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Abstract
We prove that for any VC class, it is possible
to transform any passive learning algorithm into
an active learning algorithm with strong asymp-
totic improvements in label complexity for ev-
ery nontrivial distribution satisfying a uniform
classification noise condition. This generalizes
a similar result proven by (Hanneke, 2009; 2012)
for the realizable case, and is the first result es-
tablishing that such general improvement guar-
antees are possible in the presence of restricted
types of classification noise.

1. Introduction
In many machine learning applications, there is an abun-
dance of cheap unlabeled data, while obtaining enough
labels for supervised learning requires significantly more
time, effort, or other costs. It is therefore important to
try to reduce the total number of labels needed for super-
vised learning. One of the most appealing approaches to
this problem is active learning, a protocol in which the
learning algorithm itself selects which of the unlabeled data
points should be labeled, in an interactive (sequential) fash-
ion. There is now a well-established literature full of com-
pelling theoretical and empirical evidence indicating that
active learning can significantly reduce the number of la-
bels required for learning, compared to learning from ran-
domly selected points (passive learning). However, there
remain a number of fundamental open questions regard-
ing how strong the theoretical advantages of active learn-
ing over passive learning truly are, particularly when faced
with the challenge of noisy labels.

At present, there is already a vast literature on the design
and analysis of passive learning algorithms, built up over
several decades by a substantial number of researchers.
In approaching the problem of designing effective active
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learning algorithms, we might hope to circumvent the need
for a commensurate amount of effort, by directly building
upon the existing tried-and-true passive learning methods.
By leveraging the increased power afforded by the active
learning protocol, we may hope to further reduce the num-
ber of labels required to learn with these same methods.

Toward this end, (Hanneke, 2009; 2012) recently proposed
a framework called activized learning, in which a passive
learning algorithm is provided as a subroutine to an active
meta-algorithm, which constructs data sets to feed into the
passive subroutine, and uses the returned classifiers to in-
form the active learning process. The objective is to design
this meta-algorithm in such a way as to guarantee that the
number of label requests required to learn to a desired ac-
curacy will always be significantly reduced compared to
the number of random labeled examples the given passive
learning algorithm would require to obtain a similar accu-
racy; in this case, we say the active meta-algorithm ac-
tivizes the given passive algorithm. This reduction-based
framework captures the typical approach to the design of
active learning algorithms in practice (see e.g., (Tong and
Koller, 2001; Baldridge and Palmer, 2009; Settles, 2010)),
and is appealing because it may inherit the tried-and-true
properties (e.g., learning bias) of the given passive learn-
ing algorithm, while further reducing the number of labels
required for learning.

If an active meta-algorithm activizes every passive learning
algorithm, under some stated conditions, then it is called
a universal activizer under those conditions. In the orig-
inal analysis, (Hanneke, 2009) proved that such universal
activizers do exist under the condition that the target con-
cept resides in a known space of finite VC dimension and
that there is no label noise (the so-called realizable case).
(Hanneke, 2012) also proved that there exist classification
noise models under which there typically do not exist uni-
versal activizers, even with the Bayes optimal classifier in a
known space of finite VC dimension. Thus, there is a ques-
tion of what types of noise admit the existence of universal
activizers for a given type of concept space.

In this work, we study the classic uniform classification
noise model of (Angluin and Laird, 1988). In this model,
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there is a target concept residing in a known concept space
of finite VC dimension, and the labels in the training data
are corrupted by independent and identically distributed
noise variables. The probability that a given label in the
training set differs from that of the target concept is referred
to as the noise rate, and is always strictly less than 1/2
so that the target concept is also the unique Bayes optimal
classifier. Below, we find that there do exist universal ac-
tivizers for any VC classes under the uniform classification
noise model. This represents the first general result estab-
lishing the existence of universal activizers for VC classes
in the presence of classification noise. Our proof of this
result builds upon the established methods of (Hanneke,
2012), but requires several novel technical contributions in
addition, including a rather interesting technique for han-
dling the problem of adapting to the value of the noise rate.

The paper is structured as follows. In Section 2, we formal-
ize the setting and objective. This is followed in Section 3
with a description of a helpful method and result of (Han-
neke, 2012). We then proceed to construct two useful sub-
routines in Section 4, proving a relevant guarantee for each.
Finally, in Section 5, we present our meta-algorithm and
prove the main result: that the proposed meta-algorithm is
indeed a universal activizer for VC classes under the uni-
form classification noise model.

2. Notation and Definition
We are interested in a statistical learning setting for bi-
nary classification, in which there is some joint distribution
DXY on X × {−1,+1}, and we denote by D the marginal
distribution of DXY on X . For any classifier h : X →
{−1,+1}, denote by er(h) = DXY ({(x, y) : h(x) 6= y})
the error rate of h. There is additionally a set C of clas-
sifiers, called the concept space, and we denote by d the
VC dimension of C (Vapnik and Chervonenkis, 1971; Vap-
nik, 1982); throughout this work, we will suppose d < ∞,
in which case C is called a VC class. We also denote by
ν(C;DXY ) = infh∈C er(h) the noise rate of DXY with
respect to C. We will be interested in the set of distribu-
tions satisfying the uniform classification noise assumption
of (Angluin and Laird, 1988), which supposes there is an
element h∗DXY

∈ C for which the Y values are simply the
h∗DXY

(X) values, except corrupted by independently flip-
ping each Y to equal−h∗DXY

(X) with some constant prob-
ability (less than 1/2).
Definition 1. For a given concept space C, de-
fine the set of uniform classification noise distribu-
tions UniformNoise(C) = {DXY : ∃h∗DXY

∈
C, η(DXY ) ∈ [0, 1/2) such that for (X,Y ) ∼ DXY ,
P(Y 6= h∗DXY

(X)|X) = η(DXY )}.

For DXY ∈ UniformNoise(C), the classifier h∗DXY
is re-

ferred to as the target function; note that we clearly have

ν(C;DXY ) = η(DXY ), and h∗DXY
= argminh er(h).

In the learning problem, there is a sequence Z =
{(Xi, Yi)}∞i=1 where the (Xi, Yi) are independent and
DXY -distributed; we denote by Zm = {(Xi, Yi)}mi=1. The
{Xi}∞i=1 sequence is referred to as the unlabeled data se-
quence, while the Yi values are referred to as the labels.
An active learning algorithm has direct access to the Xi

values, but must request to observe the labels Yi one at
a time. In the specific active learning protocol we study
here, the active learning algorithm is given as input a bud-
get n ∈ N, and is allowed to request the values of at most
n labels; based on the Xi values, the algorithm selects an
index i1 ∈ N, receives the value Yi1 , then selects another
index i2, receives the value Yi2 , etc. This continues for up
to n rounds, after which the algorithm returns a classifier.
Definition 2. An active learning algorithm A achieves la-
bel complexity Λa(·, ·) if, for any joint distribution DXY ,
∀ε > 0, ∀n ≥ Λa(ε,DXY ), E [er(A(n))] ≤ ε.

Since some DXY have no classifiers h with er(h) ≤ ε for
small ε > 0, we will be interested in analyzing the quantity
Λa(ν(C;DXY ) + ε,DXY ), the number of labels sufficient
to achieve expected error rate within ε of the best error rate
achievable by classifiers in C.

In the present context, we define a passive learning algo-
rithm as any functionAp(·) mapping any finite sequence of
labeled examples to a classifier.
Definition 3. A passive learning algorithm Ap achieves
label complexity Λp(·, ·) if, for any joint distribution DXY ,
∀ε > 0, ∀n ≥ Λp(ε,DXY ), E[er(Ap(Zn))] ≤ ε.

For any m ∈ N and sequence L ∈ (X × {−1,+1})m, we
additionally define the empirical error rate of a classifier
h as erL(h) = m−1

∑
(x,y)∈L 1[h(x) 6= y]; when L =

Zm, we abbreviate erm(h) = erZm
(h). We also use the

notation V [(x, y)] = {h ∈ V : h(x) = y} for any V ⊆ C.

Following (Hanneke, 2009; 2012), we now formally define
what it means to activize a passive algorithm. An active
meta-algorithm is a procedureAa taking as input two argu-
ments, namely a passive learning algorithm Ap and a label
budget n ∈ N, and returning a classifier ĥ = Aa(Ap, n),
such that Aa(Ap, ·) is an active learning algorithm. De-
fine the class of functions Polylog(1/ε) as those g s.t.
∃k ∈ [0,∞), g(ε) = O

(
logk(1/ε)

)
. Here, and in all

contexts below, the asymptotics are always considered as
ε→ 0 (from above) when considering a function of ε, and
as n → ∞ when considering a function of n; all other
quantities are considered constants in these asymptotics.
In particular, we write g1(ε) = o(g2(ε)) (or equivalently
g2(ε) = ω(g1(ε))) to mean limε→0 g1(ε)/g2(ε) = 0.

For a label complexity Λp, we will consider any DXY
for which Λp(·,DXY ) is relatively small as being triv-
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ial, indicating that we need not concern ourselves with
improving the label complexity for that DXY since it is
already very small; for our purposes, “relatively small”
means polylog. Furthermore, keeping with the reduction
style of the framework, we will only require our active
learning methods to be effective when the given passive
algorithm has “reasonable” behavior. Formally, define the
set Nontrivial(Λp;C) as those DXY for which, ∀ε > 0,
Λp(ν(C;DXY ) + ε,DXY ) <∞, and ∀g ∈ Polylog(1/ε),
Λp(ν(C;DXY ) + ε,DXY ) = ω(g(ε)). Finally, define an
activizer under uniform classification noise as follows.

Definition 4. (Hanneke, 2009; 2012) We say an ac-
tive meta-algorithm Aa activizes a passive algorithm Ap
for C under UniformNoise(C) if the following condition
holds. For any label complexity Λp achieved by Ap,
the active learning algorithm Aa(Ap, ·) achieves a label
complexity Λa such that ∀DXY ∈ UniformNoise(C) ∩
Nontrivial(Λp;C), ∃c ∈ [1,∞) s.t. (letting ν =
ν(C;DXY ))

Λa(ν + cε,DXY ) = o (Λp(ν + ε,DXY )) .

In this case, Aa is called an activizer for Ap with re-
spect to C under UniformNoise(C), and the active learn-
ing algorithm Aa(Ap, ·) is called the Aa-activized Ap.
If Aa activizes every passive algorithm for C under
UniformNoise(C), we say Aa is a universal activizer for
C under UniformNoise(C).

This definition says that, for all nontrivial distributions sat-
isfying the uniform classification noise model, the activized
Ap algorithm has a label complexity with a strictly slower
rate of growth compared to that of the original Ap algo-
rithm. For instance, if the original label complexity of Ap
was Θ(1/ε), then a label complexity ofO(log(1/ε)) for the
activized Ap algorithm would suffice to satisfy this condi-
tion (as would, for instance, O(1/ε1/2)). The two slight
twists on this interpretation are the restriction to nontrivial
distributions and the factor of c loss in the ε argument. As
noted by (Hanneke, 2012), the restriction to some notion
of “nontrivial” DXY is necessary, since we clearly cannot
hope to improve over passive in certain trivial scenarios,
such as whenD has support on a single point; passive learn-
ing can have O(log(1/ε)) label complexity in this case.
The implication of this definition is that the activized al-
gorithm’s label complexity is superior to any nontrivial up-
per bound on the passive method’s label complexity. It is
not known whether the loss in the ε argument, by a con-
stant c, is really necessary in general (even for the realiz-
able case). However, this only really makes a difference
for rather strange passive learning methods; in most cases,
Λp(ν + ε;DXY ) = poly(1/ε), in which case we can set
c = 1 by increasing the leading constant on Λa. Our anal-
ysis below reveals we can set this c arbitrarily close to 1, or
even to a certain (1 + o(1)) function of ε.

2.1. Summary of Results

In this work, we construct an active meta-algorithm, re-
ferred to as Meta-Algorithm 1 below, and prove that it is
a universal activizer for C under UniformNoise(C). This
applies to any VC class C. The significance of this result is
primarily a deeper understanding of the advantages of ac-
tive learning over passive learning. This first step beyond
the realizable case in activized learning is particularly inter-
esting in light of established negative results indicating that
there exist noise models under which there do not exist uni-
versal activizers for certain VC classes (Hanneke, 2012).

The proof is structured as follows. We first review a tech-
nique of (Hanneke, 2012) for active learning based on shat-
terable sets, represented by Subroutine 1 below. For our
purposes, the important property of this technique is that
it produces a set of labeled examples, where each example
has either its true (noisy) label, or else has the label of the
target function itself (i.e., the de-noised label). It also has
the desirable property that the number of examples in this
set is significantly larger than the number of label requests
used to produce it. These properties, originally proved by
(Hanneke, 2012), are summarized in Lemma 1.

We may then hope that if we feed this labeled sample into
the given passive learning algorithm, then as long as this
sample is larger than the label complexity of that algo-
rithm, it will produce a good classifier; since we used a
much smaller number of label requests compared to the
size of this sample, we would therefore have the desired
improvements in label complexity. Unfortunately, it is not
always so simple. The fact that some of the examples are
de-noised turns out to be a problem, as there are passive
algorithms whose performance may be highly dependent
on the uniformity of the noise, and their performance can
actually degrade from denoising select data points. For in-
stance, there are several algorithms in the literature on ef-
ficiently learning linear separators under uniform classifi-
cation noise, which may produce worse classifiers if given
a partially-denoised set of examples instead of the original
noisy examples. Even common methods such as logistic re-
gression can be made to perform worse by denoising select
instances. So our next step is to alter this sample to ap-
pear more like a typical sample from DXY ; that is, oddly
enough, we need to re-noise the de-noised examples.

The difficulty in re-noising the sample is that we do not
know the value of the noise rate η(DXY ). Furthermore,
estimating η(DXY ) to the required precision would re-
quire an excessive number of labeled examples, too large
to obtain the desired performance gains. So we devise a
means of getting what we need, without actually estimating
η(DXY ), by a combination of coarse estimation and a kind
of brute-force search. With this approximate noise rate in
hand, we simply flip each de-noised label with probability
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≈ η(DXY ), so that the sample now appears to be a typical
sample for DXY . This method for re-noising the sample is
referred to as Subroutine 2 below, and its effectiveness is
described in Lemma 2. Feeding this sample to the passive
algorithm then achieves the desired result.

However, before we can conclude, there is some clean-
up to be done, as the above techniques generate a variety
of undesirable by-products that we must sort through to
find the aforementioned re-noised de-noised labeled sam-
ple. Specifically, in addition to the large partially de-noised
labeled sample, Subroutine 1 also generates several spu-
rious sets of labeled examples, with no detectable way to
determine which one is the sample we are interested in.
Furthermore, in addition to the re-noised data set resulting
from adding noise at rate ≈ η(DXY ), Subroutine 2 also
generates several samples re-noised with noise rates differ-
ing significantly from η(DXY ). As such, our approach is
to take all of the sets produced by Subroutine 1, run them
all through Subroutine 2, and then run the passive algo-
rithm with each of the resulting samples. This results in a
large collection of classifiers. We know that at least one of
them has the required error rate, and our task is simply to
find one of comparable quality. So we perform a kind of
tournament, comparing pairs of classifiers by querying for
the labels of points where they disagree, and taking as the
winner the one that makes fewer mistakes, reasoning that
the one with better error rate will likely make fewer mis-
takes in such a comparison. After several rounds of this
tournament, we emerge with an overall winner, which we
then return. This tournament technique is referred to as
Subroutine 3 below, and the guarantee on the quality of the
classifier it selects is given in Lemma 3.

The sections below include the details of these methods,
with rigorous analyses of their respective behaviors.

3. Active Learning Based on Shatterable Sets
This section describes an approach to active learning inves-
tigated by (Hanneke, 2009; 2012), along with a particular
result of (Hanneke, 2012) useful for our purposes. Recall
that we say a set of classifiers V shatters {x1, . . . , xm} ∈
Xm if, ∀y1, . . . , ym ∈ {−1,+1}, ∃h ∈ V s.t. ∀i ≤
m,h(xi) = yi. To simplify notation, define X 0 = {∅},
and say V shatters ∅ iff V 6= {}; also suppose P(X 0) = 1.

Now consider the definition of Subroutine 1 given in Fig-
ure 1, based on a similar method of (Hanneke, 2012). For
our purposes, for m ∈ N, the quantity Ûm(δ) is defined
as follows, based on an analysis by (Vapnik and Chervo-
nenkis, 1971) of excess risk bounds.

Ûm(δ) =
2

m
+ 2

√
ln(12/δ) + d ln(2em/d)

m
.

The results below would also hold for certain other choices

of Ûm(δ), which may sometimes yield smaller label com-
plexity guarantees; see (Hanneke, 2012) for one such alter-
native. The quantities P̂(· · · ) in Subroutine 1 are estima-
tors for their respective analogous quantities P(· · · ), based
only on unlabeled examples. Their specific definitions are
not particularly relevant to the present discussion, but for
completeness are included in an appendix available online.

Subroutine 1 operates as follows. We first request a number
of labels for random points. We then use these labeled ex-
amples to prune away any classifiers that make significantly
more mistakes than some other classifier in C, leaving a
subset V of classifiers from C whose empirical error rates
are relatively small. We then proceed to construct d + 1
different pairs (Lk, Qk) of labeled data sets. For each k,
each data point Xm in the sequence will be inserted into
either Lk or Qk, along with a corresponding label. If it is
determined (in Step 6) that, for most sequences S ∈ X k−1
that V shatters, V also shatters S ∪{Xm}, then we request
the label Ym and add the pair (Xm, Ym) to Qk. For each
S ∈ X k−1 shattered by V for which V does not shatter
S ∪ {Xm}, there is some y ∈ {−1,+1} and some clas-
sification of S such that every h ∈ V that classifies S in
that way has h(Xm) = y; we let ŷ denote the value of y
for which this happens on a larger fraction of sequences S
of this type; if Xm was not already inserted into Qk, then
we insert the pair (Xm, ŷ) into Lk. Thus, the set Qk repre-
sents the set of labeled examples for which we explicitly re-
quested the labels, while Lk represents the set of examples
we did not request the labels of, along with a kind of in-
ferred label. The motivation for this technique arises from
the work of (Hanneke, 2012), where it is shown that, for ap-
propriate values of k, with high probability this ŷ will agree
with h∗DXY

(Xm). The number of data points processed in
this way (specified in Step 5) is chosen to be small enough
so that, with high probability, the “t < n” condition in Step
6 is redundant, and so that the sets Lk do not grow too large
(for technical reasons arising below).

The following result was essentially proven by (Hanneke,
2012) (more precisely, it can easily be established by a
combination of various lemmas of (Hanneke, 2012), along
similar lines as the proofs of Lemmas 59 and 60 of (Han-
neke, 2012)); for completeness, we include a full proof in
an appendix available on the web.

Lemma 1. (Hanneke, 2012) For any VC class C and
DXY ∈ UniformNoise(C), there exist constants k∗ ∈
{1, . . . , d + 1}, c, c′ ∈ (1,∞), and a monotone sequence
φ1(n) = ω(n) such that, ∀n ∈ N, with probability at least
1−c ·exp{−c′n1/3}, running Subroutine 1 with label bud-
get bn/2c and confidence parameter δn = exp {−

√
n} re-

sults in |Lk∗ ∪Qk∗ | ≥ φ1(n) and erLk∗ (h∗DXY
) = 0.

In other words, the set Lk∗ ∪Qk∗ has size� n, and every
(x, y) ∈ Lk∗ has y = h∗DXY

(x).
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Subroutine 1:
Input : label budget n, confidence parameter δ
Output: pairs of labeled data sets (L1, Q1), (L2, Q2), . . . , (Ld+1, Qd+1)

0. Request the first mn = bn/2c labels, {Y1, . . . , Ymn}, and let t← mn

1. Let V =

{
h ∈ C : ermn

(h)− min
h′∈C

ermn
(h′) ≤ Ûmn

(δ)

}
2. For k = 1, 2, . . . , d+ 1

3. ∆̂(k) ← P̂
(
x : P̂

(
S ∈ X k−1 : V shatters S ∪ {x}

∣∣∣V shatters S
)
≥ 1/2

)
4. Qk ← {}, Lk ← {}
5. For m = mn + 1, . . . ,mn + min

{⌊
n/
(

6 · 2k∆̂(k)
)⌋
, n33/32

}
6. If P̂

(
S ∈ X k−1 : V shatters S ∪ {Xm}

∣∣∣V shatters S
)
≥ 1/2 and t < n

7. Request the label Ym of Xm, and let Qk ← Qk ∪ {(Xm, Ym)} and t← t+ 1

8. Else, let ŷ ← argmax
y∈{−1,+1}

P̂
(
S ∈ X k−1 : V [(Xm,−y)] does not shatter S

∣∣∣V shatters S
)

9. Lk ← Lk ∪ {(Xm, ŷ)}
10. Return (L1, Q1), . . . , (Ld+1, Qd+1)

Figure 1. Subroutine 1 produces pairs of labeled samples by a combination of queries and inferences.

4. An Active Meta-algorithm for Uniform
Classification Noise

Re-noising the Sample At first glance, Lemma 1 might
seem to have almost solved the problem already, aside from
the fact that we need to specify a method for selecting the
appropriate value of k. For k = k∗, the sampleLk∪Qk rep-
resents a partially de-noised collection of labeled examples,
which might intuitively seem even better to feed into the
passive algorithm than a sample with the true (noisy) labels.
However, this reasoning is naı̈ve, since we are seeking a
universal activizer for C, applicable to any passive learning
algorithm. In particular, there are many passive learning al-
gorithms that actually use the properties of the noise to their
advantage in the learning process, so that altering the noise
distribution of the sample may alter the behavior of the
passive algorithm to ill effects. Indeed, there exist passive
learning algorithms whose performance can be made worse
by de-noising select examples from a given sample. For
instance, this is the case for several algorithms in the com-
putational learning theory literature on efficiently learning
linear separators under uniform classification noise. It is
also true for many methods based on statistical models,
such as logistic regression. Another idea might be to simply
feed one of the Qk sets to the passive learning algorithm.
However, this suffers from an essentially similar problem,
as there are many passive learning algorithms designed for
specific distributions over X , which simply do not work
when the data has a different distribution. For instance,
this is the case for many algorithms in the computational
learning theory literature, which are often designed specif-
ically for certain highly-symmetric distributions (e.g., so

that one has concentration guarantees on the coefficients in
a high-dimensional representation of the target, such as in
Fourier analysis). Therefore, if we are interested in design-
ing an active learning algorithm capable of achieving strict
improvements over the label complexities of passive learn-
ing methods such as these, then we cannot simply use the
de-noised labels, nor can we use only the subset of labels
actually requested, as input to the passive algorithm.

Thus, in light of the above considerations, we are tasked
with the somewhat unusual problem of re-noising the de-
noised labels, so that the labeled sample appears to be a
typical sample one might expect for the supervised learning
problem: that is, essentially similar to an iid sample with
distribution roughlyDXY . Of course, if we had knowledge
of the noise rate η(DXY ), it would be a simple matter to re-
noise the sample by independently corrupting each of the
de-noised labels with probability η(DXY ). In the absence
of such direct information, it is natural to try to estimate
η(DXY ). However, it turns out it would require too many
labeled examples to estimate the noise rate to the precision
necessary for re-noising the sample in a way that appears
close enough to the DXY distribution to work well when
we feed it into the passive algorithm. So instead, we em-
ploy a combination of estimation and search, which turns
out to be sufficient for our purposes. Specifically, consider
Subroutine 2 in Figure 2. The algorithm first produces a
confidence interval for η(DXY ) of width 2n−5/16, and then
picks a sequence of evenly-spaced values ηj in this range,
at increments of 2n−17/16; for each of these ηj values, it
flips the label of each example in L independently with
probability ηj , and produces a labeled data setRj by merg-
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Subroutine 2:
Input : label budget n, pair of labeled data sets (L, Q)
Output : sequence of 1 + n3/4 labeled data sets R0, R1, . . . , Rn3/4

0. Let {(X`1 , ŷ`1), . . . , (X`s , ŷ`s)} denote the first s = min{|L|, n} elements of L
1. Request the labels Y`1 , Y`2 , . . . , Y`s
2. Calculate η̂ = s−1

∑s
i=1 1[Y`i 6= ŷ`i ]

3. For each j ∈ {1, 2, . . . , n3/4}
4. Let ηj = η̂ − n−5/16 + 2jn−17/16, L(j) = {}
5. Let {χij}i∈N be a collection of iid {−1,+1} random variables with P(χij = −1) = ηj ,

(independent from {χij′}i∈N,j′ 6=j and Z)
6. Let L(j) = {(X`i , χij · ŷ`i) : (X`i , ŷ`i) ∈ L}
7. Let R0 = L ∪Q, and for each j ∈ {1, 2, . . . , n3/4}, let Rj = L(j) ∪Q
8. Return the sequence R0, R1, . . . , Rn3/4

Figure 2. Subroutine 2 returns several data sets, each re-noised according to a guess ηj of η(DXY ).

ing this corrupted set L with the set Q. When constructing
the samples Rj , we assume the union operator merges the
two data sets in a way that preserves their original order in
the unlabeled sequence (supposing each Xi also implicitly
records its index i). We have the following lemma.

Lemma 2. Suppose DXY ∈ UniformNoise(C), φ2(n) =
ω(n), QX ⊂ {X1, . . . , Xm}, and LX = {X1, . . . , Xm} \
QX . Further suppose that Q = {(Xi, Yi) : Xi ∈ QX},
L = {(Xi, h

∗
DXY

(Xi)) : Xi ∈ LX}, n33/32 ≥ |L| ≥
φ2(n), and that Ap is a passive learning algorithm. Then
there is a function q1(n) = o(1) s.t., if {Ri}n

3/4

i=1 is the se-
quence of data sets returned by Subroutine 2 when provided
n and (L, Q) as inputs, then (letting ν = ν(C;DXY ))

E
[
min
j

er (Ap(Rj))− ν
]

≤ (1 + q1(n))E [er (Ap(Zm))− ν]

+ (1 + q1(n)) · exp
{
−n1/4

}
.

Proof. We consider two cases. First, if η(DXY ) = 0, then
R0 = Zm, so that the result clearly holds with q1(n) = 0.
For the remainder of the proof, suppose η(DXY ) > 0.

Let N1 = min{n′ ∈ N : minm>n′ φ2(m) ≥ n}; this ex-
ists because φ2(n) = ω(n). Since |L| ≥ φ2(n), if n > N1

we must have s = n. If this is the case, then by Hoeffd-
ing’s inequality, with probability 1 − exp

{
−n1/4

}
, |η̂ −

η(DXY )| ≤ c1 · n−3/8 for some (universal) constant c1 ∈
(0,∞). Thus, on this event, letting N2 = max{N1, c

16
1 },

if n > N2, we have η(DXY ) ∈
[
η̂ − n−5/16, η̂ + n−5/16

]
.

In particular, this means j∗ = argminj |ηj − η(DXY )| has
|ηj∗ − η(DXY )| ≤ 2n−17/16.

Now for any sequence of labels y1, . . . , ym ∈ {−1,+1}

s.t. Xi ∈ QX =⇒ yi = Yi, we have

P (Rj∗ = {(Xi, yi)}mi=1|{Xi}mi=1, Q, j
∗)

P (Zm = {(Xi, yi)}mi=1|{Xi}mi=1, Q)

≤ max
0≤r≤|L|

ηrj∗(1− ηj∗)|L|−r

η(DXY )r(1− η(DXY ))|L|−r

≤ max
0≤r≤|L|

(
1 + 2n−17/16

η(DXY )

)r
·
(

1 + 2n−17/16

1−η(DXY )

)|L|−r
=
(

1 + 2n−17/16

η(DXY )

)|L|
≤
(

1 + 2n−17/16

η(DXY )

)n33/32

≤ exp
{

2n−1/32/η(DXY )
}
.

This final quantity approaches 1 as n → ∞, and we there-
fore define, for any n > N2,

q1(n) = exp
{

2n−1/32/η(DXY )
}
− 1 = o(1).

In particular, when the above inequalities hold, we have

E
[
er (Ap(Rj∗))− ν

∣∣∣{Xi}mi=1, Q, j
∗
]

≤ (1 + q1(n))E
[
er (Ap(Zm))− ν

∣∣∣{Xi}mi=1, Q
]
.

Since we have established that this holds with probabil-
ity at least 1 − exp

{
−n1/4

}
when n > N2, we have,

by the law of total expectation, and since we always have
er(Ap(Rj∗))− ν ∈ [0, 1], if n > N2,

E [er (Ap(Rj∗))− ν]

≤ (1 + q1(n))E [er (Ap(Zm))− ν] + exp
{
−n1/4

}
.

For completeness, we may define q1(n) = exp
{
N

1/4
2

}
for any n ≤ N2, and the inequality in the lemma
statement trivially holds in this case since then (1 +
q1(n)) exp

{
−n1/4

}
≥ 1 for all n ≤ N2.
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Subroutine 3:
Input : label budget n, sequence of classifiers h1, h2, . . . , hN
Output : classifier hĵ

0. If N = 1, return the single classifier h1
1. For each i ∈ {1, 2, . . . bN/2c}
2. Let TiN be the next bn/Nc (previously untouched) unlabeled examples Xi

in the unlabeled sequence for which h2i−1(Xi) 6= h2i(Xi) (if they exist)
3. Request the label Yt for each Xt ∈ TiN and let SiN = {(Xt, Yt) : Xt ∈ TiN}
4. Let h′i = argminh∈{h2i−1,h2i} erSiN

(h)
5. If N is odd, let h′dN/2e = hN
6. Recursively call Subroutine 3 with label budget n/2 and classifiers h′1, h

′
2, . . . h

′
dN/2e

and return the classifier it returns

Figure 3. Subroutine 3 selects among a set of classifiers by a tournament of pairwise comparisons.

A Tournament for Classifier Selection Lemmas 1 and
2 together indicate that, if we feed each (Lk, Qk) pair into
Subroutine 2 (using an appropriate fraction of the over-
all label budget for each call), then we need only find a
way to select from among the returned labeled samples
Rj , or equivalently from among the set of classifiers hj =

Ap(Rj), so that the selected ĵ has er(hĵ) − ν(C;DXY )
not too much larger than er(hj∗) − ν(C;DXY ), for j∗ as
above. Here we develop and analyze such a procedure,
based on running a tournament among these classifiers by
pairwise comparisons. Specifically, consider Subroutine 3
specified in Figure 3. This algorithm groups the classifiers
into pairs, and for each pair it requests a number of labels
for points on which the two classifiers disagree; it then dis-
cards whichever of these classifiers makes more mistakes,
and makes a recursive call on the set of surviving classifiers
(the number of which is smaller than the original set by a
factor of 2). This procedure admits the following lemma.
Lemma 3. Suppose DXY ∈ UniformNoise(C). Then
there exists a constant c ∈ (0,∞) and a function q2(n) =
o(1) such that, for any n ∈ N and any sequence of classi-
fiers h1, h2, . . . , hN with 1 ≤ N ≤ (d + 1)(1 + (4n)3/4),
with probability at least 1 − exp

{
−cn1/12

}
, the clas-

sifier hĵ returned from calling Subroutine 3 with label
budget n and classifiers h1, h2, . . . , hN satisfies er(hĵ) −
ν(C;DXY ) ≤ (1 + q2(n)) minj (er(hj)− ν(C;DXY )).

Proof. We proceed inductively (it is clear for N = 1).
Suppose some i ∈ {1, . . . , bN/2c} has P(hj(X) 6=
h∗DXY

(X)) > (1+n−1/12)P(hk(X) 6= h∗DXY
(X)), where

j, k ∈ {2i− 1, 2i}. Then

E[erSiN
(hk)]

≤ (1− η(DXY ))(2 + n−1/12)−1 + η(DXY )
1 + n−1/12

2 + n−1/12

=
1 + η(DXY )n−1/12

2 + n−1/12
.

Denoting by p1 this latter quantity, and letting ε1 =
(1/2−η(DXY ))n−1/12

1+η(DXY )n−1/12 , a Chernoff bound implies

P(erSiN
(hk) > 1/2) = P (erSiN

(hk) > (1 + ε1)p1)

≤ exp
{
−c1n1/4p1ε21

}
,

for an appropriate choice of constant c1 ∈ (0,∞).
Simplifying this last expression, we find that it is at
most exp

{
−c2n1/12

}
for an appropriate constant c2 ∈

(0,∞). A union bound then implies that with proba-
bility at least 1 − (N/2) exp

{
−c1n1/12

}
, for each i ∈

{1, . . . , bN/2c}, we have P(h′i(X) 6= h∗DXY
(X)) ≤ (1 +

n−1/12) minj∈{2i−1,2i} P(hj(X) 6= h∗DXY
(X)).

Note that, although both n and N are reduced in the recur-
sive calls, they will still satisfy the constraint on the size of
N (i.e., 1 ≤ N ≤ (d + 1)(1 + (4n)3/4)), and the sample
sizes |S·| = bn/Nc remain essentially constant over recur-
sive calls, so that this result can be applied to the recursive
calls as well (tweaking the constant in the exponent can
compensate for the variability due to the floor function).
Thus, applying this argument inductively, combined with
a union bound over the O(logN) recursive calls, we have
that there exists a constant c2 ∈ (0,∞) s.t. with probability
≥ 1− (N log2N) exp

{
−c2n1/12

}
≥ 1− exp

{
−cn1/12

}
(for an appropriate c > 0), the returned classifier hĵ satis-
fies (for an appropriate constant c3 ∈ (0,∞))

P
(
hĵ(X) 6= h∗DXY

(X)
)

≤
(

1 + n−1/12
)c3 logn

min
1≤j≤N

P
(
hj(X) 6= h∗DXY

(X)
)
.

Note ∀h, er(h)− ν(C;DXY )=(1− 2η(DXY ))P(h(X) 6=
h∗DXY

(X)). Also, as (1 + n−1/12)c3 logn ≤
exp

{
c3n
−1/12 log n

}
approaches 1 as n → ∞, we can

define q2(n) = exp
{
c3n
−1/12 log n

}
− 1 = o(1) to get



Activized Learning with Uniform Noise

Meta-Algorithm 1:
Input : passive learning algorithm Ap, label budget n
Output : classifier ĥ

0. Execute Subroutine 1 with label budget bn/2c and confidence parameter δ = exp{−
√
n}

1. Let (L1, Q1), . . . , (Ld+1, Qd+1) be the returned pairs of labeled data sets
2. For each k ∈ {1, . . . , d+ 1}, execute Subroutine 2 with budget bn/(4(d+ 1))c and (Lk, Qk)
3. Let Rk0, Rk1, . . . , RkM denote the sequence of returned data sets (M = bn/(4(d+ 1))c3/4)
4. Execute Subroutine 3 with label budget bn/4c and classifiers

{Ap(Rkj) : k ∈ {1, . . . , d+ 1}, j ∈ {0, 1, . . . ,M}}
5. Return the classifier ĥ selected by this execution of Subroutine 3

Figure 4. Meta-Algorithm 1 is a universal activizer for any VC class under uniform noise.

er(hĵ) − ν(C;DXY ) ≤ (1 + q2(n)) min1≤j≤N (er(hj) −
ν(C;DXY )).

5. Main Result: A Universal Activizer for C
under Uniform Classification Noise

We are now finally ready for our main result, establishing
the existence of universal activizers for VC classes under
uniform classification noise. Specifically, consider the ac-
tive meta-algorithm described in Figure 4, which combines
the above arguments (setting the label budgets for each sub-
routine appropriately). We have the following result.
Theorem 1. For any VC class C, Meta-Algorithm 1 is a
universal activizer for C under UniformNoise(C).

Proof. Lemma 1 implies that with probability 1 −
exp{−Ω(n1/3)}, some pair (Lk, Qk) will satisfy the con-
ditions of Lemma 2; more precisely, on this event, and
conditioned on |Lk ∪ Qk|, the pair (Lk, Qk) will be dis-
tributionally equivalent to a pair (L, Q) that satisfies these
conditions. Thus, combining Lemmas 1 and 2, and the law
of total expectation, combined with the fact that er(h) −
ν(C;DXY ) ∈ [0, 1] for DXY ∈ UniformNoise(C), we
have that (letting ν = ν(C;DXY ))

E
[
min
k,j

er(Ap(Rkj))− ν
]

≤ (1 + o(1)) sup
m≥φ1(n)

E [er(Ap(Zm))− ν]

+ exp
{
−Ω(n1/4)

}
.

Finally, combining this with Lemma 3 implies that

E
[
er(ĥ)− ν

]
≤ (1 + o(1)) sup

m≥φ1(n)

E [er(Ap(Zm))− ν]

+ exp
{
−Ω(n1/12)

}
. (1)

For an n = Ω(log12(1/ε)), the second term on the right
hand side of (1) is < ε. For the first term, note that if

Ap achieves label complexity Λp, then in order to make
supm≥φ1(n) E [er(Ap(Zm))− ν] ≤ ε, it suffices to take
n large enough so that φ1(n) ≥ Λp(ε + ν;DXY ). Thus,
since φ1(n) = ω(n), for DXY ∈ Nontrivial(Λp;C), the
smallest N2ε ∈ N such that every n ≥ N2ε has

(1 + o(1)) sup
m≥φ1(n)

E [er(Ap(Zm))− ν] ≤ 2ε

satisfies N2ε = o(Λp(ε + ν,DXY )). Therefore, since
any O(log12(1/ε)) function is also o(Λp(ε + ν,DXY ))
for DXY ∈ Nontrivial(Λp;C), we see that applying
Meta-Algorithm 1 to Ap results in an active learning algo-
rithm that achieves a label compleity Λa with the property
that, for DXY ∈ UniformNoise(C) ∩ Nontrivial(Λp;C),
Λa(3ε + ν,DXY ) ≤ max

{
N2ε, O(log12(1/ε))

}
=

o (Λp(ε+ ν,DXY )), as required.

Thus, Meta-Algorithm 1 activizes Ap for C under
UniformNoise(C). Since Ap was arbitrary, Meta-
Algorithm 1 is a universal activizer for C under
UniformNoise(C), as claimed.

6. Conclusions
We established the existence of universal activizers for ar-
bitrary VC classes in the presence of uniform classification
noise. This is the first result of this generality regarding
the advantages active learning over passive learning in the
presence of noise.

Previously, (Hanneke, 2009; 2012) has argued that even
seemingly benign noise models typically do not permit the
existence of universal activizers for arbitrary VC classes.
Thus, in an investigation of the existence of universal ac-
tivizers for VC classes, the key question going forward is
whether there are more general noise models, nontrivially
subsuming uniform classification noise, under which uni-
versal activizers for VC classes still exist.
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