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Abstract 1994; Hastie & Tibshirani, 1996; Domeniconi & Gunopu-

los, 2002; Xing et al., 2003; Goldberger et al., 2005; Wein-
berger et al., 2006; Kwok & Tsang, 2003; Bar-Hillel et al.,
2003; Hoi et al., 2006; Globerson & Roweis, 2006; Yang
et al., 2006; Schultz & Joachims, 2004) have been devel-
oped for distance metric learning. However, most of them
assume that the number of labeled examples is sufficiently
large for learning a reliable distance metric. Given a lgdit
number of labeled examples, most distance metric learning
algorithms would suffer from the following two problems:
(1) since most algorithms only provide point estimation of
the distance metric that could be sensitive to the choice
of training examples, they tend to be unreliable when the
number of training examples is small. (2) since most algo-
rithms only randomly select examples for manual labeling,
they tend to be inefficient when the number of labeled ex-
amples is limited.

Distance metric learning is an important compo-
nent for many tasks, such as statistical classifi-
cation and content-based image retrieval. Ex-
isting approaches for learning distance metrics
from pairwise constraints typically suffer from
two major problems. First, most algorithms
only offer point estimation of the distance met-
ric and can therefore be unreliable when the
number of training examples is small. Sec-
ond, since these algorithms generally select their
training examples at random, they can be inef-
ficient if labeling effort is limited. This paper
presents a Bayesian framework for distance met-
ric learning that estimates a posterior distribu-
tion for the distance metric from labeled pair-
wise constraints. We describe an efficient algo- In order to address the above two problems, this paper
rithm based on the variational method for the presents a Bayesian framework for distance metric learn-
proposed Bayesian approach. Furthermore, we ing, termedBayesian Distance Metric Learning that tar-
apply the proposed Bayesian framework to active gets tasks where the number of training examples is lim-

distance metric learning by selecting those unla- ited. Using the full Bayesian treatment, the proposed
beled example pairs with the greatest uncertainty ~ framework for distance metric learning is better suited to
in relative distance. Experiments in classifica- dealing with a small number of training examples than the

tion demonstrate that the proposed framework non-Bayesian approach. Furthermore, the proposed frame-
achieves higher classification accuracy and iden- ~ work estimates not only the most likely distance metric, but

tifies more informative training examples than also the uncertainty (i.e., the posterior distributior)tfee
the non-Bayesian approach and state-of-the-art  estimated distance metric, which is further usedAotive
distance metric learning algorithms. Distance Metric Learning. The key idea behind active

distance metric learning is to select those unlabeled exam-
ple pairs with the largest uncertainty in their relative-dis
1 Introduction tance as candidates for manual labeling. Two efficient al-
gorithms are presented in this study to facilitate the compu
Learning application-specific distance metrics from ledel tation: & variational a}pprqach for Bayegan dl_stance etri
learning, and an active distance metric learning algorithm

data is critical for both statistical classification andoinf based on the Laplaci imation. We d trate th

mation retrieval. The essential goal of distance metric ased on he L.aplacian approximation. ¥ve demonstrate the
| - . : . . . efficacy of these two algorithms through the empirical stud-
earning is to identify an appropriate distance metric that

brings “similar” objects close together while separating'es with image classification and spoken letter recognition

“dissimilar” objects. A number of algorithms (Friedman, The remainder of the paper is organized as follows. Sec-

T — ) tion 2 reviews the previous work on distance metric learn-
Intel Research Pittsburgh



ing and active learning. Section 3 outlines the Bayesiann (Yang & Jin, 2006).
framework for distance metric learning. Section 4 de- : . .
. . . ; . . Despite extensive development, most algorithms only pro-
scribes an active learning algorithm using the Bayesian, . L . . )
. . - vide point estimation for distance metric, which could
framework. Section 5 presents empirical results in image . L
P . . e unreliable when the number of training examples
classification and spoke letter recognition. Section 6 con- .
is small. Furthermore, most previous work assumes
cludes the paper. . . .
randomly-selected training examples, which could be in-
sufficient in identifying the optimal distance metric. The
2 Related Work proposed framework aims to address these problems by a

full Bayesian treatment and active distance metric legrnin
We first review previous work on distance metric learning,

followed by an overview of active learning. Active Learning Previous work on active learning largely

focuses on classification problems. The key idea behind
Distance Metric Learning Our work is closely related to  most active learning algorithms is to select the examples
the previous study on supervised distance metric learnthat are most uncertain to classify. Therefore, a key as-
ing. Most algorithms in this area learn a distance metpect of active learning is to measure the classification un-
ric from side information that is typically presented in a certainty of unlabeled examples. In (Seung et al., 1992;
set of pairwise constraints: equivalence constraints thah\be & Mamitsuka, 1998; Melville & Mooney, 2004), the
include pairs of “similar” objects and inequivalence con- authors propose to measure the classification uncertainty
straints that include pairs of “dissimilar” objects. The-op of an example by the disagreement in the class labels pre-
timal distance metric is found by keeping objects in equiv-dicted by an ensemble of classification models. In (Tong
alence constraints close, and at the same time, objects & Koller, 2000b; Campbell et al., 2000; Roy & McCallum,
inequivalence constraints well separated. In the past, 2001), the classification uncertainty of an example is mea-
number of algorithms have been developed for supervisedured by its distance to the decision boundary. (MacKay,
distance metric learning. (Xing et al., 2003) formulates1992; Zhang & Oles, 2000) represent the uncertainty of a
distance metric learning into a constrained convex proclassification model by its Fisher information matrix, and
gramming problem by minimizing the distance betweenmeasure the classification uncertainty of an unlabeled ex-
the data points in the same classes under the constraiinple by its projection onto the Fisher information matrix.
that the data points from different classes are well sepamn (Tong & Koller, 2000a; Zhang et al., 2003; Jin & Si,
rated. This algorithm is extended to the nonlinear cas@004; Freund et al., 1997), the Bayesian analysis is used
in (Kwok & Tsang, 2003) by the introduction of kernels. for active learning that takes into account the model dis-
Local linear discriminative analysis (Hastie & Tibshirani tribution. In addition, several other approaches (Hofmann
1996) estimates a local distance metric using the local ling Buhmann, 1997; Cohn et al., 1995) are developed for
ear discriminant analysis. Relevant Components Analysigctive learning. The active learning work that is closely
(RCA) (Bar-Hillel et al., 2003) learns a global linear trans  related to this study is (X. Zhu & Ghahramani, 2003) and
formation from the equivalence constraints. The learneqSugato Basu & Mooney, 2004). Both studies aim to select
linear transformation can be used directly to compute disthe most informative example pairs. However, the goals of
tance between any two examples. Discriminative Compothese two studies differ from that of this work: (X. Zhu &
nent Analysis (DCA) and Kernel DCA (Hoi et al., 2006) Ghahramani, 2003) examines the active learning problem
improve RCA by exploring negative constraints and aim-for ordinal regression, and (Sugato Basu & Mooney, 2004)

ing to capture nonlinear relationships using contextual in seeks the example pairs to effectively improve the accuracy
formation. (Schultz & Joachims, 2004) extends the supporbf data clustering.

vector machine to distance metric learning by encoding the

pairwise constraints into a set of linear inequalities.gkei

borhood Component Analysis (NCA) (Goldberger et al.,.3 A Bayesian Framework for Distance
2005) learns a distance metric by extending the nearest Metric Learning

neighbor classifier. The maximum-margin nearest neigh-

bor (LMNN) classifier (Weinberger et al., 2006) extends
NCA thr.ough a maximum margin fra_me\_/vork. (Glober.sonric learning, followed by the efficient algorithm using the
& Roweis, 2006) Iea_rns a Mahalanobis dlstance that _tnes tQ/é’;\riationaI approximation.

collapse examples in the same class to a single point, an

in the meantime keep examples from different classes far

away. (Yang et al., 2006) propose a Local Distance Metric3.1 The Bayesian Framework

(LDM) that addresses multimodal data distributions in dis-

tance metric learning by optimizing local compactness ando introduce the Bayesian framework for distance metric
local separability in a probabilistic framework. An compre learning, we first define the probability for two data points
hensive overview of distance metric learning can be foundk; andx; to form an equivalence or inequivalence con-

We first present the Bayesian framework for distance met-



straint under a given distance metAc (x1,%2,...,X%,) denote all the examples, including both
1 the labeled examples that are used by the constraints in
- (1)$S and D, and the unlabeled examplés Let v;,i =
14 exp (g (Ilxi — %414 — 1)) 1,2,..., K be the topK eigenvectors oXX . We then
assumeA = Zfil yiviv,] ,wherey; > 0,i =1,2,..., K

Pr(ys jlxi, x;j, A, p) =

+1 (xi,%x,) €S are the combination weights. Using the above expression
wherey; ; = { 1 (x4,%x;) €D for A, we can rewrite the likelihoo®r(y; ;|x;,x;) in (1)
as follows:
In the aboveS andD denote the sets of equivalence and in- 1
equivalence constraints, respectively. ParameteEqua- Pr(y |xi,x;) = <
tion (1) stands for the threshold. Two data points are more 1+ exp (yi,j(zlzl Nwh 5 — M))
likely to be assigned to the same class only when their dis- T
- - - = o(=yij7 wiyj) (6)
tance is less than the threshqld Using the expression J J
in Equa_tion_(l), the o_vera_II likelihood function for all the \yhere wﬁy- = [(xi — x;)'v]? ando(z) = 1/(1 +
constraints inS andD is written as: exp(—z)). Note that, in the above, to simplify our nota-
1 tion, we augment the vectgrandw as follows:
ps o = U g om—a®
(i,7)€S * JIA o= (/La’yla’YQv"'v'yK)
y H 1 _ wij = (—1,w}7j,wzj,...,wi}fj).
igjep LT e (=% = x5ll3 +4)

Using the above approximation, we reduce the Wishart
Furthermore, we introduce a Wishart prior for the distanceprior in Equation (3) into the product of a number of

metric A and a Gamma prior for the threshaqldi.e., Gamma distributions, i.eBr(A) = HiK:I G(vi; a, B). For
(r—m_1)/2 the sake of computational simplicity, we relax the above
Pr(A) = |A| exp (—ltr(W‘lA)) ©) Ga_mma distributions to a set of Ggussian distriputio_ns,
Z,(W) 2 which leads to the following expression for the prior dis-
Pr(y) = pet (— ) @ tribution:
M= Z (@) XPA=PH K+1
Pr(A)Pr(p) = H N(7i570,671)

whereZ, (W) andZ(«) are the normalization factors. By
putting the priors and the likelihood function together, we
can estimate the posterior distribution as follows:

i1
= Nvlks1,0 ki)  (7)

Pr(A, ulS,D) — where N (x; i, X2) is the Gaussian distribution with mean
’ ’ - asy and covariance matrix &s. Evidently, one problem
Pr(A) Pi(o“) Pr(S, DIA) (5)  Wwith the above relaxation is that combination weights
Jacs, dAPr(A) [” dpPr(p) Pr(S, DA, 1) no long guaranteed to be non-negative. This problem is
o ) S . solved empirically by enforcing the mean of theto be
Estimating the posterior distributidPr(A., u|S, D) using  npon-negative. Finally, using the expressions in Equations

the above equation is computationally expensive becausg) and (7), evidencBr(S, D) is computed as:
that it involves an integration over the space of positive

semi-definitive matrices. In the next section, we introducePr(S D)
an efficient algorithm for computinBr(A, x|S, D). '

/dAPr(A)/d,uPr(u) Pr(S,D|A, 1)

Q

. . d yolgg1,0
3.2 An Efficient Algorithm / N30k K+1)

L L
The proposed efficient algorithm consists of two steps. H o(=y wij) H oy wij) (8)
First, we approximate the distance metAcas an linear (xi.x;)€8 (x2,%;)€D
combination of the top eigenvectors of the observed data. o o
Second, we estimate the posterior distribution of the com3-2-2 Variational Approximation

bination weights using a variational method. As the second step of simplification, to estimate the

. o posterior distribution fory, we employ the variational
3.2.1 Eigen Approximation method (Jordan et al., 1999). The main idea is to intro-

To simplify the computation, we model the distance met_duce variational distributions foys to construct the lower

ric A as a simple parametric form by the top eigen-  INote the unlabeled samples used to compute eigen approxi-
vectors of observed data points. Specifically, ¥et = mation are not necessarily testing samples.



bound for the logarithm of the evidence, ilog Pr(S, D). whereX s andXp are defined as follows:
By maximizing the variational distributions with respeat t

the lower bound, we obtain the approximate estimation for Ys = Z )\(ff,j)wf,j [wis,j] )
the posterior distribution ofs. More specifically, given the (xi,%5)€S
variational distributions(~y), the logarithm of the evidence Sp = Z AEd Hwd wd 7.
is lower bounded by the following expression: s A ED Bl
log Pr(S, D) Finally, according to (Jaakkola & Jordan, 2000), the varia-
_ 10g/d7 Pr(y H Pr(+|x:, %) H Pr(—|x:, %) tional parameters; ; and§ are estimated as follows:
(i,5)€S (i,7)€D s s s

’ ’ & = y/luTwg,l? + Wy, S,

> (logPr(y)) + H(é(7)) + Y (logPr(+]xi,x;)) )
(i,5)€S io= \/[u;rwﬁj]Q + [wﬁj]Tvaﬁj. (11)
+ Z (log Pr(—|x;,%;)). o o _
(i,j)ED Based on the above derivation, the combination weights

are updated through EM-like iterations. In the E-step, give

where(-) = (-)¢,. Using the inequality (Jaakkola & Jor-  the values for the variational parametgfs ande; ;, we

dan, 2000) compute the meap., and the covariance matri., using
o Equations (10) and (9). In the M-step, we recompute the
o(z) > o(€)exp (T — X&) (2* — 52)) , optimal value for!; and¢; ; using Equation (11) based on
the estimated mea;my and covariance matriX., .
where \(¢) = tanh¢/2)/(4€), we can lower bound
(log Pr(y|x;, x;)) by the following expression: 4 Bayesian Active Distance Metric Learning
(log Pr(y|xi, x;)) > logo(&i )+ —y() Wi =& To select d_ata pairs that are informative for_the target_dis-
2 tance metric, we follow the uncertainty principle for aetiv

= AM&iy) (tr(wizw!; (") —€75) - leaming. In particular, we will select the pair of data pisin
with the largest uncertainty in deciding whether or not the

Nt?tw using the above exp:esslon Lotrhthe Io(\:/iver bofundtwe[wo data points are close to each other. For a given data
obtain a new expressmn 0 bound the evidence tunc 'onpaw(xl,x,) this uncertainty is measured by the following

log Pr(S, D), i entropy functionH; ;
IOgPI' S D Z IOgPI' +H(¢( )) Hi,j _ —PI‘(—|X1',XJ')1OgPI‘(—|X1‘,Xj)
( <7> 2 i T8 ) — Pr(+|xi,x;) log Pr(+|x;,x;). (12)
(1.1)€S Thus, the key question is how to efficiently compute
< YTwd, — &8, Pr(£|x;,x;). In the simplest formPr(+|x;,x;,) can be
2 directly computed using, i.e.,
(@ J)ED 1
) (0,1 07T — 1) e vz
(i 73)68 J
- Z NG 1 T ) = (€] Since the entropy functioH; ; in (12) is a monotonically
e o A decreasing function ihPr(+|x;,x;) — 3|, it is therefore
]

monotonically decreasing iy "w; ;|. We thus can simply

In above, we introduce variational parametgrsand¢?,  compute the qualityy’w ;| to indicate the uncertainty in
for every pairwise constraint i§ andD, respectively. By labeling the example paix;, x;).

maximizing the posterior distribution(y) with respectto  However, the above computation does not take into ac-
the lower bound of the evidence function, we haNe) ~  count the distribution of,. To incorporate the full distri-

N (v; 1y, £) where the meap., and the covariance ma- pytion of v, we can compute the conditional probability
trix X, are computed by the following update equations: Pr(+|x;,x,) computed as follows:

N2y, 1)
1+ exp(£yTw; ;)

X, = (51}(4—2254—229)7 (9) Pr(d|xi,x;) —
isXj) =

By = Xy | 0% - = J (10)
v g (i§5 e o /exp( I 5(7)) dy




wherel}"; (v) is defined as

lz;lij (7)

log (1 + exp(:l:'y—rwl-_’j))

1 _
50— fiy) TSy = )

To effectively evaluate the probability, we employ the
Laplacian approximation.
imate lfj (v) by its Taylor expansion around the optimal
pointy;".
matedljE ; (7). However, this involves solving the optimiza-
tion 7” = arg mln,y>0lz () for each data pair, which is

+

In particular, we first approx-

We then compute the integral using the approxi-

classification. In particular, we will address the follogin
two questions in this empirical study:

e Is the proposed Bayesian framework effective for dis-
tance metric learning given a small number of labeled
pairs?

e Is the proposed Bayesian framework effective for ac-
tive distance metric learnirigy

5.1 Experiment Methodology

Two datasets are used as our testbed:

computationally expensive when the number of candidate  cOrREL image database (“corel’) We choose five

data pairs is large. To further simplify the computatlon we

approximate the optimal squUoﬁ—; by expandlngw( )
in the neighborhood gl as follows:

l55() ~ log(L+exp(2pjwig)) £ i (7 — o) T
+ %(’Y - Mv) (E + G5, Wi jw;, ) (v = 1y)
~  log(1 + exp(dp) wij)) +pi (v — p1y) T wiy
+ %(7 — y) 2SN (Y = )
where
.
= 1 ixfi;?;:z;)’ ¢ij = pij(1 =pij) (14)

Inthe above, we approximat® ' + ¢; jw; jw;' ;) asx; .
This is because according to (9% lis a summauon

categories from the COREL image database, and ran-
domly select100 images for each category, which
amounts to a total 0300 images. Each image is rep-
resented by6 different visual features from three dif-
ferent categories, i.e., color, edge and texture.
Spoken Letter Recognition (“isolet”) This dataset
comes from the standard UCI machine learning repos-
itory (Newman et al., 1998). It consists 8f797 ex-
amples that belong 6 classes. We selet0 classes,
and 100 samples for each class to create a dataset
with 1000 examples. Each example is originally rep-
resented by17 features. We employ PCA to reduce
the total number of dimensionality 20)0.

The quality of the learned distance metric is evaluated by
the Nearest Neighbod NN) classifier. More specifically,
the learned distance metric is used to measure distance be-

across all the labeled example pairs, and therefore is sigween the training examples and the test examples. For

nificantly more important than the single tegaw; jw,';.

Then, the approximate solutions fgf; andl;",(v) are

A~ max(fiy $pijvwi,j, 0) (15)

%'j.,[j
(v =755
lzig (,7) »J 2V

Themax operator in the above refers to element wise max-
imization. As indicated in (15), the optimal" is deter-
mined by both the mean, and the covariance matrix.,.
Furthermore, the posteri®ir(£|x;,x;) is computed as:

Pr(%[x;, x;) o eXP(_lfj(ﬁj))

1
Note that the estimation of probabiliBr(+|x;, x;) in the

('Y—%j,[j)

~
~

+/ +
li,j (%‘,j) + (16)

+
[pi7j]2wi,j2'ywi,j
2

ex —
1+€Xp(:l:wl 371]) P (

each test example, the class of the closest training exam-
ple is predicted as the class label for the test example. Each
experiment is repeated ten times, and both the mean and
the standard deviation of the classification accuracy are re
ported in this study.

5.2 Distance Metric Learning with a Small Number
of Training Examples

Our first experiment is to demonstrate that the proposed
Bayesian framework is effective for distance metric learn-
ing when the number of training examples is small. As a
direct comparison, we compare the Bayesian framework to
a maximum likelihood based approach for distance metric
learning. Specifically, this approach finds the optimal dis-
tance metric by maximizing the following likelihood func-
tion L£4(7):

above expression takes into account both the mean and the

variance of the distribution of. Finally, Pr(+|x;, x;) are
normalized to ensurBr(+|x;, x;) + Pr(—|x;,x;) = 1.

5 Evaluation

Ly(7) > log(1 +exp(yiv ' wij))

(i,.5)€S

D log(1+ exp(—yi ;7 wi)-
(i-f)€D

In this section, we evaluate the proposed Bayesian frameaAle refer to this approach d4LE , and the Bayesian frame-
work for distance metric learning in the context of datawork asBAYES. In addition, we compare the Bayesian



Table 1: Classification accuracy oiiN on the corel testbed using different distance metriaieay algorithms.

Training Size EUCLID MLE NCA LMNN BAYES
10 0.449 £ 0.028 | 0.439£0.026 | 0.484+0.027 | 0.487 +0.026 | 0.492 +0.024
20 0.547£0.019 | 0.602 £0.009 | 0.603 +0.021 | 0.581 £ 0.024 | 0.610 = 0.020
30 0.572£0.011 | 0.596 £0.012 | 0.624 £ 0.015 | 0.619 £ 0.023 | 0.646 £0.015

Table 2: Classification accuracy tiN on the isolet testbed using different distance metrioiegy algorithms.

Training Size EUCLID MLE NCA LMNN BAYES
10 0.608 £0.034 | 0.659 £ 0.023 | 0.663 £ 0.020 | 0.674 £ 0.023 | 0.681 £ 0.018
20 0.648 £0.018 | 0.695+£0.012 | 0.717+0.017 | 0.728 £0.021 | 0.731 £0.013
30 0.704 £0.019 | 0.733 £0.013 | 0.743+0.013 | 0.761 £ 0.015 | 0.770 = 0.020

approach to two state-of-the-art distance metric learn5.3 Active Distance Metric Learning

ing algorithms, i.e., Neighborhood Component Analysis

(NCA) (Goldberger et al., 2005), and Maximum Margin In this experiment, we evaluate the effectiveness of the
Nearest Neighbor Classifiet IMN ) (Weinberger et al., proposed method for active distance metric learning. Our
2006). The Euclidean distance, termedE$CLID, is  framework of Bayesian active distance metric learning,
used as the reference pointin this study. termed asBAYES+VAR, takes into account the distribu-
tion of ~ (i.e., both the mean and the covariance matrix)

Some of the above algorithms for distance metric learn h luating th eri babilly(-L f
ing require labeled examples, not labeled example pairsv.v en evaluating the posterior probabilty(+|x;, x;) for

Therefore, for both datasets, we randomly selt20 active pair selection. Three baseline approaches foreactiv

and30 examples (not example pairs) for learning distanc:eOllsance metric learning are used in this study:

metric. To ensure the diversity of the training data, the e BAYES+ACT. This approach first applies the

same number of training examples is selected for each  Bayesian distance metric learning algorithm to find

class.100 examples are randomly selected for testing and  the appropriate distance metric for the given train-

the remaining examples are used for trainifgN. ing pairs. It then evaluates the posterior probability
Pr(£|x;,x;) by directly using the mean,. The ex-
ample pairs with the largest entropy will be selected
for manually labeling.

e MLE+ACT . This approach relies on the MLE ap-
proach presented in previous subsection to learn a dis-
tance metric from the training example pairs. Similar
to the BAYES+ACT approach, it evaluates the pos-
terior probabilityPr(+|x;,x,) with the learned dis-
tance metric, and finds the most informative example
pairs based on their entropy.

e MLE+RAND . This approach is similar to the
MLE+ACT approach exceptthat the example pairs are
randomly selected for manually labeling.

Table 1 and 2 summarize the classification accuracies of
1NN for the corel and the isolet testbed using the distance
metrics that are learned by different algorithms, respec-
tively. First, we observe that all the distance metric learn
ing algorithms are able to outperform the Euclidean dis-
tance metric significantly for both datasets except for the
case when using the MLE approach wititraining exam-
ples for the corel dataset. Second, compared to the MLE
approach, we observe that the Bayesian approach is signif-
icantly more effective in improving the classification ac-
curacy of INN classifier for all the cases. A t-test shows
our performance gain is statistically significant at a digni
cance level 00).05. It is interesting to notice that when the
number of training examples i9), the MLE approach per-  Similar to the setup of the previous experiment, for both
forms slightly worse than the Euclidean approach for thetestbeds; 100 examples are randomly selected for testing,
corel testbed. This result clearly indicates the imporanc and the rest examples serve as the training data famie
of employing full Bayesian treatment for distance metric classifier. In addition, for both datasets, we randomlycele
learning when the number of training examples is small.50 examples, with equal number of examples from each
Third, we find that the Bayesian approach perform slightlyclass, to form the pool of example pairs for training dis-
better than the two state-of-the-art distance metric legrn tance metrics. This results in a poolioR25 training pairs.
approaches for both datasets with different number of4rainFirst, at the beginning of active distance metric learningj,
ing examples. Based on the above observation, we corandomly seleci0 example pairs from the pool of train-
clude that the proposed Bayesian approach is effective fanhg pairs to train a distance metric. Then, at each iteration
distance metric learning, particularly when the number ofof active learning, addition&0 example pairs are selected
training examples is small. from the pool to train a new distance metric. The classifi-
cation accuracy of NN is used to evaluate the quality of



distance metric. Finally, we also run the experiments with7 ~ Acknowledgments
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