector corresponding to the largest eigenvalue
of the generalized eigenvalue problem (D — W)s = A\y(D + W)s.

Next, we maximize F' with respect to 1 while keeping s fixed. Define the
matrices:

A = Z(l — SiSj) Z Wi,k (Vki - ij)(vki - ij)T
2, ki k;

B = Z(l + Sis]) Z Wk, (Vki - ij)(vkz’ - ij)T
2,] kikj

with k; and k; defined as before. With these definitions, £’ can be simplified to:

17 A1
1781
Once again, F' is maximized when 1 is set to the eigenvector corresponding to the
largest eigenvalue of the generalized eigenvalue problem Al = ABI.

Figure 5.1 summarizes the iterative scheme. We alternate between maximizing
F w.rt. s and 1 by solving for the corresponding eigenvector problems, until
convergence. Although the iteration is guaranteed to increase /' monotonically, it

F() = (5:5)
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can get stuck in a local minimum. Hence, in our experiments, we first find the &
most significant principal components of all the vectors v; for some & that is fixed
a priori, then initialize 1 to each of these principal components and optimize using
the iterative scheme just described and choose the hyper-plane 1 among them that
maximizes F. Note that the optimal partition s is not required for the rest of the
scheme.

Let uy, ... ,uy be the first K PCA components of the set of feature vectors v;
corresponding to training images x;.

dofori=1,...,k

I. Setl=u,.
Il. lterate between the two eigen-problems
(D—-W)s=X(D+W)s and Al= \DBl until convergence to
S;, lz

Output 1; corresponding to max F;.

Figure 5.1: Pseudo-code for finding optimal discriminants

Figure 5.2 is an illustration of the above iterative algorithm on a synthetic
example in a continuous 2D feature space. There are two training examples for
every class (connected by a dashed line for each class). Both training examples in
each class share the same indicator variable in the iteration. The algorithm con-
verges to a good discriminant (approximately horizontal) in a few iterations, even
though the initialization was far from the optimal solution. Also, the final partition
found (denoted by () and x) is consistent with what one would expect the optimal
partition to be. Note that the variation within classes (approximately along the ver-
tical direction) is on average more than variation across classes (mostly along the
horizontal direction). Thus, if we had not specified the class membership of train-
ing examples through shared indicator variables, the optimal discriminant found
would be almost orthogonal to the one shown in the figure since that would be the
direction that maximizes the Fisher quotient.
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Figure 5.2: Synthetic example in a continuous 2D feature space illustrating the itera-
tive algorithm for finding optimal discriminants. The numbers in the figure refer to the
iteration number. The final partition found is denoted by O and x.
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Choosing 6. Finding the optimal threshold 6 is a one-dimensional problem along
the discriminant hyper-plane 1, for which we use a simple brute-force search. The
optimal value for 6 is that which minimizes the total cost function J (4.11). The
total cost as a function of 6 changes only when 6 crosses a vector v; projected onto
1. Accordingly, we determine ¢ as follows: sort the projections onto the optimal
1 of all the v;’s, find the total cost .J for each value of 6 that are mid-points (for
robustness at run-time) between successive sorted projections, and choose the 6
that gives the minimum.
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Chapter 6

| mplementation

In this chapter we will discuss several issues that are important for a practical and
efficient implementation of our approach. In § 6.1 we discuss the various feature
spaces that we use in our work. In § 6.2 we describe the need for decomposing an
object view in terms of a set of parts. We present our approach for selecting a set
of such parts that are good for the discrimination task at hand. We noted in § 3.3
that even though a discrete model to the optimal distance measure will in practice
be less accurate than a continuous model, the discrete distance model can still be
useful in practice if it permits the possibility of efficiently narrowing down the
set of possible neighbors to an input measurement. This set can then further be
pruned by the more accurate continuous distance model. In § 6.3 we discuss how
to compose the discriminators that are used in forming the discrete distance model
in a tree-like structure for efficient run-time performance. Finally § 6.4 describes
in detail the overall scheme for detecting objects of interest in an input image. The
scheme first detects candidate parts at various locations in the input image using
the nearest neighbor classifier, then accumulates support for each candidate part
from other parts that are consistent with the candidate part, and finally performs
local non-maximal suppression.

6.1 Feature Spaces

As discussed in § 3.2, in our work we approximate the optimal distance measure
by a linear combination of elementary continuous or discretized distance measures
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in simple feature spaces based on color, shape and texture. In this section, we
describe the details of the types of feature spaces that we use in our experiments.
The histogram of various image feature types is a widely used feature space in
computer vision (Schiele, 1997; Swain and Ballard, 1991; Worthington and Han-
cock, 2000; Schneiderman, 2000; de Bonet et al., 1998; Comaniciu et al., 2000).
In our work, we consider the histogram of continuous feature types. Each such
feature type can be multi-dimensional. For example, color is typically expressed
in terms of three bands (red, green and blue, or equivalently hue, saturation and
value). Formally, a histogram is a discretization of a probability density p( f|x) for
a feature type f inan image x. In the simplest such discretization, each dimension
of the feature type f is discretized into a fixed number of bins. For example, in our
work we choose to discretize the color of a pixel into 8 levels for each of the three
color bands - red, green and blue. The histogram is then constructed by finding
the frequency count of the pixels in the input image with a feature value that falls
in each bin. In our work, we use a 32 x 32 pixel window of support, centered
around the point of interest in the input image for constructing the histogram.
Two observed histograms C and C, of the same feature type can be compared
using various distance measures. For example, the 2 distance is defined by:

2 _ (C1(b) — Ca(b))*
(O, Cy) = b; AOER0)

where b runs over the set of bins in a histogram for the particular feature type
under consideration. Another distance measure is the simple L, distance. Both
the above distance measures can be related to the KL distance measure between
two distributions. The x? is a quadratic approximation to the KL distance, while
the L, is an upper bound for the KL distance (Cover, 1991). Yet another distance
measure between two observed histograms is the intersection distance (Swain and
Ballard, 1991):

()(C1,Co) = > min{Cy(b), Ca(b)}
bebins

For a performance comparison of some of these distance measures, see (Schiele,

1997). In our work, we use the simple L, distance for run-time efficiency.
Histograms are popular in the computer vision literature since they are typ-

ically efficient to create from an input image as well as being robust to a fair
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amount of geometric transformations (Schiele, 1997; Swain and Ballard, 1991;
Comaniciu et al., 2000). On the down side, histograms based on a single feature
type cannot be expected to be discriminative enough for all objects of interest. Re-
cently, multi-dimensional histograms have been shown to be highly discriminative
(Schiele, 1997; Rao and Ballard, 1995). However, they typically require a large
support window for reliable estimation (the “curse of dimensionality” (Schiele,
1997; Duda et al., 2001; Bishop, 1995)) and are expensive to compute at run-
time.

In our work, for run-time efficiency considerations, we consider only very
low-dimensional (1- or 2-dimensional) histograms. As noted above, each such
low-dimensional histogram will in general be insufficient for the discrimination
task at hand. Our approach gets around this short-coming by combining the dis-
criminative power of several such low-dimensional histograms. More precisely,
under the nearest neighbor framework, we assume a linear combination model
for the optimal distance measure in terms of a set of elementary distance mea-
sures, each of which is defined on histograms constructed in a particular low-
dimensional feature space.

In our work, we also utilize the spatial location of the feature to further im-
prove the discriminative power of low-dimensional feature spaces. Typically, the
spatial location of the feature in the support window is ignored when constructing
a histogram. We encode crude spatial information by discretizing the spatial loca-
tion. In other words, the histogram that we use is a discretization of the probability
density p(f,l|z) over the joint space of both the feature type f and its location /
(specified by the coordinates of the pixels in the support window) with respect to
the center of the support window around the point of interest in an input image .
This is similar in spirit to the work on shape context (Belongie et al., 2002). In our
work, we choose a 2 x 2 discretization of the spatial locations, centered around
the point of interest in the input image.

We conclude this section by listing all of the specific feature types that we use
in our work. The feature types belong to the following three categories:

Color Three single dimensional feature spaces are considered corresponding to
the red, green and blue bands. Each band is first normalized by the average
value in the support window. Each band is then discretized into 8 bins.
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Texture A simple characterization of texture is in terms of the Gaussian deriva-
tive filter responses (Schiele, 1997; Viola, 1995; Greenspan et al., 1994).
Specifically, we first convolve the image with the Gaussian derivative ker-
nels g, g, along the two coordinate axes. We use the Deriche implementa-
tion for the convolution (Deriche, 1992) with the width of the Gaussian set
to o = 2.0 pixels. Each Gaussian derivative gives us a single dimensional
feature space. Additionally, we use the magnitude of the derivative g7 + g .
For characterizing textures in an efficient as well as rotation-invariant man-
ner, see (Greenspan et al., 1994).

Local Shape Lastly, we consider histograms of local shape properties. First, con-
tours are detected by using the Canny edge detector followed by contour
growing using hysteresis (Canny, 1986). Two types of local shape proper-
ties are considered. The simplest is the orientation of the edges (on the con-
tours) that falls within the support window. The orientation is discretized
into 6 directions, 30° apart. We also estimate the local curvature at each
edge point that fall within the support window. A simple estimate can be
obtained at each edge point that is not at the boundary of a contour from the
orientations at the edge and its two neighbors in the contour containing the
edge. This estimate is discretized into 6 levels.

6.2 Decomposition into Parts

An important issue in constructing the feature spaces described in the previous
section is the optimal size and shape for the support window. Ideally, the support
window should cover the whole of the object. Since at run-time the object of in-
terest is not known, we will then need to choose an optimal size for the support
window that can be used for all objects of interest. Since different objects will in
general have different shapes and thus different optimal sizes for the support win-
dows, choosing one size to fit all cannot be expected to perform well in practice.
Any one choice for the size will likely be too small for some objects or too big
for other objects for which some of the background will be considered along with
the object of interest. Also different objects will have different shapes and thus no
one shape for the support window will be optimal.
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One approach to overcoming the above shortcoming is to decompose each
object of interest into a set of parts such that each part has a support window that
is entirely or mostly contained within the object of interest. The support window
for each part need not be as large as when only one support window is used for
the whole object. Furthermore, with such an approach, even non-convex objects
can be reasonably covered with a set of parts, see Figure 6.2 for an example.
Decomposing an object into parts and using both the part matching scores as well
as their spatial configuration for object detection has been quite well-studied in the
literature (Weber et al., 2000; Burl et al., 1998; Leung et al., 1995; Schneiderman,
2000; Viola, 1995).

Another important reason for using a part decomposition is to enable ob-
ject detection that is robust to detection failure or partial occlusion. A detection
scheme that does not depend on the detection of all the parts, but instead requires
the detection of only some fraction s of the parts will be robust if the detection
failure or partial occlusion only affects at most 1 — s fraction of the parts. We will
describe such a scheme in more detail in § 6.4.

In the rest of the section we discuss several important issues that arise when
decomposing an object training image into parts.

6.2.1 Part Classes

Instead of performing a nearest neighbor search over whole object training views,
we perform a nearest neighbor search over object part training views. We first
define our notion of a part class. Conceptually, a part class corresponds to image
measurements of some surface patch of an object of interest, taken under differing
viewpoints and lighting conditions, just as in the case for whole object classes.

For our purposes, training images for a part class are obtained as follows.
First we assume a sample view of the part class is given, which we refer to as the
“center” view (see Figure 6.1). This view corresponds to some surface patch of
an object of interest and is selected from a training view of the whole object. The
next subsection will detail how such views for each part class are selected.

We sample additional training views of this surface patch as follows. We can
easily sample new training views under small translations, rotations or scalings
from the original whole object view from which the center view was selected. For
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translations, we extract 4 new training views that are +4 pixels from the center
view along either coordinate axis. For rotations and scalings, we first create new
image views by geometrically transforming the original object image view under
a set of rotations and scalings with linear interpolations of pixel values and then
sample new training images for the part from the transformed locations of the
center view. We consider rotations of +10° and scale variations of 0.9 and 1.1.
See Figure 6.1 for an example of a “center” training view of a part class along
with corresponding training views obtained under the transformations discussed
above.

Ideally, we would also like to sample training images of a part under viewpoint
changes in depth. In principle, we could extract them from additional object views
around the object view containing the “center” view of the part. However, unlike
the case for rotations, translations and scalings, we cannot easily determine the
expected location of the part view under viewpoint changes. One way around
this difficulty would to search additional images for parts that are most “similar”
to the center view of the part. This requires a distance measure and a threshold.
The optimal distance measure is of course one that ignores within part variations.
However, we are then faced with a chicken-and-egg problem. Furthermore, part
views may not be detectable due to self-occlusion and modeling errors.

We get around these difficulties by adopting the following simple approach.
We select a set of parts (the selection criteria is discussed in the next section) and
model variations in translation, rotation and scale as discussed above, indepen-
dently for each whole object training view. For neighboring whole object training
views, it is possible that the same underlying surface patch is represented by dif-
ferent part classes selected in each of the whole object training views. If we had a
reliable means of detecting such corresponding part classes, we would of course
want to group all the part training views in all those part classes as training views
for a single part class. Instead, we avoid this correspondence problem which is
difficult to perform in practice, by letting each underlying surface patch to be
represented by a redundant number of part classes, one for each training view in
which the surface patch is visible. The down-side to this simple approach is the
extra storage space required for the redundancy and the fact that viewpoint varia-
tions in depth for a surface patch are not taken into account when estimating the
optimal distance measure for the nearest neighbor rule.
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6.2.2 Part Selection

For run-time considerations, it is desirable to decompose an object view into only
a few parts. One criterion for choosing a particular part should be its discrimi-
native power. Let S, be the training set for some part class z. The training set
is chosen as described in the previous subsection. Let S, be a random sample of
training views of parts that do not belong to the same object class as z. Then a
natural measure for the discriminative power of a part view is the log-likelihood
1(S., S.) that a view from S, and S, belong to different classes:

- 1
l(SZ,SZ)E‘SHg| > logplyi; =112, 2) (6.1)

ZiESz,ZjESZ

We model the pair-wise distribution p(y;; | z;, z;) using a linear continuous model
for its logit transform, i.e. we use the continuous linear model for the optimal dis-
tance measure H (z;, z;) (see § 3.2). A global continuous linear model of H(z;, z;)
is estimated under the maximum likelihood framework (see § 4.1) from a random
training sample of part classes from all whole object training views.

Two part classes that are very discriminative but whose underlying surface
patches overlap on the object will be redundant for the discrimination task. Thus
a second criterion that we use for selecting good parts is to choose parts that are
“non-overlapping”. In addition to the fact that such parts will have discriminative
powers that are not redundant, such a part selection scheme will lead to a detection
scheme that is more robust to occlusion. In our work, we select parts at two
different scales (see 6.2), the original scale of the training images and a lower
resolution scale that is 1/2 the original scale. The non-overlapping condition is
imposed only within each scale, not across scales. This is because two parts from
the same location but at different scales can have non-redundant discriminative
power.

We use a greedy scheme for selecting a set of parts from a whole object train-
ing view that satisfies the above two criteria at two different scales. First, for each
scale, the set of all possible parts that are valid candidates are constructed from
the object training view, sub-sampled every 4 pixels along both coordinate axes.
A part is a valid candidate for the selection scheme if more than 80% of its support
covers the object view rather than the background. For the purpose of determining
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the valid candidate parts, the training images are manually segmented into object
and background.

Each of these candidate parts in both scales are scored by the log-likelihood
score defined in (6.1). At each iteration, we select the part that has the highest
score across both scales and which do not “overlap” with the parts selected in the
previous iterations. We consider two parts as “overlapping” each other if their
supports intersect by more than 50%. In our work, we select up to 10 such non-
overlapping parts. See Figure 6.2 for the final set of parts selected for sample
training images.

6.3 Efficient Composition of Discriminators

As discussed in § 3.3.1, we have chosen to discretize the optimal distance measure
using a linear combination of distance measures associated with the partitions in
image space induced by simple discriminators. As mentioned in that section, this
choice permits the possibility of coarse, but efficient, nearest neighbor search at
run-time that yields a small list of candidate neighbors that can be further pruned
by the more accurate, but computationally expensive, continuous model for the
optimal distance measure. Efficient search is possible if we select discriminators
such that they can be organized into an efficient tree-like structure. In this section,
we detail our approach for composing discriminators in such a structure.

6.3.1 Alternating Trees

For composing the discriminators into an efficient structure, we adapt the work on
“alternating trees” (Freund and Mason, 1999) which is a generalization of decision
trees (see Fig. (6.3)). Thisisalso similar in spirit to “option trees” (Buntine, 1993).
The salient feature that distinguishes alternating trees from regular decision trees
is that a node in an alternating tree can have multiple decision nodes as children.
The term “alternating” refers to alternating levels of two types of nodes:

Partition Nodes: which indicates the subset of the image space U C X that
reaches the node after passing through the sequence of discriminator nodes
from the root to the partition node. We can think of the rest of the image

84



space X — U as the subset of image space that the partition node “abstains”
from.

In the original presentation of alternating trees in (Freund and Mason, 1999),
these were called “predictor nodes”, but we prefer the more instructive term
of “partition nodes” for our task.

Discriminator Nodes. are children of partition nodes and that correspond to dis-
criminators that partition the subset of image space associated with the par-
ent partition node.

The root node of the whole alternating tree is a partition node associated with
the entire image space X. A partition node can have a multiple number of discrim-
inators as children. In turn, a discriminator node has partition nodes as children,
each of which corresponds to one of the subsets of the image space in the partition
induced by the parent discriminator node.

The possibility of partitioning the subset of image space associated with each
partition node by a possibly multiple number of discriminators gives the alternat-
ing tree more flexibility and redundancy compared with standard decision trees.
The standard decision tree is recovered if the alternating tree is constrained to
have at most one discriminator node as a child for each partition node in the tree
and collapsing each partition node with its sole discriminator child (if any). The
redundancy in the alternating tree leads to more robustness at run-time compared
with decision trees since an input leads to multiple paths from the root to leaf
nodes unlike in decision trees where only one path is possible. An error at any
point along the single path of a standard decision tree leads to the wrong result,
whereas an alternating tree can recover from a few errors due to its reliance on
multiple paths.

6.3.2 Trees and the Linear Distance Model

In § 3.3.1 we discussed a discrete model for the optimal distance measure in terms
of elementary distance measures corresponding to simple discriminators (3.11).
On first thought, it might not seem that we can incorporate the simple discrimina-
tors composed in an alternating tree into a linear model since the discriminators
in a tree have dependencies on each other. However, recall that the only manner

85



in which a discriminator A, enters into the linear model (3.11) is through the ele-
mentary distance measure [, (z) = hy(x")] associated with the partition of image
space induced by the discriminator h,. The binary distance measure indicates
whether two image x, 2’ belong to the same partition induced by hy, (i.e. [hx(z) =
hi(z")] = —1) or belong to different partitions (i.e. [hx(x) = hy(2")] = +1).

In an alternating tree, a discriminator i, only partitions the subset of images
U that reaches its parent partition node. Clearly, the distance measure [h(x) =
hi(2")] can be defined as before if its domain is restricted to pairs of images
(x,2") € U x U. Our approach to incorporating discriminators in an alternat-
ing tree is to extend the domain for the distance measure [h(z) = hy(2')] to all
of the image space X x X.

Accordingly consider the case when either or both of x and «’ belong to X —U,
that is the images belong to the subset of image space that the discriminator A,
“abstains” from. First, let both z,2" € X — U. How should [Ay(z) = hg(z')]
be defined ? As far as the discriminator &, is concerned, both x and 2’ cannot
be discriminated by Ay, thus we should let [h(x) = hi(z")] = —1. On the other
hand, if one of the image measurements belong to U while the other belongs to
X — U, then the pair can be considered to be discriminated by h; and thus we
should let [hi(x) = hi(z")] = +1. Put another way let U = {U, ... ,U;} be the
partition induced by A, on U, then the above extension of [hy(x) = hy(2")] to all
image space is the same as defining a distance measure on the extended partition
X ={X -U,Uy,...,U} over the whole measurement space.

6.3.3 Building the Tree

We end this section by describing how an alternating tree of discriminators is
built at training time. Recall from § 4.1 that we want to select K discriminators
in a greedy manner from a given collection of candidate discriminators 7 under
the maximum likelihood framework, or more specifically we want to select the
K discriminators h, € C,k = 1,..., K that minimize the cost J (4.11). Each
candidate discriminator in H is constructed in some feature space by either of
the procedures (the nearest prototype discriminator or fisher like discriminator)
outlined in Chapter 5 using a training set S.

The above greedy selection scheme for choosing discriminators remains largely
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unchanged in the context of building an alternating tree, but with important differ-
ences. Atany iteration of the greedy scheme, let us assume that we have built some
alternating tree that contains the discriminators selected so far in the previous it-
erations. At the current iteration, we have a choice of adding a new discriminator
to any partition node in the alternating tree (recall that in an alternating tree, a par-
tition node can have multiple discriminator nodes). The candidate discriminators
available for each partition node P; is constructed using the procedures in Chap-
ter 5 in various feature spaces as before but trained on only the subset of training
examples S; C S reaching the partition node P;.

The greedy scheme for building the alternating tree is outlined in Figure 6.4.
The alternating tree is initialized to a partition node that corresponds to the whole
image space X. At the start of iteration £, let T" be the alternating tree constructed
so far in the previous iterations. As before, let S; C S denote the subset of train-
ing examples that reach the partition node P; in 7', and let H(S;) denote the set
of candidate discriminators available to partition node P; using the procedures for
constructing discriminators in Chapter 5 and the training set S;. At iteration &, we
choose the discriminator ~* that minimizes the objective function J (4.11) from
among the set of all candidate discriminators h € J, H(S;) over all choices of
training sets .S; associated with each partition node P; in the tree. This discrimi-
nator h* is added to the tree as a child of the partition node P; for which ~A* came
from the corresponding set of candidate discriminators 7 (S;). Note that since a
partition node P; can have multiple children, each partition node will participate
in all iterations, unlike the case for a standard decision tree where only the current
leaf nodes are considered. At the end of a fixed number of iterations, we output
the final alternating tree with discriminators h; along with the optimal combining
coefficients «,.

6.4 Tying it all Together

In this final section, we will walk through our scheme for detecting objects of
interest in an input image. Figures 6.5- 6.6 are the accompanying illustrations for
the following discussion.

An object of interest might be present at any location in the input image. At-
tentional mechanisms or interest operators have been used in the literature (Grim-
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son et al., 1994; Burt, 1988; Abbott and Zheng, 1995; Westlius et al., 1996; Grove
and Fisher, 1996; Stough and Brodley, 2001; Culhane and Tsotsos, 1992; Itti et al.,
1998; Baluja and Pomerleau, 1997; Tomasi and Shi, 1994; Ruzon and Tomasi,
1999; Mikolajczyk and Schmid, 2002) for focusing on those locations in the input
image that might correspond to an object of interest. These locations are then fur-
ther analyzed for the possible presence or absence of an object of interest. Such
techniques for narrowing down the set of all locations to a manageable number
is necessary since typically the object detection procedures are computationally
expensive.

However, the state of the art for such attentional mechanisms leaves much to
be desired and is beyond the scope of this thesis whose main focus is on the princi-
pled formulation and the various issues involved in developing an efficient nearest
neighbor framework for object detection. Instead, for simplicity we adopt a more
“brute-force” approach where we sub-sample all possible locations in the input
image and classify the sub-image at each location. Such a brute force approach
has been successful in certain restricted domains like face detection (Rowley et al.,
1998; Schneiderman, 2000; Viola and Jones, 2001). Good run-time performance
with current compute power using such a brute-force strategy is possible when-
ever the detection process for an object of interest at each location is reasonably
cheap. In our case, the hierarchical nearest neighbor search scheme presented
in § 3.3 leads to such an efficient object detection scheme. Nevertheless, any re-
liable attentional mechanism can complement such a naive brute-force approach
and will only improve the run-time performance.

Accordingly, for our experiments reported in the next chapter we chose to sub-
sample locations in the input image along both coordinate axis every 4 pixels. We
could in principle also choose to sample rotations in the image plane along with
some amount of scale at each sampled position but instead we employ an alternate
strategy, which is to expand the training set by adding rotated and scaled versions
of each training image. Thus we trade-off training time for improved run-time
performance.

In the rest of the section, we describe each step in detail for detecting the
presence or absence of an object of interest.

Pre-processing. The various features mentioned in § 6.1 are extracted from the
input image. Histograms at each of the sampled locations (along both coor-
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dinate axes as well as at two scales) are constructed for each feature type.
We have chosen to use histograms of various feature types precisely be-
cause they can be constructed at each location of the input image efficiently
by making one pass from left to right and from top to bottom for each scale
that is sampled. Such a scheme is applicable for any desired quantity like
simple moments of feature values (averages, variances) whenever the quan-
tity is a function of only the feature values but not its position in a sup-
port window. See (Viola and Jones, 2001) for similar applications of such
a scheme. For completeness, we describe the scheme for efficiently con-
structing histograms in more detail below.

Consider a location z in the input image at which we assume that the his-
togram C'(z) for some feature type has already been constructed. The his-
togram C'(x + dx) for the same feature type at any of the neighboring po-
sitions x + Ax along either of the coordinate axes can be computed by
updating the histogram at = with only feature values from the appropriate
leading and trailing strips at the border of the support window for the his-
togram, as illustrated in Figure 6.5. Thus with appropriate initializations,
all the histograms can be efficiently constructed in a single sweep from left
to right, and top to bottom.

NN Part Detection. Once the histograms have been constructed, object parts are
detected at each location by the hierarchical nearest neighbor search de-
scribed in § 3.3. As described there, the hierarchical scheme first utilizes
a discrete distance model based on discriminators organized in a tree like
structure (see § 6.3). This discrete distance model is not very accurate in
practice but is efficient to compute, thus it is used to search for a short list
of K, possible neighbors that is further refined in the next stage. Obviously
the longer the list, the more likely the true nearest neighbor is within the
list. See Chapter 7 on how classification performance depends on K.

The next stage further prunes this list of K; neighbors using the more ac-
curate but expensive to compute continuous distance model. Once again,
we do not find just the nearest neighbor but instead report a shorter list of
K. < K, nearest neighbors for the next step which accumulates scores
for whole object hypothesis formed from each of the K. parts. Figure 6.6,
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step 1 shows the first 5 nearest neighbors found by the hierarchical distance
measure at a few sample locations in an input image.

Object Detection. Each part detected at each location is used to form a hypothe-
sis for an object training view that is closest to the view of the object in the
input image. A score is accumulated for the hypothesis from the scores for
all the parts from the same object training view as described later. A part
detection at a given location generates a hypothesis for an object training
view as follows. Recall from § 6.2 that each part class is formed from some
training view of an object of interest. Thus it is natural to hypothesize the
presence of the same object viewed under conditions similar to that of the
training view from which the part class was formed. If the hypothesis is
true, then the other parts from the same training view can also be expected
to be found in the input image whose locations can be predicted from their
locations in the training image and the scale and location of the detected
part that generated the hypothesis, see Figure 6.6, steps 2 and 3.

These predicted locations are searched for the other parts from the training
view. For robustness against some viewpoint changes as well as some mod-
eling error in assuming rigid object classes, the predicted parts are searched
in a small window around the corresponding predicted locations. The dis-
tance scores from the nearest neighbor search of the predicted parts that are
found at the expected locations are accumulated to form the score for the
hypothesis. Crucially, for robustness against occlusion and/or false nega-
tives while finding the predicted parts, we only accumulate the scores of a
pre-determined number of the topmost parts ranked by their scores, includ-
ing the score of the parts that generated the hypothesis. In our experiments
we have a total of up to 10 parts for each training view of an object class,
and we choose to score each hypothesis with the 5 topmost parts detected in
the input image. Thus our scheme is robust to occlusion or false negatives
that affect up to 5 parts.

Thresholding. The scores for all the hypotheses are thresholded (see the experi-
ments in the Chapter 7 for the dependence of the classification performance
on varying thresholds). Finally, non-maximal suppression is performed to
remove any hypotheses that have lower scores than any other hypothesis that
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is spatially overlapping. The spatial extent of an object class hypothesis in
the input image is estimated from the extent of the object in the training
view corresponding to the hypothesis and the location and scale of the hy-
pothesis in the input image. The final output contains one or more object
class detections with corresponding scores.
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Figure 6.1: Example of a part class formed from a training image. A “center” view of
the part class is selected from the training image as detailed in 6.2.1. Additional training
views of the part class are sampled from the training image by translating, scaling and
in-plane rotation of the part. Viewpoint changes due to rotation in depth are not modeled
in a part class. Instead, the same underlying surface patch is redundantly represented by
multiple part classes in different training images. See the text for details.
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Figure 6.2: Optimal selected parts for sample training images. In our work, parts can be
selected at two different scales. The left column shows parts selected from the original
scale, while the right column shows parts selected from 1/2 the original scale, back-
projected to the original scale for ease of illustration.
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Figure 6.3: Alternating Trees. The tree alternates between partition nodes (ellipses) and
discriminator nodes (boxes). Each partition node is associated with a subset U of the
image space (marked by x) that reaches the node through the sequence of discriminator
nodes from the root to the node. Each partition node can have multiple discriminator
nodes as children, each of which partitions the subset U of image space associated with
its parent partition node.
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Initialize:
I. Initialize the alternating tree 7" with a root partition node.

Il. Let H(S;) denote the set of candidate discriminators constructed from the
training set S; C S that reaches a partition node P; from the root.

dofor K iterations

I. Find the discriminator »* € (J, H(S;) that minimizes the cost function
J (4.11).

Il. Add h* to the alternating tree 7" as a child of the partition node for which
h* € H(S;).

Figure 6.4: Pseudo-code for building the alternating tree.

95




X, Xx+dx
________ R,
e N
Strailing Sead ng
| 1
C(a

|
i Clo + da)

Figure 6.5: Constructing histograms efficiently. Assume that the histogram C(x)
for some feature type has already been constructed at location x. The histogram
for C'(x + dz) at a neighboring location x + dz can be efficiently computed from
C'(x) and the histograms in the leading strip Siexing and trailing strip Siailing-
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Figure 6.6: Illustration of our detection scheme on an actual test input (see § 7.1).
Step (1): After pre-processing the image to extract histograms of various features, the
nearest neighbor parts from the training set are determined at each sampled location us-
ing the hierarchical distance measure (§ 3.3). Shown here are the top 5 parts for a few
locations. Step (2): Each part forms an object training view hypothesis. Step (3): The
locations of the other parts in the training view for each hypothesis is determined and the
corresponding parts are searched in the input image. The hypothesis is scored by accu-
mulating the NN scores of these parts along with NN score for the part that generated
the hypothesis. Shown here are 2 object view hypotheses formed from parts detected at
two locations. In the actual system, each part detected at each location forms a hypothe-
sis, each of which is scored. Finally, object detections are reported after thresholding the
scores for the hypotheses and performing non-maximal suppression.
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Chapter 7

Experiments

Most of this chapter will be devoted to the investigation of the classification per-
formance of our detection scheme for a collection of everyday objects in an indoor
environment. In addition, we will also present results on a difficult face recogni-
tion task.

Section 7.1 introduces the indoor detection task where we have a collection
of 15 objects of interest. Recall from § 6.4 that we use a hierarchical nearest
neighbor search for detecting parts at each sampled location in an input image,
in which we first use a tree-based efficient but coarse discrete distance model to
determine a short list of candidate neighbors that is further pruned by the more
accurate but expensive to compute continuous distance model. Before present-
ing results on this hierarchical scheme, we first report performance when we use
only the continuous distance model discussed in § 3.3. Since using the continuous
model alone is more accurate in practice, this performance will be used as a bench-
mark to gauge the performance of the full hierarchical scheme. This section also
presents the relative discriminative powers of the various feature spaces (color,
texture and local shape) and shows how the discriminative information from these
feature spaces when used together complement each other to a substantial degree
compared with just using each feature space in isolation. In § 7.3, we report the
significant increase in run-time performance that is gained when using the hierar-
chical scheme, while sacrificing little in detection performance. We conclude the
chapter with results on a difficult face detection task with varying facial expres-
sions. This detection task will illustrate the use of linear discriminators that are
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generated using the unsupervised Fisher-like criterion that was presented in § 5.2.
We will also report the performance when a continuous distance measure learned
on one set of training images is used for detecting faces that are not represented
in the training set. Such “transfer” of distance measures is useful in practice when
the set of faces that needs to be detected at run-time need not all be known at
training time.

7.1 The Indoor Detection Task

7.1.1 Training Set

Figure 7.1 shows a collection of 15 objects that we are interested in detecting in
images taken under an indoor office setting. Training images for each object were
taken at two elevations that were 10° apart and which were close to the height of
a person at a distance of approximately 7 ft from the object. At each elevation,
training images were taken over a 180° sweep horizontally around the object at in-
tervals of 20°. Only half the horizontal sweep was taken since most of the objects
are symmetric about the vertical axis. Objects were manually segmented from the
background in each training image. Figure 7.2 shows some of the training im-
ages for one of the objects. As described in § 6.2.1, up to 10 discriminative parts
are selected in each training image. Additional training views for the selected
parts are sampled synthetically from the raw training image at different scales and
rotations (see § 6.2.1). Furthermore, the training images were taken under illumi-
nation conditions that were natural and kept constant for an indoor setting. Rather
than collecting more training images under varying illumination conditions, we
chose to use the normalization procedures described in § 6.1 that were found to
be sufficient in compensating for the moderate amount of illumination variation
encountered in typical indoor settings.

7.1.2 Testing Set

We wanted to collect a large set of testing images with a large number of back-
grounds as well as with a large number of viewpoint changes for the objects of
interest. Collecting testing data satisfying both criteria at the same time would
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Figure 7.1: The 15 objects of interest for the indoor detection task.
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Figure 7.2: Sample training views for one of the objects.
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be prohibitively expensive. Instead, we collected two sets of testing images: one
set varied the viewpoint that the object of interest was taken under more than the
background, while the other set varied the background more than the viewpoint of
the objects of interest.

The first set was taken using a tripod and contains images of objects of interest
taken with 3 different backgrounds. For each of the 3 backgrounds, images of each
object of interest were taken under varying viewpoints at around the same distance
from the camera as was the case when the training images were taken. This set
contained a total of 315 images with 21 images for each object of interest.

The second test set was taken with a hand-held camera and contains images
with 15 different backgrounds, one for each object of interest. This set contains
a total of 60 images with 4 images for each object of interest. Thus we have a
combined total over both sets of 375 test images with 25 images for each object
of interest.

Figure 7.3: Sample test images for the indoor detection task.
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See 7.3 for a sample of the test images. As seen from the sample, the test set
includes variations in scale, elevation and viewpoint for the objects of interest.

7.2 Continuous Distance Model Performance

Recall from § 6.4 that our scheme first finds a small set of K. candidate object
parts at each sampled location in the input image through a nearest neighbor
search over the training set using some distance measure. Each of these candi-
date parts at a given location generates a hypothesis for an object at that location,
for which scores are accumulated from all the parts belonging to that object found
at the corresponding locations in the input image predicted by the hypothesis. The
scores for each hypothesis are then thresholded and the surviving hypotheses are
reported after performing local non-maximal suppression, see § 6.4 for details.

In this section, we investigate the performance for our scheme when only the
continuous linear model (§ 3.3) for the optimal distance measure is used in the
nearest neighbor search for parts at each location. As discussed in § 3.3, we find
that the continuous model is more accurate than the discrete model in practice,
albeit at more expense to compute at run-time compared with the discrete model.
For good run-time performance as well as good detection performance, we com-
bine the two models in a hierarchical scheme as detailed in § 3.3. Since the con-
tinuous model is more accurate in practice, we will use the performance reported
in this section as a benchmark against which the detection performance for the full
hierarchical scheme will be judged in the next section. We will also empirically
evaluate the relative discrimination powers of the various feature types (color, tex-
ture and local shape) and show that in practice they complement each other to a
substantial degree for the detection task at hand.

7.2.1 The Continuous Model Benchmark

The performance of our detection scheme outlined above and detailed in § 6.4
depends on two parameters: (a) K. the number of nearest neighbor parts reported
at each location and (b) the threshold ¢ that is used after accumulating scores for
each hypothesis generated by the detected parts. A given setting for these param-
eters (K., 0) will give rise to some performance for each object of interest, which
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can be empirically characterized by the correct detection rate for that object along
with the false positive rate over the set of 25 test images for the object described
in § 7.1.2. An object is considered to be detected in a test image if our scheme
reports a detection of an object with the correct object label and falls within a
32 x 32 pixel neighborhood of the actual location of the object in the test image
that was manually labeled beforehand. Plotting the detection vs. false positive
rate while varying the two parameters gives us a receiver operating characteristic
(ROC) plot (Egan, 1975; Green and Swets, 1966).

Each object will give us a corresponding ROC plot. Obviously, different ob-
jects will in general have different ROC plots as some objects will be harder to
detect than others. We summarize the performance of our detection scheme by
plotting the average ROC curve over all objects in Figure 7.4 as well as plotting
the individual ROC plots for each object in Figure 7.5.

An objective unit for the false positive rate is the total number of false positives
over all test images divided by the total number of locations tested by the detection
scheme over all test images. We plot this unit along the top margin in all the ROC
plots reported here. However, this unit can make the ROC plot seem too optimistic
(note the scale factor of 102 for the unit in the plots). In contrast, we also use
the average number of false positives per test image. This unit is plotted along the
bottom margin in the ROC plots and is more subjective since it depends on the
size of the field of view that the input image covers, unlike the case for the unit
described above. Nevertheless, we feel that the second unit gives a more intuitive
handle on the detection performance of our scheme.

In Figure 7.4, the ROC plot is represented by a set of ROC curves, one for each
setting for K., the number of candidate parts returned by the nearest neighbor
search using the continuous distance model. Each curve is generated by varying
the threshold 6. As a representative point, we get a detection rate of 82% for a
false positive rate of 0.5 per test image corresponding to K. = 3.

Surprisingly, the detection performance does not vary much with the number
of neighbors K.. This insensitivity can be explained as follows. A given whole
object training view is decomposed into a certain number of parts (up to 10 in
our experiments) as discussed in § 6.2. Consider a test image which contains
the object at some location under viewing conditions close to that in the training
image. The location of the object will determine the locations where the parts
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Figure 7.4. Average ROC plot for the indoor detection task using only the continuous
distance model. The x-axis is labeled using two units, the more objective unit shown along
the top margin is the false positive rate per location tested, while the more subjective unit
shown along the bottom is the false positive rate per test image, where both units are
averaged over all test images. The ROC is represented by a set of ROC curves, one for
each setting for the number of candidate parts K. that is returned by the nearest neighbor
search using the continuous distance model. The detection performance is surprisingly
quite insensitive to K .. See text for discussion. The second plot above details the top
left hand corner of the first plot. The ROC curve corresponding to K. = 3 is used as a
reference for comparison purposes in subsequent plots.
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Figure 7.5: The individual ROC plots for each object. For clarity, the set of plots is
broken into 3 graphs with 5 objects each. The numbering for the objects is the same as in
Figure 7.1.
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corresponding to the training view will be expected. Any of these locations in the
test image can trigger a hypothesis for the given object under consideration if the
corresponding part is reported among the top K . neighbors at those locations. Put
another way, for the hypothesis to be triggered, only one of these parts need to be
reported in the top K. neighbors at the corresponding expected location in the test
image. Thus the hypothesis will likely be triggered with high probability since
the probability that all the parts fail to be reported in the top K. neighbors will be
low.

To make this intuition more precise, assume the following very simple model:
let the probability that a part fails to be reported in the top K. neighbors be p(K,)
which we assume is the same for all the parts. Obviously, this probability will
be some monotonically increasing function of K. since the set of parts reported
for any value for K. = k is a subset of the set of parts for all values of K. > k.
Furthermore, let the probability of failure for the different parts be independent
of each other. This assumption is not unrealistic if we assume that the parts are
non-overlapping. Under this assumption, the probability that the hypothesis for
the object under consideration will not be triggered exponentially decreases with
the number of parts. Thus for a large enough number of parts, the hypothesis will
likely be triggered by at least one part. Note that the subsequent verification step
where scores are accumulated for the hypothesis does not depend on K.

In Figure 7.6 we compare the detection performance when using the opti-
mal estimate for the continuous distance model with the performance when using
a “naive” distance model where each of the elementary distance measures are
equally weighted. As a representative point, we get a detection rate of 76% for a
false positive rate of 0.5 per test image corresponding to K. = 3 for the naive dis-
tance measure compared with a detection rate of 82% for the optimal estimate for
the continuous distance model. Note that the comparison is not an evaluation of
the distance measures in isolation, rather it is an evaluation of the distance mea-
sures in the context of the whole detection scheme. Other factors like the parts
selected and part integration also influence performance. We report the influence
of some of these factors on detection performance later on.

Figure 7.7 shows some examples of correct detection at the representative
point mentioned above, whereas Figure 7.8 shows examples of false negatives.
Both sets of examples also show some false positives.
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Figure 7.6: Comparison of the detection performance when using the optimal estimate
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Figure 7.7: Examples of correct detections corresponding to a threshold that gives an
average false positive rate of 0.5 per test image. Correct detections are shown as empty
white boxes while false positives are shown as crossed boxes.

Finally, Figure 7.9 shows anecdotal results on a few test images with more
than one object of interest.

In the remainder of the chapter we will use the ROC curve corresponding to
K. = 3 as areference for comparison in subsequent sections.

7.2.2 The Relative Discriminative Powers of the Features

The previous subsection utilized all of the feature types (color, texture and lo-
cal shape) in the continuous distance model. Here we systematically compare
the relative discriminative powers of the various feature types by determining the
empirical detection performance when only one or two feature types are used.
Figure 7.10 shows the relative performance of the various feature types when
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used in isolation. Note that each feature type is comprised of more than one
feature space (3 for color, 3 for texture and 2 for local shape, see § 6.1). All of the
feature spaces comprising a given feature type are used when that feature type is
tested in isolation.

For reference, we also show the performance when all three feature types are
used (called the “reference” ROC curve corresponding to K. = 3 in Figure 7.4).
As can be seen, both color and texture are quite discriminative on their own, while
local shape is the least discriminative. This need not mean that local shape is not a
useful feature type in general since our implementation for extracting local shape
properties (local orientation and curvature) is quite simple and not very robust
(see § 6.1 for details of the implementation). More robust implementations and/or
more global shape properties should result in better detection performance.

As a representative point, corresponding to a false positive rate of 0.5 per test
image, color gives a detection rate of 5.7%, texture gives a rate of 12.1% and
shape gives a rate of 4.08%. These detection rates are however far lower than the
82% detection rate obtained when using all the feature types together. Thus we
see that the various feature types complement each other to a substantial degree
when used together, especially at operating points with low false positive rates,
which is precisely the region that is useful in practice.

Figure 7.11 shows the relative performance when we choose all combinations
of only two feature types together. Once again, as should be evident by study-
ing the ROC plot where the corresponding feature type has been dropped, both
color and texture have good discriminative powers, while local shape has the least
discriminative power.

7.2.3 Importance of Hypothesis Verification

One interesting question is how important is the accumulation of scores from mul-
tiple parts for detecting an object of interest, which we will call “part integration”
in the following, compared with just using the parts directly for detecting the ob-
ject. We can effectively test this empirically by comparing the performance when
part integration is enabled vs when it is disabled. By disabled, we mean that each
hypothesis generated is scored by only using the score of the part that generated
the hypothesis and not the scores of the other parts predicted by the hypothesis.
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Figure 7.12 shows the result of such an experiment. As can be seen, parts by
themselves are quite capable of predicting the presence of an object in an input
image. Nevertheless, part integration provides quite a boost to the resulting de-
tection performance. As a representative point, without part integration we get a
detection rate of only 60% corresponding to a false positive rate of 0.5 per test
image, compared with an 82% detection rate for the same false positive rate when
part integration is enabled.

7.3 Hierarchical Distance Measure Performance

In this section, we report the detection performance for the full hierarchical dis-
tance measure scheme. Recall from § 3.3 that in the hierarchical scheme, we first
use an efficient but coarse tree-based discrete distance measure for the searching
for the nearest neighbor parts at each sampled location of the input image. We
search for the K; nearest neighbors that are then further pruned by the continuous
distance measure that is accurate but expensive to compute, to yield K. < K,
nearest neighbors. The resulting K. parts are further processed by generating
object hypothesis from these parts, followed by accumulating and thresholding
scores for each hypothesis, as detailed in § 6.4.

The detection performance when using the hierarchical distance measure de-
pends on two parameters associated with the discrete distance measure, in addition
to the parameters K. (number of nearest neighbors reported by the continuous dis-
tance) and the threshold 6 discussed in the previous section. The two parameters
for the discrete distance measure are: (a) K4, the number of nearest neighbors
reported by the discrete distance measure and (b) |7'|, the size of the tree 7" imple-
menting the discrete distance measure (see § 6.3).

Before exploring the detection performance for the hierarchical scheme, we
first report the performance when using only the discrete distance model and com-
pare it with the performance when using only the continuous distance model that
was studied in § 7.2. Figure 7.13 shows the detection performance for the discrete
distance model with K; = 3 and |T'| = 80. This performance is compared with
the the reference ROC curve from § 7.2.1 for the continuous distance model with
K. = 3. As can be seen, the discrete distance model performs poorly when used
in isolation. This is our main motivation for combining the discrete model with
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the continuous model to yield a hierarchical scheme that is both efficient as well
as accurate.

We will now explore the detection performance for the hierarchical scheme as
we vary both Kz and |T'|. In practice, we will choose the settings for these param-
eters that will satisfy the operating requirement (characterized by the false positive
and detection rate) that is desired for the task at hand. Figure 7.14(a) shows the
ROC plot when we vary K, while fixing |7'| = 80, whereas Figure 7.14(b) shows
the ROC plot when we vary |T'| while fixing K; = 3K, = 9.

Table 7.15 shows the time performance corresponding to Figure 7.14(b) as | 7|
varies. For each value of |T'|, we quantify the time performance by taking the ratio
of the average time taken by the hierarchical scheme over all test images and the
time taken when using just the continuous distance measure. We also report the
absolute time taken per image on a 1.5 GHz CPU x86 machine. The absolute time
taken when using just the continuous distance measure was around 13 minutes
and 10 seconds. The ratio should be considered as the more useful measure of
time performance since to a first order approximation, it does not depend on the
absolute speed of the machine.

As can be seen, we get an order of magnitude speed-up when using the hier-
archical scheme while sacrificing only a little bit in detection performance. As
a representative point, for K; = 9,|7| = 80, we get a speed-up by a factor of
about 20 corresponding to a detection performance characterized by a detection
rate of 77% and false positive rate of 0.5 per test image. On the other hand, the
representative point mentioned in § 7.2.1 when using only the continuous distance
measure is characterized by a detection rate of 82% and false positive rate of 0.5
per test image.

7.4 EXperiments on Faces

In this last section, we report results on a challenging face recognition task. The
domain of face recognition gives us an opportunity for illustrating the use of the
technique outlined in § 5.2 for generating candidate discriminators, used to form
the discrete distance measure, based on a Fisher-like criterion.

We chose a subset of frontal face images from the FERET (Phillips et al.,
1997) database that had varying expressions and some illumination changes. Specif-
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ically, we chose a subset corresponding to 200 individuals, for each of which there
were 3 images with varying expression and illumination, labeled as *fa’, ’fb’ and
’fc’ in (Phillips et al., 1997). Figure 7.16 shows a sample of the selected images.

The selected images were pre-processed as follows. Each of the images were
aligned using a similarity transform (rotation, translation and scale) such that the
locations of the eyes, whose positions in the original image were provided in the
FERET database, fell on pre-specified pixel locations in the transformed image.
Next, the images were cropped with a common mask to exclude background and
hair. The non-masked pixels were then histogram equalized and the resulting
pixels were further processed to have zero mean and unit variance. Figure 7.17
shows an image before and after pre-processing.

Two of the three images for each individual were chosen as training images,
while the remaining image was used as a test image. Before we construct the hier-
archical distance measure, we first develop and benchmark a continuous distance
measure that we can use to gauge the performance of the hierarchical distance
measure, just as we did for the indoor discrimination task in the previous section.

7.4.1 Continuous Distance Model

There are several possible continuous distance measures that we can develop. Our
choice will be dictated by simplicity of the resulting implementation. The simplest
is to just use the euclidean distance measure in the linear feature space of all the
non-masked pixels. A more robust version will be to first project this space onto
the principal components using PCA thus ignoring the dimensions in the feature
space that are likely to correspond to noise (Turk and Pentland, 1991; Nayar et al.,
1996).

The above PCA approach gives us only one distance measure for the whole
linear feature space. All directions in the PCA subspace chosen are given equal
weight in the euclidean distance measure for that subspace. We can hope to get
more discriminative distance measures if we combine more elementary distance
measures, all of which are defined in the same feature space. The elementary
distance measures we choose to use are distances between projections of images
along different directions in the feature space. We then learn a distance measure
that linearly combines such elementary distance measures. The resulting weights
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will indicate the relative discriminative powers of each direction of projection.

What are good directions to project? Since we are interested in discriminat-
ing among faces, we can think of finding directions within the subspace of the
linear feature space in which faces vary. This subspace can be expected to be
most important for discrimination purposes. Such a subspace can be conveniently
obtained by finding the PCA of all the differences between face images. Such a so-
called image difference space has been used previously in the literature (Moghad-
dam and Pentland, 1998; Phillips, 1999). Note that this PCA decomposition is
different from the PCA decomposition described above which was for the origi-
nal image space.

Let the PCA decomposition of the image difference space be an N-dimensional
subspace. We use each of the V principal components of the the PCA decomposi-
tion of image difference space as directions along which we create the elementary
distance measures that we can use in our linear model for a discriminative distance
measure. We then use the maximum likelihood greedy scheme developed in 4.1
to select the X' < N most discriminative elementary distance measures for our
linear model.

Figure 7.18 compares the performance of our continuous distance model with
the baseline PCA algorithm described earlier as we vary the number of com-
ponents K for each algorithm. In the case of the baseline PCA algorithm, K
corresponds to the number of the most significant principal components chosen,
whereas for the continuous distance measure, K is the number of elementary dis-
tance measures that we choose from among the N = 200 available distance mea-
sures using the greedy selection scheme. As can be seen, the continuous distance
model performs very well in comparison with standard PCA while using only a
few components.

7.4.2 Hierarchical Distance Model

Next, a hierarchical distance measure was learned for the face discrimination task.
The discrete component for the hierarchical distance measure was constructed
from discriminators learned using the approach detailed in § 5.2 for constructing
discriminators in the linear feature space. Here the linear feature space is formed
by the set of all non-masked pixels.
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Recall that in this approach, we first generate candidate linear discriminators
that satisfy the three criteria given in § 5.2. Note that in the first iteration, since
there is only a single feature space, only a single discriminator is generated which
forms the root of the alternating tree (see § 6.3). However, in all subsequent iter-
ations more than one candidate discriminators are generated, one each for every
partition node in the tree, even though all of them are constructed in the same
linear feature space.

We learned an alternating tree with 40 discriminator nodes. For the continu-
ous component of the hierarchical distance measure we used the distance measure
developed in the previous section with X' = 30 components. The resulting hi-
erarchical distance measure gave a recognition rate of 93% compared with a rate
of 94% when using just the continuous distance measure. On the other hand, we
get around a factor of 9 speed-up when using the hierarchical distance measure
compared with using just the continuous distance measure.
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Figure 7.8: Examples of false negatives corresponding to a threshold that gives an aver-
age false positive rate of 0.5 per test image. False positives are shown as crossed boxes.
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Figure 7.9: Anecdotal results with more than one object of interest per test image. Cor-
rect detections are shown as empty white boxes while false positives are shown as crossed
boxes.
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Figure 7.10: Detection performance when the feature spaces are used in isolation.
For comparison, we also show the reference curve from section § 7.2.1 with K. =
3 that utilizes all of the feature spaces.
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Figure 7.11: Detection performance when only two feature spaces are used to-
gether. The ROC curves are labeled by the feature type that has been dropped.
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Figure 7.12: Detection performance when part integration is enabled vs when it is
disabled. Part integration provides quite a boost to the detection performance.
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Figure 7.13: Comparison of the detection performance when using the the continuous
distance model with the performance when using the discrete distance model. See text for
details.
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Figure 7.14: (a) Detection performance against varying K4, the number of nearest
neighbours returned by the tree-based discrete distance measure. The size of the
tree is fixed to |T'| = 80. (b) Detection performance against varying tree size |T|

while fixing Ky = 3K, = 9.
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# of Nodes |T'| || Absolute Time (sec) | Speed-up
20 34.9 22.5
40 36.9 21.3
60 38.4 20.5
80 39.3 20.0

Figure 7.15: Time performance corresponding to Figure 7.14(b) as | 7’| varies. The
second column is the absolute time on a 1.5 GHz x86 machine. The third column
is the speed-up over the average time taken per image when only the continuous

distance measure is used.

Figure 7.16: Sample images from the FERET database that we use in our discrimination
task.

Figure 7.17: A face image before and after pre-processing. See text for details.
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Figure 7.18: Recognition performance of our continuous distance model as the
number K of elementary distance measures in the PCA difference space that is
chosen by the greedy selection scheme is varied. For comparison, we also plot
the performance with a baseline PCA algorithm in the original face space. For the
latter K is the number of the most significant PCA components chosen.
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Chapter 8

Conclusion

In this thesis, we investigated the design and implementation of good distance
measures for a nearest neighbor framework for object detection. We first derived
the optimal distance measure for the nearest neighbor search. Unlike most previ-
ous approaches, we modeled the optimal distance measure directly rather than first
estimating intermediate generative models. We then investigated modeling the
optimal distance measure by combining elementary distance measures associated
with simple feature spaces. A simple linear combination model was motivated
after observing actual data for a representative discrimination task.

For a given set of elementary distance measures, the parameters in the linear
distance model were estimated under the maximum likelihood framework. Also a
greedy scheme was presented under the same framework for selecting the best set
of elementary distance measures chosen from a large collection of such distance
measures. We investigated a selection scheme already proposed in the literature
for the maximum entropy framework which is dual to the ML framework and
showed that the two selection schemes are in fact the same.

For performing efficient nearest neighbor search over large training sets, we
also developed a discrete distance measure that combined elementary distance
measures associated with discriminators organized in a tree-like structure.

Finally, the nearest neighbor framework described above was integrated into
an object detection system and evaluated in an indoor detection task as well as a
face recognition task.
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Future Work

Local Distance Models. In the work reported so far, the various distance models
that we considered were all global models, that is the distance score output by
these models did not depend on where in measurement space they were used.
Clearly, the optimal distance measure can vary from place to place. Thus it is
natural to think of adapting a distance model locally. One can then think of two
approaches for estimating local distance models.

In the first approach, we can estimate a local distance measure for each query
measurement. We can adopt the same maximum likelihood estimation framework
that we developed for global linear models to find local distance models with
the added restriction that only the subset of the training data that is “near” the
query point is used in the estimation. This raises a chicken-and-egg problem since
we do not know what is “near” and what is “far” from the query point until we
have estimated the local distance model. We can get around this difficulty by
first estimating a global distance model, and then finding the training data that is
closest to the query point using this global model. We can even think of iterating
this procedure by using the newly found local distance model to find again the
nearest training data to the query point and use this new training subset to estimate
yet another local distance model that hopefully should be better than the first.
Such a procedure will be iterated until convergence. Similar ideas have been
proposed in (Hastie and Tibshirani, 1996) for estimating locally optimal linear
discriminants.

The obvious drawback of such an approach is that of poor run-time efficiency
since a new local distance measure has to be estimated for every new query point.
Motivated by the need to overcome such a drawback, the second approach for
estimating local distance models would be to adapt a distance model for each
training point rather than the query point. This can be done at training time and
the estimated distance models can be stored for use at run-time. Given a query
point, a nearest neighbor search is performed over the training set, in which the
distance measure used between the query and a training point is the local distance
measure estimated at training time for that training point. While obviously solving
the run-time efficiency issue faced by the first approach, we are now faced with the
problem of how to compare the different distance scores between the query and
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the training points since each distance score was determined by using a different
distance measure. Intuitively, it is likely to be the case that the “further” the query
is from a given training point, the less reliable is the corresponding local distance
measure associated with the training point. Thus we need to know the “confidence
region” for each distance measure for such an approach to work. Pursuing such
ideas will be a future goal of our work.

Better Part Integration. In our work, we have found that accumulating scores
from various parts to verify a whole object hypothesis was useful in boosting
the detection performance. However, we gave equal weight to all the part scores
irrespective of their relative discriminative powers. Clearly we should be able to
do better by weighting a part score in proportion to its discriminative power.

We have only addressed a few issues above that we thought to be important.
Since the main focus of the thesis was only on developing good distance measures
for nearest neighbor search, there is clearly more room for improvement in almost
every aspect of the rest of the object detection scheme presented in this thesis.
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