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Chapter 1

Summary

The key insight underlying this thesis is that the right kofdnteraction is the key to making
the intractable tractable. This work specifically inveates this insight in the context of learn-
ing theory. While much of the learning theory literature haslitionally focused on protocols
that are either non-interactive or involving unrealidficatrong forms of interaction, there have
recently been several exciting advances in the design aalgsas of methods for realistic inter-
active learning protocols.

Perhaps one of the most interesting of thesxcisve learning In active learning, a learning
algorithm is given access to a large pool of unlabeled exesp@ind is allowed to sequentially
request their labels so as to learn how to accurately préukctabels of new examples. This
thesis contains a number of interesting advances in ourstasheling of the capabilities of active

learning methods. Specifically, | summarize the main cbations below.

1.1 Bayesian Active Learning

While most of the recent advances in our understanding ofeatgarning have focused on the
traditional PAC model (or noisy variants thereof), simdalvnaces specific to the Bayesian learn-

ing setting have largely been lacking. Specifically, suppbsat in addition to the data itself, the
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learner additionally has access te@or distribution for the target function, and we are inter-
ested in achieving a guarantee of low expected error rateremhe expectation is over both the
draw of the dataand the draw of the target concept from the given prior. Thisisgthas been
studied in depth for the passive learning protocol, buteagidm the well-known work on the
query-by-committee algorithm, little was known about thesting for the active learning proto-
col. This lack of knowledge is particularly troubling in hgof the fact that most of the active
learning methods used in practice have Bayesian interpe$atselecting their label requests
based on Bayesian notions such as label entropy, expectadreduction, or reduction in the

total probability mass of the version space.

1.1.1 Arbitrary Binary-Valued Queries

In this thesis, we present work that makes progress in utadelisig the Bayesian active learning
setting. To begin, we study the most basic question: how ntgyies are necessary if we
are able to ashrbitrary binary-valued queries. While label requests are only a apgge of
binary-valued query, a general lower bound for arbitranaby-valued queries will also hold for
label request queries, and thus provides a lower bound omtitesic query complexity of the
learning problem. Not surprisingly, we find that the numbfebioary-valued queries necessary
for learning is characterized by a kind of entropy quantitgmely, the entropy of the Voronoi

partition induced by a maximatpacking.

1.1.2 Self-Verifying Active Learning

Our next contribution is a study of a special type of actiaténg, characterized by the stopping-
criterion used in the learning algorithm. Specifically, soier a protocol in which the input to
the active learning algorithm is the desired error rate guot@ee, and the algorithm then makes
a number of queries and then halts. For the algorithm to bsidered “correct”, it must have

the guarantee that the expected error rate of the clasgifoduces after halting is at most
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the value ofe provided as input. We refer to this family of algorithms sedf-verifying The
label complexity of learning in this protocol is generalligher than in some other protocols
(e.g., budget-based), since the algorithm must not Bntya classifier with good error rate, but
must also somehow keelf-awareof the fact that it has found such a good classifier. Indeed, it
is known that prior-independent self-verifying algorithmay often have label complexities no
better than that of passive learning, whichdél /¢) for VC classes. However, we prove that
in Bayesian active learning, for any VC class and prior, the prior-dependent method that
always achieves an expected label complexity tha{ ige). Thus, this represents a concrete

result on the advantages of having access to the targatisgstribution.

1.2 Active Testing

One of the major challenges facing active learning is thamodlel selection. Specifically, given
a number of hypothesis classes, how does one decide whidio aise? In passive learning, the
solution is simple: try them all, and then pick from among tegulting hypotheses using cross-
validation. But such solutions are not available to actiearneng, since the methods tailored to
each hypothesis class will generally make very differebelaequests, so that the label com-
plexity of producing a hypothesis from all of the classeslise to the sum of their individual
label complexities.

Thus, to avoid this problem, there is a need for procedusgtickly dermine whether the
target concept is within (or approximated by) a given cohotgss, by asking a much smaller
number of label requests than required lEarning with that class: that is, farestingmethods
that operate in the active learning protocol, which we tfogeerefer to asactive testing This
way, we can simply go through each class and test whetheatgettis in the class or not, and
only run the full learning method on some simplest classphastes the test. The questions then
become how many fewer queries are required for testing coedga learning, as this quantifies

the savings from using this approach. Following the traddi literature on property testing,
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the primary focus of such an analysis is on the dependendeajuery complexity on the VC
dimension of the hypothesis class being tested. Sinceifgntypically required a number of
gueries linear in the VC dimension, a sublinear dependencerisidered an improvement, while
a query complexity independent of the VC dimension is carsid superb.

There is much existing literature on property testing. Hasvethe standard model of prop-
erty testing makes use afiembership queriesvhich are effectively label requests for feature
vectors of our own construction, rather than feature vedimm a given polynomial-sized sam-
ple of unlabeled examples from the data distribution. Suethods are unrealistic for our model
selection purposes, since it is well-known in the machiserimg community that the feature
vectors constructed by membership queries are often dligitiee by the human experts charged
with labeling the examples. However, the results from tissdture on membership queries do
provide us a useful additional reference point, since wecartin that the query complexity of
active testing is no smaller than that of testing with mersbigr queries, and no larger than that
of testing from random labeled examples (passive testing).

In our work on active testing, we study a number of intergstioncept classes, and find
that in some cases the query complexity is nearly the sameaasfttesting with membership
queries, while other times it is closer to that of passivéngs However, in most (though not all)
cases, we do find that the query complexity of active tessrgignificantly smaller than that of
activelearning, so that this approach to model selection can indeed be efitetive at reducing

the total query complexity.

1.3 Theory of Transfer Learning

Given the positive results mentioned above on the advastagactive learning with access to
the target’s prior distribution, the next natural quesitsn“How does one gain access to the
target’s prior distribution?” Traditionally, there havedn a variety of answers to this question

given by the Bayesian Statistics community, ranging fromesttlve beliefs, to computationally-
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motivated assumptions, to estimation. Perhaps one of tist appealing, from a practical per-
spective, it the Empirical Bayes perspective, which sayswiesgain access to an approximation
of the prior based on analysis of past experience. In thailegucontext, this idea of gaining in-
sights for a new learning problem, based on experience vashlparning problems, goes by the
nameTransfer Learning The specific model of transfer learning relevant to this Eivgl Bayes
setting is the following. We suppose that we are tasked witbcquence of learning problems,
or tasks For each task, the unlabeled data are sampled i.i.d. aogai@ some distributiorD,
independently across the tasks. Furthermore, for eachihiagkrget function is sampled accord-
ing to some prior distribution, again independently across tasks. We then approach eskchsta
usual, making a number of label requests and then haltingguaranteed expected error rate at
moste. The hope is that, after solving a number of learning prokler 7', the label complexity
of solving taskt + 1 should be smaller than that of solving the first task, due toigg some

information about the distribution.

The challenge in this problem is that we do not get direct nlag®ns of the target functions
from each task. Rather, we may only observe a small numberbefdd examples. So the
guestion is how to extract useful information abaufrom these limited observations. This
situation is further complicated by the fact that we arerggéed in minimizing the number of
samples per-task, and that the active learning method’segumight be highly task-specific.
Indeed, in many transfer learning settings, each task isoagped by a different agent, who may
be non-altruistic with respect to the other agents; thusnsay be unwilling to make very many

additional label requests merely to aid the learners thiisalve future tasks.

In our work, we show that it is possible to gain benefits froamsfer learning, while limiting
the number of additional queries (other than those usedttir®r learning) required from each
task. Specifically, we use a number of extra queries per tqaklgéhe VC dimension of the
concept class. Using these queries, we are able to cortiststimater, assuming only that

it resides in a known totally bounded class of distributiol$e are then able to use this esti-
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mate in the context of a prior-dependent learning methogymatotically achieve an average
label complexity equal to that of learning withirect knowledge ofr. Thus, we have realized
the aforementioned benefits of having knowledge of the targeor, including the guaranteed
o(1/e) expected label complexity for self-verifying active lesmgn We further show that no
method taking fewer than VC dimension number of samplesgsir¢an match this guarantee at
this level of generality.

Interestingly, under smoothness conditionsome also provide explicit bounds on tregte
of convergence of our estimator 19 and we additionally derive lower bounds on the minimax
rate of convergence. This has implications for non-asytipguarantees on the benefits of
transfer learning.

We also extend these results to real-valued functions, evties VC dimension is replaced
by the pseudo-dimension of the function class. In additomansfer learning, we also find that
this technique for estimating a prior distribution overlreglued functions has applications to

the preference elicitation problem in a certain type of covatorial auction.

1.4 Active Learning with Drifting Distributions and Targets

In addition to the work on Bayesian active learning, | haveitathlly studied the setting of
active learning without access to a prior. Work in this ae@nesently more mature, so that
there are known methods that are robust to noise, and haleimagdrstood label complexities.
However, all of the previous theoretical work on active t@ag supposed the data were sampled
i.i.d. from some fixed (though unknown) distribution. But ngaealistic applications of active
learning involve distributions that change over time, sat thie require some understanding of
how active learning methods behave under drifting distidins.

In my work on this topic, | study a model of distribution drift which the conditional distri-
bution of label given features remains fixed (i.e., no tady#t), while the marginal distribution

over the feature vectors can change arbitrarily within giotally bounded family of distribu-
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tions from one observation to the next. | then analyze astieased active learning setting, in
which the learner is at each time required to make a predid¢tiothe label of a new example,

and then decide whether to request the label or not. We andriteyested in the expected num-
ber of mistakes and number of label requests, as a functibowfmany data points have been

observed.

Interestingly, I find that even with such drifting distribwts, it is still possible to guarantee
a number of mistakes on par with fully-supervised learninbile only requesting a sublinear
number of labels, as long as the disagreement coefficienthkngar in the reciprocal of its
argument under all distributions in the given family. | peahis, both under the realizable case,
and under Tsybakov noise conditions. | further provide aenti@tailed analysis of the frequency
of label requests and mistakes, as a function of the Tsybagi®e parameters, the supremum of
the disagreement coefficient over the given family of disttions, and the covering numbers of
the family of distributions. To complement this, | also pid® lower bounds on the number of
label requests required of any active learning method whagseber of mistakes is on par with

the optimal performance of fully-supervised learning.

We have also studied the related problem of active learnittyawdrifting target concept, in
which the target function itself changes over time. In tl@isg, the distribution over unlabeled
samples remains fixed, while the function providing labélarges over time at a specified rate.
We then express bounds on the expected number of mistakeguands, as a function of this

rate of change and the number of samples.

In any learning context, the problem of efficient learninghia presence of noise is a constant
challenge. Toward addressing this challenge, we have peapan active learning algorithm that
makes use of a convex surrogate loss function, in place ofthdoss, while still providing
guarantees on the obtained error rate (undelthdoss) and number of queries made in the
active learning context, under the assumption that thevgate loss is classification-calibrated,

and the minimizer of the surrogate loss resides in the fanatiass used by the algorithm.
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1.5 Efficiently Learning DNF with Representation-Specific Queries

In addition to the basic active learning protocol, basedatrel requests, we have also studied
an interesting new type of learning protocol, in which thgoaithm is allowed queries regarding
specific aspects of thepresentatiorof the target function. This setting is motivated by appli-
cations in which there are essentially sub-labels for treargtes, which may be difficult for an
expert to explicitly produce, but for which they can easédgagnize commonality. For instance,
in fraud detection, we may be able to ask an expert whethegtvwen examples of fraudulent
transactions are representative of the séypeof fraud.

To study this idea in formality, we specifically look at thessic problem of efficiently
learning a DNF formula. Certain variants of this problem amewn to be NP-Hard if we are
permitted only labeled data (e.g., proper learning), aedetlare no known efficient methods for
the general problem of learning DNF, even with membersharigs. In fact, under the uniform
distribution, there are no such general results known ewethé problem of learning monotone
DNF from labeled data alone. Thus, there is a real need forideas to approach the problem

of learning DNF if the class of DNF functions is to be used faqtical applications.

In our work, we suppose access to a polynomial-sized sanipébeled examples, and for
any pair of positive examples from that sample, we allow mseof the type, “Do these two
examples satisfy a term in common in the target DNF?” It tuunsthat the problem of learning
arbitrary DNF under arbitrary distributions is no easiethwthis type of query than with labeled
examples alone. However, using queries of this type, we bl ta efficiently learn several
interesting sub-families of DNF, including solving somelplems known to be NP-Hard from
labeled data alone (properly learnidgerm DNF). Additionally, under the uniform distribu-
tion, we find many more interesting families of DNF that arcednt learnable with queries of
this type, including the well-studied family @d(log(n))-juntas, and any DNF for which each

variable appears in at moStlog(n)) terms.

We further study several generalizations of this type ofrgubn particular, if we allow the
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algorithm to ask “How many terms do these two examples gatisfommon in the target DNF?”
then we can significantly broaden the collection of subfe®ibf DNF that are efficiently learn-
able. In particularO(log(n))-juntas become efficiently learnable under arbitrary iistrons,
as does the family of DNF witty(log(n)) terms.

With a further strengthening to allow the query to involveaahitrary number of examples,
rather than just two, we find we can efficiently (properly)rfean arbitrary DNF under an arbi-
trary distribution. This is also the case if we restrict tetjtwo examples in the query, but we
allow the algorithm to construct the feature vectors fosthtwo examples, rather than selecting
them from a polynomial-sized sample.

Overall, we feel this is an important topic, in that it makealrprogress on the practically-
important problem of efficiently learning DNF, which has@tise been essentially stagnant for

a number of years.

1.6 Online Allocation with Economies of Scale

In addition to all of the above work on computational leagitheory, this dissertation also in-
cludes work on allocations problems in which the cost ofatong each additional copy of a
good is decreasing in the number of copies already allocatads model captures the natural
economies of scale that arise in many real-world contextsthis context, we derive meth-
ods capable of allocating goods to a set of customers in adenitand setting, while achieving
near-optimal cost guarantees. We study this problem boémioffline setting, in which all of

the customer valuation functions are known in advance, &sulia a type of online setting, in

which the customers arrive one-at-a-time, so that we domoikn advance what their valuation
functions will be. In the online variant of the problem, worlx under the assumption that the
valuation functions are i.i.d. samples, we make use of gdization guarantees from statistical
learning theory, in combination to the algorithmic solagdo the offline problem, to obtain the

approximation guarantees.



Chapter 2

Active Testing

Abstract

H One of the motivations for property testing of boolean fiortd is the idea that testing can
serve as a preprocessing step before learning. Howeveshmeachine learning applications,
the ability to query functions at arbitrary points in theumgpace is considered highly unrealistic.
Instead, the dominant query paradigm in applied machineileg, calledactive learningis one
where the algorithm may ask for examples to be labeledpblyt from among those that exist
in nature That is, the algorithm may make a polynomial number of dricews the underlying
distribution D and then query for labels, but only of points in its samplethis work, we bring
this well-studied model in learning to the domaintesting calling it active testing

We show that for a number of important properties, testingstal yield substantial benefits
in this setting. This includes testing unions of intervaésting linear separators, and testing
various assumptions used in semi-supervised learningeXgmple, we show that testing unions
of d intervals can be done with (1) label requests in our setting, whereas it is known to require
Q(v/d) labeled examples for passive testing (where the algorithust pay for labels omvery

example drawn fronD) and2(d) for learning. In fact, our results for testing unions of ivis

1Joint work with Maria-Florina Balcan, Eric Blais, and AvriBium.
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also yield improvements on prior work in both the memberghipry model (where any point
in the domain can be queried) and the passive testing moeealrfts and Ron, 2000] as well. In
the case of testing linear separatorsiih, we show that both active and passive testing can be
done withO(/n) queries, substantially less than té:) needed for learning and also yielding
a new upper bound for the passive testing model. We also slyaueral combination result that
any disjoint union of testable properties remains testabtbe active testing model, a feature
that does not hold for passive testing.

In addition to these specific results, we also develop a génetion of thetesting dimension
of a given property with respect to a given distribution. Views this dimension characterizes
(up to constant factors) the intrinsic number of label rexisieeeded to test that property; we do
this for both the active and passive testing models. We tkerthis dimension to prove a number
of lower bounds. For instance, interestingly, one case etvershow active testing doaethelp
is for dictator functions, where we gi¥e(log n) lower bounds that match the upper bounds for
learning this class.

Our results show that testing can be a powerful tool in réalimodels for learning, and
further that active testing exhibits an interesting and sicucture. Our work in addition develops

new characterizations of common function classes that rmayf mdependent interest.

2.1 Introduction

One of the motivations for property testing of boolean fiortd is the idea that testing can serve
as a preprocessing step before learning — to determine mihletirning with a given hypothesis
class is worthwhile [Goldreich, Goldwasser, and |Ron, 198®]eed, query-efficient testers have
been designed for many common hypothesis classes in maehimeng such as linear thresh-
old functions [Matulef, O’'Donnell, Rubinfeld, and Served®09], unions of intervals [Kearns
and Ron| 2000], juntas [Blais, 2009, Fischer, Kindler, Rony&adnd Samorodnitsky, 2004],
DNFs [Diakonikolas, Lee, Matulef, Onak, Rubinfeld, Servedind Wan, 2007], and decision
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trees [Diakonikolas, Lee, Matulef, Onak, Rubinfeld, Sergeédnd Wan, 2007]. (See Ron’s

survey [Ron, 2008] for much more on the connection betweanilegand property testing.)

Most property testing algorithms, however, rely on theigbib query functions on arbitrary
points — an assumption that is unrealistic in most machiamlag applications. For example,
in classifying documents by topic, while selecting an esgstilocument on the web and asking
a user “is this about sports or business?” may make perfesiesaaking an existing sports
document (represented " as a vector of word-counts), corrupting a random fractiothef
entries, and asking “is this still about sports?” does noarl\Eexperiments yielded similar
failures for membership-query learning algorithms in ssiapplications when asking human
users about corrupted images [Baum and |.ang,/1993]. As & rdsiblominant query paradigm
in machine learning has instead been the modedaive learningwhere the algorithm may
query for labels of examples of its choosing, baty among those that exist in natyialcan,
Beygelzimer, and Langford, 2006, Balcan, Broder. and Zhan@7@0Balcan, Hanneke, and
Wortman, 2008, Bevaelzimer, Dasaupta, and Lanaford, [2008tr€and Noweak, 2007, Cohn,
Atlas, and Ladner, 1994a, Dasgupta, 2005, Dasgupta, HsuMamteleoni, 2007hb, Hanneke,
2007a, Seung, Opper, and Sompolinsky, 1992, Tong and KdRO1].

In this work, we bring this well-studied model in learningttee domain otftesting In par-
ticular, we assume that as in active learning, our algorittam make a polynomial number of
draws ofunlabeled examplegsom the underlying distributioD (these unlabeled examples are
viewed as cheap), and then can make a small number of labéégbeitonly over the unlabeled
examples drawn (these label queries are viewed as expgn$ive question we ask is whether
testing in this setting is sufficient to still yield signifitiabenefit in terms of label requests over

the number of labeled examples needed for learning.

What we show is that for a number of interesting propertiesveeit to learning, this capa-
bility indeed allows for a substantial reduction in the n&@nbf labels required. This includes

testing unions of intervals, testing linear separators, tasting various assumptions about the

12



separation of data used in semi-supervised learning. Fompbe, we show that testing unions
of d intervals can be done with (1) label requests in our setting, whereas it is known to require
Q(v/d) labeled examples for passive testing (where the algorithust pay for labels omvery
example drawn fromD) and(d) for learning. In the case of testing linear separator&in
we show that both active and passive testing can be doneJ®ifn) queries, substantially less
than theQ2(n) needed for learning and also yielding a new upper bound fp#ssive testing
model as well. These results use a generalization of Arcéhesrem on the concentration of
U-statistics. For the case of unions of intervals, our rtisseven improve on prior work in the
membership query and passive models of testing [Kearns and ZR80], and are based on a
characterization of this class in terms of noise sengjtithiit may be of independent interest.
We also show that any disjoint union of testable properessains testable in the active testing
model, allowing one to build testable properties out of denpomponents; this is a feature that
does not hold for passive testing.

In addition to the above results, we also develop a genet@mof thetesting dimensionf a
given property with respect to a given distribution. We shhbig dimension characterizes (up to
constant factors) the intrinsic number of label requestsiad to test that property; we do this for
both passive and active testing models. We then make usésafdhon of dimension to prove
a number of lower bounds. For instance, one interestingwheee we show active testing does
not help is for dictator functions, a classic property where rhership queries can allow testing
with O(1) label requests, but where we show active testing requlféss n) labels, matching
the bounds for learning.

Our results show that a number of important properties farnimg can be tested with a
small number of label requests in a realistic model, andh&rmore that active testing exhibits
an interesting and rich structure. We further point out tivdike the case of passive learning,
there are no known strong Structural Risk Minimization bafud active learning, which makes

the use of testing in this setting even more compeir@pr techniques are quite different from

2In passive learning, if one has a collection of algorithméigpothesis classes to try, there is little advantage
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those used in the active learning literature.

2.1.1 The Active Property Testing Model

Before discussing our results in more detail, let us firspihice the model of active testing. A
property P of boolean functions is simply a subset of all boolean fuori We will also refer

to properties aslasse®f functions. Thealistanceof a functionf to the propertyP over a distri-
bution D on the domain of the function & st ( f, P) := mingep Pr,.p[f(z) # g(x)]. A tester

for P is a randomized algorithm that must distinguish (with higblgability) between functions

in P and functions that are far frorR. In the standard property testing model introduced by
Rubinfeld and Sudan [Rubinfeld and Sudan, 1996], a testelowed to query the value of the
function on any input in order to make this decision. We coasinstead a model in which we

add restrictions to the possible queries:

Definition 2.1 (Property tester)An s-sample g-querye-testerfor P over the distributionD is a
randomized algorithmi that drawss samples fronD, sequentially queries for the value pbn
q of those samples, and then

1. Accepts w.p. at leagtwhenf € P, and

2. Rejects w.p. at leagtwhendistp(f, P) > e.

We will use the terms “label request” and “query” interchealgly. Definitiorl 2.[L coincides
with the standard definition of property testing when the hanof samples is unlimited and the
distribution’s support covers the entire domain. In thesotxtreme case where we {ix= s, our
definition then corresponds to tipassive testingnodel, where the inputs queried by the tester
are sampled from the distribution. Finally, by settingo be polynomial in some appropriate
measure of the input domain, we obtain Hetive testingnodel that is the focus of this paper:
asymptotically to being told which of these is best in adearsince one can simply apply all of them and use an

appropriate union bound. In contrast, this is much less d@aactive learning algorithms that each might ask for

labels on different examples.
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Definition 2.2 (Active tester) A randomized algorithm is g-query activee-testerfor P C
{0,1}" — {0,1} over D ifitis a poly(n)-sampleg-querye-tester forP overD.

Remark 2.1. We emphasize that the nametive testers chosen to reflect the connection with
active learning. It immotmeant to imply that this model of testing is somehow “morevatthan

the standard property testing model.

In some cases, the domain of our functions is{totl }". In those cases, we requisgo be

polynomial in some other appropriate measure of complékaywe specify explicitly.

Note that in Definitiom 2]1, since we do not have direct mersiigrquery access (at arbitrary
points), our tester must accept w.p. at I@mhenf is such thatlistp(f, P) = 0, evenif f does
not satisfy? over the entire input space. This, in fact, is one crucided#nce between our
model and thelistribution-freetesting model introduced by Halevy and Kushilevitz [Haland
Kushilevitz, 2007] and further studied in [Dolev and Ron, @0Glasner and Servedio, 2009,
Halevy and Kushilevitz, 2004, 2005]. In the distributiaed model, the tester can sample inputs
from some unknown distribution and can query the targettianmnanyinput of its choosing.

It must then distinguish between the case whgére P from the case wherg is far from the
property over the distribution. Most testers in this modedrsgly rely on the ability to query any

input and, therefore, these algorithms are not valid activergste

In fact, the case of dictator functions, functiofis {0,1}" — {0, 1} such thatf(z) = x;
for somei € [n], helps to illustrate the distinction between active teptimd the standard
(membership query) testing model. The dictatorship pitypsrtestable withO(1) member-
ship queries [Bellare, Goldreich, and Sudan, 1998, Parnas, &a Samorodnitsky, 2003]. In

contrast, with active testing, the query complexity is tame as needed for learning:
Theorem 2.3. Active testing of dictatorships under the uniform disttibn requiresQ(log n)

gueries. This holds even for distinguishing dictators framdom functions.

3Indeed, Halevy and Kushilevitz’s original motivation fatioducing the model was to better model PAC learn-

ing in themembership quemnodel [Halevy and Kushilevitz, 2007].
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This result, which we prove in Sectidbn 2.6.1 as an applicaticthe active testing dimension
defined in Section 215, points out that the constraints ire@dsy active testing present real
challenges. Nonetheless, we show that for a number of stiegeproperties we can indeed
perform active testing with substantially fewer queriestheeded for learning or passive testing.

In some cases, we will even provide improved bounds for pagssting in the process as well.

2.1.2 Our Results

We have two types of results. Our first results, on the tel#habf unions of intervals and linear
threshold functions, show that it is indeed possible to pesperties of interest to the learning
community efficiently in the active model. Our next resuttsncerning the testing of disjoint
unions of properties and a new notion of testing dimensiganene the active testing model
from a more abstract point of view. We describe these resumitssome of their applications

below.

Testing Unions of Intervals. The functionf : [0,1] — {0, 1} is aunion ofd intervalsif there

are at most/ non-overlapping interval§/y, u,), .. ., (¢4, uq) such thatf(z) = 1iff ; <z <,

for somei € [d]. The VC dimension of this class 28, so learning a union af intervals requires

at least()(d) queries. By contrast, we show that testing uniong witervals can be done with a
number of label requests thatirslependenof d, for any distributionD:

Theorem 2.4. Testing unions ofl intervals in the active testing model can be done using only
O(1/€%) queries. In the case of the uniform distribution, we furtheed onlyO(+/d/€°) unla-
beled examples.

We note that Theorem 2.4 not only gives the first result faiirigsunions of intervals in the
active testing model, but it also improves on the previous kesults for testing this class in the
membership query and passive models. Previous testersi(dedjueries in the membership
query model and?(\/fl) samples in the passive model, but applied only to a relaxdthge

in which only functions that were far from unions ofd’ = d/e intervals had to be rejected
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with high probability [Kearns and Ron, 2000]. Our tester indnagely yields the same query
bound as a function af (active testing withO(+/d) unlabeled examples directly implies passive
testing withO(v/d) labeled examples) but rejects any function thatfiar from unions of?’ = d
intervals. Note also that Kearns and Ron [Kearns and Ron, 208} that2(1/d) samples are
required to test unions af intervals in the passive model, and so our bound on the nuofber
unlabeled examples in Theorém]|2.4 is optimal in termg. of

The proof of Theorerm 214 relies on a newise sensitivitcharacterization of the class of
unions ofd intervals. That is, we show that all unions @fntervals have low noise sensitivity
while all functions that are far from this class have notilgdarger noise sensitivity and intro-
duce a tester that estimates the noise sensitivity of tht iimction. We describe these results

in Sectior 2.0.

Testing Linear Threshold Functions. We next study the problem of testing linear threshold
functions (or LTFs), namely the class of boolean functignsk” — {0, 1} of the form f(z) =
sgn(wyxy + -+ - + wpx, — 0) Wherew, ..., w,, 0 € R. LTFs can be tested witf(1) queries in
the membership query model [Matulef, O’Donnell, Rubinfeddd Servedia, 2009]. While we
show this is not possible in the active testing model, we ttwless show we can substantially
improve over the number of label requests neededdaming In particular, learning LTFs
requiresO(n) labeled examples, even over the Gaussian distributiongL.€895]. We show
that the query and sample complexity testingLTFs is significantly better:
Theorem 2.5. We can efficiently test LTFs under the Gaussian distributiith O(1/n) labeled
examples in both active and passive testing models. Furtber, we have lower bounds of
Q(n'/3) andQ(y/n) on the number of labels needed for active and passive testimgctively.
The proof of the upper bound in the theorem relies on a red¢erecterization of LTFs by the
Hermite weight distribution of the function [Matulef, O’Daell, Rubinfeld, and Servedio, 2009]
as well as a new concentration of measure result for U-8tatisThe proof of the lower bound

involves analyzing the distance between the label didiobwf an LTF formed by a Gaussian
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weight vector and the label distribution of a random noiseefion. See Sectidn 2.3 for details.

Testing Disjoint Unions of Testable Properties.Given a collection of propertieB;, a natural
way to combine them is via their disjoint union. E.g., pehapr data falls intaV well-separated
regions, and while we suspect our data overall may not bariyseparable, we believe it may
be linearly separable (by a different separator) in eaclonegNVe show that if each individual
propertyP; is testable (in this cas®, is the LTF property) then their disjoint unidnis testable
as well, with only a very small increase in the total numbegwéries. It is worth noting that this
property doesiot hold for passive testing. We present this result in Secfidnahd use it inside

our testers for semi-supervised learning properties dissi below.

Testing Semi-Supervised Learning Assumptions.Two common assumptions considered in
semi-supervised learning [Chapelle, Schlkopf, and|Zie®62@nd active learning [Dasgupta,
2011] are (a) if data happens to cluster then points in thesdmster should have the same label,
and (b) there should be some large margiof separation between the positive and negative
region (but without assuming the target is necessarily @alirthreshold function). Here, we
show that for both properties, active testing can be donle @itl) label requests, even though
these classes contain functions of high complexity so Iegr(even semi-supervised or active)
requires substantially more labeled examples. Our refoitthe margin assumption use the
cluster tester as a subroutine, along with analysis of amogpiate weighted graph defined over
the data. We present our results in Secfion 2.4 but for sgasons, defer analysis to Appendix
2.11.

General Testing DimensionsWe develop a general notion of tiesting dimensionf a given

property with respect to a given distribution. We do this bath passive and active testing
models. We show these dimensions characterize (up to edriatdors) the intrinsic number of
label requests needed to test the given property with régpéte given distribution in the corre-

sponding model. For the case of active testing we also peavi&lmpler notion that characterizes
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whether testing wittD(1) label requests is possible. We present the dimension defisiand
analysis in Section 2.5.

The lower bounds in this paper are given by proving lower loislon these dimension quan-
tities. In Sectior 2.5]1, we prove (as mentioned above)ftirathe class of dictator functions,
active testing cannot be done with fewer queries than thebeuwf examples needed for learn-
ing, even for the problem of distinguishing dictator funais from truly random functions. This
result additionally implies that any class that contairgator functions (and is not so large as
to contain almost all functions) requir€glog n) queries to test in the active model, including
decision trees, functions of low Fourier degree, juntasFBNtc. In Section 2.5.2, we complete
the proofs of the lower bounds in Theorém]2.5 on the numbeuefigs required to test linear

threshold functions.

2.2 Testing Unions of Intervals

In this section, we prove Theordm P.4 that we can test unibdsrdervals in the active testing
model using onlyO(1/¢?) label requests, and furthermore, over the uniform distidio using
only O(v/d/€®) unlabeled samples. We begin with the case that the undgrtjistribution is
uniform over|0, 1], and afterwards show how to generalize to arbitrary digtidims. Our tester
exploits the fact that unions of intervals havease sensitivitgharacterization.

Definition 2.6. Fix § > 0. Thelocal §-noise sensitivityof the functionf : [0,1] — {0,1} at
x € [0,1] isNSs(f, x) = Pry.[f(x) # f(y)], wherey ~; x represents a draw af uniform in
(x — 0,2+ 6) N[0, 1]. Thenoise sensitivityof f is

NSs(f) = Pr [f(x) # f(y)]

T,Y~s5T

or, equivalentlyNS;(f) = E,NSs(f, x).

A simple argument shows that unionscintervals have (relatively) low noise sensitivity:
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Proposition 2.7. Fix § > 0 and letf : [0,1] — {0, 1} be a union ofl intervals. ThemNS;(f) <
dé.

Proof sketch.Draw x € [0, 1] uniformly at random ang ~s x. The inequalityf(z) # f(y) can
only hold when a boundarly € [0, 1] of one of thed intervals inf lies in between: andy. For
any pointb € [0, 1], the probability that: < b < y ory < b < 2 is at mostZ, and there are at

most2d boundaries of intervals iffi, so the proposition follows from the union bound. [

Interestingly, the converse of the proposition statemerapproximately true: fo§ small
enough, every function that has noise sensitivity not maegdr thand) is close to being a
union ofd intervals. (Full proof in Appendik 217).

Lemma 2.8. Fix § = % Letf : [0,1] — {0, 1} be a function with noise sensitivity bounded by

NS;s(f) < ddé(1+ ). Thenf is e-close to a union ofl intervals.

Proof outline. The proof proceeds in two steps. First, we construct a fangti: [0, 1] — {0,1}
thatis$-close tof and is a union of at mosk(1 + {) intervals. We then show that— and every
other function that is a union of at ma#tl + {) intervals —is5-close to a union ofl intervals.

To construct the function, we consider the “smoothed” functigi : [0, 1] — [0, 1] obtained
by taking the convolution off and a uniform kernel of widtt2é. We definer to be some
appropriately small parameter. Whéy{z) < 7, then this means that nearly all the points in the
d-neighborhood of: have the valu@ in f, so we sey(z) = 0. Similarly, whenfs(z) > 1 — T,
then we sey(x) = 1. (This procedure removes any “local noise” that might besengin f.)
This leaves all the points wherer < fs(x) < 1 — 7. Let us call these pointsndefined For
each such point we take the largest value< x that is defined and setz) = g(y).

The key technical part of the proof involves showing that¢bastruction described above
yields a functiony that ise-close tof and that is a union of(1 + {) intervals. This is done with
standard tools from function analysis and probability tiye®ue to space constraints, we defer

the details to Appendix 2.7. O
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The noise sensitivity characterization of unions of inéds\obtained by Proposition 2.7 and
Lemma 2.8 suggest a natural approach for building a testsigd an algorithm that estimates
the noise sensitivity of the input function and acceptshif thoise sensitivity is small enough.

This is indeed what we do:

UNION OF INTERVALS TESTER f, d, €)
62

3570 T = O(e73).

1. Forrounds =1,...,r,

Parametersy =

1.1 Drawz € [0, 1] uniformly at random.

1.2 Draw samples until we obtaine (z — 6,z + 9).

1.3 SetZ; = 1[f(x) # f(y)].

2. Acceptiff 137, < do(1+ £).

The algorithm make8r = O(¢~3) queries to the function. Since a draw in Step 1.2 is in the
desired range with probabilityd, the number of samples drawn by the algorithm is a random
variable with very tight concentration aroun@l + =) = O(d/¢”). The draw in Step 1.2 also
corresponds to choosing~; x. As a result, the probability that(x) # f(y) in a given round is
exactlyNS;(f), and the averagé )" Z; is an unbiased estimate of the noise sensitivity .oBy
Propositio 2.7, Lemma 2.8, and Chernoff bounds, the alyortherefore errs with probability

less thart provided that > ¢ - 1/dde = ¢ - 32/¢* for some suitably large constant

Improved unlabeled sample complexity: Notice that by changing Steps 1.1-1.2 slightly to
pick the first pair(z, y) such thaix — y| < J, we immediately improve the unlabeled sample
complexity toO(+/d/€®) without affecting the analysis. In particular, this progealis equivalent
to pickingz € [0,1] theny ~s =1 As a result, up tgoly(1/¢) terms, we also improve over
the passive testingpounds of Kearns and Ron [Kearns and |Ron, 2000] which are abje@n

distinguish the case thdtis a union ofd intervals from the case thgtis e-far from being a

4Except for events of)(§) probability mass at the boundary.
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union of d/e intervals. (Their results us@(v/d/e'*) examples.) Kearns and Ron [Kearns and
Ron, 2000] show tha®(+/d) examples are necessary for passive testing, so in teroh¢his is

optimal.

Active Tester Over Arbitrary Distributions: We can reduce the problem of testing over general
distributions to that of testing over the uniform distrilout on [0, 1] by using the CDF of the
distributionD. In particular, given point, definep, = Pr,.p[y < z]. So, forz drawn fromD,

Pz 1S uniform in |0, 1]H As a result we can just replace Step 1.2 in the tester with Eagngpntil

we obtainy such thap, € (p, — 6,p, + 6). The only issue is that we do not know thgand

py Values exactly. However, VC-dimension bounds for initidemals on the line imply that if
we sample)(¢~%~2) unlabeled examples, with high probability the estimatesomputed with
respect to the sample (the fraction of points in shenplethat are< ) will be within O(¢36) of

the correcp, values for all points:. This in turn implies that the noise-sensitivity estimades
sufficiently accurate that the procedure works as before.

Putting these results together, we have Thedrein 2.4.

2.3 Testing Linear Threshold Functions

In the last section, we saw how unions of intervals are charnaed by a statistic of the function

— namely, its noise sensitivity — that can be estimated watih ueries and used this to build

our tester. In this section, we follow the same high-levedrapch for testing linear threshold

functions. In this case, however, the statistic we willrastie is not noise sensitivity but rather

the sum of squares of the degree-1 Hermite coefficients dtiiaion.

Definition 2.9. TheHermite polynomialsire a set of polynomialsy(z) = 1, hy(x) = z, ho(z) =

\%(mz —1),...that form a complete orthogonal basis for (square-inte¢ggabfunctionsf : R —

R over the inner product space defined by the inner prodycy) = E.[f(z)g(x)], where
SWe are assuming here that is continuous and has a pdf. I} has point masses, then instead defifie=

Pr,[y < z] andp{ = Pr,[y < z] and selecp,, uniformly in [pZ, p7].
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the expectation is over the standard Gaussian distribufiof®d, 1). For any S € N, define
Hg =[], hs,(z;). TheHermite coefficienbf f : R* — R corresponding toS is f(S) =
(f,Hs) = E;[f(x)Hs(x)] and theHermite decompositioof f is f(z) = > ¢ » f(S)Hs(x).
Thedegreeof the coefficienf (S) is |S| := 31, S..

The connection between linear threshold functions and #meni{e decomposition of func-
tions is revealed by the following key lemma of Matulef et[Matulef, O’Donnell, Rubinfeld,
and Servedio, 2009].

Lemma 2.10(Matulef et al. [Matulef, O’'Donnell, Rubinfeld, and ServedP009]) There is an
explicit continuous functiof” : R — R with bounded derivativgV’||.. < 1 and peak value
W(0) = 2 such that every linear threshold functigh: R — {—1,1} satisfiesy_" , fle)? =
W (E,f). Moreover, every functiop : R" — {—1, 1} that satisfie§> ", g(e;)* — W(E,g)| <
463, is e-close to being a linear threshold function.

In other words, Lemma 2,10 shows tha}, f(e;)? characterizes linear threshold functions.
To test LTFs, it suffices to estimate this value (and the ebgaevalue of the function) with
enough accuracy. Matulef et al. [Matulef, O’'Donnell, Ruleidf and Servedio, 2009] showed
that) . f(el-)2 can be estimated with a number of queries that is indepemderiby queryingf
on pairsz,y € R™ where the marginal distributions anandy are both the standard Gaussian
distribution and wherézx,y) = n for some small (but constant) > 0. Unfortunately, the
same approach does not work in the active testing model sitbehigh probability, all pairs
of samples that we can query have inner producty)| < O(\/Lﬁ). Instead, we rely on the
following result.

Lemma 2.11. For any functionf : R* — R, we haveX ", f(e;)? = E.,[f(2)f(y) (z,v)]

where(z,y) = >, z;y; is the standard vector dot product.

Proof. Applying the Hermite decomposition gfand linearity of expectation,

Eoylf(@)f() (x,)] =D > FS) (D) E[Hs ()| By[Hr(y)y].

i=1 S,TeNn
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By definition,z; = hy(z;) = H,,(x). The orthonormality of the Hermite polynomials therefore

i

guarantees thd, [Hs(z)H,,(z)] = 1[S=¢;]. Similarly, E,[Hr(y)y;] = 1[T =¢;]. O

A natural idea for completing our LTF tester is to simply sénpairsz,y € R” indepen-
dently at random and evaluatingx) f(v) (x,y) on each pair. While this approach does give
an unbiased estimate &f, ,[f(z)f(y) (=, v)], it has poor query efficiency: To get enough accu-
racy, we need to repeat this sampling strat@gy) times. (That is, the query complexity of this
sampling approach is the same as thdeafningLTFs.)

We can improve the query complexity of the sampling strateginstead usindJ-statistics
The U-statistic (of order 2) with symmetric kernel functipn R” x R™ — R is

-1
Ur(zt,...,am) = (“;) 3 gt o).
1<i<j<m
Tight concentration bounds are known for U-statistics wvll-behaved kernel functions. In
particular, by setting/(z,y) = f(z)f(y) (z,y) 1[|{z,y)| < 7] to be an appropriately truncated
kernel for estimatind®[f(z) f(y) (x,y)], we can apply a Bernstein-type inequality due to Ar-
cones [Arcones, 1995] to show th@(y/n) samples are sufficient to estimafe, f(e;)* with

sufficient accuracy. As a result, the following algorithnaisalid tester for LTFs.
LTF TESTER f,¢€)
Parameterst = +/4n log(4n/e3), m = 8007 /e + 32/¢S.

1. Drawz!, 22,. .., 2™ independently at random frofR".

. Queryf(zh), f(z?),..., f(z™).

3. Setii= 13" f(af),

4. Sew = (3) 7 Loy F) fla?) (@, 27) - 1l{a', 27)] < 7).
5. Acceptiff [0 — W (n)| < 26,

N

The algorithm queries the function only on inputs that arendependently drawn at random

from then-dimensional Gaussian distribution. As a result, thisgiestorks in both the active
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and passive testing models. For the complete proof of theecimess of the algorithm, see

Appendix2.8.

2.4 Testing Disjoint Unions of Testable Properties

We now show that active testing has the feature that a disymiion of testable properties is

testable, with a number of queries that is independent o$ittesof the union; this feature does
not hold for passive testing. In addition to providing irfgignto the distinction between the

two models, this fact will be useful in our analysis of sempsrvised learning-based properties
mentioned below and discussed more fully in Appendix|2.11.

Specifically, given propertie®;, ..., Py over domainsXy, ..., Xy, define their disjoint
union P over domainX = {(i,z) : i € [N],z € X;} to be the set of functiong such that
fi,z) = fi(x) for somef; € P;. In addition, for any distributiorD over X, defineD; to be the
conditional distribution oveX; when the first component is If eachP; is testable oveD, then
P is testable oveP with only small overhead in the number of queries:

Theorem 2.12.Given propertiedy, ..., Py, if eachP; is testable oveD; with ¢(¢) queries and
U (e) unlabeled samples, then their disjoint uniBris testable over the combined distributién

with O(q(e/2) - (log® 1)) queries andD(U(e/2) - (£ log® 1)) unlabeled samples.
Proof. See Appendik2]9. O

As a simple example, considg¥ to contain just the constant functiobsndO. In this case,
P is equivalent to what is often called the “cluster assumpgtiased in semi-supervised and
active learningl[Chapelle, Schlkopf, and Zien, 2006, Dasgu@011], that if data lies in some
number of clearly identifiable clusters, then all pointshie same cluster should have the same
label. Here, eact?; individually is easily testable (even passively) wi#i1/¢) labeled samples,
so Theorem 2.12 implies the cluster assumption is testaittepaly (1 /¢) querieg However, it

8Since theP; are so simple in this case, one can actually test with GXly/¢) queries.
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is not hard to see that passive testing withy(1/¢) samples is not possible and in fact requires
Q(v/'N/e) labeled examplés.

We build on this to produce testers for other propertiesaited in semi-supervised learning.
In particular, we prove the following result about testihg margin property (See Appendix2.11
for definitions and analysis).
Theorem 2.13.For any~, v' = v(1 — 1/¢) for constantc > 1, for data in the unit ball in¢ for
constanid, we can distinguish the case tha; has marginy from the case thab; is e-far from

marginy’ using Active Testing wit®(1/(72?¢?)) unlabeled examples art@(1/¢) label requests.

2.5 General Testing Dimensions

The previous sections have discussed upper and lower bdandsvariety of classes. Here,
we define notions ofesting dimensiorfor passive and active testing that characterize (up to
constant factors) the number of labels needed for testisgdoeed, in the corresponding testing
protocols. These will be distribution-specific notion&€liSQ dimension in learning), so let us
fix some distributionD over the instance spacg, and furthermore fix some valualefining our
goal. l.e., our goal is to distinguish the case that,(f, P) = 0 from the caseistp(f, P) > e.

For a given seb of unlabeled points, and a distributianover boolean functions, defing;
to be the distribution over labelings 6finduced byr. That is, fory € {0,1}/* let 75(y) =
Prs..[f(S) = y]. We now use this to define a distance between distributigpecisically, given

a set of unlabeled points and two distributionsr and=’ over boolean functions, define

Ds(m, ) = (1/2) Y |7s(y) — 7s(v)l,
ye{0,1}151
’Specifically, suppose region 1 his- 2¢ probability mass withy; € Py, and suppose the other regions equally
share the remaininge probability mass and either (a) are each pure but randonf dP) or (b) are each 50/50
(so f is e-far from P). Distinguishing these cases requires seeing at least tiwspwith the same indek # 1,

yielding theQ(v/N /¢) bound.
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to be the variation distance betweerand n’ induced byS. Finally, letIl, be the set of all
distributions over functions inP, and let sefl. be the set of all distributions’ in which a

1 — o(1) probability mass is over functions at leadtar from P. We are now ready to formulate
our notions of dimension.

Definition 2.14. Define the passive testing dimensidp..;.., as the largesy € N such that,

sup sup Pr (Dg(m,7') > 1/4) < 1/4.
wellg n’ elle S~D1

That is, there exist distributionsand~’ such that a random sétof d,,,ss.. €xamples has a
reasonable probability (at lea®t4) of having the property that one cannot reliably distinbuis
a random function fromr versus a random function fromi from just the labels of. From the
definition it is fairly immediate thaf2(d,.ssive) €Xamples ar@ecessaryor passive testing; in
fact, O(d,q.ssive) @re sufficient as well.

Theorem 2.15. The sample complexity of passive testin®(g,ssivc)-
Proof. See Appendik2.10. O

For the case of active testing, there are two complicatibnist, the algorithms can examine
their entirepoly(n)-sized unlabeled sample before deciding which points toygaad secondly
they may in principle determine the next query based on thgomrses to the previous ones (even
though all our algorithmic results do not require this feaju If we merely want to distinguish
those properties that are actively testable witfi) queries from those that are not, then the
second complication disappears and the first is simplifiededis and the following coarse notion
of dimension sulffices.

Definition 2.16. Define the coarse active testing dimensiéf....., as the largest; € N such
that,

sup sup Pr (Dg(m, @) > 1/4) <1/n%.
melly 7/ €ll S~D4

Theorem 2.17.1f d...rse = O(1) the active testing oP can be done witlD (1) queries, and if

deoarse = w(1) then it cannot.

27



Proof. See Appendik2.10. O

To achieve a more fine-grained characterization of actstng we consider a slightly more
involved quantity, as follows. First, recall that given amabeled samplé& and distributionr
over functions, we defing; as the induced distribution over labelingslaf We can view this as
a distribution oveunlabeledexamples in{0, 1}!Y!. Now, given two distributions over functions
m, 7', defineFair(7, 7/, U) to be the distribution ovelabeledexamplesy, ¢) defined as: with
probability 1/2 choosey ~ m, ¢ = 1 and with probabilityl /2 choosey ~ 7, ¢ = 0. Thus, for
a given unlabeled samplg, the setdl, andIl. define aclassof fair distributions over labeled
examples. The active testing dimension, roughly, asks heilthis class can be approximated
by the class of low-depth decision trees. SpecificallyDi&}, denote the class of decision trees
of depth at mosk. The active testing dimension for a given numheof allowed unlabeled

examples is as follows:

Definition 2.18. Given a number, = poly(n) of allowed unlabeled examples, we define the

active testing dimensiod,,.;,.(u), as the largest € N such that

sup sup Pr (err”(DT,, Fair(m, 7', U)) < 1/4) < 1/4,

mwellg n’ elle U~D

whereerr*(H, P) is the error of the optimal function i/ with respect to data drawn from

distribution P over labeled examples.

Theorem 2.19. Active testing with failure probabilit% usingu unlabeled examples requires
Q(dgerive(w)) label queries, and furthermore can be done witw) unlabeled examples and

O(dyerive(u)) label queries.

Proof. See Appendik2.10. O

We now use these notions of dimension to prove lower bounde$ting several properties.
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2.5.1 Application: Dictator functions

We now prove Theorein 2.3 that active testing of dictatosbier the uniform distribution re-
quires2(log n) queries by proving &(log n) lower bound oni,;,..(u) for anyu = poly(n); in
fact, this result holds even for the specific choicerods random noise (the uniform distribution

over all functions).

Proof of Theorerh 213Definer andr’ to be uniform distributions over the dictator functions and
over all boolean functions, respectively. In particutars the distribution obtained by choosing
i € [n] uniformly at random and returning the functign {0,1}" — {0, 1} defined byf(z) =

x;. Fix S to be a set ofy vectors in{0, 1}". This set can be viewed asjax n boolean-valued
matrix. We writec,(S), ..., c,(S) to represent the columns of this matrix. For ang {0, 1}9,

i) s ai(S) = v}

n

ms(y) and  mg(y) =277

By Lemmal2.21, to prove that,.... > 3logn, it suffices to show that whea < $logn
andU is a set ofn® vectors chosen uniformly and independently at random ffém }", then
with probability at Ieast%, every setS C U of size|S| = ¢ and everyy € {0,1}9 satisfy
ms(y) < §2*‘1. (This is like a stronger version @f,.,sc whereDg (7, 7’) is replaced with arl.,
distance.)

Consider a sef of ¢ vectors chosen uniformly and independently at random ffém }.

For any vectory € {0, 1}, the expected number of columns ®fthat are equal tg is n271.

Since the columns are drawn independently at random, Cldroofids imply that
Pr [ms(y) > 8279] < e (Bn2 /3 < o~Hpm2

By the union bound, the probability that there exists a vegtar {0, 1}9 such that more than

—q

§n2“1 columns ofS are equal tay is at most2¢e~ "2, Furthermore, whe® is defined as
above, we can apply the union bound once again over all suSsetU of size|S| = ¢ to obtain

Pr[3S,y : ms(y) > 22*‘1] < ne.20. 72 Wheng < %log n, this probability is bounded
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c 1 1 . . .
above byeilog2 ntzlogn—z5vn which is less tharﬁ whenn is large enough, as we wanted to

show. O

2.5.2 Application: LTFs

The testing dimension also lets us prove the lower bound$eoiieni 2.6 regarding the query
complexity for testing linear threshold functions. Spesgifiy, those bounds follow directly from

the following result.

Theorem 2.20.For linear threshold functions under the standaredimensional Gaussian dis-

tribution, dpassive = Q(y/n/ log(n)) andd,esive = Q2((n/ log(n))Y/?).

Let us give a brief overview of the strategies used to obtaénd}, s, andd,.... boOUNds.
The complete proofs for both results, as well as a simplesft@at ... = Q((n/logn)'/?),
can be found in Appendix 2.10.4.

For both results, we setto be a distribution over LTFs obtained by choosing- N (0, 1,,«,,)
and outputtingf (z) = sgn(w - x). Setr’ to be the uniform distribution over all functions—i.e.,
foranyx € R”, the value off (z) is uniformly drawn from{0, 1} and is independent of the value
of f on other inputs.

To boundd,,.ssive, We bound the total variation distance between the digtdbwof X w//n
given X, and the standard normal’ (0, I,,,,). If this distance is small, then so must be the
distance between the distributionsgi (X w) and the uniform distribution over label sequences.

Our strategy for boundind,,..;... is very similar to the one we used to prove the lower bound
on the query complexity for testing dictator functions i tlast section. Again, we want to
apply Lemmd 2.21. Specifically, we want to show that whesi o((n/log(n))*/?) andU is a
set ofn® vectors drawn independently from thedimensional standard Gaussian distribution,
then with probability at leas}, every setS C U of size|S| = ¢ and almost all: € R?, we have
ms(z) < 2279, The difference between this case and the lower bound featdicfunctions is

that we now rely on strong concentration bounds on the sppaatf random matrices [Vershynin,
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2012] to obtain the desired inequality.

2.6 Proof of a Property Testing Lemma

The following lemma is a generalization of a lemma that iselydised for proving lower bounds
in property testing [Fischer, 2001, Lem. 8.3]. We use thisrtea to prove the lower bounds on
the query complexity for testing dictator functions anditeslinear threshold functions.
Lemma 2.21. Let  and 7’ be two distributions on function§ — R. Fix U C X to be a set
of allowable queries. Suppose that for asiyC U, |S| = ¢, there is a setf’s C R? (possibly

empty) satisfyings(Es) < 1277 such that

ms(y) < £ms(y) foreveryy € R?\ Es.
Thenerr*(DT,, Fair(w, n',U)) > 1/4.

Proof. Consider any decision tred of depthg. Each internal node of the tree consists of a
queryy € U and a subsef’ C R such that its children are labeled yandR \ T', respectively.
The leaves of the tree are labeled with either “accept” gett, and letL be the set of leaves
labeled as accept. Each ldaf L corresponds to a s€f C U? of queries and a subsét C R,
wheref : X — R leads to the leaf iff f(S,) € T,. The probability thatd (correctly) accepts

an input drawn fromr is
m:z/m@w
ter VTt

Similarly, the probability that4 (incorrectly) accepts an input drawn frorhis

4= /Te s, (y)dy.

lel

The difference between the two rejection probabilitiesaarded above by

Z / TS, (y>dy
TZHESZ

a; — as < Z/ s, (y) — ﬂ-fgg(y)dy +
Ti\Es, el

el
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The conditions in the statement of the lemma then imply that
CL1—CL2<Z/ —7T5£ dy+62/ ’iTSZ S%
leL

To complete the proof, we note thdterrs on an input drawn frofifair (7, 7', U) with probability

(1 —ay) + 30 = 3 — 3(a1 — az) > 3. O

2.7 Proofs for Testing Unions of Intervals

In this section we complete the proofs of the technical tesnlSection 2.12.

Proposition[2.7 (Restated) Fix § > 0 and letf : [0,1] — {0, 1} be a union off intervals. Then
NSs(f) < dé.

Proof. For any fixedb € [0, 1], the probability thatr < b < y whenxz ~ U(0,1) andy ~
Uz — 0,2+ 0)is

5
Priz <b<y] = / Pr bjdt = / —dt
2.y 0 y~U(b—t—6,b—t+6

Similarly, Pr, [y < b < z] = % So the probability thai lies betweern: andy is at mostg.
When f is the union ofd intervals, f(x) # f(y) only if at least one of the boundaries

b1, ..., by Of the intervals off lies in between: andy. So by the union bound®r[f(z) #

f(y)] < 2d(6/2) = db. Note that ifb is within distance) of 0 or 1, the probability is only

lower. O

Lemmal2.8§(Restated)Fix § = 55;. Letf : [0, 1] — {0, 1} be any function with noise sensitivity

2d

NS;s(f) < ddé(1+ §). Thenf is e-close to a union of intervals.

Proof. The proof proceeds in two steps: We first show thad $-close to a union of(1 + 5)

intervals, then we show that every unionddt + ¢ ) intervals is5-close to a union of intervals.
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Consider the “smoothed” functiofy : [0, 1] — [0, 1] defined by

1 T+

fo(x) = EByesuf(y) = %/ f(y)dy.

The function f; is the convolution off and the uniform kernep : R — [0, 1] defined by
o(x) = %1[l2] < o).
Fix 7 = 2NS;(f). We introduce the functiop* : [0, 1] — {0, 1, } by setting

(
1 whenfs(z) >1—r,

9"(x) =90 whenfs(z) <7, and

* otherwise

\
for all = € [0, 1]. Finally, we defing : [0, 1] — {0, 1} by settingg(xz) = ¢*(y) wherey < z is

the largest value for which(y) # . (If no suchy exists, we fixg(x) = 0.)

We first claim thatlist(f, g) < 5. To see this, note that

dist(f,g) = F;r[f@) # g()]

VAN

Prig"(z) = +| + Pr[f(z) = 0 A g"(z) = 1] + Pr[f(z) = 1 A g*(z) = 0]

T x

I:;I‘[T < fs(x) <1l—1]+ I—;r[f(:c) =0A fs(z)>1—1] —|—P;r[f(x) =1A fs(z) <7].

We bound the three terms on the RHS individually. For the frsht we observe th&iS;(f, x) =
min{ fs(z),1 — fs(z)} and thatE,NSs(f, x) = NSs(f). From these identities and Markov’s in-

equality, we have that

Pr[r < fs(x) < 1= 7] = PrNSs(f,2) > 7] < Ngim = ;1

For the second term, Iét C [0, 1] denote the set of pointswheref(z) = 0 and fs(z) > 1 — 7.
LetI' C S represent d@-net of S. Clearly,|I'| < ;. Forz € I, let B, = (z — 6,2+ §) be a
ball of radiusy aroundz. Sincefs(z) > 1 — 7, the intersection of and B, has mass at most

|S N B,| < 76. Therefore, the total mass 6fis at most S| < |I'|7d = 7. By the bounds on the
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noise sensitivity off in the lemma’s statement, we therefore have

Prif(x) =0A fs(z) >1—7] <7<

xT

oo|m

Similarly, we obtain the same bound on the third term. As altegist(f,g) < §+ 5 +

colm
[\elfe)}

as we wanted to show.

We now want to show thatis a union ofm < dé(1 + §) intervals. Each left boundary of an
interval ing occurs at a point: € [0, 1] whereg*(xz) = %, where the maximung < z such that
g*(y) # « takes the valug*(y) = 0, and where the minimum > z such thaty*(z) # * has
the valueg*(z) = 1. In other words, for each left boundary of an intervalirthere exists an
interval (y, z) such thatfs(y) < 7, fs(z) > 1 — 7, and for eacly < = < z, fs(z) € (7,1 — 7).
Fix any interval(y, z). Since fs is the convolution off with a uniform kernel of width2d, it
is Lipschitz continuous (with Lipschitz constagy). So there exists: € (y, z) such that the
conditionsfs(z) = 3,2 —y > 26(3 — 7), andz — z > 26(3 — 7) all hold. As aresult,

[Nsstrnae= [ONssrnacs [Nz 26 - 2
Yy Y

xT

Similarly, for each right boundary of an interval jnwe have an intervaly, z) such that

/Z NSs(f,t)dt > 25(3 — 7)°

Y

The intervalyy, =) for the left and right boundaries are all disjoints, so

2m P
NS;(f) > Z/ NSs(f,t)dt > ng(l —27)%
i=1 7Y

This means that

dé(1+¢€/4) .
m < m <d(1+ 5)

andy is a union of at most(1 + §) intervals, as we wanted to show.

Finally, we want to show that any function that is the uniomoK d(1 + §) intervals is5-

close to a union ofl intervals. Let/y, ..., ¢,, represent the lengths of the intervalgjinClearly,
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ly+ -+ ¢, <1, sothere must be a sétof m — d < de/2 intervals inf with total length

Z€‘<m_d< de/2 €
AR (E A

Consider the functioh : [0, 1] — {0, 1} obtained by removing the intervals ffrom g (i.e.,
by settingh(z) = 0 for the valuest € [by;_1, by;| for somei € S). The functionh is a union
of d intervals anddist(g,h) < 5. This completes the proof, sineést(f,h) < dist(f,g) +
dist(g,h) < e. O

2.8 Proofs for Testing LTFs

We complete the proof that LTFs can be tested with/n) samples in this section.
For a fixed functionf : R" — R, defineg : R* x R* — R to beg(z,y) = f(x)f(y) (z,v).
Letg* : R® x R™ — R be the truncation of defined by setting
f@)f(y) {z,y) i [(z,y)| < /4nlog(4n/e?)

g (z,y) =
0 otherwise.

Our goal is to estimat&g. The following lemma shows thdg* provides a good estimate of

this value.

Lemma 2.22.Letg, g* : R" x R™ — R be defined as above. Thity — Eg*| < %ei".

Proof. For notational clarity, fix- = \/4nlog(4n/e?). By the definition ofg andg* and with

the trivial bound f () f(y) (x,y) | < n we have

[Eg—Eg'| = [Pr [|(z.9)| > 7] - Eop [f@)f(0) (2,90 | 1@}l > 7]| <o Pr[[fa,9)] > 7],

The right-most term can be bounded with a standard Cherrmpifiaent. By Markov's inequality

and the independence of the variablgs. . ., x,,, y1, .. ., Un,

E t<.’£,y> ’I’L E tT;y;
Pr [(x, y) > 7-] — Pr [€t<m,y> > etT] < e : _ T, : e '
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The moment generating function of a standard normal randoiahble isEe™ = ¢°/2, so
Exizyi [etxiyl} = Exl [Eyz etxiyi} — ]Exie(tQ/Q)xiz'

Whenz ~ N(0,1), the random variable? has ay? distribution with 1 degree of freedom. The

moment generating function of this variableBs™™* = /1. = /1 + 2 for anyt < 1.

Hence,
E, /258 < /14 S o
¢ - 1—t2 —

for anyt < 1. Combining the above results and setting - yields

2

ﬁ_t 2
E?IJ. |:<-r7y> > T:| S 62(17752) T S e 4n — Z—n

€3
The same argument shows titaf(z, y) < —7] < £~ as well. O

The reason we consider the truncatigns that its smaller., norm will enable us to apply
a strong Bernstein-type inequality on the concentration @isnre of the U-statistic estimate of
Eg*.
Lemma 2.23(Arcones [Arcones, 1995])For a symmetric functioh : R” x R” — R, letX? =
E.[E,[h(z,y)]?] — Esylh(z,v)]?, letb = ||h — Eh||«, and letU,,(h) be a random variable ob-
tained by drawing'', ... ., ™ independently at random and settibig (h) = () ' 3, h(z?,2%).

Then for every > 0,

Pr[|Un(h) — Eh| > t] < 4 __m
" =P8y 1006 )

We are now ready to complete the proof of the upper bound obEma2.5.
Theorem 2.24(Upper bound in Theorem 2.5, restatetinear threshold functions can be tested
over the standardh-dimensional Gaussian distribution with(y/n logn) queries in both the

active and passive testing models.
Proof. Consider the LTF-EsTERalgorithm. When the estimatgsand? satisfy

i-Efl<e and |7 —E[f(2)f(y) (z,y)]] < €,
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Lemmas 2.0 and 2.111 guarantee that the algorithm corréistiynguishes LTFs from functions
that are far from LTFs. To complete the proof, we must theee&how that the estimates are
within the specified error bounds with probability at le243.

The valuesf(z'),..., f(x™) are independert—1, 1}-valued random variables. By Hoeffd-
ing’s inequality,

Pr(|fi — Ef| < ¥ > 1 —2¢ ™% =1 — 2¢O,

The estimate is a U-statistic with kerne}* as defined above. This kernel satisfies
19" = Eg"llo0 < 2[|g"[loc = 21/ 4nlog(4n/e?)

and
2? <Ey[E[g" (2, 9))?] = By [Eo[f(2) f(y) (w,) 1|(w,9)] < 7))
For any two functionsy,v : R* — R, whenv is {0, 1}-valued the Cauchy-Schwarz in-

equality implies thaff, [¢(x)1(2)]? < E.[¢(2)]|E.[d(2)(x)?] = E.lo(2)]EL[¢(z)y(x)] and
SoE,[¢(x)(z)]? < E.[é(x)]. Applying this inequality to the expression faf gives

S < B, [Elf(2)f(y) 0.y Zf Y)Y | Zfez E,[yiy;] = Z

By Parseval's identity, we havg), f(e;)> < || /12 = ||fl? = 1. Lemmag$2.22 and 2.23 imply
that

mt2

Prl|7 — Bg| < €¥] = Prli — Eg*| < Le¥] > 1 — de sraoovmtontonran > 1.

The union bound completes the proof of correctness. ]

2.9 Proofs for Testing Disjoint Unions

Theorem[2.12(Restated) Given propertiesPy, . . ., Py, if eachP; is testable oveD; with ¢(e)
queries and/(¢) unlabeled samples, then their disjoint unignis testable over the combined

distribution D with O(g(e/2) - (log® 1)) queries and) (U (¢/2) - (¥ log® 1)) unlabeled samples.
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Proof. Let p = (p1,...,pn) denote the mixing weights for distributioR; that is, a random
draw from D can be viewed as selectiindgrom distributionp and then selecting from D;. We
are given that eacf; is testable with failure probability/3 using using;(e) queries and/ (e)
unlabeled samples. By repetition, this implies that eacbsable with failure probability using
gs(€) = O(q(e)log(1/0)) queries and/s(e) = O(U(e€)log(1/6)) unlabeled samples, where we

will set§ = €2. We now test propertf as follows:

Fore' =1/2,1/4,1/8,...,¢/2 do:

Repea(< log(1/e)) times:
1. Choose a randoffi, z) from D.
2. Sample until eithet/;s(¢’) samples have been drawn fram or (8N/e)Us(€’)
samples total have been drawn frdmwhichever comes first.
3. In the former case, run the tester for propeftywith parameter’, making

qs(€') queries. If the tester rejects, then reject.

If all runs have accepted, then accept.

First to analyze the total number of queries and samplese sire can assumge) > 1/ and
U(e) > 1/¢, we haveys(e')e' /e = O(gs(e/2)) andUs(€')e' /e = O(Us(e/2)) for € > ¢/2. Thus,

the total number of queries made is at most

S as(e/2)10g(1/6) = 0 (a(e/2) 1o’ 1 )

and the total number of unlabeled samples is at most

5 S vste/20(1/6) = 0 (U(e/2 Y 10 1.

€/

Next, to analyze correctness, if indegd= P then each call to a tester rejects with probability
at mosts so the overall failure probability is at mogt/¢) log®(1/¢) < 1/3; thus it suffices to

analyze the case thdtstp(f, P) > e.
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If distp(f,P) = etheny_, - unpi-distp,(fi,P;) > 3¢/4. Moreover, for indices such that
pi > €/(4N), with high probability Step 2 draw8;(¢') samples, so we may assume for such
indices the tester foP; is indeed run in Step 3. Ldt= {i : p; > ¢/(4N) anddistp,(fi, P;) >

€/2}. Thus, we have

el

Let I, = {i € I : distp,(f;, Pi) € [€,2€]}. Bucketing the above summation by valués this

way implies that for some valué € {¢/2,¢,2¢,...,1/2}, we have:
Zpi > €/(8¢ log(1/¢)).
i€l

This in turn implies that with probability at lea8t3, the run of the algorithm for this value ef

will find such ani and reject, as desired. m

2.10 Proofs for Testing Dimensions

2.10.1 Passive Testing Dimension (proof of Theoreim 2]15)

Lower bound: By design,d,ssiv. IS @ lower bound on the number of examples needed for
passive testing. In particular,liis (7, 7') < 1/4, and if the target is with probability/2 chosen
from 7 and with probabilityl /2 chosen fronr’, even the Bayes optimal tester will fail to identify
the correct distribution with probability 3=, ;1 min(ms(y), 75(y)) = 5(1 — Dg(m, 7)) >

3/8. The definition ofl,,si,. iIMmplies that there exist € I1y, 7’ € II, such thaPrg(Dg(m, ') <

1/4) > 3/4. Sincen’ has al — o(1) probability mass on functions that ardar from P, this
implies that over random draws Sfand f, the overall failure probability of any tester is at least
(1—0(1))(3/8)(3/4) > 1/4. Thus, at least ... + 1 random labeled examples are required if
we wish to guarantee error at mdgtt. This in turn impliesSQ(d,.ssive) €Xamples are needed to

guarantee error at moS}(B.
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Upper bound: We now argue thab(d,..si..) €xamples arsufficientfor testing as well. Toward
this end, consider the following natural testing game. Tdiveesary chooses a functighsuch
that eitherf € P or distp(f,P) > e. The tester picks a functioA that maps labeled samples
of sizek to accept/reject. That isd is a deterministic passive testing algorithm. The payoff to
the tester is the probability that is correct whert' is chosen iid fromD and labeled by .

If &> dyussive then (by definition ofl,,ss..) We know that for any distribution over f € P
and any distribution” over f that arec-far from P, we havePrg pr(Dg(m, ) > 1/4) > 1/4.
We now need to translate this into a statement about the @dline game. The key fact we can
use is that if the adversary uses distribution+ (1 — )7’ (i.e., with probability« it chooses
from 7 and with probabilityl — « it chooses fromr’), then the Bayes optimal predictor has error

exactly

while
meﬂg ) =1-(1/2) Z|7r5 y)| =1—Dg(m, x'),

so that the Bayes risk is at mastix(a, 1 — a)(1 — Dg(m, 7). Thus, for anyx € [7/16,9/16],

if Dg(m, ") > 1/4, the Bayes risk is less tha®/16)(3/4) = 27/64. Furthermore, any ¢
[7/16,9/16] has Bayes risk at mo§/16. Thus, sincédDg(w, n") > 1/4 with probability > 1/4
(and if Dg(m,7") < 1/4 then the error probability of the Bayes optimal predictor tisrest
1/2), for any mixed strategy of the adversary, the Bayes optimadliptor has risk less than
(1/4)(7/16) + (3/4)(1/2) = 31/64.

Now, applying the minimax theorem we get that for= d,...:.e + 1, there exists a mixed
strategyA for the tester such that for any function chosen by the adwvgrghe probability the
tester is correct is at leasf2 + ~ for a constanty > 0 (namely,1/64). We can now boost the
correctness probability using a constant-factor largeye. Specifically, letn = ¢-(dpassive+1)

for some constant, and consider a sampleof sizem. The tester simply partitions the sample

40



S into ¢ pieces, runsA separatately on each piece, and then takes majority vots. giles us
thatO(d,.ssive) €Xamples are sufficient for testing with any desired constaccess probability

in (1/2,1).

2.10.2 Coarse Active Testing Dimension (proof of Theorem 2.117)

Lower bound: First, we claim that any nonadaptive active testing alatithat uses< d.ouse/c

label requests must use more thé&nhunlabeled examples (and thus no algorithm can succeed
using o(d..qrse) labels). To see this, suppose algoritktrdrawsn® unlabeled examples. The
number of subsets of siz&,.,s./c is at mostndeoerse /6 (for d,pqrsc/c > 3). S0, by definition of
d.oarse @Nd the union bound, with probability at le@st, all such subsetS satisfy the property
thatDs(m, 7') < 1/4. Therefore, for any sequence of such label requests, teéslabserved will

not be sufficient to reliably distinguishfrom #’. Adaptive active testers can potentially choose
their next point to query based on labels observed so fathleuibove immediately implies that

even adaptive active testers cannot use (@ (deoarse)) queries.

Upper bound: For the upper bound, we modify the argument from the passsteng dimension
analysis as follows. We are given that for any distributioover f € P and any distributiornr’
over f that aree-far from P, for k = d,oqrse+1, We havePrg px (Ds(m, 7') > 1/4) > n=*. Thus,
we can sampl& ~ D™ with m = ©(k-n*), and partition into subsamples§,, Ss, . .., S, of
sizek each. With high probability, at least one of these subsasipleill have Dg(m, ') > 1/4.
We can thus simply examine each subsample, identify onethatbh¢(7, 7') > 1/4, and query
the points in that sample. As in the proof for the passive bothis implies that for any strategy
for the adversary in the associated testing game, the ssimee has probability at ledst +

of success for some constant- 0. By the minimax theorem, this implies a testing strategy with
success probability/2 + ~ which can then be boosted2@3. The total number of label requests
used in the process is onY(dcoarse )-

Note, however, that this strategy uses a number of unlateachples(ndeoes*1), Thus,
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this only implies an active tester fdr,.... = O(1). Nonetheless, combining the upper and lower

bounds yields Theorem 2117.

2.10.3 Active Testing Dimension (proof of Theorerh 2.19)

Lower bound: for a given sampld/, we can think of an adaptive active tester as a decision
tree, defined based on which example it would request thé ddilmext given that the previous
requests have been answered in any given way. A tester makjogries would yield a decision
tree of depthk. By definition ofd,..;..(u), with probability at leas8/4 (over choice ofV), any
such tester has error probability at leést4)(1 — o(1)) over the choice of. Thus, the overall

failure probability is at least3/4)(1/4)(1 — o(1) > 1/8.

Upper bound: We again consider the natural testing game. We are giverfahainy mixed
strategy of the adversary with equal probability mass owrtions in? and functions:-far from

P, the best response of the tester has expected payoff at1¢d$t3/4) + (3/4)(1/2) = 9/16.
This in turn implies that for any mixed strategy at all, thetxe@sponse of the tester has expected
payoff at leasB33/64 (if the adversary puts more thdr/32 probability mass on either type
of function, the tester can just guess that type with exgepsgoff at least7/32, else it gets
payoff at leas{1 — 1/16)(9/16) > 33/64). By the minimax theorem, this implies existence of
a randomized strategy for the tester with at least this gayd® then boost correctness using
¢ -u samples and - d,.;,.(u) queries, running the testetimes on disjoint samples and taking

majority vote.

2.10.4 Lower Bounds for Testing LTFs (proof of Theorem 2.20)

We complete the proofs for the lower bounds on the query cexitglfor testing linear threshold
functions in the active and passive models. This proof hastparts. First, in Secti¢n 2.1D.4, we
introduce some preliminary (technical) results that wdlused to prove the lower bounds on the

passive and coarse dimensions of testing LTFs. In Selctidh42.we introduce some more pre-

42



liminary results regarding random matrices that we will tssbound the active dimension of the

class. Finally, in Section 2.10.4, we put it all together anthplete the proof of Theorem 2120.

Preliminaries for d,ssive aNd deoarse

Fix any K. Let the dataseX = {zy,x9, -+, x5} be sampled iid according to the uniform
distribution on{—1, +1}" and letX € RX*" be the corresponding data matrix.
Supposewv ~ N(0, I,,x,). We let
z = XWw,
and note that the conditional distributionofiven X is normal with meai® and (X -dependent)

covariance matrix, which we denote by Further applying threshold function togivesy as

the predicted label vector of an LTF.

Lemma 2.25. For any matrixB, log(det(B)) = Tr(log(B)), wherelog(B) is the matrix expo-

nential of B.

Proof. From [Higham/ 2008], we know since every eigenvaluedoforresponds to the eigen-

value ofexp(A), thus
det(exp(A)) = exp(Tr(A)) (2.1)
whereexp(A) is the matrix exponential ofl. Taking logarithm of both sides df (2.1), we get
log(det(exp(A))) = Tr(A) (2.2)
Let B = exp(A) (thusA = log(B)). Then [2.2) can rewritten dsg(det(B)) = Tr(log B). O

Lemma 2.26. For sufficiently largen, and a valueK = Q(+/n/log(K/¢)), with probability at

leastl — § (over X),

1P ymyx — N, I)|| < 1/4.
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Proof. Let! be the feature index. For a pair andx;,
n nlog%
Pl s 2 =2}l = 5| > /=522 <0
By Hoeffding Inequality, with probability — 9,

x{x; = Hl:za=xp}| = [{l:aq # 3}

1 1
= 2{l:xy =24} —ne€ {_2\/71 0g5 \/n Ogé‘
By union bound,

2 2
P <E|i,j, such thaixij ¢ [—\/Qn log %, \/Zn log 2? ]) < K? ;2 =4 (2.3)

For the remainder of the proof we suppose the (probahilitys) event

Vi, j, X1 x; € [—\/inog(QKz/é), V/2n log(2K2/6)} occurs.

Cov(z/v/m, 2/ X) = E[nﬂ
= %E (Zwl.xﬂ)(zwl.%l”X]
1 [ nn

= —-E E W Wi Tig T i | X

Ll,m=1,1

1 1
= EE E wfl'iﬂjl’X] ZEE El:xilxj”X]
2log(2K2/6 2log(2K?2%/6
= —Zl'zll‘]l X;‘FXjE[—\/ og(n /)7\/ og(n /)‘

becaus&[w;w,,] = 0 (for I # m) andE[w?] = 1. Let § = 1/ 2%8C0 Thysyisak x K

matrix, withy;; = 1fori=1,--- , K and¥;; € [/, ] forall i # j.
Let P, = N(0,X5*E) and P, = N(0, IK*K). As the density

1 |
pi(z) = D) eXp(—gz ¥ 'z)
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and the density
1 1

pa(z) = W exp(—ngz)

Then L, distance between the two distributioRsand P,

|dP, — dPy| < 2\/K(P1, P,) = 21/(1/2) log det(%),

where this last equality is by [Davis and Dhillon, 2006]. Bynumal[2.25,log(det(X)) =
Tr(log(X)). Write A = ¥ — I. By the Taylor series

log(f—l—A):—Zl([— I+ A)) Z%
Thus Tr(log(I + A)) = i %TT((—A)i). (2.4)

Every entry inA’ can be expressed as a sum of at migét! terms, each of which can
be expressed as a product of exaéthntries fromA. Thus, every entry i’ is in the range
[—K71pY, K'~13%. This meand'r(A") < K'B'. Therefore, ifK3 < 1/2, sinceTr(A) = 0,
the expansion of'r(log({ + A)) < Y o2, K'' =0 <K2w>.

In particular, for somé{ = Q(+/n/log(K/6)), Tr(log(I + A)) is bounded by the appropri-

ate constant to obtain the stated result. O

Preliminaries for d,.sjye

Given ann x m matrix A with real entries{a; ; }ic[n),jcfm)» theadjoint (or transpose- the two are
equivalent sincel contains only real values) of is them x n matrix A* whose(i, j)-th entry
equalsa;;. Let us writeh; > X\, > --- > A, to denote the eigenvalues ofd*A. These values
are thesingular valueof A. The matrixA* A is positive semidefinite, so the singular values of
A are all non-negative. We writ&,,..(A) = A; and\,in(A4) = A, to represent its largest and

smallest singular values. Finally, tirluced normnor operator norm of A is

[Azl> _

IAll = = | Az||>.
2eR™\{0} ||z|l2  zerm:|z|2=1
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For more details on these definitions, see any standard latgabra text (e.g., [Shilov, 1977]).
We will also use the following strong concentration boundstlee singular values of random
matrices.

Lemma 2.27(See [Vershynin, 2012, Cor. 5.35])et A be ann x m matrix whose entries are
independent standard normal random variables. Then fortany0, the singular values oft
satisfy

VI = = £ < Ain(A) € Anan(A) < Vi Vi (2.5)

with probability at leastl — 2¢°/2,

The proof of this lemma follows from Talagrand’s inequalagd Gordon’s Theorem for
Gaussian matrices. See [Vershynin, 2012] for the detailse [Emma implies the following
corollary which we will use in the proof of our theorem.

Corollary 2.28. Let A be ann x m matrix whose entries are independent standard normal

random variables. Forany < ¢ < \/n—/m, them xm matrix + A* A satisfies both inequalities

2
,m(w+t)+2%>

llara—1| < 3\/”_;5“ and  det (1A4°4) > ¢

with probability at leastl — 2¢°/2,

(2.6)

Proof. When there exist§ < 2z < 1 such thatl — 2z < \/Lﬁ)\max(A) < 1+ z, the identity

\/L,ﬁ)\max(A) = H\/LEAH = maXHx” =1 ”fo’|2 |mp|IeS that

1-22<(1—-2)?< max H AxH (14+2)* <1+ 3z
Jali3=1 1l v*
These inequalities and the identity A*A — I = MAax]|y(2—1 | an:H2 — 1imply that—2z <
|£A*A — I|| < 32. Fixing z = */jﬁ*t and applying Lemm&a 2.27 completes the proof of the first
inequality.

Recall that\; < --- < )\, are the eigenvalues af A*A. Then

det(Lara) = FHVAA _ Quee ) (A_)’” _ (M)m

n n n n

46



Lemmd 2.2l and the elementary inequality x < ¢* complete the proof of the second inequal-

ity. ]

Proof of Theorem[2.20

Theorem [2.20 (Restated) For linear threshold functions under the uniform distrilmt on

{—1,1}", dpassive = Q(y/n/ log(n)) andd,csive = ((n/ log(n))/?).

Proof. Let K be as in Lemm& 2.26 fof = 1/4. LetD = {(x1,v1),...,(zk,yx)} denote
the sequence of labeled data points under the random LTH lmese. Furthermore, leD’ =
{(z1,v)), .., (zK,y%)} denote the sequence of labeled data points under a targeidiuthat
assigns an independent random label to each data point. I&tlgp = (1/y/n)w’z;, and let
z' ~ N(0,Igxk). LetE = {(x1,21),...,(vk,2x)} andE’ = {(z1,2}), ..., (vk,2%)}. Note
that we can think of;; andy, as being functions of, andz., respectively. Thus, lettingl =

{z1,..., 2k}, by Lemmd_2.26, with probability at lea%t4,
IPpix —Pox|| < [[Peix — Perx|| < 1/4.

This suffices for the claim that,, ;.. = Q(K) = Q(y/n/log(n)).

Next we turn to the lower bound od,;... Let us now introduce two distributiorB®y.
andD,,, over linear threshold functions and functions that (witgrhprobability) are far from
linear threshold functions, respectively. We draw a fumrctf from Dy by first drawing a
vectorw ~ N(0, I,,«,,) from then-dimensional standard normal distribution. We then define
fro— Sgn(\/iﬁx -w). To draw a functiory from D,,,, we defineg(z) = sgn(y.) where each
y. variable is drawn independently from the standard nornstidution\/ (0, 1).

Let X € R™™? be a random matrix obtained by drawingectors from the:-dimensional
normal distribution\/ (0, I,,,,) and setting these vectors to be the columnX oEquivalently,X
is the random matrix whose entries are independent standanthl variables. When we vieX

as a set ofy queries to a functiorf ~ Dy, or a functiong ~ D,,,, we getf(X) = sgn(\/iﬁXw)
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and g(X) = sgn(yx). Note that =Xw ~ N(0,;X*X) andyx ~ N(0,L;x,). To apply
Lemmal2.21L it suffices to show that the ratio of the pdfs fohkthiese random variables is
bounded by for all but  of the probability mass.

The pdfp : R? — R of ag-dimensional random vector from the distributiaf),(0, %) is

1

p(z) = (27T)_g det(E)_%e_fxTE_lx.

N

Therefore, the ratio function: R? — R between the pdfs o\f}—ﬁXw and ofyx is
r(z) = det(%X*X)_%e%xT((%X*X)il_I)’”.
Note that

! (XX) T = D < |GXX) T = Iy = [15XX = I3,

so by Lemm4& 2,27 with probability at lealst- 2¢~*°/2 we have

q (Vatn? ﬁ+t> NI
3 +2¥ 7= | +3¥ =3
r(xz) < 62( " v Ve

By a union bound, fot/ ~ N (0, I,.»,)", u € N with u > ¢, the above inequality for(z) is true
for all subsets ot/ of sizeq, with probability at least — u92¢*/2. Fix ¢ = n3 /(50(In(u))3)
andt = 2/qIn(u). Thenuf2e=*/2 < 2u4~9, which is< 1/4 for any sufficiently large:. When
|z]|3 < 3q then for largen, r(z) < e™/% < &. To complete the proof, it suffices to show that
whenz ~ N (0, I,4,), the probability thafz||3 > 3¢ is at most27%. The random variablgz||3
has ay? distribution withg degrees of freedom and expected vdlije:||; = > 7 | Ez? = ¢.

Standard concentration bounds fgrvariables imply that

Pr [all} > 3q) < e737 <

271,
x~N(0,1g%xq)

1
5

as we wanted to show. Thus, Lemma 2.21 impte$(DT,, Fair(r, 7', U)) > 1/4 holds when-

ever thisr(z) inequality is satisfied for all subsets bf of sizeq; we have shown this happens

with probabiliity greater thafi/4, so we must havé, ;.. > q. O
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If we are only interested in bounding,,,.., the proof can be somewhat simplified. Specifi-

cally, takingd = n~% in Lemma2.2b implies that with probability at ledst- n=%,
IPpix — Pox|| < [[Peix — Perx|| < 1/4,

which suffices for the claim that.,.,.sc = Q(K), whereK = Q(,/n/K log(n)): in particular,

dcoarse = Q((n/ log(n))l/B)

2.11 Testing Semi-Supervised Learning Assumptions

We now consider testing of common assumptions made in saepeirgised learning [Chapelle,
Schlkopf, and Zien, 2006], where unlabeled data, togetlteragsumptions about how the target
function and data distribution relate, are used to constifee search space. As mentioned in
Section[ 2.4, one such assumption we can test using our gedlisjpint-unions tester is the
cluster assumption, that if data lies v identifiable clusters, then points in the same cluster
should have the same label. We can in fact achieve the folpwighter bounds:

Theorem 2.29.We can test the cluster assumption with active testing usifig/¢) unlabeled

examples and(1/¢) queries.

Proof. Let p;; andp;q denote the probability mass on positive examples and negatamples
respectively in cluster, sop;; + pio is the total probabilty mass of clusterThendist(f, P) =

>, min(p;1, pio). Thus, a simple tester is to draw a random examplédraw a random example
y from z’s cluster, and check if () = f(y). Notice that with probabilityexactlydist(f, P),
pointx is in the minority class of its own cluster, and conditionextlois event, with probability

at leastl /2, pointy will have a different label. It thus suffices to repeat thieqassO(1/e)
times. One complication is that as stated, this processtmigfuire a largainlabeledsample,
especially ifx belongs to a clustersuch thap,, + p;; is small, so that many draws are needed to
find a pointy in z’s cluster. To achieve the givamlabeledsample bound, we initially draw an

unlabeled sample of sizeé(/N/¢) and simply perform the above test on the uniform distributio
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U over that sample, with distance paramet&. Standard sample complexity bounds [Vapnik,
1998] imply thatO(N/¢) unlabeled points are sufficient so thatdifstp(f, P) > e then with
high probability,disty (f, P) > €/2. O

We now consider the property of a function having a large imangth respect to the un-
derlying distribution: that is, the distributio® and targetf are such that any point in the
support of D|;_, is at distancey or more from any point in the support @¥|;—,. This is a
common property assumed in graph-based and nearest-peigfiyte semi-supervised learning
algorithms [Chapelle, Schlkopf, and Zien, 2006]. Note thatave not additionally requiring
the target to be a linear separator or have any special madtform. For scaling, we assume
that points lie in the unit ball in?¢, where we viewd as constant andl/y as our asymptotic
parameteH. Since we are not assuming any specific functional form fortéinget, the number
of labeled examples needed fearning could be as large a(1/4%) by having a distribution
with support over2(1/44) points that are all at distaneefrom each other (and therefore can
be labeled arbitrarily). Furthermore, passive testing ldoaquire(1/v%?) samples as this
specific case encodes the cluster-assumption settingWwith)(1/~v%) clusters. We will be able
to perform active testing using onty(1/¢) label requests.

First, one distinction between this and other propertieshaxe been discussing is that it
is a property of theelation between the target functiofi and the distributionD; i.e., of the
combined distributionD; = (D, f) over labeled examples. As a result, the natural notion of
distanceto this property is in terms of the variation distance/df to the closesD, satisfying

the propert@ Second, we will have to also allow some amount of slack omtparameter as

8Alternatively points could lie in @&-dimensional manifold in some higher-dimensional ambségaice, where the
property is defined with respect to the manifold, and we haffecgent unlabeled data to “unroll” the manifold using
existing methods [Chapelle, Schikopf, and Zien, 2006, Revaad Saul, 2000, Tenenbaum, Silva, and Langford,

2000].
%As a simple example illustrating the issue, consider= [0, 1], a targetf that is negative on0,1/2) and

positive on[1/2, 1], and a distributionD that is uniform but where the regidm/2,1/2 + +] is downweighted to
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well. Specifically, our tester will distinguish the casetthg indeed has margin from the case
that theD; is e-far from having margin/ wherey’ = v(1 — 1/c) for some constant > 1; e.g.,
think of 4/ = ~/2. This slack can also be seen to be necessary (see discushkavirfg the

proof of Theorend 2.13). In particular, we have the following

Theorem[2.13(Restated) For any~, v/ = v(1 — 1/¢) for constantc > 1, for data in the unit
ballin R? for constantl, we can distinguish the case th@ has marginy from the case thab,
is e-far from margin~y’ using Active Testing witth(1/(v??¢?)) unlabeled examples ar@(1/¢)

label requests.

Proof. First, partition the input spac& (the unit ball in R?) into regionsR,, R,, ..., Ry of
diameter at most/(2c). By a standard volume argument, this can be done using O(1/+9)
regions (absorbingc” into the O()). Next, we run the cluster-property tester on th&seegions,
with distance parameter/4. Clearly, if the cluster-tester rejects, then we can rejscivall.
Thus, we may assume below that the total impurity withinvidlial regions is at most/4.

Now, consider the following weighted gragh,. We haveN vertices, one for each of th€
regions. We have an eddg j) between region®; and R, if diam(R; U R;) < ~. We define
the weightw(i, j) of this edge to benin(D[R;]|, D|R;]) where D[R] is the probability mass in
R under distributionD. Notice that if there is no edge between regi®nand R;, then by the
triangle inequality every point ifk; must be at distance at leagtfrom every point ink;. Also,
note that each vertex has degfee?) = O(1), so the total weight over all edges(¥1). Finally,
note that while algorithmically we do not know the edge wesgbrecisely, we can estimate all
edge weights tete/(4M ), whereM = O(N) is the total number of edges, using the unlabeled
sample size bounds given in the Theorem statementwl#tj) denote the estimated weight of
edge(i, j).

Let E,imess b€ the set of edges, j) such that one endpoint is majority positive and one is

have total probability mass only/2™. Such aD; is 1/2"-close to the property under variation distance, but would

be nearlyl /2-far from the property if the only operation allowed were t@ange the functiorf.
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majority negative. Note that iD; satisfies they-margin property, then every edge #),;i,ess
has weight 0. On the other hand [if; is e-far from they/-margin property, then the total weight
of edges iNEymss IS at leasBe/4. The reason is that otherwise one could convertto D’f
satisfying the margin condition by zeroing out the prohgbinass in the lightest endpoint of
every edgdi, j) € Euiness» and then for each vertex, zeroing out the probability magomts

in the minority label of that vertex. (Then, renormalize & total probability 1.) The first step
moves distance at mo3t/4 and the second step moves distance at maisby our assumption
of success of the cluster-tester. Finally, if the true tetight of edges i, ;... IS at leasBe /4
then the sum of their estimated weighii§i, ;) is at leask/2. This implies we can perform our

test as follows. Fo€(1/¢) steps, do:

1. Choose an eddg, j) with probability proportional tao(i, j).

2. Request the label for a randanme R; andy € R;. If the two labels disagree, then reject.

If Dy is e-far from the~’-margin property, then each step has probability~, ;;.ss) /@ (E) =
O(e) of choosing a witness edge, and conditioned on choosingreesstedge has probability at
leastl/2 of detecting a violation. Thus, overall, we can test usiig/¢) labeled examples and

O(1/(v*¥€*)) unlabeled examples. O

On the necessity of slack in testing the margin assumptionConsider an instance spage=
[0, 1]? and two distributions over labeled examples and D,. Distribution D; has probability
massl /2" on positive examples at locatidf, i/2") and negative examples @t’,i/2") for
eachi = 1,2,...,2", fory = ~(1 — 1/2%"). Notice thatD, is 1/2-far from the~-margin
property because there is a matching between points in fheostof D, | ;—; and points in the
support of D, |/~ where the matched points have distance less tha@n the other hand, for
eachi = 1,2,...,2", distributionD, has probability mask/2" at either a positive poir{d, i /2")
or a negative pointy’,i/2"), chosen at random, but zero probability mass at the othatitot

Distribution D, satisfies the-margin property, and ydd, andD, cannot be distinguished using
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a polynomial number of unlabeled examples.

53



Chapter 3

Testing Piecewise Real-Valued Functions

Abstract

This chapter extends the model of the previous chapter tedttimg of testing properties of real-
valued functions. Specifically, it establishes a technigueestingd-piecewise constantness of

a real-valued function.

3.1 Piecewise Constant

For this section, leNS; = NS} = [ NS}(z)dz, whereNS}(z) = & f;f;]l[f(x) # f(y)]dy
Proposition 3.1. Fix 6 > 0 and letf : [0,1] — R be ad-piecewise constant function. Then

NS;(f) < (d—1)3.

Proof. For any fixedb € [0, 1], the probability thatr < b < y whenxz ~ U(0,1) andy ~
Uz — 0,2+ 0)is

5
Priz <b<y]= / Pr bjdt = / —dt
@y 0 yNU(b—t—a,b—t+5

Similarly, Pr, ,[y < b < z] = 2. So the probability thak lies between: andy is at most:.
Whenf is ad-piecewise constant functiofi(x) # f(y) only if at least one of the boundaries

bi,...,bg—1 Of the regions off lie in betweenr andy. So by the union bound®r[f(z) #
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f(y)] < (d—1)(6/2). Note that ifb is within distances of 0 or 1, the probability is only

lower. O

Lemma 3.2. Fix 0 = %. Let f : [0,1] — R be any function with noise sensitiviNS;(f) <

(d—1)%(1+ ). Thenf is e-close to ad-piecewise constant function.

Proof. The proof proceeds in two steps: We first show tha $-close to a1+ (d—1)(1+5))-
piecewise constant function, and then we show that eMery(d —1)(1+ 5 ))-piecewise constant
function is$-close to al-piecewise constant function.

For eacyy € R, consider the functiorf} : [0, 1] — [0, 1] defined by

T+
fi(@) = %/ I[f(t) = y]dt.

z—0
The functionf! is the convolution off¥ = I[f = y] and the uniform kerneb : R — [0, 1]
defined byg(z) = 551[|z| < 4].
Note that for anyr, there is at most one value € R for which f{(z) > 1/2. Fix 7 =
INSs(f). We introduce the functiop® : [0, 1] — R U {*} by setting
argmax,cp fi (r) whensup,p f(z) > 1 -7,

g (r) =
* otherwise

for all = € [0, 1]. Finally, we defingy : [0,1] — {0, 1} by settingg(z) = ¢*(z) wherez < z is
the largest value for which*(z) # *. (If no suchz exists, we leyy(z) = g*(z) for the smallest
valuez > z with g*(z) # «; if that does not exist, then for completeness defifie) = 0

everywhere, though this case will not come up).

We first claim that/ist(f, g) < . To see this, note that

dist(f,g) = I?Er[f(x) # g(z)]
Prly*(x) = #] + Prfe £ 4°(2) # /()

IN

= Prfsup f{(z) <1—7]+Pr[ sup f{(z)>1—r7].
¥ yeR ¥ yeR\{f(2)}
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Becauser < 1/2, at most oney can havefy(x) > 1 — 7, so that bothsup,c, f(z) < 1 —7
andsup, ey (2} f5 (¥) > 1 — 7 imply f{(””)(s) < 1 — 7; thus, since these events are disjoint,

the above sum of probabilities is at most
Pr| g(w)(a:) <1-—r7].

Now observe thalNSs(f,z) = 1 — g‘@)(x) and thatE,NS;s(f,z) = NSs(f). From these

identities and Markov's inequality, we have that

P/ ) < 1) = Pl — {9 (a) > 7] = PalNS, (1) > 7] < o) = &

We now want to show thatis m-piecewise constant, for some < d(1 + 5). Since eaclf;
is the convolution ofl[f = y| with a uniform kernel of widtt24, it is Lipschitz continuous (with
Lipschitz constang;). Also recall that- < 1/2, and at most one valugcan havefy(z) > 1—7
for any givenz. Thus, if we consider any two points z € [0, 1] with x # ¢*(z) # g*(z) # *
andz < z, it must be thatz — z| > 262(3 — 7), and that there is at least one point (z, z)

with sup, g f5 (t) = 1/2. Since eaclf is 5-Lipschitz, so issup,c f5, SO that we have

t+26(3—7) t+25(3—7)
/ 9 (s)ds < / sup f¢(s)ds
t

—25(1-7) t—25(3—7) yeER
26377 1 s 1 3
< ~ 4 2ds = 285(= — 1) (2 — 7).
_2/0 (2—|—25)d3 25(2 7')(2 )
Therefore,
: : £(s) 1 3
NSs(f, s)ds = (1—f57(s))ds > (z —x) — 25(5 — 7')(5 —7)
1 1 3 1 1 1,
> _— —_ —_— _— — —_— —_ — _— .
> 252(2 ) 25(2 7')(2 T) 25(2 T)(2 + 7)) 25(4 7°)

Since anyr with ¢*(z) # * hasg(xz) = g*(x), and sincey is defined to be continuous from
the right on[0, 1], for every transition point: > 0 for g (i.e., a pointz for which there exist

arbitrarily close pointg havingg(z) # g(x)), there is a point < z such that every € (z, z)
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hasg(t) = g*(z) # g*(z) = g(z); combined with the above, we have thatNS,(f, s)ds >

25(% — 72). Altogether, ifg hasm such transition points, then

NS;(f) = /0 NS, (f, 5)ds > m25(%1 -y

By assumptionNS;(f) < (d — 1)$(1 + £). Therefore, we must have

e (d—1)0(1+%)
- 45(}l —72)

1+ ¢ €
mg(d—l)(l—k?.

In particular, this meangis (m + 1)-piecewise constant, foran < (d — 1)(1 + 5).

Finally, we want to show that arfyn+1)-piecewise constant function, for < (d—1)(1+5),
is $-close to ad-piecewise constant function. Lét, ..., ¢, represent the lengths of the
regions ing. Clearly,¢; + - - - 4+ ¢,,41 = 1, so there must be a sétof (m + 1) —d < (d —1)e/2

regions ing with total length

(m+1)—d (d—1)e/2 €
D bi< (m+1) = 1+ (d-1)(1+ %) <3

ics
Consider the functiort : [0,1] — {0, 1} obtained by removing the regions ffrom g (i.e.,

for eachz in a region indexed by € S, settingh(z) = h(z) for z a point in the nearest region
to = that is not indexed by somg € S). The functionh is thend-piecewise constant, and

dist(g, h) < 5. This completes the proof, sindest(f, h) < dist(f, g) + dist(g, h) < e. O

With these results, applying the same technique as usee mntilons of intervals method in

the previous chapter yields a tester fiopiecewise constant functions.
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Chapter 4

Learnability of DNF with

Representation-Specific Queries

Abstract

HWe study the problem of PAC learning the space of DNF funstiwith a type of query specific

to the representation of the target DNF. Specifically, giagmair of positive examples from a
polynomial-sized sample, our query asks whether the twoneies satisfy a term in common in

the target DNF. We show that a number of interesting spegiald of DNF targets are efficiently

properly learnable with this type of query, though the gahproblem of learning an arbitrary

DNF target under an arbitrary distribution is no easier timahe traditional PAC model. Specif-

ically, we find that 2-term DNF are efficiently properly lealbie under arbitrary distributions, as
are disjoint DNF. We further study the special case of leayninder the uniform distribution,

and find that several other general families of DNF functiares efficiently properly learnable

with these queries, including functions wif(log(n)) relevant variables, and monotone DNF
functions for which each variable appears in at n@@8bvg(n)) terms.

We also study a variety of generalizations of this type ofrgué&or instance, consider in-

1Joint work with Avrim Blum and Jaime Carbonell.
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stead the ability to ask how many terms a pair of examplesfgati common, where the exam-
ples are again taken from a polynomial-sized sample. Indase, we can efficiently properly
learn several more general classes of DNF, including DNniga® (log(n)) terms, DNF having
O(log(n)) relevant variables, DNF for which each example can satisfp@stO(1) terms, all
under arbitrary distributions. Other possible generéibre of the query include allowing the
algorithm to ask the query for an arbitrary number of examfiem the sample at once (rather
than just two), or allowing the algorithm to ask the querydaamples of its own construction;
we show that both of these generalizations allow for effigieaper learnability of arbitrary DNF

functions under arbitrary distributions.

4.1 Introduction

Consider a bank aiming to use machine learning to identiffamees of financial fraud. To

do so, the bank would have experts label past transactiofrawdulent or not, and then run a
learning algorithm on the resulting labeled data. Howethes, learning problem might be quite
difficult because of the existence of multiple intrinsicagpof fraud, with each positive example
perhaps involving multiple types. That is, the target migéta DNF formula, a class for which

no efficient algorithms are known.

Yetin such a case, perhaps the experts performing the tegpoatiuld be called on to provide a
bit more information. In particular, suppose that given pesitive examples of fraud, the experts
could indicate whether or not the two examples sirgilar in the sense of having at least one
intrinsic type of fraud (at least one term) in common. Or pgdthe experts could indicatew
similar the examples are (how many terms in common theyfgatiBhis is certainly substantially
more information. Can it be used to learn DNF formulas and thesiural subclasses efficiently?

In our work, we study the problem of learning DNF formulas atder function classes
using such pairwise, representation-dependent querjgecifally, we consider queries of the

form, “Do these two positive examples satisfy at least one i@ common in the target DNF
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formula?” (we call thesboolean similarity queriésand “How many terms in common do these

two positive examples satisfy?” (we call theseamerical similarity queries

4.1.1 Our Results

We begin with a somewhat surprising negative result, treahieag general DNF formulas under
arbitrary distributions from boolean similarity querissais hard as PAC-learning DNF formulas
without them. This result uses the equivalence betweenpgkearning, weak learning, and
strong learning. In contrast, learning disjoint DNF (a sléisat contains decision trees) with
such queries is quite easy. We in addition show that it heips number of other important
cases, including properly learning “parsimonious” DNFnfiotas (formulas for which no term
can be deleted without appreciably changing the functisnyell as any 2-term DNF, a class
known to be NP-Hard to properly learn from labeled data alone

Under the uniform distribution, we can properly learn anyfidrmula for which each vari-
able appears i) (log(n)) terms, as well as any DNF formula wit(log(n)) relevant variables.

If we are allowed to ask numerical similarity queries, them show we can properly learn
any DNF formula having)(log(n)) terms, under arbitrary distributions, or any DNF formula
havingO(log(n)) relevant variables, again under arbitrary distributidha/e are allowed to ask
“Do thesek examples satisfy any term in common?” for arbitrary (paked) k£, we can even
properly learn arbitrary DNF formulas under arbitrary dizitions.

This topic of learning with representation-specific queri® interesting, even beyond the

DNF case, and we have explored a variety of other learningl@nas of this type as well.

4.2 Learning DNF with General Queries: Hardness Results

Theorem 4.1.Learning DNF from random data under arbitrary distributiongth boolean sim-

ilarity queries is as hard as learning DNF from random data andrbitrary distributions with
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only the labels (no queries).

Proof. [Kearns| 1989] and [Kearns, Li, and Valiant, 1994] proveat tigroup learning” is equiv-
alent to “weak learning”.

In group learning, at each round we are giyeity(n) examples that are either all iid from
D+ or all iid from D— (i.e. all positive or all negative) and our goal is to figurd @dnich
case it is. Later, of course, Schapire [Schapire, 1990]qutdlkiat weak-learning is equivalent to
strong-learning. So, if DNF is hard to PAC-learn, then DNH$®dard to group-learn.

Now, consider the following reduction from group-learniDiF in the standard model to
learning DNF in the extended queries model. In particularemyan algorithmA for learning
from a polynomial number of examples in the extended queniadel, we show how to usé to
group-learn as follows:

Given a setS of m = poly(n) examplesey, xs, ..., z,, (We will usem = tn wheret is the
number of terms in the target), construct a new example Wcprscatenating them together. So
overall we now havexm variables. We present this concatenated exampﬁb\mth label equal
to the label ofS. If A makes a similarity query between two positive exampleszsy, ..., T,
and[x], z}, ..., 2! |, we simply outpuyes(i.e., that they do indeed share a term in common).

We now argue that with high probability, the labels and owponses tod are all fully
consistent with some DNF formula of sizet. In particular, we claim they will be consistent
with a target function that is just the AND et copies of the original target function.

First of all, note that the AND ofn copies of the original target function will produce the
correct labels since by assumption eitheraglle S are positive or allz; € S are negative.
Next, we claim that whp, any two of these concatenated pesékamples will share a term
in common. Specifically, if the original DNF formula hagerms, then for two random positive
examples fronD+ there is probability at least/t that they share a common term. So, the chance
of failure for two concatenated examples is at mast 1/t)™. (Because the only way that two

of these big concatenated examgles z,, ..., z,,] and|[z}, x5, ..., x| can fail to share a term in
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common is ifz; andz fail, z, andz; fail, etc.). Settingn = tn, the probability of failure for
any given query is at most/e”. Applying the union bound over all polynomially-many paifs
positive examples inl’s sample yields that with high probability all our resposisee consistent.
Therefore, by assumptiomd will produce a low-error hypothesis under the distributimrer

concatenated examples, which yields a low-error hypattfesthe group-learning problem.]

We can extend the above result to “approximate numericaétiga that give the correct
answer up td + 7 for some constant > 0 (or evenr > 1/poly(n)).
Theorem 4.2.Learning DNF from random data under arbitrary distributiongth approximate-
numerical-valued queries is as hard as learning DNF from @mddata under arbitrary distri-

butions with only the labels (no queries).

Proof. Assume we have an algorithithat learns to errar/2 given a similarity oracle that tells
us how many terms two examples have in common, up to a muhipte factorr. Specifically, if
C'is the number of terms in common, the oracle returns a valtieinangd(1—7)C, (1+7)C].

Now we do the reduction from group learning as before, fogrhigher-dimensional ex-
amples by concatenating groups, - - - , x,,, all of the same class, but this time with =
2n(t*)(1 + 7/2)?/72. Suppose, for now, that we know for the original DNF formulee ex-
pected number of terms that two that two random positive examples would have in comm
(we discharge this assumption later). In that case, wheriegliby 4 for the similarity between
two positive examples, 2/, we simply answer with the closest integerdo. As before, we
argue that with high probability, our answers are conststeiin a DNF formulag consisting of
justm shifted copies of the original DNF.

Note that for a random pair of the concatenatedl exampleposed of positive sub-examples,
the expected number of terms in commomw i3 ma. Furthermore, the number of terms in com-
mon is a sum ofn independent samples of the original random variable (tleevath meam),
each of which is bounded in the ran@et|. So Hoeffding's inequality implies that with probabil-

ity 1 — 2e~2m7e?(7/2)?/(m(1*)(147/2)*) — | _ 9" (sincea > 1/t), the number of terms in com-
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mon satisfie$C' — ma| < ma(r/2)/(1+47/2), which implies(1 —7/2)C < ma < (1+71/2)C.

Thus, for apoly(n)-sized sample of data points, with high probability, all bétpairs of
positive concatenated examples have the nearest integer twithin these factors of their true
number of terms in common. It therefore suffices to respond’scsimilarity queries with the
nearest integer towa.

Now the only trouble is that we do not know So we just try all positive integerisfrom
1 to mt and then use a validation set to select among the hypothesdsged. That is, we
run A on the constructed data set and respond to all similarityiggievith a single value,
getting back a classifier for these concatenated exampidsthan repeat for each Then we
take O((1/¢) log(mt/J)) additional higher-dimensional samples (with labels) ahdose the
classifier among theset returned classifiers, having the smallest number of mistétkere-on.
At least one of thesent values ofi is the closest integer tow, SO at least one of theset
classifiers is/2-good, and our validation set will identify one whose erat mosk. So we
can use this classifier to identify whether a randarsized group of examples is composed of
all positives or all negatives, with error rate epsilon:,ivee can do group learning.

If the algorithm A only has a “high probability” guarantee sunccess, we can repeat this sev-
eral times with independent data sets, to boost the conf#dinat there will be a good classifier
among those we choose from at the end, and slightly incréessize of the validation set to

compensate for this larger number of classifiers. O

4.3 Learning DNF with General Queries : Positive

4.3.1 Methods
The Neighborhood Method

We refer to the following simple procedure as the “neighlboadhmethod”. Taken = poly(n, 1/¢,log(1/6))

samples. First, among the positive examples, query als gaiith the binary-valued query) to
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construct a graph, in which examples are adjacent if thagfgat term in common. For each
positive example, construct a minimal conjunction comsisvith that example and all of its
neighbors (i.e., the consistent conjunction having largamber of literals in it). Next, discard
any of these conjunctions that make mistakes on any negataples. Then sequentially re-
move any conjunction; such that some other remaining conjunctigrsubsumes it (contains a
subset of the variables). Form a DNF from the remaining amtjons. Produce this resultant
DNF as the output hypothesis.

Lemma 4.3. Suppose the target DNF has-= poly(n) terms. For an appropriatet{dependent)
polynomial sample sizen, the neighborhood method will, with probability at ledst- delta,
produce are-accurate DNF if, for each terrid; in the target DNF having a probability of satis-
faction at least/2t¢, there is at least @ = 1/poly(n, 1/¢) probability that a random example

satisfies tern?; and no other term (we call such an example a “nice seedfigr

Proof. Under these conditionsp = O((1/p)log(t/d) + (t/€)log(1/ed)) samples suffice to
guarantee each; with probability of satisfaction at leasf2t¢ has at least one nice seed, with
probability at least — §/2.

In the second phase, we remove any conjunction inconsistémthe negative examples. The
conjunctions guarnateed by the above argument survivgthrsng due to their minimality, and
the fact that they are learned from a set of examples thaalctare consistent with some term
in the target DNF (due to the nice seed). The final pruning stepch removes any redundancies
in the set of conjunctions, leaves at mbsbnjunctions.

The terms that do not have nice seeds compose atdysdtal probability mass, anad is
large enough so that with probability at least 6/4, at most are/4-fraction of the data satisfy
these terms. Thus, since the result of the neighborhoodadesha DNF formula with at most
t terms, which correctly labels B— ¢/2 fraction of them examples, the standard PAC bounds
imply that with probability at least — 6/4, the resulting DNF has error rate at mes# union

bound over the above events implies this holds with probglait leastl — §. O
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The Common Profile Approach

In the case of numerical queries, we have some additionabfiié in designing a method. In

this context, we refer to the following procedure as the “omwn profiles approach”.

Consider a sample ofi = poly(n, 1/¢,log(1/6)) random labeled examples, and for each
pair of positive examples, y, we request the numbeé¥ (z, y) of terms they satisfy in common;
we additionally requesk’(z, x) for each positive example. For each positive example we
identify the setS of examplesy such that the numerical value &f(z, y) is equal K (z, x). So
these points satisfy at least all the termsatisfies. For each such sgtwe learn a minimal
conjunction consistent with these examples. Then for ehthese conjunctions, if it is a spe-
cialization of some other one of the conjunctions, we digéar Then we form our hypothesis

DNF with the remaining conjunctions as the terms.

For any example, relative to a particular target DNF, we refer to the “préfdé x as the set

of termsT; in the target DNF satisfied by.

Lemma 4.4. If the target DNF has at most = poly(n) possibel profiles, then the common
profile approach, with an appropriate{dependent) sample size will with probability at least

1 — ¢, produce a DNF having error rate at most

Proof. Note that this procedure produces a DNF that correctly tatyed entire data set, since
K(x,y) = K(z,z) impliesz andy have the same profiles, so that in particular thesdeds some
term in common to all the examples. If there are onlyody(n) number of possible profiles,
then the above will only produce at most as many distinct $amits hypothesis DNF, so that a
sufficiently largepoly (n)-sized data set will be sufficient to guarantee good gerzatédin error.
Specifically,m = O((pn/e)log(1/ed)) examples are enough to guarantee with probability at
leastl — 9, any DNF consistent with the data having at mogtrms will have error rate at most

¢, SO this is sufficient for the common profile approach. O
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4.3.2 Positive Results

Theorem 4.5.With numerical-valued queries, we can properly learn any DFhgO (log(n))

relevant variables, under arbitrary distributions.

Proof. These targets haveoly(n) possible profiles, so the common profiles approach will be

successful. ]

Theorem 4.6.If the target DNF has only)(log(n)) terms, then we can efficiently properly learn

from random data under any distribution using numericaluea queries.

Proof. There are onlyoly(n) number of possible profiles, so the “common profiles” appinoac

will work. ]

The above result is interesting particularly because prigaening (even for 2-term DNF) is
known to be hard from labeled data alone.
Theorem 4.7.1f the target DNF has = poly(n) terms, and is such that any example can satisfy
at mostO(1) terms, then we can efficiently properly learn from random dagimg numerical-

valued queries.

Proof. There are at mostoly(t) = poly(n) possible profiles, so the “common profiles” ap-

proach will work. [

Corollary 4.8. We can properly learn ang-term DNF with numerical-valued queries, whédre

is constant.
Proof. This follows from either Theorefn 4.6 or Theoréml4.7. O

Corollary 4.9. If the DNF is such that any example can satisfy at mogtrm (a so-called
“disjoint” DNF), then we can efficiently properly learn from nalom data using binary-valued
gueries.

Proof. A numerical query whose value can be at mb& just a binary query anyway. O
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In particular, Decision Trees can be thought of as a DNF wkah example satisfies at
most1 term.
Lemma 4.10. If it happens that the target DNF is parsimonious (no reduridarms) for some
randomQ((tn/e)log(1/e) + (1/€)log(1/d))-sized data set (for any distribution), then we can

efficiently produce a DNF consistent with it having at masirms using binary-valued queries.

Proof. (Sketch) Parsimonious, in this case, means that we cannuivieeany terms without

changing some labels. But this means that every term has samg&e that satisfies only that
term (i.e., a nice seed). So as described in the proof of Lehfhabove, the “neighborhood
method,” produces a DNF with terms for the neighborhoodsacheof these nice seeds, which

in the parsimonious case, covers all of the positive exasaple [
Theorem 4.11.We can properly learn 2-term DNF with binary queries.

Proof. TakeO((n/e)log(1/€) + (1/¢)log(1/6)) random labeled examples and make the binary
guery for all pairs of positive examples. First, find a minirnanjunction consistent with all

of the positive examples; if this conjunction does not nasslfy any negative examples, return
it. By classic PAC bounds, a conjunction consistent with theny random labeled examples
will, with probabiliy at leastl — 4, have error rate at most Otherwise, if this conjunction
misclassifies some negatives, then we are assured the EA¥gets parsimonious for this data
set, and thus Lemnia 4]10 guarantees we can efficiently fdertiterm DNF consistent with it
using the binary-valued queries. Again, the classic PAChdsumply the sample size is large
enough to, with probability at least— ¢, guarantee that any consist@aterm DNF has error

rate at most. []

Theoreni 4,11 gives a concrete result where using this typeary overturns a known hard-
ness result for supervised learning.
Open problem Can this idea be extended to learning 3-term DNF or highdirusing only

the binary-valued queries? Or is there a hardness resybrémerly learning 3-term DNF with
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these binary-valued pairwise queries?

4.4 Learning DNF under the Uniform Distribution

In this section, we investigate the problem of learning DNféler a uniform distribution on
{0,1}", using the binary-valued queries.

Definition 4.12. Fix a constantc € (0,00). We say a term in the target DNF is “relatively
distinct” if it contains a variablev which occurs in at mostlog(n) other terms. We say is a
witness ta being relatively distinct.

Definition 4.13. For a termt in the target DNF, and a variable in ¢, we sayv is “sometimes
nonredundant” fort if, given a random example that satisfieshere is at least am probability
that every term in the target DNF that the example satisfies @stainsy.

Theorem 4.14. Suppose no term in the target DNF is logically entailed frony ather term
in the target DNF, every termis relatively distinct, and that some variablethat is a witness
to ¢ being relatively distinct is sometimes nonredundanttforhen we can properly learn any

monotone DNF of this type under a uniform distribution{on1}" with binary pairwise queries.

Proof. By Lemmal4.38, it suffices to show that every term having at le4RtI") probability of
being satisfied will, with high probability, have some exaengatisfying only that term, given a
polynomial-sized data set.

Consider a given termin the target DNF, and choose théhat withesses relative distinctness
which is sometimes nonredundant. Note that every other iretive target DNF contains some
variable not present ify and in particular this is true for the (at mostpg(n) terms containing
v. So under the conditional distribution given thas satisfied and that is nonredundant, with
probability at lease—¢'°s(*) = n=¢, none of these other terms containingre satisfied, so that
is the only term satisfied. Thus, sincleas probability at least/ (27") of being satisfied, andhas

probability at least of being nonredundant given thais satisfied, we have that with probability
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at least(¢?/T')n—¢, a random example satisfieand no other terms in the target DNF.
Since this is the case for all terms in the target, a samplet¥(T'/¢*)nlog(T/§)) guar-

antees every term has some example satisfying only thaf va@thprobability at least —§. [

We can also consider the class of DNF function having only allsnumber of relevant
variables. In this context, it is interesting to observet ithéhe i** variable is irrelevant, then
P(K(z,y) = landz; # y;) = P(K(z,y) = 1 andz; = y;), wherexz andy are independent
uniformly-distributed samples, arfd(x, y) = 1 iff = andy are positive examples that satisfy at
least one term in common. However, as the following lemmavshthis is not true for relevant
variables.

Lemma 4.15. For x andy independent uniformly-distributed samples, if the tafgettion has
r relevant variables, and thé" variable is relevant in the target function, thét( K (z,y) =

landz; = y;) — P(K(z,y) = 1andz; # y;) > (1/4)".

Proof. For each paifz, y) with z; # y;, there is a unique corresponding paif, y) with z; = x;
for j # i, andz = y;. Let M; be the number of, y pairs withz; # y; and K (z,y) = 1. Then
note that for every, y pair with z; # y; and K(x,y) = 1, we also have<(z’,y) = 1, since
whatever terme andy satisfy in common cannot contain varialill@nyway, so flipping that
feature inz does not change whetherandy share a term or not. In particular, this implies
the number ofr, y pairs withz; = y; and K(z,y) = 1 is at least)M;. However, we can also
argue it is strictly larger, as follows. By definition of “retnt”, each of the" settings of the
relevant variables corresponds to an equivalence classagtire vectors, all of which have the
same label, and if that label is positive, then all of whickénthe same profile. Since variahle
is relevant, at least one of t2& settings of the relevant variables yields an equivalenagsobf
positive examples whose profile contains only terms witlialde i in them (these are positive
examples such that flipping variablenakes them negative). The probability that betandy
(chosen at random) are in this equivalence clag$/i$)". Note that for the(z, y) pairs of this

type, we haveX (z,y) = 1; however, if we flip feature:;, thenxz would become negative, and
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henceK (x,y) would no longer bd; this means thisx, y) pair is not included among thosé;
pairs constructed above by flipping starting from somézx, y) with z; # y; and K (z,y) = 1.
SoP(K(z,y) =1andz; = y;) — P(K(z,y) = 1 andx; # y;) = (M; /4" + (1/4)") — M; /4" =
(1/4)". O

Theorem 4.16.Under the uniform distribution, with binary pairwise querjege can properly

learn any DNF having)(log(n)) relevant variables.

Proof. We can use the property in Lemina 4.15 to design an algorithfollasvs. For each,
sampleQ2(8" log(n/d)) random pairgz, y), and evaluates (z, y) for each pair. Then calculate
the difference of empirical probabilities (fraction of ma{z,y) for which K(z,y) = 1 and

x; = y; minus fraction of pair§zx, y) for which K (x,y) = 1 andz; # y;). If this difference

is > (1/2)(1/4)", decide variable is relevant, and otherwise decide variables irrelevant.
By Hoeffding and union bounds, with probability— §/2, this will find exactly ther relevant
variables. Now enumerate &l = poly(n) possible conjunctions that can be formed from
using all of these relevant variables. Considering this ag8"adimensional feature space, take
Q((2"/e)log(1/6)) random labeled data points and learn a disjunction overth@mensional
feature space; since the VC dimension of this set of disjanstis2”, the usual PAC analysis
implies this will learn are-good disjunction with probability — §/2. A union bound implies
both stages (finding variables and learning the disjunttiol succeed with probability at least

1—0. []

An alternative approach to the second stage in the proofdvbelto take2(2" log(2"/9))
random samples, so that with probability at lelast /2, we have at least one data point satisfying
each of the” possible conjunctions on the relevant variables; thendohef the conjunctions,
we check the label of the example that satisfies it, and if lédal is positive, we include that
conjunction as a term in our DNF, and otherwise we do not ottt This has the property that,

altogether, with probability — §, we construct a DNF that has error ragra
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Another family of DNF studied in the literature are thosehnatsublinear number of terms.
Specifically, [Servedio, 2004] proved that the clas@¥f°s™) -term monotoneDNF are learn-
able under the uniform distribution from labeled data aloAs the following theorem states,
we can extend this result to include gen@dV’°s™-term DNF (including non-monotone) given
access to our binary pairwise queries.

Theorem 4.17.Under the uniform distribution, with binary pairwise querj@ge can learn any
20(VIoen) _term DNF (supposing to be a constant).

First, we review some known results from [Servedio, 2004}. &y functiong : {0, 1}" —
{—1,+1}, define they; ; andg; , functions by the property that anywith x; = 1 hasg; ,(x) =
g(z), andg;o(x) = g(y), wherey; = z, for j # i andy; = 0. Then define the influence
functionI;(g) = P(gio(x) # gi1(z)). [Servediol 2004] developed a proceduréydVariable,
which uses goly(n, 1/7,log(1/n)) number of random labeled samples, labeled according to
any monotone DNFy having at most terms, and with probability — 7, returns a sef of
variables (indices i{1,...,n}) such that every ¢ S hasl;(g) < ~ and everyi € S has
I;(g) > v/2 and thei*" variable is contained in some termgrwith at mostlog 32% variables in
it.

Furthermore,/[Servedio, 2004] showed that, for &tgrm DNF f, if we are provided with
asetS; C {1,...,n} such that every ¢ S; hasI;(f) < ¢/4n, then we can learrf in time
polynomial inn, [S;|O0¢ s ) andlog(1/6). In particular, for|S;| = O(tlog ) andt =
20(Vlogn) ' this is polynomial inn (though not necessarily ig). Given the setSy, the learning

procedure simply estimates the Fourier coefficients forlssnasets ofS;.

Proof of Theorerh 4.17To prove Theorenh 4.17, we consider the following procedur@st
samplem labeled examples™, ... (™ at random. Then, for each < m, definek;(-) =
K(29,.). Now note that, if we define;(y) = (0j1(y), ..., pin(y)) bY vi(y) = 2Iy; =
z] —1, then we can represeft;(-) = (K’(;(-)) +1)/2, whereK is a monotone DNF (map-

ping into{—1, +1}); specifically, the terms ik’; correspond to the terms in the target satisfied
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by 2(), except none of the literals are negated. We therfliud Variable for each of thesés j?
with v = ¢/m andn = §/2m. Let Sy denote the union (over < m) of the returned sets of vari-
ables. It remains only to show this satisfies the requirements for the procedure: of [Servedio,
2004, including the size requirement.

Takingm = Q(%log £), with probability at least — §/4, every term in the target having
probability at least/2ct will have at least one of the: examples satisfying it. Suppose this

event happens. In particular, this meansr(max; K;) < ¢/2c. Note that

Li(f) = P(fio(x) # fia(2)) < 2P(max Kj(x) # f(z)) + P((max Kj)io(x) # (max K);, ()

<e€fc+ ZP((KJ/)zo(l’) # (K)ia(z)) =¢/c+ Z[j(KJI')-

J
Thus, by a union bound, with probability— ¢/2, any variablel ¢ S; hasI;(f) < e/c + m~,
and any variableé € Sy appears in a term in somE; of size at mostog 32% and therefore
also appear in a corresponding term of this sizé.isuppose this happens. Letting= 8n and
v = €¢/8nm, we have that any ¢ S; hasl;(f) < ¢/4n, while anyi € S; appears in a term of
size at mostog 228'm — O (log "1/ | particular, this impliesSy| = O(t log "0e1/2)),
andS; satisfies the requirements of the method of [Servedio, 2004]

Thus, running the procedure from [Servedio, 2004] with aterice parametei/4, a union
bound implies the total probability of successfully proihgcane-good classifier is at lea$t— 6.
The above process of constructifg is clearly polynomial-time. Then, if = 20(Vlogn) ' the
procedure of [Servedio, 2004] runs in time polynomiahinog(1/4), and|S|COUeet/a)lee(l/e)

which is polynomial imn andlog(1/4) (though not necessarily i). ]

4.5 More Powerful Queries

Theorem 4.18.1f we can construct our own feature vectors in addition to gettiandom data,

then under any distribution we can efficiently properly leBMNF using binary-valued queries.
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Proof. Suppose we can adaptively construct our own examples. Sappe target DNF has
T = poly(n) terms. Oracle, ') gives the number of terms thatandx’ have in common. For

anyzx, letxz_; be x but with the ith bit flipped. Let be the negative of.

Below is an algorithmMove(z, ') movesz’ away fromzx by one bit, while trying to main-

tain at least one common termmearnTerm(z) returns a term in the target function.

0. Move(z, z')

1. 2"« =

2. Fori=1,2,..,nstx;, =1

3. If (Oracle, =) < Oraclef, «',))
4. "

5. Returnz”

0. LearnTerm(z)
1. Replicate x to get’

2. While (Oraclef, Move(z, z')) ! = 0)

3. x' < Move(z, z’)

4. Letl < {i: Oracle(z,z’ ;) = 0}

5. Returnz; (i.e. a conjunction with the literals indexed by either positive or negative so

thatz satisfies it)

0. LearnDNF
1. Initialize all-negative DNF,

2. TakeM = poly(n) > nT random example§
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For eachzr € S

3
4. If Oracle,z) > 0 (positive example) anﬂ(x) = negative
5 Add term LearnTermy) to &

6

Returnk (a DNF with at mosfl” terms, consistent with all M examples)

When we reach’ such that we can't flip any more bits (not already flipped) withmaking
it so they don't satisfy any terms in common anymore, therbiteethese two have in common
must form a term in the target DNF, so LearnTeryghould still find a term in the target DNF.

]

If we can ask about k-tuples of examples (do they all joindiigy a term in common?), we
have the following result:
Theorem 4.19.1f we can use query sets of arbitrary sizes (instead of justi@tg)p then under
any distribution we can efficiently properly learn DNF usingdny-valued queries from random

data.

Proof. We take any set of examples and ask the oracle the numbemas tdf examples in the
set have in common. Let S be the query set. The idea is to dyesttl the examples to S while
keeping some terms in common.

Algorithm :

0. Input : dataseb

1. Initialize S to be an empty set

2.Do{

3. Do{

4 Tmax < 0

5. For each example in the dataseD
6 addz to the setS
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7. query the combined sét and letr = Oracle(S), roax < max{rmax, 7'}

8. If » = 0, removex from S, and otherwise leave it i and remove: from D

9. } Until(rye. = 0)

10. Learn a “most-specific” conjunction frofhand add that term to the hypothesis DNF
11. ResetS to empty set

12. }Until (|D] = 0)

Each time we add a term to the DNF, the exampleS gatisfy some term in the target DNF,
because we only add each example if by addirtgstill has at least one term in common. So the
"most-specific” conjunction consistent with(i.e., the one with most literals in it, still labeling
all of S positive) will not misclassify any negative point as paati Since whenever we add a
new term, there were no additional exampledirhat could have satisfied a term in common
with the examples iy, after adding the term we have removed fréhall examples that satisfy
the termS has in common. Therefore, the number of terms in our learnE ¥\at most the
number of termd” in the true DNF. If the total number of exampless nT (and sayT’ is
poly(n)), it will get us a DNF that has at most T terms and correcthelatapoly(n) > nT
sized dataset. Since the training dataset size is muclr ldrge the size of the classifier, by the

Occam bound, the learnt DNF will have small generalizativare

4.6 Learning DNF with General Queries: Open Questions

e |s it possible to efficiently learn an arbitrary DNF from ramal data under arbitrary distri-

butions with numerical-valued queries?

e Is it possible to efficiently learn a DNF witR (1) terms from random data under arbitrary

distributions with binary-valued queries?
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e |s it possible to efficiently learn a monotone DNF from randdata under a uniform

distribution with numerical-valued queries? If so, whabvabbinary-valued queries?

4.7 Generalizations

4.7.1 Learning Unions of Halfspaces

Several of the above results generalize nicely to the manergéproblem of learning unions of
halfspaces. Specifically, the queries are of the type “dsdltvo examples satisfy a halfspace in
common?” or “how many halfspaces do these two exampledysatisommon?” The general-
ized forms of Theoreiin 4.19 and Lemimna 4.10 follow by the exagtesarguments. In each case,
the algorithm finds sets of examples that satisfy some hatspsuch that none of the remaining
examples satisfy that halfspace, so for each such set wdysiimgh a linear separator to separate
those examples from the rest, and take their union to formfioaf classifier. A sufficiently
large (poly(n]/e)-sized) set suffices to guarantee this works. It is not sar¢iew to generalize
Theoreni 4.7, since it is not clear how to use the sets of exaswith the common profiles to
learn the halfspaces. The generalized version of Thebrmactually follows from the result
below on learning Voronoi diagrams. The generalized versioTheorent 4.18 is simple, since

it is even known that labeled data plus membership quereesi#ficient.

4.7.2 Learning Voronoi with General Queries

Consider the space of Voronoi diagrams (vector quantizepcifically, the target function is
constant within each cell of the Voronoi diagram, and thegepaly(n) such cells for a given
target function. We define a “same cell” query as asking, foaiaof examples: andy, whether

x andy occur in the same cell of the target function. With this typewery, we can efficiently
properly learn Voronoi partitions from random data, undéiteary distributions. To prove this,

we simply group the examples in a sufficiently large samplie @guivalence classes based on
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these same-cell queries. For each pair of such equivaldseses, we find a linear separator that
separates them. For each test point, we evaluate theseds@arators, which thereby associates
the test point with one of the equivalence classes from #ieitrg data, and we predict as a label
for that point the label associated with that equivalenes<! If we have a sufficiently large
training set, then there is only a small probability the fEsht gets placed into a different set of

points from those in its own cell.
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Chapter 5

Bayesian Active Learning with Arbitrary

Binary Valued Queries

Abstract

HWe investigate the minimum expected number of bits suffidieencode a random variable X
while still being able to recover an approximation of X witkpected distance from X at most
D: that is, the optimal rate at distortion D, in a one-shotingdetting. We find this quantity is

related to the entropy of a Voronoi partition of the valueXdfased on a maximal D-packing.

5.1 Introduction

In this work, we study the fundamental complexity of lossgiog. We are particularly interested
in identifying a key quantity that characterizes the expdatumber of bits (called theate)
required to encode a random variable so that we may recovegp@noximation within expected
distanceD (called thedistortion). This topic is a generalization of the well-known analysis
exact coding by Shannon [Shannhbn, 1948], where it is knowanttie optimal expected number

1Joint work with Jaime Carbonell and Steve Hanneke.
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of bits is precisely characterized by the entropy. Therevary problems in which exact coding
is not practical or not possible, so that lossy coding beconeeessary: particularly for random
variables taking values in uncountably infinite spaces. top& of code lengths for lossy coding
is interesting, both for its direct applications to comgies, and also as a general setting in

which to derive lower bounds for specializations of theisgtt

There is much existing work on lossy binary codes. In thegrework, we are interested
in a “one-shot” analysis of lossy coding [Kieffer, 1993], which we wish to encode a single
random variable, in contrast to the analysis of “asymptatrce codingl[Cover and Thomas,
2006], in which one wishes to simultaneously encode a seguehrandom variables. Of par-
ticular relevance to the one-shot coding problem is theyaisabf quantizationmethods that
balancedistortion with entropy[Gersho, 1979, Kieffer, 1993, Zador, 1982]. In particulars
now well-known that this approach can yield codes that retspdistortion contraint while nearly
minimizing the rate, so that there are near-optimal codekisftype [Kieffer,1993]. Thus, we
have an alternative way to think of the optimal rate, in teohghe rate of the best distortion-
constrained quantization method. While this is interestimghat it allows us to restrict our focus
in the design of effective coding techniques, it is not asatly helpful if we wish to understand
the behavior of the optimal rate itself. That is, since we dblvave an explicit description of the
optimal quantizer, it may often be difficult to study the bébaof its rate under various interest-
ing conditions. There exist classic results lower boundiregachievable rates, most notably the
famous Shannon lower bound [Shannon, 1959], which undéainenestrictions on the source
and the distortion metric, is known to be fairly tight in tagymptoticanalysis of source coding
[Linder and Zamir, 1994]. However, there are few generalltesexplicitly and tightly charac-
terizing the (non-asymptotic) optimal rates for one-shamtiog. In particular, to our knowledge,
only a few special-case calculations of the exact value isfaptimal rate have been explicitly
carried out, such as vectors of independent Bernoulli or §angandom variables [Cover and

Thomas, 2006].
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Below, we discuss a particular distortion-constrained tjman based on a Voronoi partition
induced by a maximal packing. We are interested inghiopyof this quantizer, as a quantity
used to characterize the optimal rate for codes of a givaortien. While it is clear that this
entropy upper bounds the optimal rate, as this is the casafatistortion-constrained quantizer
[Kieffer, 1993], the novelty of our analysis lies in notiniget remarkable fact that the entropy
of any quantizer constructed in this way alsaer boundshe optimal rate. In particular, this
provides a method for approximately calculating the optirage without the need to optimize
over all possible quantizers. Our result is general, in ithapplies to an arbitrary distribution
and an arbitrary distortion measure from a general classpé{fdimensional pseudo-metrics.
This generality is noteworthy, as it leads to interestingli@ptions in statistical learning theory,

which we describe below.

Our analysis is closely related to various notions thaeanghe study ot-entropy [Posner
and Rodemich, 1971, Posner, Rodemich, and Rumsey, Jr/, 186A§tiwe are concerned with
the entropy of a Voronoi partition induced by arcover. The notion ot-entropy has been
related to the optimal rates for a given distortion (undelighly different model than studied
here) [Posner and Rodemich, 1971, Posner, Rodemich, and Rumsé@6/7]. However, there
are some important distinctions, perhaps the most significhwhich is that calculating the
e-entropy requires a prohibitive optimization of the enyragver all e-covers; in contrast, the
entropy term in our analysis can be calculated basedrgnmaximal e-packing (which is a
particular type ot-cover). Maximak-packings are easy to construct by greedily adding arlitrar
new elements to the packing that arear from all elements already added; thus, there is always

a straightforward algorithmic approach to applying ouuhess
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5.2 Definitions

We supposet™ is an arbitrary (nonempty) set, equipped with a separabdeqsmetricp :
X*xX* — [0,00).[4 We supposer* is accompanied by its Boretalgebra induced by. There
is additionally a (honempty, measurable) 8&tC X'*, and we denote by = sup p(hq, ho).
Finally, there is a probability measurewith 7(X) = 1, and anX-valued ra:lrll’gz)erﬁ variabl&’
with distributionr, referred to here as the “target.” As the distribution ieesiglly arbitrary, the
results below will hold forany .

A codeis a pair of (measurable) functiofs, v»). Theencoder ¢, maps any element € X
to a binary sequenceg(r) € |J.2,{0, 1} (the codeword. Thedecoder ), maps any element
¢ € U,2010,1}7 to an element)(c) € X*. Foranyq € {0,1,...} andc € {0,1} let|c| = ¢
denote thdengthof c¢. A prefix-freecode is any codé¢, ¢)) such that nory,z, € X have
¢V = ¢(z1) andc® = ¢(z,) with ¢ £ @ butvi < |cV], ¢ = ¢V that is, no codeword is
a prefix of another (longer) codeword. LIeF denote the set of all prefix-free binary codes.

Here, we consider a setting where the codey) may belossy in the sense that for some
values ofr € X, p(¢¥(¢(x)),x) > 0. Our objective is to design the code to have small expected
loss (in thep sense), while maintaining as small of an expected codevesrgth as possible.
Formally, we have the following definition, which essenyialescribes a notion of optimality

for a lossy code.

Definition 5.1. For anyD > 0, define the optimalateat distortionD

R(D) = inf {E[|¢(X)|] : (¢,) € PF with

E |p(v(6(x), X)| <D},

where the random variable in both expectationis- .

For our analysis, we will require a notion of dimensionafidythe pseudo-metrig. For this,

2The setX* will not play any significant role in the analysis, except iow for improper learning scenarios to

be a special case of our setting.
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we adopt the well-knowdoubling dimensiofGupta, Krauthgamer, and Lee, 2003].

Definition 5.2. Define thedoubling dimensior as the smallest valuésuch that, for any: € X,

and anye > 0, the size of the minimal/2-cover of the--radius ball aroundz is at most-.

That is, for anyr € X ande > 0, there exists a seftz; }2%, of 2¢ elements oft such that

od

{2' € X :p(a,x) < e} C U{x’ € X :pa', x;) <e/2}.

=1
Note that, as defined hergjs a constant (i.e., has no dependence ornxthee in its defini-
tion). In the analysis below, we will always assume: oco. The doubling dimension has been
studied for a variety of spaces, originally by Gupta, Kraatimer, & Lee [Gupta, Krauthgamer,
and Lee|, 2003], and subsequently by many others. In paatidBshouty, Li, & Long [Bshouty,
Li, and Long, 2009] discuss the doubling dimension of spatesf binary classifiers, in the

context of statistical learning theory.

5.2.1 Definition of Packing Entropy

Our main result concerns the relation between the optintal aha given distortion with the

entropy of a certain quantizer. We now turn to defining thitetaquantity.

Definition 5.3. For anyD > 0, definey(D) C & as a maximalD-packing ofX. That is,
Va1, 29 € Y(D), p(x1,22) > D, andVe € X'\ Y(D), mingcym) p(z, 2') < D.

For our purposes, if multiple maximab-packings are possible, we can choose to define
Y(D) arbitrarily from among these; the results below hold for angh choice. Recall that any
maximal D-packing of X" is also aD-cover of X', since otherwise we would be able to add to
Y(D) thex € X that escapes the cover. ThatVs, € X, 3y € Y(D) s.t. p(x,y) < D.

Next we define a complexity measure, a type of entropy, wheches as our primary quantity
of interest in the analysis &f(D). Itis specified in terms of a partition induced byD), defined

as follows.
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Definition 5.4. For anyD > 0, define

9(D) = {{x EX:z= argminp(x,y)} 1z € y(D)} :
yeY (D)
where we break ties in thergmin arbitrarily but consistently (e.g., based on a predefineefpr
erence ordering o)/ (D)).
Definition 5.5. For any finite (or countable) partitio& of X’ into measurable regions (subsets),

define theentropyof S

Z 7(S) logy m(

ses
In particular, we will be interested in the quanti#(Q(D)) in the analysis below.

5.3 Main Result

Our main result can be summarized as follows. Note thatesivetook the distribution to be
arbitrary in the above definitions, this result holds sy givenr.

Theorem 5.6.1f d < co andp < oo, then there is a constant= O(d) such thatvD € (0, p/2),
H (Q(Dlogy(p/D))) —c < R(D) < H(Q(D)) + 1.

It should not be surprising that entropy terms play a key iolhis result, as the entropy is
essential to the analysis of exact coding [Shannon, 1948thérmoreR(D) is tightly charac-
terized by the minimum achievable entropy among all quandiaf distortion at modb [Kieffer,
1993]. The interesting aspect of Theorem 5.6 is that we cplioétky describe a particular quan-
tizer with near-optimal rate, and its entropy can be exfijicalculated for a variety of scenarios
(X, p,m). As for the behavior oR(D) within the range between the upper and lower bounds
of Theoreni 5.6, we should expect the upper bound to be tigbthwvhigh-probability subsets of
the regions inQ(D) are point-wise well-separated, whik§¥D) may be much smaller (perhaps
closer to the lower bound) when this is violated to a largerelegfor reasons described in the

proof below.
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Figure 5.1: Plots of{(Q(D)) as a function ofl /D, for various distributions on X = R.

Although this result is stated for bounded psuedo-mefridgsalso has implications for un-
boundedp. In particular, the proof of the upper bound holds as-is fisaunded. Furthermore,
we can always use this lower bound to construct a lower booindrfooundeg, simply restrict-
ing to a bounded subset &f with constant probability and calculating the lower bouadthat
region. For instance, to get a lower bound foas a Gaussian distribution @& we might note
thatm([—1/2,1/2]) times the expected loss under tenditionalr(-|[—1/2,1/2]) lower bounds
the total expected loss. Thus, calculating the lower bodricheoreni 5.6 under the conditional
7(-|[=1/2,1/2]) while replacingD with D/7([—1/2,1/2]) provides a lower bound oR(D).

To get a feel for the behavior 6f (Q (D)), we have plotted it as a function of D for several

distributions, in Figuré 511.

5.4 Proof of Theorem 5.6

We first state a lemma, due to Gupta, Krauthgamer, & Lee [GHyauthgamer, and Lee, 2003],
which will be useful in the proof of Theorem 5.6.

Lemma 5.7. [Gupta, Krauthgamer, and Lee, 2003] For anye (0,00), d € [y, ), andx € X,

d
(e € V() : plel ) < 5} < (475) .

In particular, note that this lemma implies that the minimafip(z,y) overy € Y(D) is

alwaysachievedn Definition[5.4, so thaB(D) is well-defined.
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We are now ready for the proof of Theorém|5.6.

Proof of Theorerh 516Throughout the proof, we will consider a set-valued randarantjty
Qp(X) with value equal to the set i@(D) containingX, and a corresponding-valued random
quantity Yp (X') with value equal the sole point iQp(X) N Y(D): that is, the target's nearest
representative in thB-packing. Note that, by Lemma5.jg/(D)| < oo forall D € (0,1). We
will also adopt the usual notation for entropy (e #.,(p(X))) and conditional entropy (e.g.,
H(Qp(X)|Z)) [Cover and Thomas, 2006], both in base 2.

To establish the upper bound, we simply takas the Huffman code for the random quantity
@p(X) [Cover and Thomas, 2006, Huffman, 1952]. It is well-knownt ttee expected length
of a Huffman code foiQp(X) is at mostH(Qp (X)) + 1 (in fact, is equalH(Qp (X)) when
the probabilities are powers 8j [Cover and Thomas, 2006, Huffman, 1952], and each possible
value of@Qp (X) is assigned a unique codeword so that we can perfectly re¢ayeX ) (and thus
alsoYp(X)) based onp(X). In particular, define)(¢(X)) = Yp(X). Finally, recall that any
maximalD-packing is also &-cover. Thus, since every element of the 6g$(X) hasYp(X) as
its closest representative (D), we must have (X, ¥ (¢(X))) = p(X, Yp(X)) < D. In fact,
as this proof never relies gh< oo, this establishes the upper bound even in the pasex.

The proof of the lower bound is somewhat more involved, thoting overall idea is simple
enough. Essentially, the lower bound would be straightéwdaf the regions o (D log,(p/D))
were separated by some distance, since we could make anemgbased on Fano’s inequality
to say that since anX = 1 (¢(X)) is “close” to at most one region, the expected distance
from X is at least as large as half this inter-region distance tiang@gantity proportional to the
conditional entropyH (Qp(X)|¢(X)), so thatH (¢(X)) can be related té{(Qp(X)).

However, the general case is not always so simple, as thensegan generally be quite close
to each other (even adjacent), so that it is possibl&fen be close to multiple regions. Thus, the
proof will first “color” the regions ofQ(D log,(p/D)) in a way that guarantees no two regions of

the same color are within distanEelog,(p/D) of each other. Then we apply the above simple
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argument for each color separately (i.e., lower boundiegetpected distance froixi under the
conditional given the color af)p 1.4, (5/p) (X ) by a function of the conditional entropy under the
conditional), and average over the colors to get a globagtdvound. The details follow.

Fix anyD € (0,p/2), and for brevity let. = Dlog,(p/D). We supposéao, ¢) is some
prefix-free binary code.

Define a function : Q(a) — N such thatv@Q,, Q2 € 9Q(«),

K(@Q1) = K(Q2) = inf  pz1, 1) > a, (5.1)

£1€Q1,2€Q2
and suppos& has minimunt{ (K(Q.(X))) subject to[(5.1). We will refer t&C(Q) as thecolor
of ).

Now we are ready to bound the expected distance fiomLet X = ¢ (¢(X)), and let
Q.(X; K) denote the se € Q(a) havingK(Q) = K with smallestinf,.. p(z, X) (breaking

ties arbitrarily). We know
E[p(X, X)] = E [Elp(X, X)IK(Qa(X))]] (5:2)

Furthermore, by[{5]1) and a triangle inequality, we knowX@an be closer than/2 to more

than one) € Q(«) of a given color. Therefore,

E[p(X, X)|K(Qa(X))]

P(QQ(X,]C(QQ(X))) e Qa(X>|IC<Qa(X))) (5.3)

>

|9

By Fano’s inequality, we have

E |P(Qa(X; K(Qu(X))) # Qa(X)K(Qa(X)))

_ HQu(DIH(X), K(Qu(X)) ~ 1
- log V(1) |

(5.4)

It is generally true that, for a prefix-free binary codeX), ¢(X) is a lossless prefix-free
binary code for itself (i.e., with the identity decoder),that the classic entropy lower bound on

average code length [Cover and Thomas, 2006, Shannon, 18B8$7# (4(X)) < E[|¢(X)|].
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Also, recalling thaf/(«) is maximal, and therefore also anrcover, we have that an§,, @), €
Q(«) with Qinf 0 p(z1,9) < a havep(Y,(z1),Ya(z2)) < 3a (by a triangle inequality).
r1€EQ1,x2€(2

Therefore, LemmBa®5.7 implies that, for any giv@a € Q(«), there are at mosit2? setsQ, €

Q(«) with Qinf 0 p(z1, 3) < a. We therefore know there exists a functibh: Q(a) — N
T1€W1,22€W2

satisfying [5.1) such thaQﬁélS();) K'(Q) < 127 (i.e., we need at mod? colors to satisfy[(5]1)).
That s, if we consider coloring the sefse Q(«a) sequentially, for any give®; not yet colored,
there are< 124 sets@, € Q(a) \ {Q:} within « of it, so there must exist a color among
{1,...,124} not used by any of them, and we can choose thakf6€,). In particular, by our

choice ofC to minimizeH (K (Q.(X))) subject to[(5.11), this implies
H(K(Qa(X))) < H(K'(Qa(X))) < logy(129) < 4d.

Thus,

H(Qa(X)|9(X), £(Qa(X)))
= H(Qa(X), o(X), K(Qa(X)))
— H((X)) = H(K(Qa(X))|o(X))
> H(Qa(X)) = H(P(X)) — H(K(Qa(X)))
> H(Qu(X)) — E[l¢(X)]] — 4d
=H(Q(a)) — E[|p(X)]] — 4d. (5.5)

Thus, combining[(512)[(5.3).(3.4), arid (5.5), we have

Elp(X, x)] > 3 H2) Li[@(é))”] 41
 aH(Q(e)) ~E[6(X)|] — 4d 1
=9 dlog,(4p/ ) 5

where the last inequality follows from Lemrnab.7.

Thus, for any code with

log,(4p/D)
Eflo(X)[] <H(Q(a)) —4d -1 — 2d—10g2<ﬁ/D) :
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we haveE[p(X, X)] > D, which implies

log,(4p/D)

R(D) 2 H(Q(a)) — 4d — 1 — 24722 00,

Sincelog,(4p/D)/log,(p/D) < 3, we have

R(D) = #(Q(a)) — O(d).

5.5 Application to Bayesian Active Learning

As an example, in the special case of the problem of learnibigpary classifier, as studied by
[Haussler, Kearns, and Schapire, 1994a] and [Freund, S&lnagnir, and Tishby, 1997} is
the set of all measurable classifiérs Z — {—1,+1}, & is called the “concept spaceX is
called the “target function,” and( X, X,) = P(X,(Z) # X2(Z)), whereZ is someZ-valued
random variable. In particulap( X1, X) is called the “error rate” of;.

We may then discusslaarning protocolbased on binary-valued queries. That is, we sup-
pose some learning machine is able to pose yes/no questicars oracle, and based on the
responses it proposeshgpothesisX. We may ask how many such yes/no questions must the
learning machine pose (in expectation) before being abtedduce a hypothesi¥ € x* with
E[p(X, X)] < ¢, known as theuery complexity

If the learning machine is allowed to poabitrary binary-valued queries, then this setting is
precisely a special case of the general lossy coding proslaedied above. That is, any learning
machine that asks a sequence of yes/no questions befoiaaéing and returning somg € x*
can be thought of as a binary decision tree (no = left, yesht)igvith the returnX values stored
in the leaf nodes. Transforming each root-to-leaf path endécision tree into a codeword (left
= 0, right = 1), we see that the algorithm corresponds to axpfede binary code. Conversely,

given any prefix-free binary code, we can construct an dalgoribased on sequentially asking
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queries of the form “what is the first bit in the codewerdX ) for X ?”, “what is the second bit in
the codeword)(X) for X?”, etc., until we obtain a complete codeword, at which paiatreturn
the value that codeword decodes to. From this perspectieeqiiery complexity is precisely

R(e).

This general problem of learning with arbitrary binarysed queries was studied previously
by Kulkarni, Mitter, & Tsitsiklis [Kulkarni, Mitter, and T#siklis, |l1993], in aminimaxanalysis
(studying the worst-case value &f). In particular, they find that for a given distribution for
Z, the worst-case query complexity is essentially charasdrbylog |)(¢)|. The techniques
employed are actually far more general than the classdeming problem, and actually apply
to any pseudo-metric space. Thus, we can abstractly thitikenf work as a minimax analysis

of lossy coding.

In addition to being quite interesting in their own rightetresults of Kulkarni, Mitter, &
Tsitsiklis [Kulkarni, Mitter, and Tsitsiklis, 1993] havelgyed a significant role in the recent
developments in active learning withbel requestgueries for binary classification [Dasgupta,
2005,/ Hanneke, 20074a,b], in which the learning machine nmy ask questions of the form,
“What is the valueX (z)?” for certain values € Z. Since label requests can be viewed as
a type of binary-valued query, the number of label requestessary for learning is naturally
lower bounded by the number afbitrary binary-valued queries necessary for learning. We
therefore always expect to see some term relatingetQ))(¢)| in any minimax query complexity
results for active learning with label requests (though factor is typically represented by its

upper boundix V - log(1/¢), whereV is the VC dimension).

Similarly to how the work of Kulkarni, Mitter, & TsitsiklisKKulkarni, Mitter, and Tsitsiklis,
1993] can be used to argue thag | (¢)| is a lower bound on the minimax query complexity of
active learning with label requests, Theorleni 5.6 can be sedyue that{(Q(elog,(1/¢€))) —
O(d) is a lower bound on the query complexity of learning relatvea given distribution for

X (called aprior, in the language of Bayesian statistics), rather than thetwase value ok .
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Furthermore, as with [Kulkarni, Mitter, and Tsitsiklis, 9%, this lower bound remains valid for
learning with label requests, since label requests are e ayinary-valued query. Thus, we
should expect a term related #(Q(¢)) or H(Q(elog,(1/¢€))) to appear in any tight analysis of

the query complexity of Bayesian learning with label regsiest

5.6 Open Problems

In our present context, there are several interesting umsssuch as whether thes (5 /D) factor
in the entropy argument of the lower bound can be removedthehéhe additive constant in the
lower bound might be improved, and in particular whethernailar result might be obtained
without assumingl! < oo (e.g., in the statistical learning special case, by makinaclass

assumption instead).
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Chapter 6

The Sample Complexity of Self-Verifying

Bayesian Active Learning

Abstract

HWe prove that access to a prior distribution over targettions can dramatically improve the
sample complexity of self-terminating active learningazlthms, so that it is always better than
the known results for prior-dependent passive learningpalmicular, this is in stark contrast to
the analysis of prior-independent algorithms, where tlageesimple known learning problems

for which no self-terminating algorithm can provide thisagantee for all priors.

6.1 Introduction and Background

Active learningis a powerful form of supervised machine learning charasdrby interaction
between the learning algorithm and supervisor during taeniag process. In this work, we
consider a variant known gmol-basedactive learning, in which a learning algorithm is given
access to a (typically very large) collection of unlabelgdraples, and is able to select any of

1Joint work with Jaime Carbonell and Steve Hanneke.
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those examples, request the supervisor to label it (in ageatwith the target concept), then after
receiving the label, selects another example from the @aol, This sequential label-requesting
process continues until some halting criterion is reachédvhich point the algorithm outputs
a function, and the obijective is for this function to closalyproximate the (unknown) target
concept in the future. The primary motivation behind poatdd active learning is that, often,
unlabeled examples are inexpensive and available in abeedahile annotating those examples
can be costly or time-consuming; as such, we often wish gctehly the informative examples
to be labeled, thus reducing information-redundancy toesexrtent, compared to the baseline of

selecting the examples to be labeled uniformly at random fitee pool (passive learning).

There has recently been an explosion of fascinating thieateesults on the advantages of
this type of active learning, compared to passive learnimggrms of the number of labels re-
guired to obtain a prescribed accuracy (calledséwaple complexily e.q., [Balcan, Broder, and
Zhang, 2007a, Balcan, Bevgelzimer, and Langford, 2009, Baldanneke, and Vaughan, 2010,
Bevgelzimer, Dasgupta, and Langford, 2009, Castro and No2@d8, Dasgupta, 2004, 2005,
Dasgupta, Hsu, and Monteleoni, 2007b, Dasaupta, KalaiMordeleonil 2009, Freund, Seung,
Shamir, and Tishby, 1997, Friedman, 2009, Hanneke, 2002809, 2011, Kariainen, 2006,
Koltchinskil, 2010, Nowak, 2008, Wang, 2009]. In partiaulBalcan, Hanneke, and Vaughan,
2010] show that in noise-free binary classifier learning aioy passive learning algorithm for a
concept space of finite VC dimension, there exists an aa@aming algorithm with asymptoti-
cally much smaller sample complexity for any nontriviabtrconcept. In later work, [Hanneke,
2009] strengthens this result by removing a certain stra@pgeddence on the distribution of the
data in the learning algorithm. Thus, it appears there asfopnd advantages to active learning

compared to passive learning.

However, the ability to rapidly converge to a good classifising only a small number of
labels is only one desirable quality of a machine learninghoe, and there are other qualities

that may also be important in certain scenarios. In padictiie ability toverify the performance

92



of a learning method is often a crucial part of machine leggrapplications, as (among other
things) it helps us determine whether we have enough datzhie\ee a desired level of accuracy
with the given method. In passive learning, one common &dor this verification is to hold

out a random sample of labeled examples asl@ation sampldo evaluate the trained classifier
(e.g., to determine when training is complete). It turnstbig technique is not feasible in active
learning, since in order to be really useful as an indicatorlrether we have seen enough la-
bels to guarantee the desired accuracy, the number of thbetanples in the random validation
sample would need to be much larger than the number of labglgested by the active learning
algorithm itself, thus (to some extent) canceling the sgwiobtained by performing active rather
than passive learning. Another common practice in passamaing is to examine the training er-
ror rate of the returned classifier, which can serve as a nedd®indicator of performance (after
adjusting for model complexity). However, again this measf performance is not necessarily
reasonable for active learning, since the set of exampkesltjorithm requests the labels of is
typically distributed very differently from the test exalap the classifier will be applied to after

training.

This reasoning indicates that performance verificatiomidést) a far more subtle issue in
active learning than in passive learning. Indeed, [Balcamri¢ke, and Vaughan, 2010] note that
although the number of labels required to achieve good acygus significantly smaller than
passive learning, it is often the case that the number ofdabquired toverify that the accuracy
is good is not significantly improved. In particular, thisgplomenon can dramatically increase
the sample complexity of active learning algorithms thatmely determine how many labels
to request before terminating. In short, if we require thgpathm both tolearn an accurate
concept and ti&nowthat its concept is accurate, then the number of labels mredjloy active

learning is often not significantly smaller than the numiggpuired by passive learning.

We should note, however, that the above results were pr@remléarning scenario in which

the target concept is considered a constant, and no infmmabout the process that generates
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this concept is known a priori. Alternatively, we can corsid modification of this problem, so
that the target concept can be thought of as a random vareabsémple from a known distribution
(called aprior) over the space of possible concepts. Such a setting hasshadiad in detail

in the context of passive learning for noise-free binanssification. In particular, [Haussler,
Kearns, and Schapire, 1994a] found that for any conceptesphfinite VC dimensioni, for
any prior and distribution over data point3(d/e) random labeled examples are sufficient for
the expected error rate of the Bayes classifier produced uhegrosterior distribution to be at
moste. Furthermore, it is easy to construct learning problemsviaich there is af2(1/¢<) lower
bound on the number of random labeled examples requirechte\acexpected error rate at most
g, by any passive learning algorithm; for instance, the mrbbf learning threshold classifiers

on [0, 1] under a uniform data distribution and uniform prior is onetsacenario.

In the context of active learning (again, with access to tiw) [Freund, Seung, Shamir, and
Tishby,[19917] analyze th@uery by Committealgorithm, and find that if a certain information
gain quantity for the points requested by the algorithm wgeiebounded by a valug, then the
algorithm requires only)((d/g) log(1/¢<)) labels to achieve expected error rate at nso$t par-
ticular, they show that this is satisfied foonstanty for linear separators under a near-uniform
prior, and a near-uniform data distribution over the unhese. This represents a marked im-
provement over the results of [Haussler, Kearns, and Sahat94a] for passive learning, and
since the Query by Committee algorithm is self-verifyingstresult is highly relevant to the
present discussion. However, the condition that the inédion gains be lower-bounded by a
constant is quite restrictive, and many interesting lesyrproblems are precluded by this re-
quirement. Furthermore, there exist learning problem#h(finite VC dimension) for which the
Query by Committee algorithm makes an expected number of lafeests exceeding(1/¢).

To date, there has not been a general analysis of how the @aluean behave as a function of

g, though such an analysis would likely be quite interesting.

In the present paper, we take a more general approach to éiséi@uof active learning with
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access to the prior. We are interested in the broad quedtiwheaiher access to the prior bridges
the gap between the sample complexityezrningand the sample complexity of learnimgth
verification Specifically, we ask the following question.

Can a prior-dependent self-terminating active learningaalthm for a concept class of finite
VC dimension always achieve expected error rate at masingo(1/¢) label requests?

After some basic definitions in Sectibn 6.2, we begin in S&¢6.4 with a concrete example,
namely interval classifiers under a uniform data densityaboitrary prior, to illustrate the general
idea, and convey some of the intuition as to why one might expepositive answer to this
question. In Sectioh 6.5, we present a general proof thaatisaver isalways“yes.” As the
known results for the sample complexity of passive learmiitg access to the prior are typically
x 1/e [Haussler, Kearns, and Schapire, 1994a], and this is somastiight, this represents
an improvement over passive learning. The proof is simpte astessible, yet represents an
important step in understanding the problem of self-teatiam in active learning algorithms, and
the general issue of the complexity of verification. Alsothas is a result that doesot generally
hold for prior-independent algorithms (even for their “eage-case” behavior induced by the
prior) for certain concept spaces, this also representgifisant step toward understanding the

inherent value of having access to the prior.

6.2 Definitions and Preliminaries

First, we introduce some notation and formal definitions. d&aote byX" theinstance space
representing the range of the unlabeled data points, andupgose a distributiorD on X,
which we will refer to as thelata distribution We also suppose the existence of a sequence
X1, X, ... of iLi.d. random variables, each with distributidn referred to as the unlabeled
data sequence. Though one could potentially analyze thewatite performance as a function
of the number of unlabeled points made available to the iegralgorithm (cf. [Dasgupta,

2005]), for simplicity in the present work, we will supposestunlabeled sequence is essentially
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inexhaustible, corresponding to the practical fact thaalbwled data are typically available in
abundance as they are often relatively inexpensive to mbtadditionally, there is a sef of
measurable classifieis: X — {—1,+1}, referred to as theoncept spaceWe denote byl
the VC dimension ofC, and in our present context we will restrict ourselves tacep& with

d < oo, referred to as &C class We also have a probability distribution called theprior,
overC, and a random variable* ~ 7, called thetarget function we supposé* is independent
from the data sequenck;, X,,.... We adopt the usual notation for conditional expectations
and probabilities [Ash and Deans-Dade, 2000]; for instandg,A| B] can be thought of as an
expectation of the valud, under the conditional distribution of given the value oB (which
itself is random), and thus the valuel®fA|B] is essentially determined by the value®f For
any measurablé : X — {—1,+1}, define theerror rate er(h) = D({x : h(z) # h*(z)}).
So far, this setup is essentially identical to that/of [FiituBeung, Shamir, and Tishhy, 1997,

Haussler, Kearns, and Schapire, 1994a].

The protocol in active learning is the following. An activeatning algorithmA is given as
input the priorr, the data distributiorD (though see Sectidn 6.6), and a vatlue (0,1]. It
also (implicitly) depends on the data sequente Xs, ..., and has an indirect dependence on
the target functio* via the following type of interaction. The algorithm may jpext the values
X; for any initial segment of the data sequence, select an indeX to “request” the label of;
after selecting such an index, the algorithm receives theeva (X;). The algorithm may then
select another index, request the label, receive the vdlade on that point, etc. This happens
for a number of roundsNV (A, h*, e, D, ), before eventually the algorithm halts and returns a
classifierh. An algorithm is said to beorrectif E [er (h)} < ¢ for every (e, D, ); that is,
given direct access to the prior and the data distributiod,gven a specified valug a correct
algorithm must be guaranteed to have expected error ratesttmDefine theexpected sample
complexityof A for (X, C, D, ) to be the functionSC(e, D, ) = E[N(A, h* e,D,n)]: the

expected number of label requests the algorithm makes.
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6.3 Prior-Independent Learning Algorithms

One may initially wonder whether we could achieve th{$/<) result merely by calculating
the expected sample complexity of some prior-independesthod, thus precluding the need
for novel algorithms. Formally, we say an algorith#nis prior-independent if the conditional
distribution of the queries and return valuedfs, D, 7) given{ (X, X (X1)), (X2, X (X32)),...}

is functionally independent af. Indeed, for som& andD, it is known that therere prior-
independent active learning algorithmdsthat haveE[N (A, X, e, D, 7)| X] = o(1/¢) (always);
for instance, threshold classifiers have this property uadgD, homogeneous linear separators
have this property under a uniforfd on the unit sphere ik dimensions, and intervals with
positive width onX = [0, 1] have this property undép = Uniform([0, 1]) (see e.g., [Dasgupta,
2005]). It is straightforward to show that any sudhwill also haveSC(A, s, D, ) = o(1/¢)

for everyr. In particular, the law of total expectation and the donmedatonvergence theorem

imply

lir% eSC(A,e,D,m) =limeE[E[N (A, X, e, D, )| X]]

e—0

— E [lim E[N (A, X,g,D,w)|X]] ~0.

e—0

In these cases, we can think®€' as a kind ofaverage-casanalysis of these algorithms. How-
ever, as we discuss next, there are also nfamnd D for which there isno prior-independent
algorithm achieving(1/¢) sample complexity foall priors. Thus, any general result ol /¢)
expected sample complexity fardependent algorithms would indicate that there is a real ad
vantage to having access to the prior, beyond the appamembthingeffects of an average-case
analysis.

As an example of a problem where no prior-independent sglfying algorithm can achieve
o(1/e) sample complexity, considér = [0, 1], D = Uniform(][0, 1]), andC as the concept space
of interval classifiers C = {I; ) : 0 < a < b < 1}, wherel_ , () = +1if = € (a,b) and

—1 otherwise. Note that because we allow= b, there is a classifiei_ € C labeling all of X
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negative. Fo0 < a < b < 1, letr,; denote the prior Withf(a,b)({]lab)}) = 1. We now show
any correct prior-independent algorithm Haél /<) sample complexity fotr ), following a
technique of|[Balcan, Hanneke, and Vaughan, 2010]. Consiteeac (0,1/144) and any

prior-independent active learning algorithwith SC(A, e, D, 7o) < s = 13z Then define

H. = {(12ig,12(i + 1)) : i € {0,1,..., [ 1522 |}}. Let ) denote the classifier returned
by A(e, D, -) when queries are answered with = ]Ii,b), for0 < a < b <1, and letR .y
denote the set of examplés, y) for which A(e, D, -) requests labels (including thejr= X (z)
labels). The point of this construction is that, with suchhega number of queries, for many
of the (a,b) € H., the algorithm must behave identically far = ]Iab) as forX = ]I?B,O) (i.e.,

Rap) = R0y, and hencé, ) = h ). Theser(, priors will then witness the fact that is

not a correct self-verifying algorithm. Formally,

max [E [D(z : il(a,b) (z) # H(ia,b)(x))}

(a,b)eH,
> 2 B[P b () £ Ty )]
! (a,b)eH.
1 R
> H |]E Z D(x : hapy(z) # I, (7))
¢ _(a,b)engR(aﬂb):R(oyo)
1 .
> H |]E Z (125 —min{D(z : hp(z) # —1), 125}) . (6.1)
€ _(a,b)EHEZR(a’b):R(Dyo)

Since the summation if_(8.1) is restricted(tgb) with R, = R0, these(a, b) must also

haveh, = h0), SO that[[E.l) equals

1 .
@]E Z (125 — min{D(z : hop(x) # —1), 125}) : (6.2)
((L,b)EHEZR(a’b):R(Dyo)

Furthermore, for a giverX;, X,, ... sequence, the onlfu,b) € H. with R, # R, are

those for which soméz, —1) € R hasz € (a,b); since the(a,b) € H. are disjoint, the
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above summation has at le@&t.| — |R o )| elements in it. Thus[(6l.2) is at least

E |:(|He| - min{|R(0,0)|u |H6|}

] ) (125 — min{D(x : iL((),O)(l') # —1), 125})]

>E {]I (IR0 < 3s] T [D(w ooy (7) £ —1) < 65} <|H|1|LI—_|3S) (126 — 65)}

> 3cP (\R(O,O)y < 35,D(x : hoo)(z) # —1) < 65) . (6.3)
By Markov’s inequality,
P (’R(070)| > 38) < EHR(0,0)H/(BS) = SC(A, E,D, W(Qyo))/(38) < 1/3,

andP <D(x L hooy(z) # —1) > 65) <E [D(:z: : hioo) (z) # —1)] /(6¢), and if A is a correct
self-verifying algorithm, therf [D(;z: : hioo)(z) # —1)} /(6¢) < 1/6. Thus, by a union bound,
(6.3)is atleasss(1—-1/3—1/6) = (3/2)e > . Therefore, A cannot be a correct self-verifying

learning algorithm.

6.4 Prior-Dependent Learning: An Example

We begin our exploration af-dependent active learning with a concrete example, namisly
val classifiers under a uniform data density but arbitrarmgrpto illustrate how access to the prior
can make a difference in the sample complexity. Specificatipsidert’ = [0, 1], D uniform

on [0, 1], and the concept space of interval classifiers specified in the previous sectionr Fo
each classifieh € C, definew(h) = D(x : h(z) = +1) (the width of the intervah). Note that
because we allow = b in the definition ofC, there is a classifigr_ € C with w(h_) = 0.

For simplicity, in this example (only) we will suppose thgalithm may request the label
of any point in X', not just those in the sequen¢d;}; the same ideas can easily be adapted
to the setting where queries are restricted g }. Consider an active learning algorithm that
sequentially requests the labelgz) for pointsz at 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16,

3/16, etc., until (case 1) it encounters an exampl&ith X (z) = +1 or until (case 2) the set of
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classifiers” C C consistent with all observed labels so far satisiigs(X)|V] < e (which ever
comes first). In case 2, the algorithm simply halts and rettlie constant classifier that always
predicts—1: call it o_; note thakr(h_) = w(X). In case 1, the algorithm enters a second phase,
in which it performs a binary search (repeatedly queryirgrthdpoint between the closest two
—1 and+1 points, taking) and1 as known negative points) to the left and right of the obsi#rve
positive point, halting aftelog,(4/¢) label requests on each side; this results in estimates of the
target’s endpoints up tére/4, so that returning any classifier among thelge€ C consistent
with these labels results in error rate at mgsin particular, if% is the classifier i/ returned,
thenE[er(h)|V] < e.

Denoting this algorithm by, andh the classifier it returns, we have

o ()] = 5[ fr 1)) <=

so that the algorithm is definitely correct.
Note that case 2 will definitely be satisfied after at mb#ibel requests, and if(X) > e,
then case 1 will definitely be satisfied after at mg%gr) label requests, so that the algorithm never

makes more thaﬁm label requests before satisfying one of the two cases. Alaineg

N(X) = N(Ap, X,e,D, ), we have
E[N(X)]
—E [N(X)’w(X) - o] P (w(X) = 0)
+E [N(X)‘O <w(X) < \/E} P (0 < w(X) < V&)
+E [N(X)‘w(X) > \/E} P (w(X) > Z)

<E [N(X)‘w(X) = 0]]? (w(X) =0) + SIP’ (0 <w(X) <Ve)+ % + 21og, é (6.4)

The third and fourth terms in(8.4) arél/c). SinceP(0 < w(X) < /) — 0ase — 0, the
second term i (6l4) is(1/<) as well. IfP(w(X) = 0) = 0, this completes the proof. We focus
the rest of the proof on the first term in(6.4), in the case Hat(X) = 0) > 0: i.e., there is
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nonzero probability that the targét labels the space all negative. Lettihgdenote the subset
of C consistent with all requested labels, note that on the avelt) = 0, aftern label requests
(for n + 1 a power of2) we havemax;cy w(h) < 1/n. Thus, for any value € (0, 1), after at

most% label requests, on the event thatX ) = 0,

E [w(X)Tw(X) <1l|
(V)

< (6.5)

E [w(X)M < E[W(X)]é [w(X) <]

P(w(X) = 0)
Now note that, by the dominated convergence theorem,

iy [2OOL00) <70) g

o wCOT[w(X) < 7

v—0 Y

=0.

v—0

Therefore E [w(X)I [w(X) < ~]] = o(y). If we definey. as the largest value of for which
E[w(X)[w(X) <9]] < eP(w(X) = 0) (or, say, half the supremum if the maximum is not
achieved), then we have > . Combined with[(6.5), this implies
E [N(X)‘w(X) - o] < 73 = o(1/e).
Thus, all of the terms iri (6l4) arg1 /<), so that in totaE[ N (X)] = o(1/e).
In conclusion, for this concept spaéeand data distributiorD, we have a correct active
learning algorithmA achieving a sample complexityC (A, e, D, ) = o(1/e) for all priors«

onC.

6.5 A General Result for Self-Verifying Bayesian Active Learn-
ing

In this section, we present our main result for improvemexttisievable by prior-dependent

self-verifying active learning: a general result statihgtto(1/¢) expected sample complexity

is always achievable for some appropriate prior-dependetite learning algorithm, foany

(X, C, D, ) for which C has finite VC dimension. Since the known results for the saropin-

plexity of passive learning with access to the prior aredsfly ©(1/¢) [Haussler, Kearns, and
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Schapire, 1994a], and since there are known learning pratilé’, C, D, =) for which every pas-
sive learning algorithm requiré3(1/c) samples, this(1/<) result for active learning represents
an improvement over passive learning.

The proof is simple and accessible, yet represents an iatostep in understanding the
problem of self-termination in active learning algorithraad the general issue of the complexity
of verification. Also, since there are probleif?, C, D) whereC has finite VC dimension but
for which no prior-independent correct active learningoaithm (of the self-terminating type
studied here) can achievwél /<) expected sample complexity for everythis also represents a
significant step toward understanding the inherent valugawing access to the prior in active
learning.

First, we have a small lemma.

Lemma 6.1. For any sequence of functions : C — [0, c0) such thatyf € C, ¢,(f) = o(1/n)
andvn € N, ¢,,(f) < ¢/n (for an f-independent constante (0, c)), there exists a sequence

¢y, In [0, 00) such that

¢n=o0(1/n) and lim P (¢,(X) > ¢,) = 0.

n—o0

Proof. For any constant € (0, c0), we have (by Markov’s inequality and the dominated con-

vergence theorem)

lim P (ngn(X) > 7) < = lim E [ngn(X)]

n—oo ’Y n—oo

n—00

1 :
= _E [hm ngbn(x)} ~0.
Therefore (by induction), there exists a diverging segaendn N such that

lim sup P (n¢,(X) >27") = 0.

Inverting this, leti, = max{i € N : n; < n}, and defines, (X) = (1/n)-27". By construction,

P (¢n(X) > ¢,) — 0. Furthermorep; — co = i,, — oo, so that we have

lim ng, = lim 27" =0,
n—oo n—oo
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implying ¢, = o(1/n). O

Theorem 6.2.For any VC clasg’, there is a correct active learning algorithg, that, for every

data distributionD and prior 7, achieves expected sample complexity
SC(A,,e,D,m) =o(1/e).

Our approach to proving Theordm 6.2 is via a reduction tobéisteed results about (prior-
independent) active learning algorithms that ace self-verifying. Specifically, consider a
slightly different type of active learning algorithm thamat defined above: namely, an algo-
rithm A, that takes as input budgetn € N on the number of label requests it is allowed to
make, and that after making at meslabel requests returns as output a classifierLet us refer
to any such algorithm asladget-basedctive learning algorithm. Note that budget-based active
learning algorithms are prior-independent (have no dimecess to the prior). The following re-
sult was proven by [Hanneke, 2009] (see also the relategteadrk of [Balcan, Hanneke, and
Vaughan, 2010]).

Lemma 6.3. [Hanneke, 2009] For any VC clag3, there exists a constante (0, oc), a function

E(n; f, D), and a budget-based active learning algoritbtn such that
VD,Vf € C,E(n; f,D) < c¢/nand&(n; f,D) = o(1/n),

andE [er (Ay(n)) M < E(n: X, D) (alwaysH

That is, equivalently, for any fixed value for the target fuoic, the expected error rate is
o(1/n), where the random variable in the expectation is only tha datiuence&;, X, .... Our
task in the proof of Theorein 6.2 is to convert such a budgsedbalgorithm into one that is

correct, self-terminating, and prior-dependent, takirag input.

Theoreni 612.ConsiderA,, £, andc as in Lemmd 613, let,, denote the classifier returned by
Ay(n), and define
Ny e = Min {n eN:E [er (ﬁnﬂ < 5} .
2Furthermore, it is not difficult to see that we can take thie be measurable in th& argument.
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This value is accessible based purely on accessdandD. Furthermore, we clearly have (by
construction)k [er (hm)] < e. Thus, lettingA4, denote the active learning algorithm taking
(D, m,¢) as input, which runs4,(n..) and then returnénw, we have that4, is a correct
learning algorithm (i.e., its expected error rate is at mpst

As for the expected sample complexff¢’(A,, , D, ) achieved by4,,, we haveSC(A,, e, D, ) <
n. ., SO that it remains only to bound, .. By Lemmal6.1, there is a-dependent function

E(n;m, D) such that

Tr({feC:&mn; f,D)>&En;m,D)}) =0

andé (n; =, D) = o(1/n).

Therefore, by the law of total expectation,
E [er (hnﬂ —E [Eﬂ [er (hn> ‘X” < E[€(n; X, D)]
< %r ({f €C: EMm; £, D) > E(n; 7, D)}) + E(n; 7, D)
= o(1/n).

If n.. = O(1), then clearlyn. . = o(1/¢) as needed. Otherwise, sineg. is monotonic in,

we must haver, . T oo ase | 0. In particular, in this latter case we have

lime-n,.
e—0 ’

<lime - (1 —|—max{n >Nee—1:E [er <izn>} > 8})

e—0

=lime- max nl [E [er <ﬁn>} /e > 1}

e—0 n>ng —1

<lime- max nE [er (ﬁnﬂ /e

e—0 n>nge—1

=lim max nE [er <izn>} = hfzn—igp nlk [er <izn>} =0,

e=0n>ny—1

so thatn, . = o(1/¢), as required. O

Theoreni 6.2 implies that, if we hadirectaccess to the prior distribution &f, regardless of

what that prior distributiomr is, we can always construcsalf-verifyingactive learning algorithm
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A, that has a guarantee Bffer (A, (¢, D, 7))] < € and its expected nhumber of label requests
is o(1/¢). This guarantee isot possible for prior-independent self-verifying active rigag

algorithms.

6.6 Dependence of® in the Learning Algorithm

The dependence dh in the algorithm described in the proof of Theoren 6.2 idyaireak, and
we can eliminate any direct dependenc&by replacing:r (hn> by al—«¢/2 confidence upper
bound based o/, = (5 log 1) i.i.d. unlabeled exampleX{, X}, ..., X}, independent from
the examples used by the algorithm (e.g., set aside in arpeagsing step, where the bound is
calculated via Hoeffding’s inequality and a union boundrotee values ofn that we check,
of which there are at mos?(1/¢)). Then we simply increase the valuesofstarting at some

constant, such ag until
1 & A
MZ:” ({rec:rxh#h(x)}) <e/2

The expected value of the smallest valuendfor which this occurs i(1/<). Note that this
only requires access to the prioy not the data distributio® (the budget-based algorithp,

of [Hanneke, 2009] has no direct dependencé@dnif desired for computational efficiency, this
dependence may also be estimated ly-as/4 confidence upper bound based(@rﬁai2 log %)
independent samples of values with distributionr, where for each sample we simulate the
execution ofA4,(n) for that (simulated) target function in order to obtain te&urned classifier.
In particular, note that no actual label requests to thelera@ required during this process of

estimating the appropriate label budget., as all executions of{;, aresimulated
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6.7 Inherent Dependence om in the Sample Complexity

We have shown that for every priat the sample complexity is bounded by@ /<) function.
One might wonder whether it is possible that the asymptagpedddence ona in the sample
complexity can be prior-independent, while still bein@ /). That is, we can ask whether
there exists ar-independent) function(e) = o(1/¢) such that, for every:, there is a correct
w-dependent algorithm achieving a sample complexityC(A, e, D, ) = O(s(¢)), possibly
involving w-dependent constants. Certainly in some cases, such abdlutetassifiers, this is
true. However, it seems this is not generally the case, amaiticular it fails to hold for the

space of interval classifiers.

For instance, consider a prioron the spac& of interval classifiers, constructed as follows.
We are given an arbitrary monotoni¢c) = o(1/¢); sinceg(e) = o(1/e), there must exist
(nonzero) functionsy; (i) and g, (i) such thatlim; ;.. ¢1(7) = 0, lim;_» ¢2(7) = 0, andVi €
N, g(q1(7)/21) < go(3) - 2°; furthermore, letting;(i) = max{q;(7), ¢2(¢) }, by monotonicity of
g we also haveyi € N, g(q(i)/2") < ¢(4) - 2%, andlim, .., ¢(i) = 0. Then define a function
p(i) with . p(i) = 1 such thatp(i) > ¢(¢) for infinitely many: € N; for instance, this can
be done inductively as follows. Let, = 1/2; for eachi € N, if ¢(i) > «;_1, setp(i) = 0
anda; = «a;_1; otherwise, sep(i) = a;_; anda; = «;_1/2. Finally, for eachi € N, and each
je{0,1,...,21 — 1}, definer ({Hﬁ;,Q,i,(jH).z,i)}) — p(i)/2'.

We let D be uniform onX = [0,1]. Then for eachi € N s.t. p(i) > q(i), there is a
p(i) probability the target interval has widthr?, and given this any algorithm requires 2
expected number of requests to determine which of thesgervals is the target, failing which
the error rate is at leagt™. In particular, letting:; = p(:) /2", any correct algorithm has sample
complexity at leastc p(i) - 2° for e = ¢;. Notingp(i) - 2° > q(4) - 2° > g(q(¢)/2""') > g(e;), this
implies there exist arbitrarily small values ©f> 0 for which the optimal sample complexity is

at leastx g(¢), so that the sample complexityni®to(g(e)).

For anys(e) = o(1/e), there exists a monotonig(e) = o(1/¢) such thats(e) = o(g(e)).
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Thus, constructingr as above for thig, we have that the sample complexity is rdY(<)),

and therefore no®(s(¢)). So at least for the space of interval classifiers, the spedifi/<)
asymptotic dependence ens inherentlyr-dependent. This argument also illustrates that the
o(1/¢) result in Theorerm 612 is essentially the strongest posaittleis level of generality (i.e.,

without saying more aboW, D, or 7).
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Chapter 7

Prior Estimation for Transfer Learning

Abstract

HWe explore a transfer learning setting, in which a finite seqe of target concepts are sampled
independently with an unknown distribution from a known figm\e study the total number of
labeled examples required to learn all targets to an arpis@ecified expected accuracy, focusing
on the asymptotics in the number of tasks and the desiredamcuOur primary interest is
formally understanding the fundamental benefits of trarlefrning, compared to learning each
target independently from the others. Our approach to tnester problem is general, in the

sense that it can be used with a variety of learning protocols

7.1 Introduction

Transfer learning reuses knowledge from past related t@skase the process of learning to
perform a new task. The goal of transfer learning is to leyeiarevious learning and experience
to more efficiently learn novel, but related, concepts, carag to what would be possible with-

out this prior experience. The utility of transfer learnisgypically measured by a reduction in

1Joint work with Jaime Carbonell and Steve Hanneke
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the number of training examples required to achieve a tgrgdbrmance on a sequence of re-
lated learning problems, compared to the number requiredrfeelated problems: i.e., reduced
sample complexity. In many real-life scenarios, just a feaining examples of a new concept
or process is often sufficient for a human learner to graspéine concept given knowledge of
related ones. For example, learning to drive a van becomeh gasier a task if we have already
learned how to drive a car. Learning French is somewhat reisie have already learned En-
glish (vs Chinese), and learning Spanish is easier if we knosuBuese (vs German). We are
therefore interested in understanding the conditionsehable a learning machine to leverage
abstract knowledge obtained as a by-product of learning gagepts, to improve its perfor-
mance on future learning problems. Furthermore, we areesiied in how the magnitude of
these improvements grows as the learning system gains mpeeience from learning multiple

related concepts.

The ability to transfer knowledge gained from previous saskmake it easier to learn a new
task can potentially benefit a wide range of real-world aggpions, including computer vision,
natural language processing, cognitive science (e.qg., iM&h state classification), and speech
recognition, to name a few. As an example, consider traiaisgeech recognizer. After training
on a number of individuals, a learning system can identifyjemn patterns of speech, such as
accents or dialects, each of which requires a slightly difie speech recognizer; then, given a
new person to train a recognizer for, it can quickly detemrtime particular dialect from only a
few well-chosen examples, and use the previously-lear@eagnizer for that particular dialect.
In this case, we can think of the transferred knowledge asisting of the common aspects of
each recognizer variant and more generally digtribution of speech patterns existing in the
population these subjects are from. This same type of bigion-related knowledge transfer

can be helpful in a host of applications, including all thasentioned above.

Supposing these target concepts (e.g., speech patteensaapled independently from a

fixed population, having knowledge of the distribution ohcepts in the population may often
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be quite valuable. More generally, we may consider a gesegrlario in which the target con-
cepts are sampled i.i.d. according to a fixed distributiors. we show below, the number of
labeled examples required to learn a target concept samptaEatding to this distribution may
be dramatically reduced if we have direct knowledge of tiséritution. However, since in many
real-world learning scenarios, we do not have direct adoesss distribution, it is desirable to be
able to somehowearnthe distribution, based on observations from a sequen@aatfing prob-
lems with target concepts sampled according to that digiab. The hope is that an estimate
of the distribution so-obtained might be almost as usefuligect access to the true distribution
in reducing the number of labeled examples required to Isabisequent target concepts. The
focus of this paper is an approach to transfer learning basegstimating the distribution of
the target concepts. Whereas we acknowledge that thereteeimiportant challenges in trans-
fer learning, such as exploring improvements obtainaldmftransfer under various alternative
notions of task relatedness [Ben-David and Schuller, 2008eRiou and Pontil, 2004], or alter-
native reuses of knowledge obtained from previous taskaufT;1996], we believe that learning
the distribution of target concepts is a central and crumahponent in many transfer learning

scenarios, and can reduce the total sample complexity atasks.

Note that it is not immediately obvious that the distribatiof targets can even be learned
in this context, since we do not have direct access to thettamncepts sampled according to
it, but rather have only indirect access via a finite numbdabéled examples for each task; a
significant part of the present work focuses on establistiag) as long as these finite labeled
samples are larger than a certain size, they hold suffiadotmation about the distribution over
concepts for estimation to be possible. In particular, intcast to standard results on consistent
density estimation, our estimators are not directly basethe target concepts, but rather are
only indirectly dependent on these via the labels of a finimber of data points from each
task. One desideratum we pay particular attention to ismrmaing the number oéxtralabeled

examples needed for each task, beyond what is needed foirigdhat particular target, so that
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the benefits of transfer learning are obtained almostlas@oductof learning the targets. Our
technique is general, in that it applies to any concept spaitefinite VC dimension; also, the
process of learning the target concepts is (in some senselpied from the mechanism of
learning the concept distribution, so that we may apply eghhique to a variety of learning
protocols, including passive supervised learning, acsivgervised learning, semi-supervised
learning, and learning with certain general data-deperfdems of interaction [Hanneke, 2009].
For simplicity, we choose to formulate our transfer leagnahgorithms in the language of active
learning; as we show, this problem can benefit significamtignftransfer. Formulations for other
learning protocols would follow along similar lines, withaogous theorems; these results are
particularly interested when composed with the resultsrawrjlependent active learning from
the previous chapter.

Transfer learning is related at least in spirit to much earork on case-based and analog-
ical learning [Carbonell, 1983, 1986, Kolodner (Ed), 199B8ruin, 1996, Veloso and Carbonell,
1993], although that body of work predated modern machiamlag, and focused on symbolic
reuse of past problem solving solutions rather than on numachine learning problems such as
classification, regression or structured learning. Mocendy, transfer learning (and the closely
related problem omultitasklearning) has been studied in specific cases with integgétiough
sometimes heuristic) approaches [Baxter, 1997, Ben-Daddsahuller| 2003, Caruana, 1997,
Micchelli and Pontil, 2004, Silver, 2000]. This paper caless a general theoretical framework
for transfer learning, based on an Empirical Bayes perspedand derives rigorous theoretical
results on the benefits of transfer. We discuss the relafitimsanalysis to existing theoretical

work on transfer learning below.

7.1.1 Outline of the paper

The remainder of the paper is organized as follows. In Seffi@ we introduce basic notation

used throughout, and survey some related work from theiegilterature. In Sectioh 713, we
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describe and analyze our proposed method for estimatingdiskrébution of target concepts, the

key ingredient in our approach to transfer learning, whiehthen present in Sectién 7.4.

7.2 Definitions and Related Work

First, we state a few basic notational conventions. We @eNot {1,2,...} andNy = N U
{0}. For any random variabl&, we generally denote by the distribution ofX (the induced
probability measure on the range &f), and byPy ;- the regular conditional distribution of

givenY'. For any pair of probability measures, 1.2 on a measurable spae, F), we define

1 = pial| = sup |pa (A) = pa(A)]-
AeF

Next we define the particular objects of interest to our preskscussion. Le® be an
arbitrary set (called thparameter spage (X, 5y) be a Borel space [Schervish, 1995] (where
X is called thanstance spageandD be a fixed distribution ok’ (called thedata distributior).
For instance® could beR"™ and X could beR™, for somen,m € N, though more general
scenarios are certainly possible as well, including irghdiimensional parameter spaces. Cet
be a set of measurable classifiers X — {—1,+1} (called theconcept spage and suppose
C has VC dimensior < oo [Vapnik, 1982] (such a space is called/& clas$. C is equipped
with its Borelo-algebraB, induced by the pseudo-metpch, g) = D({z € X : h(z) # g(x)}).
Though all of our results can be formulated for gené&pah slightly more complex terms, for
simplicity throughout the discussion below we suppe&eactually ametric, in that anyh, g € C
with h # g havep(h, g) > 0; this amounts to a topological assumption@mnelative toD.

For each¥ € ©, wy is a distribution orC (called aprior). Our only (rather mild) assumption
on this family of prior distributions is thafr, : § € ©} be totally bounded, in the sense that
Ve > 0, 3 finite©. C O s.t. V0 € ©,30. € O, with |7y — 7y || < . Seel[Devroye and Lugosi,
2001] for examples of categories of classes that satis$y thi

The general setup for the learning problem is that we haugegparameter valué, € ©, and
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a collection ofC-valued random variable§h}, }en oco, Where for a fixedd € © the {h}, hen
variables are i.i.d. with distribution,.

The learning problem is the following. For eaglE O, there is a sequence

Zt(g) = {(thv EI(Q))7 (Xt27 Yt?(e))v .- ‘}v

where{X;; }+ ey are i.i.d. D, and for eacht, i € N, Y3;(0) = hj,(Xy). Fork € N we denote by
Zu(0) = {(Xu1,Yu(0)),. .., (Xu, Yie(0))}. Since theY;;(0) are the actuat;,(X;;) values, we
are studying the non-noisy, ogalizable-casgsetting.

The algorithm receives valuesandT as input, and for eache€ {1,2,...,T} in increas-
ing order, it observes the sequenkg, X, ..., and may then select an indéx receive label
Y, (6,), select another indei, receive label’;, (6, ), etc. The algorithm proceeds in this fash-
ion, sequentially requesting labels, until eventuallyriquces a classifigr,. It then increments
¢ and repeats this process until it produces a sequienée, . . . , i, at which time it halts. To be
calledcorrect the algorithm must have a guarantee thatc ©,Vt < T, E [,0 (ﬁt, h;ﬁg*ﬂ <e,
for any values ofl" € N ande > 0 given as input. We will be interested in the expected number
of label requests necessary for a correct learning algorithveraged over thé€ tasks, and in
particular in how shared information between tasks can teetpduce this quantity when direct

access td, is not available to the algorithm.

7.2.1 Relation to Existing Theoretical Work on Transfer Learning

Although we know of no existing work on the theoretical adeges of transfer learning for
active learning, the existing literature contains sevaralyses of the advantages of transfer
learning for passive learning. In his classic work, Baxt®&af{ter, 1997] section 4) explores a
similar setup for a general form of passive learning, exaeptfull Bayesian setting (in contrast
to our setting, often referred to as “empirical Bayes,” whiatiudes a constant paramefgito be
estimated from data). Essentially, [Baxter, 1997] sets uptafchical Bayesian model, in which

(in our notationy, is a random variable with known distribution (hyper-pridolit otherwise the
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specialization of Baxter’s setting to the pattern recogniproblem is essentially identical to our
setup above. This hyper-prior does make the problem sjigdatsier, but generally the results
of [Baxter, 199/7] are of a different nature than our objediliere. Specifically, Baxter’s results
on learning from labeled examples can be interpreted asatidg that transfer learning can
improve certairconstant factorin the asymptotic rate of convergence of the average of égdec
error rates across the learning problems. That is, certaistant complexity terms (for instance,
related to the concept space) can be reduced to (potentiatth smaller) values relatedig, by
transfer learning. Baxter argues that, as the number of taskss large, this effectively achieves
close to the known results on the sample complexity of padearning with direct access .

A similar claim is discussed by Ando and Zhang [Ando and Zh20804] (though in less detail)

for a setting closer to that studied here, whgres an unknown parameter to be estimated.

There are also several results on transfer learning of atbfigifferent variety, in which,
rather than having a prior distribution for the target cqiceéhe learner initially has several
potential concept spaces to choose from, and the role cfferais to help the learner select from
among these concept spaces [Ando and Zhang, 2005, Baxtdl]. 200this case, the idea is
that one of these concept spaces has the best average miaichiswable error rate per learning
problem, and the objective of transfer learning is to penfoearly as well as if we knew which
of the spaces has this property. In particular, if we assumadarget functions for each task all
reside in one of the concept spaces, then the objective méfemlearning is to perform nearly
as well as if we knew which of the spaces contains the targéiss, transfer learning results
in a sample complexity related to the number of learning lemols, a complexity term for this
best concept space, and a complexity term related to thesdivef concept spaces we have to
choose from. In particular, as with [Baxter, 1997], thesaltsan typically be interpreted as
giving constant factor improvements from transfer in a padgarning context, at best reducing
the complexity constants, from those for the union over tliergconcept spaces, down to the

complexity constants of the single best concept space.
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In addition to the above works, there are several analys&sgfer learning and multitask
learning of an entirely different nature than our presesatussion, in that the objectives of the
analysis are somewhat different. Specifically, there isaamdin of the literature concerned with
taskrelatednessnot in terms of the underlying process that generates tigettaoncepts, but
rather directly in terms of relations between the targetepts themselves. In this sense, several
tasks with related target concepts should be much easieato than tasks with unrelated target
concepts. This is studied in the context of kernel method&kueniou and Pontil, 2004, Evge-
niou, Micchelli, and Pontil, 2005, Micchelli and Pontil, 4], and in a more general theoretical
framework by [Ben-David and Schuller, 2003]. As mentionad,approach to transfer learning
is based on the idea of estimating the distribution of tacgetepts. As such, though interesting
and important, these notions of direct relatedness of taxgecepts are not as relevant to our

present discussion.

As with [Baxter,|1997], the present work is interested in simgwthat as the number of
tasks grows large, we can effectively achieve a sample aaitplclose to that achievable with
direct access t@,. However, in contrast, we are interested in a general apprtatransfer
learning and the analysis thereof, leading to concretdtsefar a variety of learning protocols
such as active learning and semi-supervised learning.rticpkar, our analysis of active learning
reveals the interesting phenomenon that transfer leagangometimes improve the asymptotic

dependence o rather than merely the constant factors as in the analy§igaater, 1997].

Our work contrasts withl [Baxter, 1997] in another importagggect, which significantly
changes the way we approach the problem. Specifically, indBaxdnalysis, the results (e.qg.,
[Baxter, 1997] Theorems 4, 6) regard the average loss oveéasks, and are stated as a function
of the number of samples per task. This number of samples pldyal role in Baxter's analysis,
since these samples are used both by the individual leaatgagithm for each task, and also for
the global transfer learning process that provides then&zarwith information abouwt,. Baxter

is then naturally interested in the rates at which theseeBssrink as the sample sizes grow
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large, and therefore formulates the results in terms of fyenatotic behavior as the per-task
sample sizes grow large. In particular, the results of [BaXt@97] involve residual terms which

become negligible for large sample sizes, but may be moréfisignt for smaller sample sizes.

In our work, we are interested in decoupling these two rabesHfe sample sizes; in partic-
ular, our results regard only the number of tasks as an agyimpariable, while the number of
samples per task remains bounded. First, we note a veryigaictotivation for this: namely,
non-altruistic learners. In many settings where trangarriing may be useful, it is desirable
that the number of labeled examples we need to collect frazh particular learning problem
never be significantly larger than the number of such exasmglquired to solve that particular
problem (i.e., to learn that target concept to the desiredracy). For instance, this is the case
when the learning problems are not all solved by the sameitwdil (or company, etc.), but
rather a coalition of cooperating individuals (e.g., htalgisharing data on clinical trials); each
individual may be willing to share the data they used to lgaeir particular concept, in the
interest of making others’ learning problems easier; h@nehey may not be willing to collect
significantlymore data than they themselves need for their own learning pmoabM/e should
therefore be particularly interested in studying tranafeaby-productof the usual learning pro-
cess; failing this, we are interested in the minimum possitimber ofextralabeled examples

per task to gain the benefits of transfer learning.

The issue of non-altruistic learners also presents a futdahnical problem in that the in-
dividuals solving each task may be unwilling to alter theethodof gathering data to be more
informative for the transfer learning process. That is, wpeet the learning process for each
task is designed with the sole intention of estimating tmgetaconcept, without regard for the
global transfer learning problem. To account for this, wedaldhe transfer learning problem in
a reduction-style framework, in which we suppose therernsesblack-box learning algorithm to
be run for each task, which takes a prior as input and has agtiead guarantee of good perfor-

mance provided the prior is correct. We place almost noictisins whatsoever on this learning
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algorithm, including the manner in which it accesses tha.dbhis allows remarkable generality,
since this procedure could be passive, active, semi-sigeehor some other kind of query-based
strategy. However, because of this generality, we have acagtee on the information aboit
reflected in the data used by this algorithm (especiallyig @&n active learning algorithm). As
such, we choose not to use the label information gatheredhdyerarning algorithm for each
task when estimating th#,, but instead take a small numberadditional random labeled ex-
amples from each task with which to estiméfe Again, we want to minimize this number of
additional samples per task; indeed, in this work we are tbheake due with a mereonstant
number of additional samples per task. To our knowledge gsalt of this type (estimating,
using a bounded sample size per learning problem) has piyibeen established at the level

of generality studied here.

7.3 Estimating the Prior

The advantage of transfer learning in this setting is thahdaarning problem provides some
information aboub,, so that after solving several of the learning problems, wghtrhope to be
able toestimated,. Then, with this estimate in hand, we can use the correspgreitimated
prior distribution in the learning algorithm for subsequéarning problems, to help inform
the learning process similarly to how direct knowledgegg/pimight be helpful. However, the
difficulty in approaching this is how to define such an estonaSince we do not have direct
access to thé; values, but rather only indirect observations via a finitenbar of example
labels, the standard results for density estimation fraoch isamples cannot be applied.

The idea we pursue below is to consider the distribution€g(¥,.). These variableare di-
rectly observable, by requesting the labels of those exasnflhus, for any finité € N, this dis-
tribution is estimable from observable data. That is, using the i.i.thesaZ,,(6,), ..., Z(6,),
we can apply standard techniques for density estimatiomit@at an estimator &z,, »,). Then

the question is whether the distributig,, 4,) uniquely characterizes the prior distributiop) :
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that is, whetherr, is identifiablefrom Pz, ¢, ).

As an example, consider the spacehaff-open intervaklassifiers o0, 1]: C = {ll[ﬂ;b) ;
0<a<b<l1}, Wherelib)(x) = +1if a < x < band—1 otherwise. In this cases,, is
notnecessarily identifiable froffiz,, 4,); for instance, the distributionsy, andn,, characterized
by 7o, ({15, }) = Mo, ({15,0}) = 1/2 ando, ({15,)}) = 7 ({150, }) = 1/2 are not dis-
tinguished by these one-dimensional distributions. H@eiv turns out that for this half-open
intervals problemyr,, is uniquely identifiable fronPz,, ,); for instance, in the;, vs 6, sce-
nario, the conditional probabilit(v,, 4,),v.(0:))(x:,x.) ((+1, +1)[(1/4,3/4)) will distinguish
mp, from my,, and this can be calculated fraPz,, 4,). The crucial element of the analysis below
is determining the appropriate valuefofo uniquely identifyry, from Pz, ¢, in general As we
will see, k = d (the VC dimension) iglwayssufficient, a key insight for the results that follow.
We will also see this isotthe case for any < d.

To be specific, in order to transfer knowledge from one tagkémext, we use a few labeled
data points from each task to gain information aliyut~or this, for each task we simply take

the firstd data points in theZ,(6,) sequence. That is, we request the labels

}/tl (9*)7 KQ(Q*)u s 73/td<9*)

and use the pointg,,(d,) to update an estimate 6f.

The following result shows that this technique does proddmnsistent estimator o, .
Again, note that this result is not a straightforward aggilan of the standard approach to con-
sistent estimation, since the observations here are ndt;fheariables themselves, but rather a
number of th&’};(,) values. The key insight in this result is thgt is uniquely identifiedy the
joint distributionPz, 4,y over the firsid labeled examples; later, we prove thisist necessarily
true forPz,, o, for valuesk < d. This identifiability result is stated below in Corolldry 7.6
as we discuss in Section 7.B.1, there is a fairly simple tipecof of this result. However,
for our purposes, we will actually require the stronger ¢to that anyd € © with small

|Pz,.0) — Pz,(0.)| also has smal|my — m, ||. This stronger requirement adds to the complexity
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of the proofs. The results in this section are purely core@mith relating distances in the space
of Pz, distributions to the corresponding distances in the spéeg distributions; as such,
they are not specific to active learning or other learningqarals, and hence are of independent
interest.

Theorem 7.1. There exists an estimattﬁfm* = 9T(Zld(0*), ..., Zrq(0,)), and functionsR :

Ny x (0,1] — [0,00) and ¢ : Ny x (0,1] — [0, 1], such that for anyx > 0, :Ill_{rolo R(T,«a) =
lim (7, ) = 0 and for anyl’ € N, andé, € ©,

T—o0
P (HWém — 7. || > R(T, a)) < (T, ) < a.

One important detail to note, for our purposes, is tR&al’, «) is independent frond,, so
that the value of?(7’, o) can be calculated and used within a learning algorithm. Thefpf
Theoren 7.1l will be established via the following sequerfdemmas. Lemma 712 relates dis-
tances in the space of priors to distances in the space abdtsbns on the full data sets. In turn,
Lemmd_ 7.8 relates these distances to distances in the spdistributions on a finite number of
examples from the data sets. Lemima 7.4 then relates theckstdetween distributions on any
finite number of examples to distances between distribstionl examples. Finally, Lemmia 7.5
presents a standard result on the existence of a convergiimgagor, in this case for the distri-
bution ond examples, for totally bounded families of distributionsading these relations back,
they relate convergence of the estimator for the distriloutif  examples to convergence of the
corresponding estimator for the prior itself.

Lemma 7.2. For anyf, 0’ € © andt € N,

170 = 7o || = [Pz, 0) = Pzyor|
Proof. Fix 0,0 € ©,t € N. LetX = {Xy, Xp,...}, Y(0) = {Y;1(0),Y2(0),...}, and for
ke NletX, = {Xy,..., Xy} andYi(0) = {Yiu(0),...,Yu(0)}. Forh € C, leteg(h) =
{(Xer, h( X)), (Xia, M(Xi2)), -}
Forh,g € C, definepx(h, g) = WILI_EI(I)O% S LX) # g(Xy)] (if the limit exists), and
px,.(h,g) = %Zle 1[h(Xw) # 9(Xy)]. Note that sinceC has finite VC dimension, so does
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the collection of set{{z : h(z) # g(z)} : h,g € C}, so that the uniform strong law of
large numbers implies that with probability oné, g € C, px(h, g) exists and hagx(h, g) =
p(h, g) [Vapnik, 1982].

Consider any, ¢’ € ©, and anyA € B. Then sinceB is the Borelo-algebra induced by,
anyh ¢ AhasVg € A, p(h,qg) > 0. Thus, ifpx(h, g) = p(h, g) forall h, g € C, thenVh ¢ A,

Vg € A, px(h,g) = p(h,g) >0 = Vg € A, cx(h) # cx(g9) = cx(h) & ex(A).
This impliescy ' (ex(A)) = A. Under these conditions,
Pz, ox(cx(A)) = mo(cx ' (ex(A))) = mo(A),

and similarly for¢'.
Any measurable set for the range ofZ,(6) can be expressed é5= {cz(h) : (h,z) € C'}

for some appropriate’ € B ® BY. LettingC%, = {h: (h,z) € C"}, we have

Pz,0)(C) = /We(cg%l(cx(oé)))PX(d@ = /We(C;%)PX(dx) = Py, 3 (C").

Likewise, this reasoning holds féf. Then

IPz0) — Pz.on |l = Pz, % — Par, w0l
= swn | [(mlCl) — mo(Co)Px(a0)
O BB
S /Sup |7T9(A) — 7T9/(A)|Px(dj) = ||7T9 — 7T9/||.
ACB

Sinceh;, andX are independent, fot € B, mg(A) = Py, (A) = Prs, (A)Px(X) = Pz, 50 (AX

A>°). Analogous reasoning holds fa},. Thus, we have
7m0 = 7orll = [P, 3 X %) = P (- x X))
< Pz x) — P, ol = [Pz6) — Pzion -
Combining the above, we hay@®z, o) — Pz, || = |79 — 7o'|. O
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Lemma 7.3. There exists a sequencg= o(1) such thatvt, k € N, V0,0 € O,
IPz0) = Pzyion || < Mo — morll < IPz00) — Pzl + 7k

Proof. The left inequality follows from Lemma_7.2 and the basic défin of || - ||, since

Pz,.0) (") = Pz (- x (X x {=1,+1})>), so that
1Pz, — Pzl < IPz,0) — Pz,on |l = |lmg — 7o ||.

The remainder of this proof focuses on the right inequakiy. 6,6’ € ©, lety > 0, and let

B C (X x {—1,+1})> be a measurable set such that
1m0 — morl| = 1P z,0) = Pzyon || < Pz,0)(B) = Pzy(B) + 7.

Let A be the collection of all measurable subset§6fx {—1, +1})> representable in the form
A’ x (X x {—1,+1})>, for some measurabld’ C (X x {—1,+1})* and somek € N. In
particular, sinced is an algebra that generates the produeigebra, Cara#odory’s extension
theorem |[[Schervish, 1995] implies that there exist digjsigts{A;}.cy in A such thatB C
UieN A; and
Pz,0)(B) — Pz,0)(B) < Y _Pz0)(A) — Y Pz (A) +7.
1€N €N

Additionally, as these sums are bounded, there mustexisN such that

D Pz (A) <7+ ) Pzi(A),

€N =1

so that
D Pz (A) =D Pzen(A) <7+ > _Pze(A) — Y Pz (A)
€N 1€N =1 i=1
=7+ Pz (U Az’) — Pz, ) (U Az’) .
=1 i=1
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AsJl_, A; € A, there existg’ € Nand measurable’ C (X' x{—1,+1})* suchthatJ | A; =
A" x (X x {—1,+1})*, and therefore

Pz.) (U Ai) — Pz (U Ai) =Pz,,.0)(A) = Pz,,0)(4)
i=1

i=1

<Pz 0) = Pzyuionll < im [Pz, 0) = Pz, 0

In summary, we havéry — 1y || < limy_o [|Pz,,.0) — Pz, 01| + 37. Since this is true for an

arbitrary~ > 0, taking the limit asy — 0 implies
170 = morl| < lim [Pz, 6) — Pz, on)]
In particular, this implies there exists a sequengé, ') = o(1) such that
VE €N, [[mg — 7o || < [Pz, = Pzyionll + r4(0,6").

This would suffice to establish the upper bound if we werenatig . to depend on the par-
ticular and#’. However, to guarantee the same rates of convergence fmaigdl of parameters
requires an additional argument. Specificallyplet 0 and let©., denote a minimal subset 6f
such thatyd € ©, 30, € O, s.t. |m — 7, || < 7: that is, a minimah-cover. Sincg®,| < oo
by assumption, defining,(y) = maxygceo. 7:(6,6'), we haver,(y) = o(1). Furthermore, for
anyd,0' € ©, lettingt., = argming.cq_ ||mg — e[| aNdY., = argming.cq_ ||y — mor ||, we have

(by triangle inequalities)

7o — 7o/ || < llmo — 7o, || + ll7o, — 7o, || + [|70r, — 7o ||

<2y +76(7) + [Pz, — Pzl

By triangle inequalities and the left inequality from the l@astatement (established above), we
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also have

1Pz (0,) — Pzior)l
<Pz, = Pzull + IPzi0) = Pzioll + P2y — Pzl
< lma, — moll + [[Pz,0) — Pzysionll + 7o — 7o, |

<27+ [Pz, 0) — Pz, 00 -

Definingr, = inf,~o (47 + 7:(7)), we have the right inequality of the lemma statement, and

sincer(vy) = o(1) for eachy > 0, we haver, = o(1). O

Lemma 7.4.Vt,k € N,V0,6 € O,

IP2,00) — Paon | < 4+ 224 [P, 0 — Py |

Proof. Fix anyt € N, and letX = {X;, Xjs,...} andY(0) = {Y;1(0),Y2(0),...}, and for
kEeNletX, ={Xu,..., Xy} andYy(0) = {Yu(0),...,Yu(0)}.
If k£ <d, theantk(g)(-) = Pgtd(9)<- X (X X {—1, —l—l})d_k), so that

HPZtk(g) - Pztk(a’) H < ”]P)th(@ - ]P)th(@') H7

and therefore the result trivially holds.

Now supposé > d. For a sequenceand/ C N, we will use the notatioa; = {z; : i € I}.
Note that, for anyk > d andz® € X*, there is a sequenggz*) € {—1,+1}* such that no
h € C hash(z*) = y(z*) (i.e.,Vh € C, Ji < k s.t. h(zF) # 3;(z*)). Now supposé > d and
take as an inductive hypothesis that there is a measurahle se X'>° of probability one with
the property that/z € A*, for every finitel C N with |I] > d, for everyy € {—1,+1}> with

\gr — y(@1)]1/2 < k-1,

Py, o), (Ur|Z1) — Py, oy, (Ur1Z1) |

<P max, P 1) — Prop, (57170)]
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This clearly holds fori|y; — %(z;)|[1/2 = 0, sincePy,@)x,(yr|z;) = 0 in this case, so this
will serve as our base case in the inductive proof. Next weadtidely extend this to the value
k > 0. Specifically, letd; , be theA* guaranteed to exist by the inductive hypothesis, and fix
anyz € A*, gy € {—1,+1}*, and finitel C Nwith |I| > d and|y; — y(z)|[1/2 = k. Leti € I
be such thay; # 7:(zr), and lety’ € {—1,+1} havey; = y; for everyj # i, andy; = —;.
Then

Py, o)1, (111) = Py, 1y 00150 1y iy 1Zrgay) — Pogoyx, (07121), (7.1)

and similarly forf’. By the inductive hypothesis, this means

Py, o), (51171) — P, oyp, (7] 71)|
= ‘PYI\M OFn g IneTngy) = Pep g @) g Onaleng) ’
+ [Py, o), (71171) — Py, oy, (F1171) |

< 9k ma P 7T 0) — Po o ) .
< gde{—l,—i-l)}(d,DEId‘ Yd(G)\Xd(y ‘ D) Yd(G)IXd(?J | D)‘

Therefore, by the principle of induction, this inequalityltts for allk > d, for everyz € A*,
y € {—1,+1}°, and finitel C N, whereA* hasD*>-probability one.

In particular, we have that fdt, ¢’ € O,

1Pz, 0) — Pzon

<2'E P 7" 1X%) — Py, onix, (77X
= [gke?—lzll,)j—l}k‘ V()% (71 X) Y05 ("] k)@

< 2*E P 11X D) — Py o, (74X
> [gde{_1,+ﬁ13§e{1 ..... k}d} va(0) x4 (91 Xp) Y00 %4 (7] D)|

<2 Z E [|Py, o). (7°1XD) — Py a01x, (71XD)|] -

gte{—-1,+1}¢ De{1,..., }d

Exchangeability implies this is at most

2 Z Z E [Py 0%, (571Xa) — Pyo1x.(571Xa) ]

gie{—1,+1}4 De{1,...,

2%k+dy.d ~d _ ) ~d
<27 gdegﬁl}ﬁ [[Pyao)ia (771%a) = Pyaqonia (5°1Xa)]] -
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To complete the proof, we need only bound this value by anagjate function of|Pz, ) —

Pz,,l|- Toward this end, suppose
E [|Py, )%, (771Xa) — Py, onx, (591Xa)|] > €,
for someg?. Then either
P (Py,0)x, (571Xa) — Py oz, (571Xa) > €/4) > e/4,

or
P (PYd(O,”Xd (gd’Xd) - PYd(9)|Xd (gd’Xd) > 5/4) = 5/4'
For which ever is the case, ldt denote the corresponding measurable subsatiobf proba-

bility at leasts /4. Then

IPz,.0) — Pzl = |Pzue)(Ae X {§°}) — Pz, (A x {7°})]

> (c/4)Py,(A.) > £2/16.

Therefore,

E [[Py, o, (571%a) — Pryonix, (§*1Xa)|] < 4\/ P z,000) = Pzucon

which means

2k+dy.d ~d _ , ~d
27k gde?_l?indE [Py, (571%a) — Py yorx, (591Xa) ]

<4. 22’f+dkd\/ IPz,.00) — Pz,q0n |-
[

The following lemma is a standard result on the existenceookerging density estima-
tors for totally bounded families of distributions. For quurposes, the details of the estimator
achieving this guarantee are not particularly importasityva will apply the result as stated. For

completeness, we describe a particular estimator thatatiesve the guarantee after the lemma.
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Lemma 7.5. [Devroye and Lugosi, 2001, Yatracos, 1985] [l2t= {p, : § € O} be a totally
bounded family of probability measures on a measurableesfacr), and let{W;(0) };en gco

be Q2-valued random variables such th@V,(0) },cn are i.i.d. p, for eachd € ©. Then there
exists an estimatafi;yy, = 07(Wy(6,), ..., Wr(6,)) and functionsRp : Ny x (0,1] — [0, 00)

andop : Ny x (0,1] — [0, 1] such thatvae > 0, limy o Rp (T, ) = limy o, dp(T, ) = 0, and
Vo, € © andT € Ny,

P (lps,,, —po.ll > Bp(T,0)) < 3p(T.0) < .

In many contexts (though certainly not all), even a simpleimam likelihood estimator
suffices to supply this guarantee. However, to derive resutider the more general condi-
tions we consider here, we require a more involved methodcigpally, the minimum dis-
tance skeleton estimate explored by [Devroye and Lugo$il2W¥atracas, 1985], specified as
follows. Let®©. C © be a minimal-cardinality-cover of©: that is, a minimal-cardinality sub-
set of © such thatvd € ©, 30. € O, with ||ps. — ps|| < . For eachd, 0’ € O, let Agy
be a set inF maximizing pp(As o) — per(Age), and letA. = {Agp : 6,0 € O.}, known
as aYatracos class Finally, for A € F, let pr(4) = T7! Zthl 14(Wi(6y)). The mini-
mum distance skeleton estimatedig, = argming.q_sup e 4. [po(A) — pr(A)]. The reader
is referred to|[Devroye and Lugosi, 2001, Yatracos, 1985]af@roof that this method satis-
fies the guarantee of Lemma [7.5. In particulars;ifis a sequence decreasingat a rate

such that7'log(|©.,|) — 0, anddr is a sequence bounded byand decreasing t6 with

or = w(er + /T log(|0.,])), then the result of [Devroye and Lugasi, 2001, Yatracos51.98

combined with Markov’s inequality, implies that to satisifye condition of Lemm@ 715, it suffices

to take Rp (T, ) = 07" (35T + /8T 1log(2[0.,|* v 8)) andip(T,«) = op. For instance,
ep = 2inf {a > 0:log(|©]) < \/T} anddr = a A (yer + T-1/#) suffice.
We are now ready for the proof of Theorém]7.1

Theoreni 7J1.Fore > 0, let ©. C O be a finite subset such thst ¢ ©, 30. € O, with

llme. — mg|| < €; this exists by the assumption that, : 6 € O} is totally bounded. Then
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Lemmal7.B implies thatd € ©, 36. € O, with ||Pz,,.) — Pz.0l < llmo. — mll < &,
so that{Pz,,.) : 6- € O.} is a finitec-cover of {Pz,,» : # € ©}. Therefore {Pz,,q) :
6 € ©} is totally bounded. Lemm@a 1.5 then implies that there existgstimatorém* =

Or(Z14(05), - .., Zraq(0,)) and functionsk, : Ny x (0, 1] — [0, 00) andd, : Ng x (0, 1] — [0, 1]
such thata > 0, limy_,o Ry(T, @) = limy_, 04(T, ) = 0, andVl, € © andT € Ny,

P (”PZ(TH)d(éTe*)\éTe* o IP)Z(TH)d(g*) > Rd(T’ a)) < 5d<T’ a> < a. (7'2)

Defining

R(T,«a) = 1%1611{11 <rk 44 - 22l JRy(T, a)) ,

ando(T, o) = 64(T, ), and combining[(7]2) with Lemma&s 7.4 dnd]7.3, we have
P (||7rém — 7o || > R(T, a)> <§(T,0) < a

Finally, note thatlim 7, = 0 and lim R,(7,«) = 0 imply that lim R(7,a) = 0. O
k—o0 T—o0 T—o0

7.3.1 Identifiability from d Points

Inspection of the above proof reveals that the assumptiahttie family of priors is totally
bounded is required only to establish the estimability amanldled minimax rate guarantees. In
particular, the implied identifiability condition is, indf alwayssatisfied, as stated formally in
the following corollary.

Corollary 7.6. For any priorsm, o onC, if A} ~ m;, X1,..., X, arei.i.d. D independent from
hy, and Zg(i) = {(X1,h;(X1)), ..., (Xq, R (Xq))} fori € {1,2}, thenPy 1y = Py, =

T = T9.

Proof. The described scenario is a special case of our generalgsetiith© = {1, 2}, in which
casePy,;) = Pz,,u). Thus, ifP;,q) = Py, then Lemma 7]4 and Lemnia 7.3 combine to

imply that||m; — ms|| < infrenri = 0. O
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Since Corollary 76 is interesting in itself, it is worth nagithat there is a simple direct proof
of this result. Specifically, by an inductive argument basadhe observatior (74.1) from the
proof of Lemm& 7.4, we quickly find that for arly € N, Pz, (9,) is identifiable fromPz, ..
Then we merely recall thakz, ,) is always identifiable fror{PPz,, 4,) : £ € N} [Kallenberg,

2002], and the argument from the proof of Lemima 7.2 shaoyvss identifiable fromPz, g, ).

It is natural to wonder whether identifiability of,, from Pz, ,) remains true for some
smaller number of points < d, so that we might hope to create an estimatorsdgrbased on
an estimator fofz,, 4,). However, one can show thdts actually theminimumpossible value
for which this remains true for ald and all families of priors. Formally, we have the following

result, holding for every VC class.

Theorem 7.7. There exists a data distributigR and priorszy, 73 on C such that, for any pos-
itive integerk < d, if hf ~ m;, X1,..., X} are i.i.d. D independent fromk}, and Z, (i) =
{(Xl, h;k(Xl)), ceey (Xk, h;k(Xk))} fori e {1, 2}, then]P)Zk(l) = sz(g) bUt7T1 7é 9.

Proof. Note that it suffices to show this is the case ko= d — 1, since any smallek is a
marginal of this case. Consider a shatterable set of péipts {zq,xs,..., 24} C X, and let
D be uniform onS,. Let C[S,] be any2¢ classifiers inC that shatteiS,. Letw; be the uniform
distribution onC|[S]. Now letS; ; = {z1,...,z4 1} andC[S;_1] C C[S,] shatterS,; ; with
the property thavh € C[S;_1], h(zq) = Hj;} h(zx;). Letm, be uniform onC[S;_1]. Now

for anyk < d and distinct indices,, ...t € {1,...,d}, {hi(ay,),...,h!(x )} is distributed

~~~~~

which impliesP,, ) =Pz, ,(2). However,r, is clearly different fromr,, since even the sizes

of the supports are different. [
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7.4 Transfer Learning

In this section, we look at an application of the techniguesfthe previous section to transfer
learning. Like the previous section, the results in thigisacare general, in that they are ap-
plicable to a variety of learning protocols, including passupervised learning, passive semi-
supervised learning, active learning, and learning withate general types of data-dependent
interaction (see [Hanneke, 2009]). For simplicity, weriesbur discussion to the active learning
formulation; the analogous results for these other legrpnotocols follow by similar reasoning.

The result of the previous section implies that an estinfatat, based orl-dimensional joint
distributions is consistent with a bounded rate of convecge?. Therefore, for certain prior-
dependent learning algorithms, their behavior should belasi underwém to their behavior
underry, .

To make this concrete, we formalize this in the active lesgrprotocol as follows. Aorior-
dependenactive learning algorithmd takes as inputs > 0, D, and a distributionr on C. It
initially has access to(;, X», ... i.i.d. D; it then selects an indek to request the label for,
receivesY;, = h*(X,,), then selects another indéx etc., until it eventually terminates and
returns a classifier. Denote I = {(X1, h*(X1)), (X2, h*(X3)),...}. To becorrect A must
guarantee that fok* ~ 7, Ve > 0, E [p(A(e, D, ), h*)] < . We define the random variable
N(A, f,e,D,n) as the number of label requesismakes before terminating, when giverD,
andr as inputs, and wheh* = f is the value of the target function; we make the particular
data sequencg the algorithm is run with implicit in this notation. We willebinterested in the
expected sample complex8¢'(A, e, D, n) = E[N(A, h*, e, D, 7).

We propose the following algorithmal, for transfer learning, defined in terms of a given
correct prior-dependent active learning algorithtn We discuss interesting specifications for
A, in the next section, but for now the only assumption we regjigrthat for anye > 0 and
D, there is a value. < oo such that for everyr and f € C, N(A,, f,e,D,7) < s.; this

is a very mild requirement, and any active learning algamittan be converted into one that

129



satisfies this without significantly increasing its sammpenplexities for the priors it is already
good for [Balcan, Hanneke, and Vaughan, 2010]. We additipniginote bym. = 1%¢1n (%),
andB(0,v) = {0 € © : ||mg — mor|| < v}

Algorithm 1 A, (T, ¢): an algorithm for transfer learning, specified in terms oéaeyic subrou-

tine A,.
fort=1,2,...,7Tdo

Request label¥}; (0,), ..., Yia(0,)
if R(t—1,¢/2) > ¢/8then
Request label}41)(6,), - . ., Yim. (04)
Takeh, as anyh € C s.t.Vi < m., h(Xy) = Yii(6,)
else
Letd,. € B (é(t_l)g*, R(t — 1,5/2)) be such that
SC(Aa,e/4,D,m,, ) < ~ min SC(Ag,e/4,D,m) + 1/t
- 0€B(0;—1)0, R(t—1,6/2)) )
RunA,(¢/4, D, m,, ) with data sequencg;(¢,) and leth, be the classifier it returns

end if

end for

Recall thaté(t_l)g*, which is defined by Theorem 7.1, is a function of the labetpiested
on previous rounds of the algorithm®(t — 1,¢/2) is also defined by Theorem 7.1, and has no
dependence on the data (or @&y). The other quantities referred to in Algorithth 1 are defined
just prior to Algorithn1. We suppose the algorithm has asteshe value&SC(A,, /4, D, 1)
for everyf € ©. This can sometimes be calculated analytically as a funafd@, or else can
typically be approximated via Monte Carlo simulations. Intfahe result below holds even if
SC' is merely an accessiblgper boundn the expected sample complexity.

Theorem 7.8. The algorithmA, is correct. Furthermore, iSr(¢) is the total number of label
requests made byl (7', €), thenlim sup w < SC(A,,e/4,D,my,) +d.

T—o0

The implication of Theorerh 7.8 is that, via transfer leagniit is possible to achieve al-

130



most thesamelong-run average sample complexity as would be achievalihe itarget’s prior
distribution wereknownto the learner. We will see in the next section that this is etmmes
significantly better than the single-task sample compjeXis mentioned, results of this type for
transfer learning have previously appeared wHgns a passive learning method [Baxier, 1997];
however, to our knowledge, this is the first such result whieeeasymptotics concern only the
number of learning tasks, not the number of samples pertiaisks also the first result we know

of that is immediately applicable to more sophisticatediaey protocols such as active learning.

The algorithm A is stated in a simple way here, but Theoren 7.8 can be improntxd
some obvious modifications td.. The extra “d” in Theorem[ 7.8 is not actually necessary,
since we could stop updating the estimatgy (and the corresponding value) after some(7)
number of rounds (e.gy/T’), in which case we would not need to requEstd, ), ..., Yiq(6,)
for ¢ larger than this, and the extia o(7") number of labeled examples vanishes in the average
asT — oo. Additionally, thes/4 term can easily be improved to any value arbitrarily close to
(even(1 — o(1))e) by running.A, with argument — 2R(t — 1,¢/2) — 6(t — 1,¢/2) instead of
£/4, and using this value in th&C' calculations in the definition df,, as well. In fact, for many
algorithms.A, (e.g., withSC(A,, e, D, my, ) continuous ire), combining the above two tricks

yieldslim sup w < SC(Ag,e,D,my,).

T—o0

Returning to our motivational remarks from Subsection ¥ &€l can ask how margxtrala-
beled examples are required from each learning problemitatiga benefits of transfer learning.
This question essentially concerns the initial step of estjng the labeld};(6,), ..., Y.(6,).
Clearly this indicates that from each learning problem, wedret most/ extra labeled examples
to gain the benefits of transfer. Whether thédabel requests are indeedtradepends on the
particular learning algorithma,; that is, in some cases (e.g., certain passive learningitlge),
A, may itself use these initial labels for learning, so that in these cases the benefits md-tra
fer learning are essentially gained abyaproductof the learning processes, and essentially no

additional labeling effort need be expended to gain thesefiis. On the other hand, for some
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active learning algorithms, we may expect that at least sointleese initiald labels would not
be requested by the algorithm, so that some extra labelfog &f expended to gain the benefits
of transfer in these cases.

One drawback of our approach is that we require the dataldison D to remain fixed
across tasks (this contrasts with [Baxter, 1997]). Howeweshould be possible to relax this
requirement in the active learning setting in many casesirfstance, if¥ = R*, then as long
as we are guaranteed that the distributiyrfor each learning task has a strictly positive density
function, it should be possible to use rejection samplingefich task to guarantee tlieueried
examples from each task have approximately the same distnibacross tasks. This is all we
require for our consistency results éﬁg* (i.e., it was not important that thé samples came
from the true distributiorD, only that they came from a distribution under whijcks a metric).

We leave the details of such an adaptive method for futursideration.

7.4.1 Proof of Theoreni7.B

Recall that, to establish correctness, we must showthat 7', E [p (ﬁt, h;*e*)] < ¢, regardless
of the value off, € ©. Fixanyf, € © andt < T. If R(t — 1,¢/2) > ¢/8, then classic
results from passive learning indicate tﬂ‘aEp (?Lt, h;;)*)] < ¢ [Vapnik,|1982]. Otherwise, by
Theoreni 711, with probability at least-¢/2, we have|m, =01, | < R(t—1,¢/2). Onthis
event, ifR(t—1,e/2) < ¢/8, then by atriangle inequalityr,,, —mo, || < 2R(t—1,¢/2) <e/4.

Thus,

2 (i) <5 e i)

0o | 1 [I7s,, —moll Se/d]| +e/2. (@3

Forf e O, let hy denote the classifier that would be returnedAy(c/4, D, w5, ) when
run with data sequencf( X1, hjy(Xu)), (X, hjy(Xi2)),...}. Note that for any € ©, any

measurable functiof’ : C — [0, 1] has

E [F(hgy,)] < E[F(hip)] + |Img — 7o,

. (7.4)

132



In particular, supposingr;,, — 7, || < /4, we have

E [p <ilt7 hrg*) éte*] =E [P (ilte*v h:9*>

=K [p (htéwuhfém*) é”*} + 75, — 7ol <e/d+e/d=¢e/2.

o

Combined with[Z3), this implieE [p (ﬁt, h;*@*)} <e.
We establish the sample complexity claim as follows. Firgerthat convergence @t(t —
1,¢/2) implies thatlimy_,., S, 1[R(t,£/2) > ¢/8] /T = 0, and that the number of labels

used for a value of with R(t —1,¢/2) > /8 is bounded by a finite functiom. of . Therefore,

E[S7(e)]
T

lim sup
T—o0

< d+limsup Y E [N(Aa, hfg*,e/él,D,ﬂéw*)] 1[R(t —1,6/2) < £/8])T

T—o00 —1

T
< d + lim sup Z E [N (A by . 2/4,D, 7%)] IT. (7.5)

T—o0

By the definition ofR, § from Theoreni_7]1, we have

lim —Z]E [ (Aas By, e/4, D, 5, )1 [Hwé@_% — 7o || > R(t — 1,5/2)“

T—oo 1

< lim —Zss/m(n T v, — 0.l > Rt —1,2/2))

T T T
< 38/47113010?;5(15 —1,e/2) = 0.
Combined with[(Z.b), this implies

. E[Sr()]
i =

lim sup — ZE[ (Aa, hip,,€/4, D, mg,, )1 |[lmg, =7l < R(t = 1,6/2)”.

T—o0

< d+

For anyt < T, on the event|7ré(t71)0 — 7, || < R(t — 1,¢/2), we have (by the property (1.4)
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and a triangle inequality)

E|N(Aa, hyy, e/4,D, 15, )

o

<E|N(Auhj, 5/4 D, ) |fn.] +28( - 1,2/2)

e (Aa,g/z;,p,wéw*) Y 2R(E—1,2/2)

< SC (Aa,e/4,D,my,) + 1/t +2R(t — 1,¢/2),

where the last inequality follows by definition &f,_. Therefore,

lim sup E[Sr(e)]
T—00 T

T—oo

T
1
<d+ limsupf ZSC’ (As,e/4,D,my, ) + 1/t +2R(t — 1,¢/2)
t=1

—d+ SC (A, e/4,D,m,) .

7.5 Conclusions

We have shown that when learning a sequence of i.i.d. taoyetepts from a known VC class,
with an unknown distribution from a known totally boundedniyy, transfer learning can lead
to amortized average sample complexity close to that aahlevby an algorithm with direct

knowledge of the the targets’ distribution.
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Chapter 8

Prior Estimation

Abstract

HWe study the optimal rates of convergence for estimatinga plistribution over a VC class
from a sequence of independent data sets respectivelyethbglindependent target functions
sampled from the prior. We specifically derive upper and lobh@unds on the optimal rates
under a smoothness condition on the correct prior, with theber of samples per data set equal
the VC dimension. These results have implications for therawements achievable via transfer

learning.

8.1 Introduction

In the transfer learningsetting, we are presented with a sequence of learning pnshleach
with some respective target concept we are tasked withitearihe key question in transfer
learning is how to leverage our access to past learning @nubin order to improve performance

on learning problems we will be presented with in the future.
Among the several proposed models for transfer learning,pamticularly appealing model

1Joint work with Jaime Carbonell and Steve Hanneke
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supposes the learning problems are independent and idindcstributed, with unknown distri-
bution, and the advantage of transfer learning then coroestine ability to estimate this shared
distribution based on the data from past learning probléBaxter, 1997, Yang, Hanneke, and
Carbonell, 2011]. For instance, when customizing a speeabgration system to a particu-
lar speaker’s voice, we might expect the first few people @aded to speak many words or
phrases in order for the system to accurately identify thennas. However, after performing
this for many different people, if the software has acceshdse past training sessions when
customizing itself to a new user, it should have identifieghamtant properties of the speech
patterns, such as the common patterns within each of therrdajl@cts or accents, and other
such information about theistribution of speech patterns within the user population. It should
then be able to leverage this information to reduce the nuwib&ords or phrases the next user
needs to speak in order to train the system, for instancediytrfying to identify the individual’s
dialect, then presenting phrases that differentiate comsnbpatterns within that dialect, and so

forth.

In analyzing the benefits of transfer learning in such arsgtbne important question to ask
is how quickly we can estimate the distribution from whicke tearning problems are sampled.
In recent work|, Yang, Hanneke, and Carborell [2011] have sitbat under mild conditions on
the family of possible distributions, if the target concemside in a known VC class, then it is
possible to estimate this distribtion using only a boundechioer of training samples per task:
specifically, a number of samples equal the VC dimension. é¥ew we left open the question
of quantifying therate of convergence. This rate of convergence can have a dirgetahon how
much benefit we gain from transfer learning when we are fagdd anly a finite sequence of
learning problems. As such, it is certainly desirable tav@etight characterizations of this rate

of convergence.

The present work continues that of Yang, Hanneke, and Calijdfé1], bounding the rate

of convergence for estimating this distribution, under asthness condition on the distribution.
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We derive a generic upper bound, which holds regardlesseo¥ b class the target concepts
reside in. The proof of this result builds on our earlier wdbkit requires several interesting
innovations to make the rate of convergence explicit, andrémmatically improve the upper
bound implicit in the proofs of those earlier results. Wetlier derive a nontrivial lower bound
that holds for certain constructed scenarios, which Hatss a lower limit on how good of a
general upper bound we might hope for in results expressgdroterms of the number of tasks,

the smoothness conditions, and the VC dimension.

8.2 The Setting

Let (X, By) be a Borel space [Schervish, 1995] (whée¥eis called theinstance spage and

let D be a distribution onY’ (called thedata distributior). Let C be a VC class of measurable
classifiersh : X — {—1,+1} (called theconcept spage and denote by the VC dimension of

C [Vapnik,[1982]. We supposE is equipped with its Boref-algebral3 induced by the pseudo-
metricp(h,g) = D({z € X : h(x) # g(z)}). Though our results can be formulated for general
D (with somewhat more complicated theorem statements)mplgy the statement of results
we suppose is actually ametric which would follow from appropriate topological conditi®
onC relative toD. For any two probability measures, 1.2 on a measurable spa(@, F), define

the total variation distance

[l = izl = sup pa (A) — p2(A).
AeF

Let Tl = {m : 6§ € O} be a family of probability measures dn (called priors), where©®

is an arbitrary index set (called thparameter spage We additionally suppose there exists a
probability measure, on C (called thereference measuysuch that everyr, is absolutely con-
tinuous with respect ta,, and therefore has a density functifingiven by the Radon-Nikodym
derivative§™ [Schervish, 1995].

We consider the following type of estimation problem. Thiera collection ofC-valued ran-
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dom variablegh}, : t € N, 0 € ©}, where for any fixed € © the {h},};°, variables are i.i.d.
with distributionry. For eacty € O, thereisasequencg(0) = {( X1, Y (0)), (X, Yia(0)), ...},
where{ X }+.ey are i.i.d. D, and for eacht,i € N, Y;;(0) = hj,(Xy). We additionally denote
by Zi. = {(Xu,Yu(9)),. .., (Xu, Yie(0))} the firstk elements ofz,(0), for anyk € N, and
similarly Xy, = { X4, ..., Xu} and Yy, (0) = {Yu(0),...,Y(6)}. Following the terminol-
ogy used in the transfer learning literature, we refer todblection of variables associated
with eacht collectively as thet'" task We will be concerned with sequences of estimators
Org = O7(Z1(0), ..., Zri(0)), for T e N, which are based on only a bounded numbef

samples per task, among the fifstasks. Our main results specifically study the caske efd.

For any such estimator, we measuretltisk askE [Hwém — 7, | } , and will be particularly inter-
ested in upper-bounding the worst-case Hs, .o E [||7ré” - 7r9*||} as a function off’, and
lower-bounding the minimum possible value of this worsseceisk over all possiblé; estima-

tors (called theminimax risk.

In previous work| Yang, Hanneke, and Carbonell [2011] we stbthat, iflle is a totally
bounded family, then even with ontynumber of samples per task, the minimax risk (as a func-
tion of the number of task®) converges to zero. In fact, we also proved this is not necigs
the case in general for any number of samples less dhadowever, the actual rates of con-
vergence were not explicitly derived in that work, and irdiéee upper bounds on the rates of
convergence implicit in that analysis may often have faidynplicated dependences @nlle,

andD, and furthermore often provide only very slow rates of cogeace.

To derive explicit bounds on the rates of convergence, inptiesent work we specifically
focus on families obmoothdensities. The motivation for involving a notion of smoagka in
characterizing rates of convergence is clear if we consideextreme case in whidl contains
two priorsm; andmy, with m ({h}) = m({g}) = 1, wherep(h, g) is a very small but nonzero
value; in this case, if we have only a small number of sampéeggsk, we would require many

tasks (on the order df/p(h, g)) to observe any data points carrying any information thatldo
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distinguish between these two priors (namely, pointgith h(z) # g(x)); yet|m — m| = 1,
so that we have a slow rate of convergence (at least initialliytotal boundedness condition
onIlg would limit the number of such pairs presentlip, so that for instance we cannot have
arbitrarily closeh andg, but less extreme variants of this can lead to slow asyniptates of
convergence as well.

Specifically, in the present work we consider the followirggion of smoothness. Far €

(0,00) anda € (0, 1], a functionf : C — R is (L, «)-Holder smooth if

Vh,g € C,|f(h) — f(g)| < Lp(h, 9)*.

8.3 An Upper Bound

We now have the following theorem, holding for an arbitrar§ ¥lassC and data distribution
D; it is the main result of this work.

Theorem 8.1. For Ilg any class of priors o having(L, a)-Holder smooth densitie§f, : 6 €
O}, for anyT € N, there exists an estimatéiy = 07(Z14(6), . .., Zrq4(0)) such that

~ o2
sup El[my — .|| = O (LT—zwwa)(aw“») _
0,€0

*

Proof. By the standard PAC analysis [Blumer, Ehrenfeucht, Hausaher Warmuth, 1989, Vap-
nik,|1982], for anyy > 0, with probability greater thah—~, a sample ok = O((d/~) log(1/7))
random points will partitiorC into regions of width less thaf. For brevity, we omit the sub-
script on quantities such & (6) throughout the following analysis, since the claims hold fo
any arbitrary value of.

For anyf € ©, letr, denote a (conditional o1, ..., X}) distribution defined as follows.

Let f, denote the (conditional o, ..., X}) density function ofr;, with respect tar,, and for

anyg € C, let fj(g) = 2 EEi=pnEaaial (or 0 if mo({h € C: Vi < k, h(X;) = g(X,)}) =
0). In other words;r, has the same probability masssfor each of the equivalence classes

induced byXj, ..., X}, but conditioned on the equivalence class, simply has aaondensity
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distribution over that equivalence class. Note that, bystheothness condition, with probability

greater thari — ~, we haveeverywhere
[fo(h) = fo(h)] < L™
So for anyd, ¢ € ©, with probability greater thah — ~,
Imo = ol = (1/2) [ Ufo = foldmo < L+ (1/2) [ 153 = Syl

Furthermore, since the regions that deffjj@nd f;, are the same (namely, the partition induced

by X1, ..., X%), we have

(U%/W—ﬂﬁm

=(1/2) > Im({h € C:Vi <k X)) =y}) — mo({h € C: Vi < k,h(X;) = y;})|

Y1,y €{—1,+1}

= Py, o) — Py, |-

Thus, we have that with probability at ledst ~,
Imo — mor || < LY* + [Py, ox — Pyionixell-

Following analogous to the inductive argument_of Yang, Hean and Carbonell [2011],
supposel C {1,...,k}, fix z; € XMl andy; € {—1,+1}/l. Then thej; € {—1,+1} for
which noh € C hash(z;) = gy, for which ||g; — g7/, is minimal, had|g; — g;][: < d+ 1, and
for anyi € I with ; # 7, lettingy; = y; for j € I'\ {i} andy; = g;, we have

Py, )%, (F11Z1) = Py, oy @10 ) Ui Zrgy) — Pysox, (97121),

and similarly for#’, so that

Py, 0y, (U11T1) — Py, oryx, (5r171)]
< Py iy @ Un 1T gy) — Pyp 0050 0 O 1 2]

+ Py, 0yx, (F11Z1) — Py, onx, (T7121)).-
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Now consider that these two terms inductively define a biti@s. Every time the tree branches
left once, it arrives at a difference of probabilities fored £ of one less element than that of its
parent. Every time the tree branches right once, it arrivesdifference of probabilities for a
y; one closer to an unrealizeg than that of its parent. Say we stop branching the tree upon
reaching a sef and ay; such that eitheg; is an unrealized labeling, df| = d. Thus, we
can bound the original (root node) difference of probabsitby the sum of the differences of
probabilities for the leaf nodes witli| = d. Any path in the tree can branch left at mést d
times (total) before reaching a setwith only d elements, and can branch right at mast 1
times in a row before reachingya such that both probabilities are zero, so that the diffezeac
zero. So the depth of any leaf node wijih = d is at most(k — d)d. Furthermore, at any level
of the tree, from left to right the nodes have strictly desie@|/| values, so that the maximum
width of the tree is at most — d. So the total number of leaf nodes with = d is at most

(k — d)?d. Thus, for anyy € {1,...,k} andz € X*,

Py, o)1, (U1T) — Py, 0%, (91|

<(k—d)’d-  ma ax [P y'|Zp) — Py y0nx, (7%]Z0)].
<( ) gdeg1§1}d De?ll,..i{k}d‘ va0)x.(7°1%D) Ya@)1%. (512 D)

Since

1Py, — Pyl = (1/2) Z Py, o)1, (7°) = Pygionix, (7°)];
gre{—1,+1}k

and by Sauer’s Lemma this is at most

(ek)dgke?g?i I By 0y15, (5°) = Py (5°)];

we have that

dy.2 —d _d
Py — Prooxl < (ek)h7d A e Py y0)150 (7)) — Praonxo (7°)].
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Thus, we have that

|79 — 7o || = E||mg — 7o ||

<7+ Ly* + (ek)'K*dE P — Py, o5 (7°
v+ Ly + (ek) |:d€?121i}i1}dD€¥{rll?.‘i{ Py 0155 (57) — Py o (59)]

Note that

E a a ]P) T _P / T
Lde?ll,}il}d De?f,..ﬁ}d' va@xn (§°) = Py, (7]

< Z Z UPYCJ(@NXD (gd) - PYd(G'HXD (gd) H

gie{—1,+1}¢ De{1,...,k}¢

_dy _ o (d
< (2k)° pep ok L4 poaX, }dE [Pyo)x0 () — Pyaonxo (7)) 5

and by exchangeability, this last line equals

(2k)dgdeg§>il}dE [Py 0y, (57) — Pyone, (5] -

Yang, Hanneke, and Carbonell [2011] showed that

E [|Py,0)x.(5%) — Py oz, (7%)]] < 4\/||]P’zd(9) —Pz,00l,

so that in total we have

I = Toll < (L + 1357 + 4(2ek)*2, /[P, 6) — Pz, |-

Plugging in the value of = ¢(d/v)log(1/7), this is

d 2d+2
(L+1)7v*+4 (260 log < )) \/||IP’gd — Pz, 01l

So the only remaining question is the rate of convergenceioéstimate oz, ). If N(e)

is thee-covering number of Pz, : 0 € O}, then takingéTg* as the minimum distance skele-
ton estimate of Devroye and Lugosi [2001], Yatracos [198Fji@ves expected total variation
distances from 7y, , for someT” = O((1/?) log N(s/4)). We can partitiorC into O((L /)% <)

cells of diameteO((¢/L)"/*), and set a constant density value within each cell, of @n-grid
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of density values, and every prior witli., «)-Holder smooth density will have density within
¢ of some density so-constructed; there are then at fMgsyO(2/9”*) such densities, so this
bounds the covering numbers 0. Furthermore, the covering number Ida§ upper bounds
N (¢) [Yang, Hanneke, and Carbonell, 2011], so thdt) < (1/¢)O(L/27),

SolvingT = O(s2(L/e)¥*log(1/¢)) for ¢, we have: = O (L (%)dﬁga) So this
bounds the rate of convergence EjﬂP’Zd(éT) — Pz, for 6 the minimum distance skeleton

estimate. Plugging this rate into the bound on the priomylined with Jensen’s inequality, we

d 1)) log(TL)\ 2+
E|mg, — mo || < (L +1)7"+4 (266; log (;)) O|L (%) :

This holds for anyy > 0, so minimizing this expression over> 0 yields a bound on the rate.

have

For instance, withy = O (T’2<d+2a><a+2<d+1>>), we have

2

Bl - 7| = O ( LT~ et ).

8.4 A Minimax Lower Bound

One natural quesiton is whether Theofem 8.1 can generaltyfr®ved. While we expect this to
be true for some fixed VC classes (e.g., those of finite sing)jmany case we expect that some
of the constant factors in the exponent may be improvabis,nbt at this time clear whether
the general form of —©(@*/(@+2)*) js sometimes optimal. One way to investigate this queston i
to construct specific spacé&€sand distributiongD for which a lower bound can be obtained. In
particular, we are generally interested in exhibiting loweunds that are worse than those that
apply to the usual problem of density estimation based cectisccess to thgj, values (see
Theoreni 8.3 below).

Here we present a lower bound that is interesting for thisaeaHowever, although larger

than the optimal rate for methods wtih direct access to thgetaconcepts, it is still far from
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matching the upper bound above, so that the question ohegltremains open. Specifically, we
have the following result.

Theorem 8.2.For any integerd > 1, anyL > 0,« € (0, 1], there isavalu&’'(d, L, «) € (0, 00)
such that, for any’ € N, there exists an instance spa&g a concept spac€ of VC dimension
d, a distributionD over X, and a distributionr, overC such that, forllg a set of distributions
over C with (L, «)-Holder smooth density functions with respectrtg any estimatord; =

~

QT(Zld(Q*), ceey ZTd(G*)) (T = 1, 2, .. .), has

sup E [||m5 — mo.[|] > C(d, L, )T =ara),
0,0

Proof. (Sketch) We proceed by a reduction from the task of detengithie bias of a coin from
among two given possibilities. Specifically, fix any (0,1/2),n € N, and letB,(p), . .., B.(p)
be i.i.dBernoulli(p) random variables, for eaghe [0, 1]; then it is known that, for any (possibly
nondeterministic) decision rufg, : {0,1}" — {(1+~)/2, (1 —v)/2},

S Y PGB Bao) #£0) > (1/32) exp{-128%n/3) . (8.)
pe{(1+7)/2,(1—v)/2}

This easily follows from the results of Bar-Yossef [2003], [d/f1945], combined with a result
of Poland and Hutter [2006] bounding the KL divergence.

To use this result, we construct a learning problem as f@ldvix somen € N with m > d,
let ¥ = {1,...,m}, and letC be the space of all classifiets: X — {—1,+1} such that
{z € X : h(z) = +1}| < d. Clearly the VC dimension of is d. Define the distributiorD
as uniform overX. Finally, we specify a family of L, «)-Holder smooth priors, parameterized
by © = {—1,+1}(4), as follows. Lety,, = (L/2)(1/m)". First, enumerate th€?) distinct
d-sized subsets ofl,...,m} as&}, As, ..., X(Tg). Define the reference distributiory by the
property that, for any: € C, lettingq = [{z : h(z) = +1}|, mo({h}) = (3)*(7=0) /()
For anyb = (by,... 7b<7§)) e {-1, 1}(73), define the priorm, as the distribution of a random
variablehy, specified by the following generative model. Liét~ Uniform({1,..., (})}), let
Cy(i*) ~ Bernoulli((1 + vmbi<)/2); finally, hy, ~ Uniform({h € C : {z : h(zx) = +1} C
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Xy, Parity(|[{z : h(z) = +1}|) = Cu(¢*)}), whereParity(n) is 1 if n is odd, or0 if n is even.
We will refer to the variables in this generative model beldwor anyh € C, letting H =

{: h(z) = +1} andg = |H|, we can equivalently express({n}) = ()4(")™" zfﬁ? 1[H C

2] (14 by ) P2 (@ (1 —,,b;) 1 ~Parity(@) | From this explicit representation, it is clear that, legti
fo = %’ we havef,(h) € [1 — Y, 1 + v for all b € C. The fact thatf;, is Holder
smooth follows from this, since every distinetg € C haveD({z : h(z) # g(z)}) > 1/m =

(29 / D)V,

Next we set up the reduction as follows. For any estimajoe= 77 (Z14(6s), ..., Zra(bs)),
and eachi € {1,...,(")}, let h; be the classifier witz : h;(z) = +1} = X;; also, if
wr({hi}) > (3)%/(7), letb; = 2Parity(d) — 1, and otherwiseh; = 1 — 2Parity(d). We
use thesé, values to estimate the original values. Specifically, lef; = (1 + v,,b;)/2 and
pi = (1 + vmb;)/2, whereb = 6,. Then
(3)
|7 — mo, || > (1/2) Z |77 ({hi}) — 7o, ({hi})]

=1

£y

~—~
a3
S—

(2)
2 (1/2) 3 gt b= /2 = (1/2)Y i —pi
=1 d =1 d

Thus, we have reduced from the problem of deciding the biatdbese (’g) independent
Bernoulli random variables. To complete the proof, it sufite lower bound the expectation
of the right side for amrbitrary estimator.

Toward this end, we in fact study an even easier problem. ifsgadly, consider an estimator
G = Gi(Z14(0), ..., 2rq(0y),1%,...,i%), wherei} is the:* random variable in the generative
model that defines, ; that is,i; ~ Uniform({1,...,("})}), C; ~ Bernoulli((1 + ~nbi:)/2),
andhy, ~ Uniform({h € C : {z : h(z) = +1} C A, Parity(|[{z : h(z) = +1}|) =
C:}), where thei; are independent acrossas are the”; andh;, . Clearly thep; from above
can be viewed as an estimator of this type, which simply igadhe knowledge of;. The

knowledge of these; variables simplifies the analysis, since giveii : ¢ < T}, the data

can be partitioned intq”)) disjoint sets{{Z4(6.) : iy = i} : i = 1,...,(")}, and we can
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use only the sef{Z,,(6,) : if = i} to estimatep;. Furthermore, we can use only the subset
of these for whichX,; = A&}, since otherwise we have zero information about the value of
Parity(|{z : hy, (x) = +1}|). Thatis, giveni; = i, any Z,,4(6,) is conditionally independent
from everyb, for j # i, and is even conditionally independent fromvhenX,, is not completely
contained inX;; specifically, in this case, regardlessbafthe conditional distribution of;,(6,)
giveni; = i and givenX,, is a product distribution, which deterministically assdabel—1 to
thoseYy, (6,) with X, ¢ &;, and gives uniform random values to the subséf g6, ) with their
respectiveXy, € X;. Finally, lettingr, = Parity(|[{k < d : Y (6,) = +1}|), we note that given

iy =1, Xyq = &, and the valuey, b; is conditionally independent fror#,,;(6,). Thus, the set of
valuesC;r(0,) = {r; : if =1,Xy = X;} is a sufficient statistic fob; (hence forp;). Recall that,
wheni; = ¢ andX;; = A}, the value of-; is equal toC}, aBernoulli(p;) random variable. Thus,
we neither lose nor gain anything (in terms of risk) by resing ourselves to estimatods of

the typeg; = Gi(Z14(6y), - - -, Zra(6y), 45, . . . ,i%) = ¢.(Cir(,)), for someg; [Schervish, 1995]:
that is, estimators that are a function of tNg-(6,) = |C;r(0)| Bernoulli(p;) random variables,

which we should note are conditionally i.i.d. givéi(6,).

Thus, by [(8.11), for any. < T,

% Z E |:|(jz — pi||Nir(0,) = n} = % Z YmlP (in # pi|Nir(0,) = n>

bie{—1,+1} bie{—1,+1}

> (Ym/32) - exp { —12892,N;/3} .

Also note that, for each E[N;] = %T < (d/m)¥T = d24(2~,,/L)*¥*T, so that Jensen’s
d

inequality, linearity of expectation, and the law of totapectation imply

1 . ) )
5 2 Elld—pil) = (3 /32) - exp {—43(2/L)*/*d*"y 12T}
bie{—1,+1}
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Thus, by linearity of the expectation,

NG G ) A
<§) >, E ZWI%—@-I :Zmi > Ellg—pil]

m i=1 i=1 bie{—1,+1
be{—1,+1}(d) it }

> (’Vm/(32 . 2d>) - exp {_43(2/L)2d/ad2d%2n+2d/aT} .

In particular, taking

O T e
m = |V(L/2) / (43(2/L)2d/ad2d) w ;

4 2d/a j2d m
o ()

we have

so that

G)(Z’) S ok ngém)@_pi' :Q(Q_d (43(2/LT)2d/ad2d)2<f‘+w>‘

be{—1,+1}(g)

In particular, this implies there exists somdor which

(3) o
1 . B 4 43(2/L)2d/ad2d 2(d+a)
NG ‘9(2 (*55) )

i=1

Applying this lower bound to the estimatgy defined above yields the result. [

In the extreme case of allowing arbitrary dependence ondteshmples, we merely recover
the known results lower bounding the risk of density estiomafrom i.i.d. samples from a
smooth density, as indicated by the following result.

Theorem 8.3. For any integerd > 1, there exists an instance spadg a concept spac€ of
VC dimensiond, a distributionD over X, and a distributiont, over C such that, forllg the
set of distributions ove€ with (L, «)-Hodlder smooth density functions with respectrto any

sequence of estimatom; = 0(2,(6,),..., Zr(0,)) (T =1,2,...), has
(ilé%E |:||7TéT — 7, [|]] = Q (T d+2a> :
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The proof is a simple reduction from the problem of estingtin based on direct access to
hi,,, ..., Wy, , Which is essentially equivalent to the standard model ofidg estimation, and
indeed the lower bound in Theorém18.3 is a well-known resultiensity estimation frorf' i.i.d.
samples from a Blder smooth density in &dimensional space [see e.g., Devroye and Lugosi,

2001].

8.5 Future Directions

There are several interesting questions that remain ogérsdime. Can either the lower bound
or upper bound be improved in general? If, instead sdmples per task, we instead use> d
samples, how does the minimax risk vary witt? Related to this, what is the optimal value of
m to optimize the rate of convergence as a functiomdf, the total number of samples? More
generally, if an estimator is permitted to uSetotal samples, taken from however many tasks it

wishes, what is the optimal rate of convergence as a funofion?

148



Chapter 9

Estimation of Priors with Applications to

Preference Elicitation

Abstract

HWe extend the work of [Yang, Hanneke, and Carbonell, 2013]stimating prior distributions
over VC classes to the case of real-valued functions in a \l@msyph class. We then apply this
technique to the problem of maximizing customer satisfectising a minimal number of value

queries in an online preference elicitation scenario.

9.1 Introduction

Consider an online travel agency, where customers go totihevgh some idea of what type of

travel they are interested in; the site then poses a sergsestions to each customer, and iden-
tifies a travel package that best suits their desires, budgdtdates. There are many options of
travel packages, with options on location, site-seeingstdwotel and room quality, etc. Because

of this, serving the needs of ambitrary customer might be a lengthy process, requiring many

1This chapter is based on joint work with Steve Hanneke
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detailed questions. Fortunately, the stream of custorsdxgpically not a worst-case sequence,
and in particular obeys many statistical regularities: amtigular, it is not too far from reality
to think of the customers as being independent and idelytidadtributed samples. With this
assumption in mind, it becomes desirable to identify sombede statistical regularities so that
we can pose the questions that are typically most relevaulk tlrereby more quickly identify
the travel package that best suits the needs of the typicibimer. One straightforward way
to do this is to directlyestimatethe distribution of customer value functions, and optintize
guestioning system to minimize the expected number of guesheeded to find a suitable travel

package.

One can model this problem in the style of Bayesian combiratauctions, in which each
customer has a value function for each possible bundle wisiteHowever, it is slightly differ-
ent, in that we do not assume the distribution of customekaasvn, but rather are interested in
estimating this distribution; the obtained estimate camthe used in combination with methods
based on Bayesian decision theory. In contrast to the litex&@in Bayesian auctions (and subjec-
tivist Bayesian decision theory in general), this technigueble to maintain general guarantees
on performance that hold under an objective interpretatibtine problem, rather than merely
guarantees holding under an arbitrary assumed prior bdligit general idea is sometimes re-
ferred to a£mpirical Bayesiarecision theory in the machine learning and statisticeditges.
The ideal result for an Empirical Bayesian algorithm is to bepetitive with the corresponding
Bayesian methods based on tetual distribution of the data (assuming the data are random,
with an unknown distribution); that is, although the Emgati Bayesian methods only operate
with a data-based estimate of the distribution, the aim igeidorm nearly as well as methods
based on the true (unobservable) distribution. In this wakkpresent results of this type, in the
context of an abstraction of the aforementioned onlinesfragency problem, where the measure

of performance is the expected number of questions to finadade package.

The technique we use here is rooted in the work of [Yang, Hesrend Carbonell, 2013] on
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transfer learningwith a VC class. The component of that work of interest hethesestimation
of prior distributions over VC classes. Essentially, thera given class of functions, from which
a sequence of functions is sampled i.i.d. according to amawwk distribution. We observe
a number of values of each of these functions, evaluatediatspchosen at random, and are
then tasked with estimating the distribution of these fioms. This is more challenging than
the traditional problem of nonparametric density estiorgtisince we are not permitted direct
access to these functions, but rather only a limited nhumbewauations of the function (i.e.,
a number of(z, f(x)) pairs). The work ofl[Yang, Hanneke, and Carbaonell, 2013] tmpsea
technique for estimating the distribution of these funes$iogiven that the functions are binary-
valued, the class of functions has finite VC dimension, ardcthss of distributions is totally
bounded. In this work, we extend this technique to classesadfvalued functions having finite
pseudo-dimension, a natural generalization of VC dimenfgioreal-valued functions [Haussler,

1992].

The specific application we are interested in here may beesgpd abstractly as a kind of
combinatorial auction with preference elicitation. Sgieaily, we suppose there is a collection
of items on a menu, and each possible bundle of items has aniagsl fixed price. There is
a stream of customers, each with a valuation function thatiges a value for each possible
bundle of items. The objective is to serve each customer dlbwfiitems that nearly-maximizes
his or her surplus value (value minus price). However, wenatepermitted direct observation
of the customer valuation functions; rather, we may queryttie value of any given bundle of
items; this is referred to asvalue quenyin the literature on preference elicitation in combinato-
rial auctions (see Chapter 14 of [Cramton. Shoham. and Stein®@06], [Zinkevich, Blum, and
Sandholm|_2003]). The objective is to achieve this nearimaksurplus guarantee, while mak-
ing only a small number of queries per customer. We suppaseuktomer valuation function
are sampled i.i.d. according to an unknown distributiorr @denown (but arbitrary) class of real-

valued functions having finite pseudo-dimension. Reasathiagknowledge of this distribution
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should allow one to make a smaller number of value queriesy&omer, we are interested in

estimating this unknown distribution, so that as we serveemand more customers, the number
of queries per customer required to identify a near-optinoaldle should decrease. In this con-
text, we in fact prove that in the limit, the expected numbfequeries per customer converges
to the number required of a method having direct knowledgbaefrue distribution of valuation

functions.

9.2 Notation

Let 5 denote as-algebra ont x R, let By denote ther-algebra onX. Also let p(h,g) =
f |h — g|dPx, wherePx is a marginal distribution ovet'. Let F be a class of function¥ — R
with Borel o-algebral3 = induced byp. Let © be a set of parameters, and for eédch O, let 7,
denote a probability measure O, Br). We supposémy : 6 € O} is totally bounded in total
variation distance, and that is a uniformly bounded VC subgraph class with pseudodinoensi
d. We also supposgis ametricwhen restricted toF.

Let { Xy }+.ien beii.d. Px random variables. For eaéhe ©, let{h},};cy be i.i.d.my random
variables, independent frofnX,; }: ,cy. For eaclt € N andd € O, letY,;(0) = h},(X,,) for
i € N, and let2,(0) = {(Xu,Yu(#)), (X, Yie(0)),...}, X; = {Xu, Xp2,...}, andY,(9) =
{Yu(0),Y2(0),...}; for eachk € N, defineZ;.(0) = {(Xu, Yu(0)),..., (Xu, Yi(0))}, Xip =
(X, ..., Xu}, andY,, (0) = {Yi(6),...,Yu(0)}.

For any probability measures 1/, we denote the total variation distance by
o=l = sup ji(4) — 1 (A),

whereA ranges over measurable sets.

Lemma 9.1. For anyf, 60’ € © andt € N,

|mo — 7or|| = ||Pz,0) — Pz, 0|l-
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Proof. Fix 0,0 € ©,t € N. LetX = {X}, X4,...}, Y(0) = {Yu(0),Y:a(0),...}, and for
keNletX, = {Xu,..., Xy}t andY,(0) = {Yi(0),...,Y(0)}. Forh € F, letex(h) =
{( X1, (X)), (Xia, M(Xy2)), - - .}

Forh,g € F, definepx(h,g) = 7&5&%22’; |h(Xw) — g(X4)| (if the limit exists), and
px, (h,g) = %Zle |h(Xw) — g(X4)|. Note that sinceF is a uniformly bounded VC subgraph
class, so is the collection of functiog$h — g| : h,g € F}, so that the uniform strong law of
large numbers implies that with probability oné,, g € F, px(h, g) exists and hagx(h, g) =
p(h, g) [Vapnik,1982].

Consider any, ¢’ € ©, and anyA € Bz. Then anyh ¢ A hasVg € A, p(h,g) > 0 (by the
metric assumption). Thus, ik (h, g) = p(h,g) forall h, g € F, thenvh ¢ A,

Vg € A, px(h,g) = p(h,g) >0 = Vg € A, cx(h) # cx(g9) = cx(h) & cx(A).
This impliescy ' (ex(A)) = A. Under these conditions,
Pz, (0)x(cx(A)) = mo(cx ' (ex(A))) = mo(A),

and similarly foré'.
Any measurable se&t for the range ofZ;(6) can be expressed 85= {cz(h) : (h,z) € C'}
for some appropriat€”’ € Br ® BY. LettingCZ = {h : (h,z) € C'}, we have

Pz, (C) Z/We(cgl(Cz(C%)))Px(df) Z/We(C%)PX(dff) = P, 3 (C).

Likewise, this reasoning holds féf. Then

%) |

IPz0) — Pzon |l = Pz, %) — Poz,,,
— s | [(ma(Cl) ~ mw(CL)Pe(do)
C'eBroB
< / sup |me(A) — mo (A)|Px(dz) = ||mg — 7o/ ||
AeBr

Since hy, and X are independent, fod € Bz, mp(A) = Ppr,(A) = Ppr (A)Px(X>) =
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Pnr, 5 (A x X*). Analogous reasoning holds faf,,. Thus, we have
[0 = mor || = [[Ping, 30 (- X X%) = P 50y (- X XX)]
< Pz x) — Pir, ol = [Pz6) — Pzion -
Combining the above, we hay@®z, gy — Pz, || = |79 — 7or|. O
Lemma 9.2. There exists a sequencg= o(1) such thatvt, k € N, V0,0 € O,
IPz.0) — Pz, ol < lmo — 7o || < |Pz,,.00) — Pzl + 72

Proof. This proof follows identically to a proof of [Yang, Hanneked Carbonell, 2013], but is
included here for completeness. Siftg, 9)(A) = Pz, (A x (X x R)>) for all measurable

A C (X x R)¥, and similarly for¢’, we have

IPz.0) — Pz, 00|l = sup Pz, 9)(A4) — Pz, 0 (A)

AeBk
= sup Pgt(g)(A X (X X R)OO) — ]Pgt(g/)(A X (X X R)Oo)
AeBk
< sup Pz,0)(A) = Pz,0n(A) = ||Pz,0) — Pz,
e oo

which implies the left inequality when combined with Lemmd.9

Next, we focus on the right inequality. FHix 60’ € © andy > 0, and letB € B> be such that

Imo — 7o || = [Pz0) — Pzoon)|l < Pzi0)(B) — Pz,0)(B) + -
Let A = {A x (X x R)>® : A € B* k € N}. Note thatA is an algebra that generatBs°.
Thus, CaratBodory’s extension theorem [Schervish, 1995] implies thate exist disjoint sets
{A;}ien in A such thatB C |, A and

Pz,0)(B) = Pz,0)(B) < > Pz)(A) = Y Pz (Ai) +7.

1€EN €N

Since thesed; sets are disjoint, each of these sums is bounded by a pribalsilue, which

implies that there exists somec N such that

Z ]P)Zt(@) (Al) <7+ Z ]P)Zt(@ (Al)a

1€EN i=1
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which implies

D Pz (Ai) = Y Pzen(A) <7+ D _Pze)(Ai) — Y Pz (A
€N €N =1 i=1
i=1

AslJ, A; € A, there existsn € N and measurablB,, € B™ such that J_, A, = B,, x (X x

R)>°, and therefore

P20 (U " ) Pa) (U Ai) = P200(0)(Bn) = P01 (By)

i=1

< Pz0) = Pzinon || < im [Pz, 0) = Pz, 00l

Combining the above, we havlery — 7/ || < limg_,o0 ||Pz,,0) — Pz, 01 + 37. By lettingy

approach), we have

|7 — mor|| < kh_{go H]P)Ztk(e) - Pztk(G')H'

So there exists a sequenggd, ') = o(1) such that
VE €N, [[mg = mo|| < [[Pz,.0) = Pzyion]l + r4(0,6").

Now lety > 0 and let, be a minimal-cover of©. Define the quantity;, () = maxggco, (0, 0’).
Then for anyd, 0’ € ©, letf, = argming.cq_ || — mor|| @andO., = argming.cq_ ||y — mor||.

Then a triangle inequality implies thet € N,

lmo — 7o || < llmo — mo, [| + [0, — 7oy [| + [|7e, — 7|
<27+ 140, 65) + [[Pzy0,) — Pzicor) |l

<27+ () + IPz,6,) — Pz -
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Triangle inequalities and the left inequality from the lemstatement (already established) imply

”Pztk(ew) - ]P)Ztk(efy)”
<Pz, = Pzu@) | + IPzu0) — Pzuo |l + Pz — Pzyon |
< [|mo, — moll + [IPz,0) — Pziionll + [[7o, — 7]

<27+ [Pz, 0) — Pz,.0]l-

So in total we have

|9 — mor || < 4y + (7)) + [Pz, 0) — Pzoon |-

Since this holds for ally > 0, definingr;, = inf,~¢(4y + 74(7)), we have the right inequality
of the lemma statement. Furthermore, since ea¢h, ') = o(1), and|©,| < oo, we have

rr() = o(1) for eachy > 0, and thus we also have = o(1). O

Lemma 9.3. V¢, k € N, there exists a monotone functidfy.(z) = o(1) such thatv6, 0’ € ©,

H]Pztk(@) - ]P)Ztk(@')H < Mk (H]P)th(e) - ]P)th(a/)H) :

Proof. Fix anyt € N, and letX = {X;, Xpo,...} andY(0) = {Y;1(0),Y:a(0),...}, and for
keN Ieth = {Xt17 C. ,th} andYk(Q) = {}/tl(@), - ,Ytk(Q)}
If & <d, thenPz, 5)(-) = Pz, (- x (X x {=1,4+1})*%), so that
HPZtk(e) - Pztk(a’)H < ”]P)th(@ o ]P)th(@')H’

and therefore the result trivially holds.

Now supposé > d. Fix anyy > 0, and letB, o C (X x R)* be a measurable set such that

Pz,.0)(Bog) — Pz, 0 (Boo) < [IPz,.0) — Pzl
<Pz, 0)(Bog) — Pz, 0)(Bog) + -

By Caratleodory’s extension theorem, there exists a disjoint sezpiefisets B; }22, such that

Pz,.0)(Boo) = Pz,0)(Boo) <7+ > Pz 0(Bi) = > Pz, 0n(Bi),
=1

i=1
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and such that eacB; (0, ¢') is representable as follows; for sorfi¢, 0') € N, and setg’;; =
(Aiji x (=00, tij]) x -+ x (Ayx x (—o0, tijk]), for j < £,(0,0'), where eachd;;, € By,
the setB; (6, ¢') is representable ag, g ﬂ ") Dyjs, wheresS; C {0,...,2409) — 1}, each
Dijs € {Cy,C5}, ands # s = ﬂ Dz-js N ﬂﬁ (GG)DUSI = (. Since theB;(6,0") are
disjoint, the above sums are bounded, so that there exist8,0’,y) € N such that every

m > mg(6,0',~) has

Pz, 0)(Boo) — Pz, (Bog)

<2y + ZPZtk(G)(Bi(9> 0')) - Z Pz, 01 (Bi(0,0)),
=1

=1
Now defineMk(y) = maxygco, mi(0,0,7). Then for anyd, 0’ € ©, letd,,0, € ©, be
such thatl|mg — m, || < v and||me: — 7g || < 7, which implies||Pz,, ) — Pz, )| < v and

Pz, ) — Pztk(gg)ﬂ < v by Lemmd9.R. Then

IPz,.0) — Pzl < IPz6,) — Pzyiory I +27

< Psz,0,)(Bo,0,) — Pz,0)(Bo,0) + 37
My(v)

< Z Pztk 97) 6 6 )) - Pztk(ei,)(Bi(ew 8/7)) + 97.

Again, since theb;(0,, 0. ) are disjoint, this equals

My (y) Mp(v)
57+ Pz | U Bi05.6) | =Pz | | Bil6.6)
i=1 =1

k

k
< T+ Pz U i(0,605) | =Pz, U i(05,065)

My, (7)

=T+ Z Pz..0 Bi(0, 0 )) - Pztk(9/)<Bi<877efy>>

< Ty + Mu(y) max [Pz, (Bi(6:,6,)) — By (Bi(6,.6))]

i<Mp(7)

Thus, if we can show that ea¢]ﬁztk(9)(Bi(07,01/)) Pz, (Bi(0,,6.))| is bounded by a(1)

’Y’V
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function of | Pz,, ) — Pz, ||, then the result will follow by substituting this relaxatianto the
above expression and defining, by minimizing the resulting expression over> 0.
Toward this end, le€’;; be as above from the definition &% (6., 9’7), and note thaIBi(g%gi/)

is representable as a function of the, indicators, so that

Pz,0)(Bi(05,0,)) — Pz, 01 (Bi(05,6))))|

- “PIBi(ew,efw(Ztk(e)) - PlBin,e;)(Zm(@’))H

< H]P)(Icil Z:5(0)) e Ozzl(ev,e’w( x(0))) ]P)(ICU(ZM(Q )l <eme’w)( ”“(9/)))”
< 24i(07.67) max H I, (Z:(0 H 1= Io; (2 ()
JC{1,....4;(6~, 9’)}
JjeJ Jj¢J
- (H ]Cij (Ztk(el))> H <1 - Icij (Ztk(gl)))]
jeJ JjEJ
< 9¢i(6+.,67) Z E H Icl.]. (Ztk H ]CZ] Ztk
JC{1,.. 2800y 1 Lied o
S 451‘(977%) max ) E H [Cij (Ztk H [C” Ztk
JC{L,. 250 | jeJ
= 4i(02:.05) max Pz,.0) ﬂ Cij | =Pz, ﬂ Cij | |-
JC{1,...,2% (07090 jed jeJ

Note that;. ; Ci; can be expressed as sofy x (—oo,t1]) x - -+ x (Aj, x (—o0,t;]), where
eachA, € By andt, € R, so that, Iettmgf Maxg ¢ co, MaX;< 7, (, 6 (0,0") andCy, = {(A; x

(—00,t1]) X -+ x (Ag x (—o0,t]) : Vj <k, A; € Bx, t; € R}, this last expression is at most

L sup [Pz, (0)(C) — Pz, 01 (C)].
CeCy,

Next note that for any’' = (A; x (—o0o,t1]) x -+ X (A X (—o0,t;]) € Cy, letting C; =

Al X e X Ak andC’g = (—OO,tl] X X (_Oovtk]'

Pz,.0)(C) = Pz,1(C) = E [(Py,, )% (C2) — Py, 0% (C2)) Loy (Xe) ]

< E [Py, 0)x, (C2) — Py, 09x,, (C2)|] -
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Forp € {1,...,k}, let Cy, = (—o0,t,]. Then note that, by definition af, for any given
r = (z1,...,24), the classH, = {z, — I, (h(z,)) : h € F}isaVC class ovefx,, ..., z;}

with VC dimension at mosi. Furthremore, we have

‘]P)Ytk(eﬂxtk <C2) - Pytk(e'ﬂxtk (02)|

= Plroy, (b2, (X01) gy (02 X ({ (L5 D]

Therefore, the results of [Yang, Hanneke, and Carbonell3p0d the proof of their Lemma 3)

imply that

]P)Ytk(a)\th (CZ) - PYtk(H’)|th (02) ‘

(Mg (Xe5)Yjep{Xti}jep ({y})

< 28 max max
y€{0,1}4 Def1,... k}e

= Plic,, (2, (i) hen X en (U1 |
Thus, we have

E prtk(g)\xzk(CQ) - PYtk(G’)|th(02)H

< 2R

max max

ye{0.1}4 De{1,... k}d '(hIG(th))}jEDHth}jGD({y})

— Piue, (2, (X hienliXiten ({93) ’]

ZZ

ye{0,1}¢ De{1,...,

‘P{[Czj (hyg(Xt5))}jepl{Xti}jen ({y})

= Piic,, (v, (X hsenlixien ({9}) ‘]

< 2HFEd max max JE ’P{J%(h;‘e(th))}jeD\{th}jeD({y})

ye{0,1}¢ De{1,...,

- P{[CZJ' (R} (Xes ) }jepl{ X5} jen ({y}) ‘] .
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Exchangeability implies this is at most

20tkEd max  sup E

P .
y€{0,1}4 ¢, tqeR ‘{I(—Ooﬂtjl(hw(th))}?:l‘Xtd({yD

=P, 0o xa(193) }]

= 29FEd max  sup E

ye{0,1}4 ¢, .. tqeR

‘P{h_oo,tﬂ (Y25 (0)) Y-, [Xea ({y})

- ]P){I(—‘X”tj] (nj(el))}?:ﬂxtd({y}) ‘] :

[Yang, Hanneke, and Carbonell, 2013] argue that foy &l {0, 1}? andt,, ..., t; € R,

E Hp{am,tﬂ(m(@))}?zlthd({y}) ~ P00 ;Lﬂxm({?/})u

< 4\/HP{I(—oo,tj](Ytj(Q))}‘}zl,Xm — P{](—oo,t]-](Ytj(‘s'/))};-lzl,xtdH'

Noting that

P r e sy s = Pit o 5001, Xeall < IP200) = Pgon|

completes the proof. O

We can use the above lemmas to design an estimator oSpecifically, we have the follow-
ing result.
Theorem 9.4. There exists an estimat@y, = 0r(Z14(6.), . .., Zra(f.)), and functionsR :
Ny x (0,1] — [0,00) and ¢ : Ny x (0,1] — [0,1] such that, for anyx > 0, Ilggo R(T,a) =
lim §(7, o) = 0 and for anyl’ € Ny andd, € O,

T—o0

P (Hwém — 7. || > R(T, a)) < §(T,0) < a.

Proof. The estimator;,. we will use is precisely the minimum-distance skeletonneate of

Pz, .,y [Devroye and Lugosi, 2001, Yatracos, 1985]. [Yatracos,519Boved that if V() is
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the e-covering number of Pz, ,4,) : 0 € O}, then taking thiSéTg* estimator, then for some
T. = O((1/?*)1og N(e/4)), anyT > T. has
E |:||]P)th(éT9*) - Pztd(e*)H] <E.
Thus, takingGr = inf{e > 0: T > 1.}, we have
E [IPz,,650,) ~ F2uoall] < Gr = o1).

Letting R'(7', o) be any positive sequence with, < R'(T,a) < 1andR/(T, o) > Gr/«, and
letting 6(T', «) = Gr/R'(T, a) = o(1), Markov’s inequality implies

PQW%@M—P%@M>H@@D§&ﬂ®§a. (9.1)
Letting R(T, o) = miny (M, (R'(T,«)) + 1), sinceR' (T, «) = o(1) andr, = o(1), we have
R(T, ) = o(1). Furthermore, composing (9.1) with Lemnhas 9.1] 9.2 [andv@ehave

P (Hwém — .|| > R(T, a)> < §(T,0) < a.

Remark: Although the above result makes use of the minimum-distakeéeton estimator,
which is typically not computationally efficient, it is oftgpossible to achieve this same result
(for certain families of distributions) using a simplerigstor, such as the maximum likelihood
estimator. All we require is that the risk of the estimatonwegrges ta) at a known rate that
is independent ofl,. For instance, see [van de Geer, 2000b] for conditions orfaimaly of

distributions sufficient for this to be true of the maximuhkelihood estimator.

9.3 Maximizing Customer Satisfaction in Combinatorial Auc-
tions

We can use Theorem 9.4 in the context of various applicati®os instance, consider the fol-

lowing application to the problem of serving a sequence stamers so as to maximize their
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satisfaction.

Suppose there is a menu ofitems|[n] = {1,...,n}, and each bundl®& C [n] has an
associated price(B) > 0. Suppose also there is a sequence of customers, each withetioa
functionv, : 2" — R. We suppose thesg functions are i.i.d. samples. We can then calculate
the satisfaction function for each customersgs), wherex € {0,1}", ands;(x) = v,(B;) —

p(B.), whereB, C [n] contains elemente [n] iff x; = 1.

Now suppose we are able to ask each customer a number ofansebgfore serving up a
bundle B;, to that customer. More specifically, we are able to ask forvédae s;(x) for any
x € {0,1}". This is referred to as walue queryin the literature on preference elicitation in
combinatorial auctions (see Chapter 14 of [Cramton, ShohathSgeinberd. 2006], [Zinkevich,
Blum, and Sandholm, 2003]). We are interested in asking agjfe¥gtions as possible, while

satisfying the guarantee thBs,(z;) — max, s;(z)] < e.

Now suppose, for every ande, we have a method (7, ) such that, given that is the actual
distribution of thes; functions,A(r, €) guarantees that thig value it selects haB[max, s;(z) —
s:(i;)] < e; also letN,(, ¢) denote the actual (random) number of queries the methade)
would ask for thes, function, and letQ(r,s) = E[N,(r,¢)]. We suppose the method never
queries anys;(x) value twice for a givert, so that its number of queries for any givers

bounded.

Also supposeF is a VC subgraph class of functions mappikig= {0, 1}" into [—1, 1] with
pseudodimensiod, and that{w, : § € ©} is a known totally bounded family of distributions
over F such that the, functions have distribution,, for some unknowr, € ©. For anyd € ©

andy > 0, letB(0,v) = {0 € © : ||mg — 7or|| < v}

Suppose, in addition tel, we have another methadf (¢) that is notr-dependent, but still
provides thes-correctness guarantee, and makes a bounded number oésjery., in the
worst case, we could consider querying Zllpoints, but in most cases there are more clever

n-independent methods that use far fewer queries, sueh(a&?)). Consider the following
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method; the quantitieé;,,, R(T, ), and§(T, «) from Theoreni 9} are here considered with

respectPy taken as the uniform distribution di, 1}".

Algorithm 2 An algorithm for sequentially maximizing expected custosegisfaction.
fort=1,2,...,7Tdo

Pick pointsX;;, Xy, . . ., X;4 uniformly at random from{ 0, 1}
if R(t—1,¢/2) > ¢/8then

RunA'(e)

Takez, as the returned value
else

Letd,. € B (é(t,l)g*, R(t — 1,5/2)) be such that

Qm, €/ < min Q. e/4) + 1/t

* 0€B(0;—1)0, R(t—1,¢/2))
RunA(mg,, ,€/4) and letz, be its return value

end if

end for

The following theorem indicates that this method is corraad furthermore that the long-
run average number of queries is not much worse than that etlaou that has direct knowledge
of 7, .

Theorem 9.5.For the above method? < T', E[max, s;(x)—s:(2;)] < €. Furthermore, ifSr(¢)

is the total number of queries made by the method, then

E[S7(e)]
T

lim sup
T—o0

Proof. By Theoreni 9.4, for any < T, if R(t — 1,¢/2) < ¢/8, then with probability at least

< Q(ﬂ—&a 8/4) +d.

1—¢/2,||my, — T 1o | < R(t —1,£/2), so that a triangle inequality impligsry, — 75, || <

2R(t — 1,e/2) < e/4. Thus,

E |max s;(z) — s¢(Z¢)

<E [E [mgx si(x) — s¢(24)

éﬂ,*] 1 {H%* || < 5/2“ 1 e/2. (9.2)
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Foré € ©, leti; denote the point that would be returned byl(,, ,£/4) when queries are

answered by some, ~ m, instead ofs; (and supposing; = s,). If |75, — 7, || < e/4, then

E [m?XSt(x) — St(it) étg*:| =E [mﬂf}x Stg*(x) — St9*<li't) étg*:|

<E [max sy, (2) = s, (2, |fo. | + 173, — 7]l < e/4+e/4=2/2

Plugging into[(9.P), we have

E [m;xx si(x) — st(fct)} <e.

For the result orbr(¢), first note thatR(t — 1,/2) > /8 only finitely many times (due
to R(t,a) = o(1)), so that we can ignore those valueg af the asymptotic calculation (as the
number of queries is always bounded), and rely on the caoreestguarantee of’ for correct-

ness. For the remainingvalues, letV; denote the number of queries made Mfr;,, .c/4).

then
E[S d
lim sup ElSr(e)] < d+lim supZE [N] /T
T—o0 T T—o0 i—1
Since
1 T
fim 7 3 OE [Nkl =l > (e = Le/2)]
1 T
< Jim ;2 P (Hwéu% _ .|| > R(t — 1,5/2))
1 T
<2 Tlgrololeé(t— 1,6/2) =0,
we have

T T

. . 1

limsup " E [N /T = limsup — Y E [Ntﬂ[nﬁé(tfl)g* — || < R(t—1, 5/2)]] .
t=1 t=1

T—o0 _ T—o00

For anyt < T, let N,(,,) denote the number of querielr,,, ,£/4) would make if queries

were answered with,; instead ofs;. On the evennwéml)g —m, || < R(t—1,¢/2), we have

E [Nt

éte*} <E [Nt(éw*)

9}9*} FOR(t—1,2/2)

— Q(r,,.2/4) +2R(t — 1,/2) < Q(ma,.£/4) + 2R(t — 1,2/2) + 1/1.
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Therefore,

T
. 1
limsup — > E [Ntwnéu% — .|| < R(t —1,2/2)]

T—o0 =1

T—00

T
< Qlry,,2/4) + lim sup % SO2R(E—1,2/2) + 1/t = Qo 2/4).
t=1
m

Note that in many cases, this result will even continue ta wath an infinite number of
goods i = o0), since the general results of the previous section haveeperilence on the

cardinality of the spacg’.
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Chapter 10

Active Learning with a Drifting

Distribution

Abstract

We study the problem of active learning in a stream-basethgetllowing the distribution of
the examples to change over time. We prove upper bounds emwthber of prediction mistakes
and number of label requests for established disagreebasatd active learning algorithms, both
in the realizable case and under Tsybakov noise. We furtteeepminimax lower bounds for

this problem.

10.1 Introduction

Most existing analyses of active learning are based on an assumption on the data. In this
work, we assume the data are independent, but we allow tirbdison from which the data

are drawn to shift over time, while the target concept reméixed. We consider this problem
in a stream-based selective sampling model, and are itgédrgstwo quantities: the number of

mistakes the algorithm makes on the fitsexamples in the stream, and the number of label
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requests among the firstexamples in the stream.

In particular, we study scenarios in which the distributroay drift within a fixed totally
bounded family of distributions. Unlike previous modelsdigtribution drift [Bartlett,[ 1992,
Koby Crammer and Vaughan, 2010], the minimax number of mestalor excess number of
mistakes, in the noisy case) candablinearin the number of samples.

We specifically study the classic CAL active learning stratf@ohn, Atlas, and Ladner,
1994b] in this context, and bound the number of mistakes @el requests the algorithm makes
in the realizable case, under conditions on the concepespad the family of possible distribu-
tions. We also exhibit lower bounds on these quantitiesrttatth our upper bounds in certain
cases. We further study a noise-robust variant of CAL, antiyaeats number of mistakes and
number of label requests in noisy scenarios where the n@s@dtion remains fixed over time
but the marginal distribution oA may shift. In particular, we upper bound these quantities un
der Tsybakov’s noise conditions [Mammen and Tsybakov, .98 also prove minimax lower

bounds under these same conditions, though there is a gapdrebur upper and lower bounds.

10.2 Definition and Notations

As in the usual statistical learning problem, there is addash Borel spacd’, called the instance
space, and a sét of measurable classifiefs: X — {—1,+1}, called the concept space. We
additionally have a spad@ of distributions onX’, called the distribution space. Throughout, we
suppose that the VC dimension©f denotedi below, is finite.

For anyuy, us € D, let||puy — pe|| = supy pi(A) — p2(A) denote the total variation pseudo-
distance between, andu,, where the setl in thesup ranges over all measurable subsetg’of
For anye > 0, letD. denote a minimat-cover ofD, meaning thaD, C D andVu; € D, Jus €
D s.t. || — pe|| < €, and thatD, has minimal possible siZ&,.| among all subsets db with
this property.

In the learning problem, there is an unobservable sequdrtistabutionsD;, D, .. ., with
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eachD, € D, and an unobservable time-independent regular conditaisaibution, which
we represent by a function: X — [0, 1]. Based on these quantities, we t= {(X;, Y3)}2,
denote an infinite sequence of independent random variahlek that't, X; ~ D;, and the con-
ditional distribution ofY; given X, satisfies/z € X', P(Y; = +1|X; = x) = n(x). Thus, the joint
distribution of (X}, Y;) is specified by the paifD,, ), and the distribution of is specified by
the collection{D, };°, along withn. We also denote b; = {(X1, Y1), (X2, Y2),..., (X, Y2)}
the firstt such labeled examples. Note that theonditional distribution is time-independent,
since we are restricting ourselves to discussing driftimggmal distributions oY, rather than
drifting concepts. Concept drift is an important and inténgstopic, but is beyond the scope of

our present discussion.

In the active learning protocol, at each timethe algorithm is presented with the value
X,, and is required to predict a labg] € {—1,+1}; then after making this prediction, it may
optionally request to observe the true label valiueas a means of book-keeping, if the algorithm

requests a labél; on roundt, we define); = 1, and otherwis&); = 0.

We are primarily interested in two quantities. The firsfy = >, T [Yt £ Yt], is the
cumulative number of mistakes up to tirfie The second quantity of interegdy = >, Q;,
is the total number of labels requested up to tifhdn particular, we will study the expectations
of these quantitiesM, = E [MT} andQr = E [QT} We are particularly interested in the
asymptotic dependence@f- andM— M onT, whereM: = infj,cc E [Zle I[h(X;) # Yt}] .
We refer toQ) as the expected number of label requests, addto- M/ as the expected excess
number of mistakes. For any distributidghon X', we defineerp(h) = Ex..p[n(X)I[A(X) =
—1] 4+ (1 — n(X))I[A(X) = +1]], the probability ofh making a mistake foX ~ P andY” with
conditional probability of being+1 equaln(X). Note that, abbreviatingr,(h) = erp,(h) =
P(h(X,) # Y;), we haveM; = infyec 321 eri(h).

Scenarios in which both/; — M3 andQ areo(T) (i.e., sublinear) are considered desirable,

as these represent cases in which we do “learn” the propetavasedict labels, while asymp-
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totically using far fewer labels than passive learning. ©astablishing conditions under which
this is possible, we may then further explore the trade-efiieen these two quantities.

We will additionally make use of the following notions. Fbr C C, let diam;(V) =
supgev Di({  h(z) # g(@)}). Forh : X — {~1,+1}, atu(h) = by T er(h),
and for finiteS C X x {~1,+1}, ér(h; S) = 15 20, yes Hh(x) # y]. Also letC[S] = {h €
C : ér(h; S) = 0}. Finally, for a distribution” on X andr > 0, defineBp(h,r) = {g € C :

Pla : hiz) # g(x)) < 1}

10.2.1 Assumptions

In addition to the assumption of independence of Xhevariables and thal < oo, each result
below is stated under various additional assumptions. Téekest such assumption is tfiats
totally boundedin the following sense. For eaeh> 0, let D, denote a minimal subset @f
such thatvD € D, 3D’ € D, s.t. |D — D'|| < e: that is, a minimak-cover ofD. We say thaD
is totally bounded if it satisfies the following assumption.

Assumption 10.1.Ve > 0, |D.| < oc.

In some of the results below, we will be interested in degwépecific rates of convergence.
Doing so requires us to make stronger assumptions dbdbhén mere total boundedness. We
will specifically consider the following condition, in whie:, m € [0, co) are constants.
Assumption 10.2.Ve > 0, |D,| < ¢-e ™.

For an example of a clag® satisfying the total boundedness assumption, constter
[0,1]", and letD be the collection of distributions that have uniformly danbus density func-
tion with respect to the Lebesgue measureignwvith modulus of continuity at most some value
w(e) for each value of > 0, wherew(e) is a fixed real-valued function withm,._,o w(e) = 0.

As a more concrete example, whef¥) = Le for someL € (0, o), this corresponds to the
family of Lipschitz continuous density functions with Ligdstz constant at modt. In this case,

we havelD,| < O (e "), satisfying Assumption 10.2.
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10.3 Related Work

We discuss active learning under distribution drift, witkefi target concept. There are several
branches of the literature that are highly relevant to ihduding domain adaptation [Mansour,
Mohri, and Rostamizadeh, 2008, 2009], online learning lgstone, 1988], learning with con-
cept drift, and empirical processes for independent buidwesitically distributed data [van de

Geer, 2000a].

Streamed-based Active Learning with a Fixed Distribution [Dasgupta, Kalai, and Mon-
teleoni, 2009] show that a certain modified perceptrondikive learning algorithm can achieve
a mistake bound)(dlog(T")) and query bound)(dlog(T))), when learning a linear separator
under a uniform distribution on the unit sphere, in the #dile case. [Dekel, Gentile, and Srid-
haram| 2010] also analyze the problem of learning lineaausgprs under a uniform distribution,
but allowing Tsybakov noise. They find that with = O (d%Ta%?) queries, it is possible to
achieve an expected excess number of mistakes- M} = O (d% . Tﬁ) At this time, we
know of no work studying the number of mistakes and queribgaable by active learning in a

stream-based setting where the distribution may changetiove.

Stream-based Passive Learning with a Drifting Distribution There has been work on learn-
ing with a drifting distribution and fixed target, in the cert of passive learning. [Bartlett, 1992,
Barve and Long, 1997] study the problem of learning a subsatdafmain from randomly cho-
sen examples when the probability distribution of the exdasiphanges slowly but continually
throughout the learning process; they give upper and lowands on the best achievable prob-
ability of misclassification after a given number of exanspl&hey consider learning problems
in which a changing environment is modeled by a slowly chaggiistribution on the product
space. The allowable drift is restricted by ensuring thaisecutive probability distributions are
close in total variation distance. However, this assunmaitows for certain malicious choices of

distribution sequences, which shift the probability made smaller and smaller regions where
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the algorithm is uncertain of the target’s behavior, so thanumber of mistakes grows linearly
in the number of samples in the worst case. More recenthgeufid and Mansour, 1997] have
investigated learning when the distribution changes amealtifunction of time. They present

algorithms that estimate the error of functions, using Kieoge of this linear drift.

10.4 Active Learning in the Realizable Case

Throughout this section, suppa8as a fixed concept space antl € C is a fixed target function:
that is,er,(h*) = 0. The family of scenarios in which this is true are often odileely referred

to as therealizable case We begin our analysis by studying this realizable case usc#
greatly simplifies the analysis, laying bare the core idegdain form. We will discuss more
general scenarios, in whiel, (*) > 0, in later sections, where we find that essentially the same

principles apply there as in this initial realizable-caralgsis.

We will be particularly interested in the performance of tbidbowing simple algorithm, due
to [Cohn, Atlas, and Ladner, 1994b], typically referred toG&L after its discoverers. The
version presented here is specified in terms of a passiveitgasubroutined (mapping any
sequence of labeled examples to a classifier). In it, we us@dkationDIS(V) = {z € X :

dh,g € V s.t.h(z) # g(x)}, also used below.
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CAL
1.t + 0, Qy < 0, and leth, = A(0)
2. Do

t—t+1

Predicty, = h,_1(X,)

ye{—1,+1} heC

3

4

5. If max mineér(h; Q;q U{(X:,y)}) =0
6 Request;, let Q; = 9, U{(X;, Y})}

7

Else letY} = argmin miner(h; Q;—1 U {(Xt,y)}), and let
ye{_17+1} heC
Q + Q1 U{(X,Y))}
8. Leth, = A(Q,)

Below, we letA,;; denote the one-inclusion graph prediction strateqy of gstar, Little-

stone, and Warmuth, 1994b]. Specifically, the passive iegralgorithm A, is specified as
follows. For a sequence of data poibtsc X**!, the one-inclusion graph is a graph, where each
vertex represents a distinct labelingiéfthat can be realized by some classifiednand two
vertices are adjacent if and only if their correspondingeladys forl/ differ by exactly one label.
We use the one-inclusion graph to define a classifier basedraming points as follows. Given

t labeled data point§ = {(z1,v1), .- ., (z+, y:) }, and one test point;,, we are asked to predict
a label for, we first construct the one-inclusion graplios: {1, ..., x,.1}; we then orient the
graph (give each edge a unique direction) in a way that mizgmihe maximum out-degree, and
breaks ties in a way that is invariant to permutations of tlteoof points in/; after orienting
the graph in this way, we examine the subset of vertices wbosesponding labeling @f is
consistent withZ; if there is only one such vertex, then we predict fgr, the corresponding
label from that vertex; otherwise, if there are two suchiges, then they are adjacent in the
one-inclusion graph, and we choose the one toward whichdpe s directed and use the label
for 2,1 in the corresponding labeling of as our prediction for the label af . ;. See [Haussler,
Littlestone, and Warmuth, 1994b] and subsequent work ftailgel studies of the one-inclusion

graph prediction strategy.
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10.4.1 Learning with a Fixed Distribution

We begin the discussion with the simplest case: namely, Whes 1.
Definition 10.3. [Hanneke| 2007a, 2011] Define the disagreement coefficiefit onder a dis-
tribution P as

0p(e) = sup P (DIS(Bp(h*,71))) /7.

r>€
Theorem 10.4. For any distribution P on X, if D = {P}, then running CAL with4 =
A1 achieves expected mistake bound = O (dlog(T)) and expected query bourgy =
O (0p(er)dlog?(T)), for ez = dlog(T)/T.

For completeness, the proof is included in the supplememdtdrials.

10.4.2 Learning with a Drifting Distribution

We now generalize the above results to any sequence ofbdistms from a totally bounded
spaceD. Throughout this section, |6 (¢) = suppcp Op(€).

First, we prove a basic result stating that CAL can achievebtirear number of mistakes,
and under conditions on the disagreement coefficient, adstonear number of queries.
Theorem 10.5.1f D is totally bounded (Assumption 10.1), then CAL (witlany empirical risk
minimization algorithm) achieves an expected mistake 8dup = o(T'), and ifdp(e) = o(1/¢),

then CAL makes an expected number of quepies= o(T).

Proof. As mentioned, given thato, ,(h*) = 0, we have that in Step 7 must equal*(X;),
so that the invariantro, (h*) = 0 is maintained for alt by induction. In particular, this implies
Q, = Z, forall t.

Fix anye > 0, and enumerate the elementdpfso thatD, = { P, P, ..., Pp,}. For each

t € N, letk(t) = argmin, . | | P — D[, breaking ties arbitrarily. Let

o[ () ()]

173



For each < |D|, if k(t) = i for infinitely manyt¢ € N, then letT; denote the smallest value of
T suchthat{t < T : k(t) =i}| = L(e). If k(t) = i only finitely many times, then |éf; denote
the largest index for which k(t) = 4, or T; = 1 if no such index exists.

Let T, = max,;<p.| T; andV, = C[Zr,]. We have that't > T, diam, (V) < diamy (Ve) +e.
For each, let £; be a sequence df(¢) i.i.d. pairs(X,Y’) with X ~ P, andY = h*(X), and let
V; = C[L;]. ThenVt > T,

E [diamy, ) (Ve)] < E [diamyey(Vi)] + Z |Ds — Prs) || < E [diamyy (Vi)] + L(e)e.

s<T;:k(s)=k{t)

By classic results in the theory of PAC learning [Anthony andtig#,|1999/| Vapnik, 1982] and
our choice ofL(¢), Vt > T.,E [diamy) (Vi) ] < Ve

Combining the above arguments,

T T
<T.+ > Eldiamy(V,)] < T.+eT+ > E[diam (V)]
t=Te+1 t=Te+1
T

<T.+ €T+ L(e)eT + Z E [diamy) (Vi) ]

t=T+1

<T.+ €T+ L(e)eT + /T

Z dlamt Zt 1 )

Let e; be any nonincreasing sequencé(nl) such thatl <« 7., < T Since|D,| < oo for

all e > 0, we must haver — 0. Thus, noting thalim, .o L(¢)e = 0, we have

Z diamy (C[Z,_1])| < T., + erT + L(ep)erT + JerT < T. (10.1)

The result onM; now follows by noting that for an)flt_1 e ClZ, 4] haSert(izt_l) <

diam;(C[Z;_4]), sO

<E < T.

Zdlamt [(Z-1])

T
=K Zert (il/t_1>
t=1

Similarly, forr > 0, we have

P(Request;) = E[P(X, € DIS(C[Z,_1])|Zi_1)] < E[P(X, € DIS(C[Z,_1] U Bp, (A", )))]

< E[0p(r) - max {diam;(C[Z;_1]),r}] < Op(r) - r + Op(r) - E [diam(C[Z;_4])] .
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Lettingrr = T7'E ZL diamt(C[Zt,l])] , we see thatr — 0 by (10.1), and sincép(e) =
o(1/¢), we also havéy (rr)rr — 0, so thaty (rr)rrT < T. Thereforer equals

T
> P(Request;) < 05(ry)rr-T+0p(rr):

t=1

Zdlamt (Zi4])| = 20p(ry)re T < T. O

We can also state a more specific result in the case when weshave more detailed infor-
mation on the sizes of the finite coverslf
Theorem 10.6.If Assumption 1012 is satisfied, then CAL (witlany empirical risk minimization
algorithm) achieves an expected mistake bolthdand expected number of querigs such that

My =0 (T#ldﬁl log? T) andQr = O <9D (er) T#51 d7 log? T),WhereeT — (d/T)7,

Proof. Fix e > 0, enumerated, = {P,, P»,..., Pp_}, and for eacht € N, definek(t) =

argming <<, | D: — Pil|- Let{X;}2, be a sequence of independent samples, With- Py

and letZ] = {(X{, h*(X7)), ..., (X}, h*(X])}. Then

> diamy(C[Z1]) | <E Zdiamt(qz;_l]) +Z|{Dt—Pk<t>H

T
<E Zdlamt Z )|+l < Z [dlampk(t) C[Z, 4])| + 2€T.

The classic convergence rates results from PAC learninghigay and Bartlett, 1999, Vapnik,
1982] imply

T T
) dlo,
> E [diamp,, (C[2/])| = 3O (rrzmrstlen)

t=1 t=1

IT/|p
gogzm:r)-ZW < O(dlogT) - Z 1 <0 (dD|1log*(T)) .
t=1 u—1

Thus,> ;| E [diam,(C[Z;_1])] < O (d|D|log*(T) + €T) < O (d - e ™ log*(T) + €T).
Takinge = (T/d)’m%l, this isO (dm%l LTt logz(T)>. We therefore have

T

Z sup er(h

=1 heC[Z¢_1]

My <E <E Zdlamt =) go(wﬁl T 1og2(T)>.
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Similarly, lettinger = (d/T)7+7, Qr is at most

T

E |> Dy(DIS(C[Z;-1]))

t=1

<E

"D, (DIS (By, <h*,max{diamt«qzt_ﬂ),eT}>>>]

t=1
T

<E | 6b(er) - max {diam,(C[Z,1]), er}
> 05 (er) - diam, (C[Z,_1])

t=1

IA
=

4 0p () Ter < O (eD (ep) - dmvi - Twn 1og2(T)) .0

We can additionally construct a lower bound for this scemas follows. Supposg contains
a full infinite binary tree for which all classifiers in the ¢ragree on some point. That is, there is
a set of pointz, : b € {0,1}*, k € N} such that, fob, = 0 andVby, bs,... € {0,1},Fh € C
such thath(xz, ..., ,)) = b; for j > 2. For instance, this is the case for linear separators (and

most other natural “geometric” concept spaces).

Theorem 10.7.For any C as above, for any active learning algorithm,a setDD satsifying
Assumption 1012, a target functidri € C, and a sequence of distributiog®;}’_, in D such
that the achieved/; and Q satisfy M, = Q (T#l) and My = O (T#) — Qr =
o (7).

The proof is analogous to that of Theorem 10.17 below, artukissfore omitted for brevity.

10.5 Learning with Noise

In this section, we extend the above analysis to allow folouartypes of noise conditions com-
monly studied in the literature. For this, we will need todstwa noise-robust variant of CAL,
below referred to as Agnostic CAL (or ACAL). We prove upper bdsiachieved by ACAL, as

well as (hon-matching) minimax lower bounds.
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10.5.1 Noise Conditions

The following assumption may be referred to astactly benign noisecondition, which es-
sentially says the model is specified correctly in thate C, and though the labels may be

stochastic, they are not completely random, but rather sagdiyhtly biased toward the* label.
Assumption 10.8.h* = sign(n — 1/2) € C andVx, n(x) # 1/2.

A particularly interesting special case of Assumpfion [i6 iven by Tsybakov’s noise con-

ditions, which essentially control how common it is to hawealues close ta /2. Formally:

Assumption 10.9.7 satisfies Assumptign 10.8 and for some 0 anda > 0,

Vit >0, P(In(z) —1/2| < t) < c-t“.

In the setting of shifting distributions, we will be inteted in conditions for which the above
assumptions are satisifed simultaneously for all distrdms inD. We formalize this in the

following.

Assumption 10.10.Assumptio 1019 is satisfied for @l € D, with the same and« values.

10.5.2 Agnostic CAL

The following algorithm is essentially taken from [Dasgadtisu. and Monteleani, 2007a, Han-
neke| 2011], adapted here for this stream-based settiisgodsed on a subroutineERRN(L, Q) =

argmin  ér(h; Q) if mineér(h; £) = 0, and otherwise EARN(L, Q) = &.
heC:ér(h;L£)=0 heC
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ACAL

1. t+0,L; < 0, Q; « 0, leth, be any element of

2. Do

3. t+t+1

4.  PredictV, = hy_1(X))

5. Foreachy € {—1,+1}, leth® = LEARN(L;_1, Q;_1)
6

If eithery hash(~¥) = @ or

Gr(h9; L U Q) — (AW Loy U Quy) > &1 (Limn, Qi)
7. Ly Loy U{(Xy)} Q¢ Qi

8. Else Request;, and letl, < L£; 1, Q; + Q1 U{(X},Y))}
9. Leth, = LEARN(L,, Q)

10. Iftis a power of2

11. Li<0,Q; <0

The algorithm is expressed in terms of a functi&fi£, Q), defined as follows. Leb;
be a nonincreasing sequence of valueg(nl). Let &, &, ... denote a sequence of inde-
pendentUniform({—1,+1}) random variables, also independent from the data. VFor
C, let Ry(V) = supy, pev T Somalesat 1) 41 Em  (h1(Xim) = ha(X)), Dy(V) =
SUDp ey Ty Soimationate- 1 er |11 (Xn)~ha(X,n)| UV, 6) = 12R,(V) 4341/ Dy(V) 22210 1
w. Also, for any finite sets£,Q C X x YV, letC[L] = {h € C : er(h; L) =

0}, C(;£,Q) = {h € C[L] : ér(h; £ U Q) — minyecye ér(g; £ U Q) < €}. Then define
Uy(e,6;L£,0) = U, (Cyle; £,Q),6), and (lettingZ, = {j € Z : 27 > €})

£(£,Q) = in {6 > 0:Vj € Ze, min Ui, Sl1og(e)); £, Q) < 2j‘4} :

178



10.5.3 Learning with a Fixed Distribution

The following results essentially follow from [Hanneke,1A), adapted to this stream-based
setting.

Theorem 10.11.For any strictly benign(P, ), if 27 < §; < 27/i, ACAL achieves an ex-
pected excess number of mistakés — M = o(T), and if0p(e) = o(1/¢), then ACAL makes
an expected number of queri@s = o(T).

Theorem 10.12.For any (P, ) satisfying Assumptidn 10.9,0if = { P}, ACAL achieves an ex-
pected excess number of mistakés — M; = O (da}w T4 log (W) + S Lol g, 2’)

) + 52 Hos(T)] 5121‘).

and an expected number of querigs = O <9p(eT) . da¥2 . Ta%e log <5u o

wheree; = T~ a+2,
Corollary 10.13. For any (P, n) satisfying Assumptidn 10.9,lif = { P} andd; = 27" in ACAL,
the algorithm achieves an expected number of mistakesnd expected number of queri@s

such that, foe; = T~ a%2, Mp— Mz = O (dcﬁ2 -T312> andQr = <0p(eT) darz -Ta%z>.

10.5.4 Learning with a Drifting Distribution

We can now state our results concerning ACAL, which are amailsd¢o Theoremnis 10.5 ahd 10.6
proved earlier for CAL in the realizable case.
Theorem 10.14.If D is totally bounded (Assumptién 1D.1) andatisfies Assumption 10.8, then
ACAL withd; = 2% achieves an excess expected mistake baupd— M;: = o(T), and if
additionallyfp(¢) = o(1/¢), then ACAL makes an expected number of qué&pies- o(T).

The proof of Theorem_10.14 essentially follows from a cormabion of the reasoning for
Theorem 10J5 and Theorédm 10.15 below. Its proof is omitted.
Theorem 10.15.1f Assumption§ 1012 and 10]10 are satisfied, then ACAL ach@vexpected

at2ymt1

_ _ ( . .
excess number of mistakés, — M; = O (T(a+2><m+1> log (% 1(T)J> 4 57 Hoa(™)] 6421), and
og
> X Ztlog(T 5i2z’>

o ~ 2)(m
an expected number of queri€s = O (HD(eT)T G log ( Iy
og

whereer = T~ @,
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The proof of this result is in many ways similar to that givdroee for the realizable case,
and is included among the supplemental materials.

We immediately have the following corollary for a specifisequence.

Corollary 10.16. With §; = 27 in ACAL, the algorithm achieves expected number of mistakes
M and expected number of queri@s such that, fore, = T~ @D,
My — M3 =0 (T%) andQr = O (GD(eT) T%%)

Just as in the realizable case, we can also state a minimax mund for this noisy setting.
Theorem 10.17.For any C as in Theoreni 1017, for any active learning algorithfna setD
satisfying Assumptidn 10.2, a conditional distributigrsuch that Assumptidon 10]10 is satisfied,
and a sequence of distributiod®,}7_, in D such that the\l; andQ achieved by the learning
algorithm satisfyM; — M3 = Q (Talﬁ%> and My — M3 = O (Talﬁ%> — Qr =
0 (Taizr::,,).

The proof is included in the supplemental material.

10.6 Querying before Predicting

One interesting alternative to the above framework is mathe learner to make a label request
beforemaking its label predictions. From a practical perspectilies may be more desirable
and in many cases quite realistic. From a theoretical petispe analysis of this alternative
framework essentially separates out the mistakes due tecovdidence from the mistakes due
to recognized uncertainty. In some sense, this is relatéueté(\WIK model of learning of [Li,
Littman, and Walsh, 2008].

Analyzing the above procedures in this alternative modelidgi several interesting details.
Specifically, consider the following natural modificatidiosthe above procedures. We refer to

the algorithm LAC as the same sequence of steps as CAL, exadpSiep 4 removed, and
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an additional step added after Step 8 as follows. In the dagente requested the labgl, we
predictY;, and otherwise we prediég(Xt). Similarly, we define the algorithm ALAC as having
the same sequence of steps as ACAL, except with Step 4 remave@dn additional step added
after Step 11 as follows. In the case that we requested teéY¥abwe predictY;, and otherwise

we predicth, (X,).

The analysis of the number of queries made by LAC in thisrsgttemains essentially un-
changed. However, if we consider running LAC in the realieadase, then the total number of
mistakes in the entire sequence will bera As above, for any example for which LAC does
not request the label, every classifier in the version spgeeea with the target function’s label,
and therefore the inferred label will be correct. For anynepke that LAC requests the label of,
in the setting where queries are mdukforepredictions, we simply use the label itself as our

prediction, so that LAC certainly does not make a mistakdis ¢ase.

On the other hand, the the analysis of ALAC in this alterreaietting when we have noisy
labels can be far more subtle. In particular, because th&orespace is only guaranteed to
contain the best classifiavith high confidencethere is still a small probability of making a
prediction that disagrees with the best classiiieon each round that we do not request a label.
So controlling the number of mistakes in this setting conmsgrdto controlling the probability of
removingh* from the version space. However, this confidence parampperaas in the analysis
of the number of queries, so that we have a natural tradeetifden the number of mistakes and

the number of label requests.

Formally, for any given nonincreasing sequefgcén (0, 1), under Assumptionss_10.2 and

[[0.10, ALAC achieves an expected excess number of mistakes 1 < "1™ 5,91 and

1 )_i_zitfg;(T)J 5121),

O|1og(T)]

= ~ (a+2)(m+1)—a
an expected number of queri@s = O <9D(eT) LT eFRmED T Jog (

whereer = T~ @0+, |n particular, given any nondecreasing sequehige we can set this

6; sequence to maintaib/; — M} < My for all 7.
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10.7 Discussion

What is not implied by the results above is any sortrafie-off between the number of mis-
takes and the number of queries. Intuitively, such a trdtlskmuld exist; however, as CAL
lacks any parameter to adjust the behavior with respectisotthde-off, it seems we need a
different approach to address that question. In the batitingethe analogous question is the
trade-off between the number of label requests and the nuaihalabeled examples needed.
In the realizable case, that trade-off is tightly charazeat by Dasgupta’splitting indexanal-
ysis [Dasgupta, 2005]. It would be interesting to determitnether the splitting index tightly
characterizes the mistakes-vs-queries trade-off in theas-based setting as well.

In the batch setting, in which unlabeled examples are censttfree, and performance is
only measured as a function of the number of label requeB&cén, Hanneke, and Vaughan,
2010] have found that there is an important distinction leetwtheverifiablelabel complexity
and theunverifiablelabel complexity. In particular, while the former is sonmedis no better than
passive learning, the latter can always provide improvestenVC classes. Is there such a thing
as unverifiable performance measures in the stream-baied)3€eTo be concrete, we have the
following open problem. Is there a method for every VC clésg aichieve® (log(T')) mistakes

ando(T) queries in the realizable case?

10.8 Proof of Theorem 104

Proof of Theorerh 10l4First note that, by the assumption thater,(h*) = 0, with probability
1 we have thav/t, Q, = Z,. Thus, since the stated bound &£y for the one-inclusion graph
algorithm has been established when using the true seqoéfateeled example&; [Haussler,
Littlestone, and Warmuth, 1994b], it must hold here as well.

The remainder of the proof focuses on the bound)en This proof is essentially based on a

related proof of [Hanneke, 2011], but reformulated for #stream-based model.
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Let V; denote the set of classifiekse C with ér(h; Q;) = 0 (with 1, = C). Classic results
from statistical learning theory [Blumer, Ehrenfeucht, Bslar, and Warmuth, 1989, Vapnik,
1982] imply that fort > d, with probability at least — 4,

log(2e(t — 1)/d) + log(4/6)
t—1 ’

diamy(V;_1) < ed (10.2)

for some universal constante (1, ).
In particular, ford < t < T, since the probability CAL requests the laliélis P(X; €
DIS(V:-1)), (10.2) implies that this probability satisfies

P (X, € DIS(V,_,)) < P (Xt € DIS (Bp (h*,cdlog(2e(t - ?idl) * log(4/5))>) +6

cdlog(Qe(t —1)/d) + log(4/9)
t—1

< 0p (dlog(T)/T) + 6.

Takingé = d/(t — 1), this implies

P (X, € DIS(V,_1)) < 0p (dlog(T)/T) 2cdlog(8et(t__1 D/d).

Thus, forT > d,
T-1

Qr=)Y P(X,€DIS(Vi_y)) <d+1+ Y 0p(dlog(T)/T)2cd

t=1 t=d+1

log(8et/d)
t

T
1
<d+1+40p(dlog(T)/T)2cdlog(8eT/d) / ;dt
d

=d+1+4+60p(dlog(T)/T)2cdlog(8eT/d)log(T/d).

10.9 Proof of Theoren10.15

The following lemma is similar to a result proven hy [HanneR811], based on the work of
[Koltchinskii, '2006], except here we have adapted the tésuhe present setting with changing
distributions. The proof is essentially identical to theqgdrof the original result of [Hanneke,

2011], and is therefore omitted here.
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Lemma 10.18.[Hanneke, 2011] Supposesatisfies Assumptidn 10.8. For evérg N, on an

eventF; WithP(E;) > 1 —¢;, Vi € {20 +1,...,2""}, lettingt(i) = ¢ — 2,

o cr(h*; Li1) =0,
e Vh e Cs.t. ér(h, Et—l) =0 andéI'(h; Et—l U Qt—l) — ér(h*, ‘Ct—l U Qt—l) < ét—l(ﬁt—la Qt—1)7

we havery -1 (h) — ergipyy 1 (B7) < 2841(L4-1, Quo1),

e if Assumption 10.10 is satisifeﬂt,l(/;t,l, Q1) < K- <W) i ,

for some(c, o)-dependent constart € (1, 00).

We can now prove Theorem 10115.

Proof of Theorerh 10.15Fix any: € N, and we will focus on bounding the expected excess
number of mistakes and expected number of queries for thesak {2/ + 1,...,2"}. The
result will then follow from this simply by summing this ovealues ofi < log(7).

The predictions fot € {2/ +1, ..., 2"} are made by,,_,. Lemmd10.18 implies that with
probability at leasti — 4;, everyt € {2' + 1,...,2""1} hasVh € C[L;_,] with ér(h; L;_; U

Q1) — (W L1o1 U Q1) < & 1(Li1, Q1) (and therefore in particular fdr,_;)

t—1 ; atl
; dl t— 2 5@ at2
Z erg(h) —erg(h*) < Ky - (t—2") - ( Og(i 5 )/ ))
5=21+41 N
< K -taz - (dlog(t)5:)) 7 . (10.3)
for some finite constank;.
Fix some value: > 0, and enumerate the elementsaf = {P,, P, ..., Pp_}. Then let

Dep = {P € D : k = argmin,p, | || P; — P||}, breaking ties arbitrarily in thergmin. This
induces a (Voronoi) partitiofD, ; : £ < |D.|} of D.
Rewriting (10.8) in terms of this partition, we have

|De |

3 ery(h) — ery(h*) < K - (£)752 - (dlog(t/8,)) -

k=1 sc{2%+1,...,t—1}:
'DSEDE,k
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This means that, for anyy < |D.|, we have

(erp, (h) —erp, (h")) - ‘{3 c{2"+1,....t—1}:D, € Dﬁ’k}‘
£ (enh) —en () Ty, (D)

< K- ()52 - (dlog(t/5;)) + 2e {se{2’+1,....t =1} : D, e Dy }|.
Abbreviating byk(s) the value ofi < |D.| with D, € D, ;, we have that

er;(h) — ery(h")

<2+ €T Pu) (h) — €T Py (h")
2e|{s € {2+1,....t—1}:k(s) = k(O)} + K, - (t)a= - (dlog(t/6;))
max {1, [{s € {2+ 1,... .t —1}: k(s) = k(O)}|}
2K, - ()77 - (dlog(t/5:))
{se{2+1,... tF:k(s)=k@®)}

< 2e+

<de+ (10.4)

Applying (I0.3) simultaneously for afle {2¢ +1,..., 2"} for h = h,_;, we have

i llog(T)]

My — My < 4T+ Y 26+

=0
) llog(T)] |De| [{te{2°+1,.... 2" }:k(t)=k}| 1
2Ky - T+ - log(T) (d1og(T/d)10g(r)))) Z Z "
=0 k=1 u=1
llog(T)
< 4¢T + Z 28,4
=0
_1
2K - T+ - log(T) (d 10g(T/5Uog(T)J)) log?(2T)|D|.
) Llog(T)]
= O | eI + e ™T'a2dlog®(T)1og(1/81og(r)]) + Z 29,
=0
Takinge =T (a+§%+1>, this shows that
[log(T")]

_ (a+2)m+1 .
My — M7 =0 T@i2mt D dlog®(T)1og(1/8 1ee(ry]) + Z ;2"
=0
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We can bound?; in a similar fashion as follows. Fix any < log(T). Lemmal10.18

implies that with probability at least — §;, for everyt € {2 + 1,...,2"*1}, letting &, =

2K1- ta+2 leg(t/‘SUog(t)J )

de T [{s€{2¢+1,....t }:k(s)=k(t)}|’ we have

P(request;|L; 1, Q; 1)

<P (X, € DIS ({h € ClL] (i £ U Qua) = 6r(h*s £ U Qi) < &ui(Lar, @)} ) [£a1 Qi
S P (Xt € DIS ({h eC: ert(h) — ert(h*) S ét}))
<P <Xt € DIS ({h € C: Pz : h(z) # h*(z)) < K EF}))
<6y (8““) Ky £,
where the third inequality above is due to Assumpfiion 1/0.10.
Applying this simultaneously to all < log(T") andt € {2' + 1,...,2""'}, we have, for
Er =€+ T_Z%;
[log(T")] Llog(T)J IDe| [{te{2'+1,... 2" }:k(t)=F}| L1 =25
< 5,20+ 0 Kydlog(T /810 Tarzs
Qr < ; + ]D)( ) 14d10g(T' /0 10g(1))| ; kz; ; (max{e +u})

[log(T

7 2 2 e T (%H
< Z 5 2"+ QIDJ ( ) KE) dlog(l/éLlog(T )1Og (T) | e T+ |D€‘T<a+2>(a+1) ‘D |

[log(T

=0 Z 5,28 + 6 ( a+1> 10g(1/5Llog(T)J) IOgQ(T) ) (6@L+1T + EimaLHTaLH)

A atl _ a+l
Takinge = ;¢ =1 @@+ we have

log(T
[log(T")] (0t?) (mt 1)

Qr=0 Z 62" + Op (1) log(1/S10g(r))) log?(T) - T~ ¥ tnin

=0

10.10 Proof of Theoreni 10.17

Proof of Theorerh 10.17Fix any 7" € N, and any particular active learning algorithi We

construct a set of distributions tailored for these, afed. Letk = (o + 1)/a. Lete =
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T~ zirm, M = Totn—1 = ¢™/%, andK = Tztm1 = T/M.

Inductively define a sequendé, };° , as follows. Leth; = 0, b, = 1. For any integek > 3,
given that values 0b;, b, ..., by_1, M3, ..., Mk—1, D3,... Dp—1, and Xy, Xo, ..., X3 x have
already been defined, it is known [Hanneke, 2011] that foreantiye learning algorithm (possibly
randomized) there exists a valbiesuch that, for the distributio®,, with Dy, ({4, s,...6,_,}) =
e'/% = 1— Dp({x,}), there is a label distribution, (z) = P(Y = 1|X = x) havingn(z,) = 1
and inducing* (xy, b, 5., ) = bk, Which also satisfies Tsybakov noise with parametensdo
under distributionD,.: namely,ni.(zs, 4, 5, ,) = 3 (1 + (20, — 1)6%1)- Furthermore, [Han-
neke/2011] shows that thig can be chosen so that, for somve= 2 (e%‘2>, after observing
any number fewer thatV random labeled observatiofX’, Y) with X = xp, 4, . 4, if Bn is
the algorithm’s hypothesis, thé{er(h,,) — er(h*)] > ¢, where the error rate is evaluated under
. and Dy.. In particular, this means that if the unlabeled sampledateibuted according to
Dy, then with any fewer thamV label requests, the expected excess error rate will beegreat
thane. But this also means that with any fewer thae—/*N) = Q(e~~2) = Q(K) unlabeled

examples sampled accordingfy, the expected excess error rate will be greater than

Thus, to define the valuk, given the already-defined valués b, ..., b._1, we consider
X(k=3)K+1r X(k=3)K+21 - - » X(k—2)k 1.1.d. Dy, independent from the othéf,, . .., X ;_3)x vari-
ables, and consider the valuesbgfandr, mentioned above, but defined for the active learning
algorithm that feeds the streaiy, X, ..., X(,_3)x into A before feeding in the samples from
Dy. Thus, in this perspective, thesé, X,, ..., X3 random variables, and their labels
(which A may request), are consideredernal random variables in this active learning algo-

rithm we have defined. This completes the inductive definitio

Now for the original learning problem we are interested ig,teke as our fixed label distribu-
tion ann with n(zp,) = 1 andvk > 2, n(xp, by, by_y) = Mk(Tby bs....0._,)» @Nd defined arbitrariliy

elsewhere. Thus, for any,, this satisfies Tsybakov noise with the giveand« parameters.
We define the familyD of distributions aq D3, , Dy, ..., Dyyo} for M = Tomtm—1 = ¢m/s
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as above. Since thedg are each separated by distance exactly, D satisfies the constraint on

its cover sizes.

The sequence of data points will be thg, X, ..., X+ sequence defined above, and the
corresponding sequence of distributions B9s= Dy = --- = D = D3, D1 = Dgio =
-+ =Dy = Dy, and so on, up t®—1)k+1 = Dyr—1yx+2 = - - Dr = Dargo.

Now applying the stated result of [Hanneke, 2011] used ird#faition of the sequence, for
anyl <t < min{e"/*N, K}, and anyk < M, denoting byhsk 11 the classifier produced by
A after processing K +t —1 examples from this strears, eerKH(BkKH,l) —erp, .., (h*) >
€ =T zm1,

Sincemin{e~/*N, K} = Q(K), the expected excess number of mistakes is

M-1 K

MT - MI*“ = Z ZE |:eerK+t(iLkK+t—l)] - eerK+t<h*)
k=0 t=1
M—1 mln{efl/“N K} 1 mln{efl/"N K}
> E [eerK+t<th+t—1>i| eerK+t h* Z Z €
k=0 t=1

K+m—1

—Q(M-K-) = Q (M- (T/M) - T~ ) = Q (TH%= )

Similarly, applying the stated result of [Hanneke, 201ameling the number of samples
of labels for the point:, 4, 5, , t0 achieve excess erretbeing larger thanv, we see that in
order to achieve thid/; — My =0 (T%> we need that at least some constant fraction
of these) segments receive an expected number of quél@é), so that we will need); =

2k+m—2

QM- N)=Q (sz ) O
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Chapter 11

Active Learning with a Drifting Target

Concept

Abstract

H This chapter describes results on learning in the preseingelofting target concept. Specif-
ically, we provide bounds on the expected number of mistakea sequence of i.i.d. points,
labeled according to a target concept that can change byea gmount on each round. Some
of the results also describe an active learning variantisfdétting, and provide bounds on the
number of queries for the labels of points in the sequendeiult to obtain the stated bounds

on the number of mistakes.

11.1 Introduction

At this time, the work on active learning has focused on legysettings in which the concept
to be learned is static over time. However, in many real-dvapplications, such as webpage

classification, spam filtering, and face recognition, the@adhstribution and the concept itself

1This chapter is based on joint work with Steve Hanneke andiv/&anade.
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change over time. Our existing work in the previous chaptihlresses the problem of active
learning with a drifting distribution, providing theoredil guarantees on the number of mistakes
and label requests made by a particular active learningitiigoin a stream-based learning set-
ting. However, that work left open the question of a drifttagget concept. To bridge this gap,
we propose to study the problem of active learning (and pa$sarning) with a drifting target
concept. Specifically, consider a statistical learningrsgtin which data arrive i.i.d. in a stream,
and for each data point the learner is required to predicbel for the data point at that time,
and then optionally request the true (target) label of tlvttp We are then interested in making
a small number of queries and mistakes (including mistakesngueried labels) as a function
of the number of points processed so far at any given time.tdifget labels are generated from
a function known to reside in a given concept space, and &t trae the target function is al-
lowed to change by a distanedthat is, the probability the new target function disagregh

the old target function on a random sample is at m@siThe recent work of [Koby Crammer
and Vaughan, 2010] studies this problem in the context ofipadearning of linear separators.
In this theoretical study, we intend to broaden the scop&aif work, to other concept spaces
and distributions, improve the guarantees on performastablish lower bounds on achievable
performance, and extend the framework to study the numb&beis requested by an active
learning algorithm while maintaining the performance gudees established for passive learn-
ing. In particular, we will be interested in bounding the raenof queries and mistakes made
by a particular algorithm, as a function afthe VC dimension of the concept space, and the
number of time steps so far. We will also consider variantgisfin whiche is also allowed to
change over time, and then the bounds on the number of msstatkbqueries should depend on

the sequence efvalues.
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11.2 Definitions and Notations

Formally, in this setting, there is a sequence of data iumlabeled data(;, Xs, ..., each with
marginal distributiori? over the instance space. There is also a sequence of target functions
hi, ks, ... in C, with P(z : hi(z) # hy,1(x)) < €41 for eacht € N. Eacht has an associated
target labelY; = hj(X;). A predictionYt is counted as a “mistake” i¥f; £ Y;. We suppose
eachh; is chosen independently fro;, X;.4,... (i.e., h; is chosen prior to the “draw” of
X, Xi41, ... ~ P). For the purposes of the results below, we do not necegsaquireh; to be

independent fronk,, ..., X;_;. Additionally, for anyz € (0, c0), defineLog(z) = In(x) V 1.

11.3 General Analysis under Constant Drift Rate: Inefficient
Passive Learning

The following Lemma is due to [Vapnik and Chervonenkis, 1971]
Lemma 11.1. There exists a universal constantc [1,c0) such that, for any clas€ of VC

dimensiond, Vm € NV € (0, 1), with probability at least — ¢, everyh, g € C have

Pl i) # 9(@) — - D TR(X) # g(X.)

J ( % i WKL) £ g Xt)]) dlog(m/d) +1og(1/3) , dlog(m/d) +log(1/5)

m m

Consider the following algorithm.

0. Predict arbitrary values;, . . ., Y,, for Y1, ..., Y,., respectively.
lLFOrI’'=m+1,m-+2,...
2. LetilT = ERM(C, {(XT—ma YT—m); ey (XT—la YT—I)})

3. PredictYT = ET(XT) as the prediction for the value &t
The bound in the following theorem is a generalization of given by [Koby Crammer and

Vaughan| 2010] for finite concept classes (which they cldimeuld be extended to spaces of
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infinite VC dimension, presumably yielding something rebing the result stated here).

Theorem 11.2.If everye; = ¢, for some constant valuec (0, 1), then the above algorithm,
with m = |/d/e|, makes an expected number of mistakes among thé€ fireftances that is

O(Vdelog(1/de)T).

Proof. The statement is trivial for any > 1/(ed), so suppose < 1/(ed). Let us bound
ery(hy) := P(x : hy(z) # hi(x)) for an arbitraryt > m. By a Chernoff bound, with probability

at leastl — ¢,

1/6) + 2em?e
m

% ti Iy, (X5) # hi(X;)] < logy(

i=t—m

< (2logy(1/0) + 2ed)+/€/d.

In particular, this means

t

LS TR0 # B (X0)] < 220y (1/6) + 2ed) /e

i=t—m

By Lemma11.ll, on an additional event of probability at Idastd,

Pl hi(x) # hi,,(x))
< 2(21logy(1/8)+2ed) \/€/_d+0\/ 2(210g,(1/8) + 2ed)/e/d(dlog(1/Vde) + log(1/8))2+/¢/d
+ c(dlog(1/Vde) + log(1/8))2+/€/d.

Takingd = V/de, this is at most

2/ de ((\/mmgQ(l/de) + 2¢) 4 2¢v/1/d1og,(1/de) + 2¢v/2¢log(1/de) + clog(l/de))

< 14(c 4 1)Vdelog(1/de)

Since this holds with probability — 26 = 1 — 2v/de, ander,(h,) < 1 always, we have

E e ()] < Pl () # (@) + Pla: hi_ () # bi (@)

< 14(c 4 1)Vdelog(1/de) + 2V/de + me < (14¢ + 17)Vdelog(1/de).
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Therefore,

E > T[h(Xy) # by (X)) | < m+ (14c+ 17)Vde log(1/de)(T — m) = O(Vdelog(1/de)T).

t=1

O

It may be possible to remove theg(1/de) factor in some cases (e.g., homogeneous half-
spaces under a uniform distribution on the sphere); it'symbtclear whether or not it should

sometimes belong there in the optimal number of mistakes.

11.4 General Analysis under Constant Drift Rate: Sometimes-

Efficient Passive Learning

The following method is often (though certainly not alwagsmputationally efficient. For in-

stance, it is efficient for linear separators.

0. Lethg be an arbitrary classifier i@

1. ForT'=1,2,...

2. IfT > ml[logy(1/€)], letmy € {m,...,m[log,(1/€)]} be minimal s.t.
minpec Yo 0" IR(X,) # Vi) = 0 (if it exists)

3. Ifmyexists, lethy = argming, ¢ >, "0 I[R(X,) # Y

4, Else |eUA1T = iLT,1

5. PredictV; = hy(X7) as the prediction for the value b

Theorem 11.3.If everye; = ¢, for some constant valuee (0, 1), then the above algorithm,

with m = , makes an expected number of mistakes among thd firsstances

|
2y/e[log,(1/)]
that isO(d+/elog®(1/€)T).

Proof. The statement is trivial for any > 1/(ed)?, so suppose < 1/(ed)?. Let us bound

~

Elery(hy)] := E[P(z : hy(x) # hi(z))] for an arbitraryt > mlog,(1/1/€).

193



Fixany M € {m,...,m[log,(1/€)]}. By a Chernoff bound, with probability at leakt—

¢/(mflogy(1/e)]),

177 miogy (/e (Xi) # hi(Xi)] < —logy((m[logy(1/€)])/€) + 2eeflogy(1/€) [m.

1 1
m m
k=t—M

Combined with Lemm&a11l.1, this implies that with probabibityleastl — 2¢/(m[log,(1/€)]),

for anyh € C with
t—M+m—1

> IR(Xy) # hi(Xy)] =0,
it must have
S Hlhi gy /01 (K0) # h(X0)] < Loy (m Loy (1/e)])/e) + 2eefloy(1/0)]m.

and therefore

P(x: h(z) # h:—m[logQ(l/e)] (z))

< (- oea((m o1/} ) + 2ecfog 1/l

+ c\/ (1 tora(mloea(1 /1) )+ 2o (1) m ) B oBlm Bt/ I/
, dlog(m/d) +log((mlogy(1/e)])/e)

< 19v/elog2(1/€) 4 12¢V/delog2(1/€) 4 24cdy/elog2(1 /e)
< 55cdy/elogs(1/e).
If this is the case, then
ery(h) < P(z: h:—mflogQ(l/eﬂ (x) # hi(x)) + Pz : hiz) # h;ﬁk—mﬂogz(l/e)] ()
< em[logy(1/€)] + 55cdy/elogs(1/¢)
< 56¢dy/elogs(1/e).
Thus, by a union bound, with probability at ledst 2e¢, if m, exists, then
ery(hy) < 56cdy/elog2(1/e).
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For any given € {1, ..., [log,(1/€)]}, by a union bound, the probability that

t—m(i—1)—1

Z I t—m[loga(1/6)] (Xx) # hip(Xe)] >0

k=t—mji
is at moste[log,(1/¢)]m? < 1/2. Since these sums are independent over valugésveé have
that with probability at least — ¢, at least one of these valuesiof {1,..., [log,(1/€)]} will
haveS (D=1

h—t i T mlogy (1701 (Xk) # i, (Xy)] = 0. In particular, on this event, this implies

m, exists in Step 2.

Altogether, sincert(ﬁt) < 1 always, we have
Elery(hy)] < 56cdy/elog(1/€) + 3¢ < 59¢dy/e log2(1/e).
Therefore,

E|S 1 [ﬁt(xt) ”: h;‘(Xt)] < m[logy(1/€)] + 59cdv/elog2(1/€)T = O (dy/elog?(1/e)T) .

t=1

O

11.4.1 Lower Bounds

In this section, we establish a lower bound on the number sfakés that can be achieved when

the target function may drift by, at each step.

Thresholds

For simplicity, we first consider the case where the distrduis uniform over{—1, 1], and the
concept class is threshold functions. Between each tingetiséethreshold may move to the left
or right bye.

Theorem 11.4.For anye < 1/16, any algorithm for learning under drifting targets makes at

least./eT'/4e in expectation.
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Proof. Consider the following strategy that the adversary usesfioaléhe drifting thresholds.
For simplicity assume that/\/e is an even integer and is divisible by2/,/e. The game is

divided intok = T'/(2/+/€) epochs, each consisting ®f /¢ time steps. We have the following:

¢ At the beginning of each epoch, the threshold i$.afThe adverary tosses an unbiased
coin.

e |f the outcome is heads, for the neixt,/c time-steps, the threshold increasedst each
time-step. Then for the next/\/c it decreases by at each time-step. Thus, at the begin-
ning of the next epoch, the threshold is agaif.at

e If the outcome is tails, the adversary first decreases tlesltiotd bye for the first1/,/e
time-steps; then increases again. Thus, in either cades atid of the epoch the threshold

is again at.

We first assume that the algorithm knows the strategy of tiweradry (but not the coin
tosses). This can only make the algorithm more powerfulc&at the end of each epoch, the
algorithm knows exactly where the threshold is, the totapéeted) number of mistakes ks
times the expected number of mistakes in each epoch. Withssitof generality consider the
first epochj.e., time-stepsl to 2/+/e. Fort < +/t, let Z, denote the random variable thatlisf
at time-step, the random example; is inside the interval—et, et]. Note thatPr[Z; = 1] = et.
Let M, denote the random variable thatlisf the algorithm makes a mistake at time-step
and0 otherwise. (Here the expectation is over the randomnedseoétamples as well as the

adversary’s coin toss). Then, consider the following:
1
]E[Mt | Zl :07"';Zt—1 :O,Zt: 1] == 5

This is because, the only information the algorithm hasiatttime is that the threshold is either

at —et or et, each with equal probability. Therefore,

et(1— o)™

E[M,] > 5
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Let S = 1/y/e. Then, the expected number of mistakes between the tirps-$téo S is
E[Y7, M) =37 E[M,]. Then, we have

S 1 S
> E[M] > 3 D et(1— e

t=1 t=1

Using the fact thaEf:1 tz!=! > (1 — 2%)/(1 — x) for small enough:, we get

In the last line we used the fact thidt — z)'/* < 1/e. Now, it must be the case that the total

(expected) number of mistakes is at lelaste = /€T'/(4e). O

Halfspaces

Now consider the case whefé = R* for £ € N, and where the concept spaCds the set of
halfspaces (linear separators): that is, for every C, 3w € R*¥ andb € R such thatvz € R¥,
h(z) = +1iff w-z + b > 0. In this case, we have the following result.

Theorem 11.5.For anyk € N, for ¥ = R* andC the class of halfspaces d@t, for anye < 1/k,
for any algorithm for learning undes-drifting targets, there exists a distributidh overR* and
a sequence afdrifting (w.r.t. P) targetsh;, k3, ... in C such that, for any’ € N, the expected

number of mistakes made by the algorithm among theZfirsunds is at least/ckT'/8.

Proof. Consider the distributio® that is uniform over the set

k

{03! x [0, 1) x {0} :

=1
that is,P is uniform in|0, 1] along each of the axes. Now, by the probabilistic methodiffices
to show that there exists a way to randomly set the sequentaegeit functions so that the ex-

pected number of mistakes is at least the stated lower b&aavill choose the target functions
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from among the subset @ consisting of halfspaces whose respective separating pigoes
intersection alk axes in0, 1]: thatis,Vi < k, {z : w-z+b = 0}N({0}"1 x [0, 1] x {0}F~%) £ 0.
Note that each halfspace of this type can be specifiedl glues,(z1, . .., z), corresponding
to thek intersection values with the axes: thatys,< k, thex € {0}~! x [0,1] x {0}~ has
x; =z €[0,1].

Consider the following strategy that the adversary usesfinalthe drifting targets. For sim-
plicity assume thai\/k_/e is an even integer arid is divisible by2 \/k_/e The game is divided
into ¢ = T/(2,/k/e) epochs, each consisting 2{/% /¢ time steps. We have the following:

¢ Atthe beginning of each epoch, the target functionfias 1/2 for all i < k. The adverary
tosses: unbiased coinsy, ..., ¢;.

e For eachi < £, if the outcome of tossing; is heads, for the nex{/%/c time-steps, the
value ofz; is increased by at each time-step, and then for the foIIowi{}Qq_/e time-steps
it decreases by. Thus, at the beginning of the next epoch, the target oncen dges
zi=1/2foralli < k.

e For eachi, if the outcome oft; is tails, the adversary first decreases the valug bfy ¢
for the next\/k;_/e time-steps, and then increases agaim by each round. Thus, in either

case, at the end of the epoch the target agaitvhask, z; = 1/2.

We first assume that the algorithm knows the strategy of thiveradry (but not the coin
tosses). This can only make the algorithm more powerfulc&at the end of each epoch, the
algorithm knows exactly where the threshold is, the totapéeted) number of mistakes is
times the expected number of mistakes in each epoch. Withssitof generality consider the
first epoch,i.e., time-stepsl to 2./k/e. Fort < \/k/e andi < k, let Z;; denote the random
variable that i if at time-step, the:*® coordinate of the random variabigis inside the interval
[1/2 — €t,1/2 + €t]. Note thatPr[Z;; = 1] = 2¢t/k. Let M, denote the random variable that
is 1 if the algorithm makes a mistake at time-stepnd (0 otherwise. (Here the expectation is

over the randomness of the examples as well as the advexrsaig’'tosses). Then, consider the
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following:

1
E[M, | Za=0,.... Zipy = 0, Zu = 1] = .

For anyi < k, ifany Z;, = 1 fort < \/k/e, then there must exist a first suchin which case

the above equality holds at that timeTherefore,

\ Kk/e \Kk/e

k
E|Y M EZ%P@tS k/e:ZZ-t:1>:§ 1 [T @ —2et/k)
t=1 i=1 t=1
k Vi k
>3 | 1 exp{ —2(e/k) Dt = 5 (1—e') > k/4.

t=1

Now, it must be the case that the total (expected) number sthikes is at leagk /4 = TV/ek /8.
O

11.4.2 Random Drifts

In this section, we consider a very simple case of “randorft’drMWe consider the class of
homogeneous linear separator®it) sayC, and let, be any radially symmetric measure Bh.
We show a simple lower bound that the achievable targetratitin this setting i) (e*/°T)).
Proposition 11.6. LetC, be the class of homogeneous linear separatof®imand let;: be any
radially symmetric measure dR?. Then, ifc;, cs, ..., cr is a (random) sequence of concepts
from C,, wherec;, ; is chosen uniformly at random from one of the two concep&jrsuch that
err,,(c;, ciy1) = €. Then, for any algorithm the expected number of mistak@$48°7"). (Here

the expectation is taken over the randomness of the sequgesce the examples drawn from)
Proof. This follows from the anti-concentration of the standanadam walk. [

Proposition 11.7. Under conditions of the above proposition — the algorithnoabachieves a

mistake bound o (e?/°T).
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Proof. The main idea is that because of random drift, the expectetbeuof examples that are

consistent with a fixed classifier is actuallye'/?, instead ofl /+/e. ]

11.5 Linear Separators under the Uniform Distribution

For the special case of learning linear separatof®‘inthe results of Section_11.4 imply that
it is possible to achieve an expected number of mistakes aede@O(d\/ET) among the first
T instances, using an algorithm that runs in timey(d, 1/¢) (and independent df) for each
prediction. In the special case of learning homogeneowsatiseparators under the uniform
distribution on a unit sphere, itis possible to improve tesult; specifically, we show there exists
an efficient algorithm that achieves a bound on the expeaistber of mistakes and queries that
is O(\/deT), as was possible with the inefficient algorithm of Secfiom311The technique is
based on a modification of the algorithm presented in Sed8, replacing ERM with (a
modification of) the computationally-efficient algorithrh[Awasthi, Balcan, and Long, 2013].
Formally, define the class of homogeneous linear separatotke set of classifiers,, :
R — {—1,+1}, for w € R? with ||w|| = 1, such thaty,(z) = sign(w - x) for everyzr € R
We have the following result.
Theorem 11.8.WhenC is the space of homogeneous linear separators (with 4) and P
is the uniform distribution on the surface of the origin-tamed unit sphere iR¢, whene, =
e > 0 (constant) for allt € N, there is an algorithm that runs in timeoly(d, 1/¢) for each
prediction, which makes an expected number of mistakes athenfyst7" instances that is
@) (@ log*? (L) T). Furthermore, the expected number of labels requestedebgltorithm
among the firsi” instances i€ <\/alog3/2 (L) T).
Before stating the proof, we have a few additional definitiand lemmas that will be needed.
Forr > 0 andz € R, define/,(z) = max{0,1 — £}. Consider the following algorithm and
subroutine; parametes, my, 7, 7%, b, @, andx will all be specified below; we suppose

M = Z]Di%f(l/aﬂ mp.
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Algorithm: DriftingHalfspaces

0. Letuy be an arbitrary element @ with ||| = 1
1. Fori=1,2,...

2. ABL(M(i—1))

SubroutineModPerceptron(t)

0. Letw, be any element dR? with |Jw,|| = 1

1. Form=t+1,t+2,...,t+mg

2. Predicty,, = h,, (X, as the prediction for the value &f,
3. Request the labéf,,

4. Y, #Y,

5 Wi = Wip—1 — 2(Win—1 - Xpn) Xon
6. Elsew,, < w,_1

7. Returnwy.y,,

Subroutine:ABL(t)

0. Letwy be the return value dflodPerceptron(t)
1. Fork =1,2,..., [logy(1/a)]
2. Wiy« {}

Fors :t—l—Z?;émj + 1,...,t+2f:0mj

Predicty, = hy,_,(Xs) as the prediction for the value &f

and letW,, < W, U {(X,,Y,)}

3

4

5. If |wg_1 - Xs| < br_1, Request the labéf,

6

7.  Findv, € RYwith |Jop, — wi_1]| <7, 0 < |log]] < 1, and
8

Yool (y(vg - x)) < inf oo o (y(v-x)) + kWi

(x,y)EWi villv—wi—all<rw (@ gyew,

9. Letw, = mW

The following result forModPerceptron was proven by|[Koby Crammer and Vaughan,

2010].

Lemma 11.9. Suppose: < 5% Consider the values),, obtained during the execution of
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ModPerceptron(t). Vm € {t + 1,...,t + mo}, P(x : hy, () # hi(2)) < Pz : hy,, () #

h* (x)). Furthermore, letting:; = if P(x _(x) # hi(x)) > 1/32, then with

d: 400 215 !
probability at leastl /64, P(x : hy,, (z) # hl (z)) < (1 —c1)P(x : hy,, () # hE(2)).

This implies the following.
Lemma 11.10. Suppose < . Formy = maxﬂ5121n (\/%Teﬂ : (128(1/c1)1n(32)1},
with probability at leastl — v/de, ModPerceptron(t) returns a vector with P(z : hy,(z) #

By (1)) < 1/16,

Proof. By Lemmd_11.D and a union bound, in general we have

P 2 b, (x) # iy 1 () < P& 2 P, () 7 Dy () + (11.1)

Furthermore, ifP(z : h,,, ,(z) # b, (z)) > 1/32, then wth probability at leadt/64,

P : hu, (2) 7 hppa () < (1= )P 2 s,y () 7 Dy (2)) + € (11.2)

In particular, this implies that the numb@f of valuesm € {t + 1,...,t + my} with either
P b,y () # hyy(2)) < 1/3200P( 2, (2) 7# Dy () < (1= )P (@ 2 by, () #
h*.(x)) + € is lower-bounded by Binomial(m, 1/64) random variable. Thus, a Chernoff bound
implies that with probability at least — exp{—m/512} > 1 — v/de, we haveN > m,/128.
Suppose this happens.

Sinceem, < 1/32,ifanym € {t +1,...,t+ mg} hasP(z : L (x) # Rk (x) < 1/32,
then inductively applyind (IT11) implieB(x : hy, ., () # ht+m0+1< )) < 1/32+emg < 1/16.
On the other hand, ifath € {t +1,...,t +mo} haveP(x : hy,, ,(x) # h,(z)) > 1/32, then
in particular we haveV values ofm € {t + 1,...,t + mo} satisfying (11.2). Combining this
fact with (11.1) inductively, we have that

P = Py (2) 7 B g1 (1)) < (1= ) VP 2 by, () # hiyy () + emg

1 1
< (1 - Cl)(l/cl)lnm)P(x : hwf( ) # ht+1( r)) +emgy < 32 +emgy < 16

O

202



Next, we consider the execution ABL(¢), and let the setdl/,, be as in that execution. We
will denote byw* the weight vector with|w*|| = 1 such thath;,,. ., = h,-. Also denote by
My = M — my.

The proof relies on a few results proven in the work of [AwadBalcan, and Long, 2013],
which we summarize in the following lemmas. Although theutesswere proven in a slightly
different setting in that work (namely, agnostic learnimgler a fixed joint distribution), one can
easily verify that their proofs remain valid in our preseontext as well.

Lemma 11.11.[Awasthi, Balcan, and Long, 2013] Fix artye {1, ..., [log,(1/a)]}. Suppose

bi_1 = ¢:2'%/+/d for a universal constant; > 0, and letz, = \/r,%/(d— 1)+0v2 ,. Fora

universal constant; > 0, if [|[w* — wi_1| < 7%,

Bl Y bl ahwon Wil | B | 30 (e - 2)|ws s, Wil

§61|Wk| QkEMlﬁ.
Tk

Lemma 11.12.[Balcan and Long, 2013] For any > 0, there is a constant’ > 0 depending
only onc (i.e., not depending or) such that, for any:, v € R? with ||u|| = |jv|| = 1, letting

A =P(x: hy(x) # hy(x)), if A <1/2, then
, A
P (x :hy(z) # hy(z) and|v - z| > ¢ ﬁ) < cA.

The following is a well-known lemma concerning concentrataround the equator for the
uniform distribution (see e.g., [Awasthi, Balcan, and L.oA@13, Balcan, Broder, and Zhang,
2007b| Dasgupta, Kalai, and Monteleoni, 2009]); for ins&grit easily follows from the formulas
for the area in a spherical cap derived by [Li, 2011].

Lemma 11.13.For any constantC > 0, there are constants,, c3; > 0 depending only o

(i.e., independent af) such that, for anyw € R? with ||w|| = 1, Vv € [0,C/Vd],

VA <P (z: |w-z| <v) < esyVd.
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Based on this lemma, [Awasthi, Balcan, and Long, 2013] progddhowing.
Lemma 11.14.[Awasthi, Balcan, and Long, 2013] FoX ~ P, for anyw € R? with ||w|| = 1,
foranyC > 0 andr,b € [0,C/+/d], for c,, ¢ as in Lemm&11.13,

E [t(fot - XDl X] <] < 27

Co
The following is a slightly stronger version of a resultlof§Asthi, Balcan, and Long, 2013]
(specifically, the size ofi,, and consequently the bound p#i,|, are both improved by a factor
of d compared to the original result).
Lemma 11.15.Fix any§ € (0,1/e). For universal constants,, cs, cg, ¢z, cs, Co, 10 € (0, 00),
for an appropriate choice of € (0,1) (a universal constant), ifv = cqy/edlog (=), for
everyk € {1,... [logy(1/a)]}, if bpoy = 2% /V/d, 7o = cs27%/Vd, e = 1027, &), =
5/(Nog,(4/a)] — k)%, andmy = [cg,i—‘;dlog (%ﬂ and it P(z : Ry, (1) £ he(2)) <
27+-3, then with probability at least — (4/3), [Wy| < cs-5dlog (ﬁ) andP(x : hy, (z) #
B (z)) < 27F4,
Proof. By Lemma11.1B, and a Chernoff and union bound, for an appitepyikrge choice of
c; and anye; > 0, letting ¢, c3 be as in LemmA 11.13 (with' = ¢; V (cs/2)), with probability
at leastl — 4/3,
cocr2 Fmy, < [Wi| < dezer2” my,. (11.3)
The claimed upper bound g#/;| follows from this second inequality.
Next note that, ifP(z : hy, (%) # hy(x)) < 27573, then

max{(, (y(w* - z)): x € R |wp_y - 2| < bp_y,y € {—=1,+1}} < ennVd

for some universal constant; > 0. Furthermore, sinc®(z : hy, ,(z) # hy(z)) < 27873,

we know that the angle between_, andw* is at mos2—*~3r, so that

Jwi—1 — w*|| = /2 — 2wi_1 - w* < /2 — 2cos(2-F37)

< /2 —2cos2(27F37) = V2sin(27F%n) < 27F 3 ny/2.
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Forec,o = m/2273, this isr,.. By Hoeffding’s inequality (under the conditional distrtimn given
|Wy]), the law of total probability, Lemma_11.111, and linearifyconditional expectations, with
probability at least — ¢, /3, for X ~ P,

>ty - 2) < [WAIE [t (w0 - X])|we oy, g - X] < by

+ eal Wil VRN - + VIWl(1/2)dIn(3/5,). (11.4)
k

We bound each term on the right hand side separately. By Lénmid lthe first term is at most

(W] 827 = [TV, ] &, Next,

cobr_1 2coc7

2 3272/ (d— 1) + 4ck2- /d < V263, + 4c?
T 27k /\/d B Cs 7

while 2F < 2/a so that the second term is at most

\/2¢2, + 4c? em
ﬁcl%mfﬂ o
8

Noting that
32C5 1 1

we find that the second term on the right hand sidé of {11.4)risost

[c5 8¢y /263, +4c$’W | ledlog (%) 8eiy/cs5 /263, —|—4C$’W |
Cg K Cg o K

C8Co
Finally, sincedIn(3/6;) < 2d1n(1/4;) < %2*’%%, and [ILB) implie2 *m;, < ——|W;|, the
third term on the right hand side ¢f (11.4) is at most

C11KR

W, .
| ’“'\/m

Altogether, we have

. c3cg  8C14/C5 \/2C3, + 42 1k
D Lalylw ) S Wil { o+ + :
CoCr K CgCo 4/ C2C5C7



Takingcy = 1/k? andcg = k, this is at most

C C
A (F;c? + 8c1y/C5/ 263, + A + @) .

Next, note that because,, (z) # y = ¢, (y(vr - x)) > 1, and because (as proven above)
||w* - wk—l” S Tk,

|Wk|eer<hwk)§ Z ng( Vg + ZE S Z ng )+I{|Wk|

(z,y)eWy, (@,y)EW

Combined with the above, we have

C
ka|eer(hwk)gmka|(1+ 22, 4 4c2 + —— )

v/ C2C5C7

Letcio =1+ 20207 + 8c14/C51/ 261, + 4¢3 + \/cc;c% Furthermore,
|Wk‘eer Z ]I wk ]

(z,y) €W
> I, (2) # hor(@)] = Y Tho () # ).
(zy)EW) (zy)EWE
For an appropriately large value @f, by a Chernoff bound, with probability at lealst- 6 /3,
t‘*‘Z?:o mj

> Thee(X,) # i) < 2eeMymy + log, (3/6,).
5:t+2§;& mj+1

In particular, this implies

Z [[hy () # y] < 2eeMymy, + logy(3/6y),

(mvy)GWk

so that
> I (7) # hoe ()] < [Wileryw, (hu, ) + 2eeMymy, +logy(3/6).
(@,y)EW,

Noting that (I1.5) and(11.3) imply

32 dlog (= 2k 32 1

eMymy, < e 55 5 (is) Wil < & 5 6d10g< )2k|Wk|
K edlog (%) CoCr C9C7CoR
32¢ 32¢5k4 32¢5 k%
= coaa Wil = = a2 [Wi| < === (Wi
207

CoCrCa K2
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and [T1.B) impliesog, (3/4)) < -2—|W,|, altogether we have

— cCca2C5C7

64ecsr? 22
Wi +

Z I[Py, (x) # hop(2)] < [Wilerw, (hu,) +

|Wi|
C9CyC7t

64ecs k3 2K
S I<L|Wk| (012 + > + ) .

CaCr CoC5C7

Lettlng Ci3 = C19 + bdecs -+

cacy cacser !

, and notings < 1, we have)_ , vy, I, (2) # ho-(2)] <
c13k| W

Lemmal11.ll (applied under the conditional distributionegiyi?;|) and the law of total
probability imply that with probability at leadt— d/3,

WP (:c oy (2) # B (q;)(|wk,1 | < b,H)

< Y Thu (%) # hue ()] + cra/ Wil (dlog (Wil /d) + log(1/64)),
(z.y)EW)

for a universal constant;; > 0. Combined with the above, and the fact tHat (.1.3) implies

log(l/ék) S Geo ‘Wk’ and

8cseser log (ﬁ)

2

dlog(|Wy|/d) < dlog

K

1
< dlog (8233%5:7) < 3log(8 max{cs, 1}cs)csdlog <'f_5k)

3log(8 max{cs, 1})

< 3log(8 max{cs, 1})x*2 7 *my, <
CoCr

R2|Wk|7

we have

W |P (x i, () % hw*(:p)ka_l x| < bk_1>

3log(8 max{cs, 1
Sc13m|wk|+cl4\/|wk|( altmeeten D) o) + = )
207

3log(8 max{cs, 1 1
= K|[W| C13+C14\/ el xics })+

CaCr C2C5C7

Thus, Iettingc15 = (613 + Cl4\/310g(8max{63,1}) 4 L ),We have

c2C7 c2C5C7

P (x 2 Py, (@) F Py (x)“wk_l cx| < bk_1> < ¢15K. (11.6)
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Next, note thaljvy—wy—1 || = /[[ve? + 1 — 2[Jvg]] cos(aP (@ : hay, () # hay,,, (2))). Thus,

one implication of the fact thatv, — wy._1|| < ry is that””’“H +

hw,_,())); since the left hand side is positive, we h&r : h,, () # hy,_,(z)) < 1/2. Addi-

tionally, by differentiating, one can easily verify thatfo € [0, ], z — /22 + 1 — 2z cos(¢) is

minimized atr = cos(¢), in which case\/z2 + 1 — 2z cos(¢) = sin(¢). Thus,||vy — wy_|| >
sin(mP(z : huy () # ha,_,(x))). Since|jvy, — wi—_1|| < 7%, We havesin(rP(x : hy, (x) #

P, (2))) < 7. Sincesin(rz) > x for all x € [0, 1/2], combining this with the fact (proven

W1
above) thaP (x : hy, (2) # hu,_, () < 1/2impliesP(z : hy, (2) # hu,_, (2)) < 1%

In particular, we have that botR(x : hy, (7)) # hw, ,(2)) < rp @andP(x : hye(x) #
P, (7)) < 27%73 < . Now Lemma 1112 implies that, for any universal constant 0,

there exists a corresponding universal constant 0 such that
Tk
P (x : ho (@) # Dy, (x) @and|wg_ - x| > CI%) < cry

and

P (x : By () # Iy, () @and|wy_y - | > CI\/%) < cry,

so that (by a union bound)

P (JJ 2 By, () # hy (2) @and|wy—y - 2| > c’\/k;_j>

gP(x:hwk(Q:) # hu,_, () and|wg_q - x| >c/\/%)

+P(x¢hw*(fﬁ)#hwk () andfw— - 2] >Cl\;]%l)

< 2cry,.

In particular, letting:; = ¢'c19/2, we have’’ & = b;_;. Combining this with[(11J6), Lemnia 11]13,
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and a union bound, we have that

P (a2 hyy (2) # ha ()
<P (2 : hy, () # by (x) @and|wy_; - x| > br—1) + P (T : hy, (T) # by~ () @and|wy_; - x| < by_q)
< 2cry +P <:U D By () 7 By (:L’)’|wk_1 x| < bk_1> Pz |wpq x| <bg_q)

< 2cr + 015503bk,1\/3 = (256610 + 015/-@030725) 9 k-4,

Takingc = g.— andx = , we haveP (z : hy, (r) # hy«(2)) < 27574, as required.

260 3C7C15

By a union bound, this occurs with probability at least (4/3). O

Proof of Theorerh 1118If ¢ > the result trivially holds, since thefi < 19027./edT,

71.2
400-2274?
Otherwise, SUPPOSE< 5o
Fix anyi € N. Lemma11.10 implies that, with probability at ledst v/ed, thew, returned

in Step 0 ofABL(M (i — 1)) satisfiesP (x : hu, () # hyy < 1/16. Taking this as

ytmot1 (7))

a base case, Lemria 11.15 (With= v/ed) then |nduct|vely implies that, with probability at least

[logy(1/a)]
e
=Ved= 3 ) i a7

21—@(1+(4/3)§:£12> >1— 2Ved,

everyk € {0,1,..., [log,(1/a)]} has

P(x : hwk( ) # hM +m0+1( )) < 2_k_47 (11.7)

and furthermore the number of labels requested dufiBd.(M (i — 1)) total to at most (for

appropriate universal constarits ¢,)

- nogi/aw Wl < <d+1ﬂ ( 1) ﬂoggz(l;/andl (((log2(4\§21 —k:)2>>

1
< éydlog? (—d) .
€
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In particular, by a union bound,_(11.7) implies that for gvére {1,..., [log,(1/a)|}, every
m e {M(z’ )Y my L, M- 1) +2§:0mj} has

P(x 2 h,_, () # hyy(2))
<SP by, (z) # hM(z +mo+1( z)) + Pz : h7\4(z‘—1)+mo+1<x) # hy, (7))

<2773 4 eM.

Thus, noting that

[logy(1/a)] 1 [logy(1/a)] 1
— —_ k E—
M = Z my = 0 d—i—log(ed)—i- Z 2d10g<ed)

k=1
1 d 1
@(adlog< d))—@( log<6d)>
we have that the expected number of labels requested afpang 1)+1, - - ., yas } IS at most

1 1
¢od log? <£> +2VedM = O (\/alog?’/? (a> M) ,

and the expected number of mistaken predictions amongifAt;—1)+1, - - -, ¥} IS at most

[logy(1/a)]

2VedM + (1 — 2Ved) (mo - Z (27F=3 eM)mk)

=0 (\/_M + dlog? ( 1d> + eMQ) (\/gzmg?’/? (é) M) .

These imply that the expected number of labels requested@fne, . . . , yr}, for any given

ot (5)u ) -o (v (1))

and the expected number of mistaken predictions amonggfint. . ., zr} is at most
O | Vedlog — | M|—| ] =0{Vedlog —|T).
ed M ed
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Remark: The original work of [Koby Crammer and Vaughan, 2010] addisy allowed for
some numbeK of “jumps”: timest at whiche; = 1. Note that, in the above algorithm, since the
influence of each sample is localized to the predictorsehimithin that “batch” of\/ instances,
the effect of allowing such jumps would only change the boandhe number of mistakes to

O (\/ET + \/§K> This compares favorably to the result of [Koby Crammer andgVn,

2010], which is roughlyO ((de)”“T + d1f4 K). However, the result of [Koby Crammer and
Vaughan, 2010] was proven for a slightly more general sgpttallowing distributionsP that
are not quite uniform (though they do require a relation leetwthe angle between any two
separators and the probability mass they disagree on,asitoilthat holding for the uniform
distribution, which seems to require the distributionsrasttoo far from uniform). Itis not clear

whether Theorern 111.8 can be generalized to this larger yashilistributions.

11.6 General Analysis of Sublinear Mistake Bounds: Passive

Learning

First, consider the following general lemma.

Lemma 11.16.Suppose; — 0. Then there exists an increasing sequefi¢g:°, in N with

T) = 1 such thatim, o, Ti41 — T; = co whilelim, o, 3% " e, = 0.

Proof. LetT; = 1, T, = 2, andy, = €. Inductively, for each > 2, if ZtT;"Tfjf(Ti‘l_Ti‘Q)_l 6 <

Yie1/2, SetT; = Ty + 2(T,—1 — Ti) andy; = 3., &; otherwise, sel; = T}y + (T, —
T;_5) andv; = v,_;. Since any fixed valug¢ € N haslimy_,., 3, "¢, = 0, we know there
exist an infinite number of valuese N with v; < ~;_;/2, at which point we then also have

T, — T, = 2(T;1 — T;_2) > T;_1 — T;_; together these facts imply the stated propertids.

Supposé& is the concept space, and thiahas finite VC dimensiod. Consider the following

passive learning algorithm, based on the sequid@plied by Lemma 11.16.
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0. Leth, be any element of

1. Fori=1,2,...

2. Fort=T;...,T;11—1

3. Predicty; = Bi(Xt) as the prediction for the value &f

4, Letili+1 = ERM(C {(XT-7 YT) R (XTY+1_1, YT-+1—1>})
Theorem 11.17.1f ¢, — 0, and {7;}3°, is the sequence guaranteed to exist by LefnmaTl1.16,

then the above algorithm has an expected cumulative nunilmeistakes (7).

Proof. Consider any value € N, and leth;,; = hi. .- Bya Chernoff bound, with probability

atleastl — 1/(T;11 — T),

Ti+1_1 z+1 Tl+1
D M (Xe) # by (X)) <logo(Tin — T +2¢ > Y e
t=T; t=T;+1 k=t

Furthermore, standard VC analysis implies that, with pbiliig at leastl — 1/(7;, — 1),
Vh,g € C,

Tip1—1

Z MA(Xy) # 9(X)] = (Tigr — T3)P(x 2 h(x) # g(x)) — C\/ (dlog(Tiv1 — Ti))(Tiva — To),

=T,

for some numerical constant > 0. Thus, on these events, ahye C with P(z : h(z) #

T,
logy (Ti1—Ti)+2e 3o, ! Hler dlog(Tis1—T,
hiyi(z)) > 2 2 i oy ) Lot T0)

T T + T must have

Ti1—1
Z Ih(Xe) # hi(X¢)]
> H[ (Xi) # hip (X)) — Ihip1(Xe) # hy (X))

t=T; t=T;

.

Tiy1 Tig1

> logy(Tivq — T;) + 2e Z Z €L

t=T;+1 k=t
Ti+1—1

> Z I[hip1(Xy) # hy (X))
=T,

> Y M (X)) # B (X))

t=T;
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Therefore, by a union bound, with probability at least 2/(T;., — 1),

i logy(Tiy1 — T3) + 2e tHi“l +1 kH-tl €k dlog(Tiy1 —T;)
Pz : h; h; <2 ,
(@ ¢ hit1(z) # hipa(z)) < T =T, +c T — T,

so that

E |P(z: his(z) # hi+1($))]

BT = T) +2e S 0 S e | \/dlog(% —T) 2

T — T, Tom— T, Ty -1

Denote byp;,; the value on the right hand side of this inequality. Sid¢e;, — T; — oo

d 7 SRS e < Y e — 0 (guaranteed by Lemnfa_11116), we have

limy oo pist = 0. SINCEE[Y 4 TRt (Xe) # (X)) < S S € WE

have

Ti+271
E | Y hiea(X0) # hi(X)]
t=T;1
Ti1o—1 Tiyo—1
<E | Y Thia(Xe) # b (XN +E | D Thia(Xe) # hi(Xy)]
t=T;1 t=Tiy1
7,+2 1
< (Tivo = Tir)E[P( : higa(2) # hia ()] + ) Z

t=T;14+1 k=T;11+1

z+2 1

< (Tiy2 = Tig1)pia + Z Z

t=T; 1 1+1 k=T;41+1

Sincep;,1 — 0, we have(T;,2 — Ti11)piv1 = o(Tiyo — Tiyq), and sincel; o — T;1 — o0,

we haveS 7 (Ti 2 —Ti11)pis1 = o(T}). Furthermore, sincg, 1+T2l+11+1 Z};_TMH €r < (Tiya—
Tiv1) 22 Z+T2+11+1 ¢ = 0(Tis2—Tis1), andT} ,— T4y — oo, we havey ], tTZ+7“22+11+1 kT2 41 €k =

o(T;). Altogether, we have that the expected sum of mistakes upn®®X (which is the sum

of the expected numbers of mistakes within the componemhests?;. 1, ..., ;1o — 1) grows

sublinearly inT". ]
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11.7 General Analysis under Varying Drift Rate: Inefficient

Passive Learning

Consider the following algorithm.

0. ForT'=1,2,...

1. Letmy =argmin, . gy Zt T—m+1 €t T dlogfnm/d)

.....

2. LethT = ERM(C, {(XT—mTa YT—mT)a RN (XT—17 YT_1>})
3. Predicty; = ET(XT) as the prediction for the value &t

Theorem 11.18.The above algorithm makes an expected number of mistakesyamfirstl’

instances that is

T t
. dlog(m/d)
0 <Zt_ me{Ilnmt—l} Z €+ m ’

""" s=t—m+1

Proof. It suffices to show that, for any’ € N, and anym € {1,...,T — 1}, the classifier

il = ERM(C, {(XT—mu YT—m)» ey (XT—17 YT—1>}> haS

E[P(z: h(z) # hi(a))] < ¢ ( S e W) |
t=T—m+1

for some universal constant € (0, 00). Minimization overm in the theorem statement then
follows from the fact thain, minimizes this expression ovet by definition. The result will
then follow by linearity of expectations.

Leté = th:T_mH ;. By a Chernoff bound, with probability at leaist- 9,

T-1
1 ’ lo 1/ —|—26m8 log,(1/6
m = m m

+ 2e€.

In particular, this means

1 o< ) 2log,(1/9)
Ei_T_mﬂ[h(Xi) # hp_(Xi)] < —

+ 4ek.
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By Lemmd 1.1, on an additional event of probability at leastd,

P(a: h(z) # i, (x)
< 210g2(1/5)+468+c\/<2log2(1/5) +4e€) dlog(m/d) +10g(1/5)+cdlog(m/d) + log(1/4)

m m m m

<o (a . \/gdlog(m/d) +log(1/3) | dlog(m/d) + log(1/5)> |

m m

for an appropriate numerical constafite [1, co). Takingd = d/m, this is at most

o <8 N /8dlog7(nm/d) N dlogﬁ;n/d)) ‘

Since this holds with probability — 26 = 1 — 2d/m, andP(z : h(x) # hi_, (z)) < 1 always,

we have

E [P () £ h*T(x))] <E [P(m (z) # hi}_m(x))] P B (2) £ B(2))

1 1
dlog(m/d) , d og(m/d)) ol
m m m

m

< 4" <8+ gdlog(m/d) _dlog(m /d>>

m
<4 (VE dlog m/d)
dlog m/d }

< 16¢” max {

m

< 16" (8 + M) :

In particular, we have the following corollary.

Corollary 11.19. If Zthl e, = o(T), then the expected number of mistakes made by the above

algorithm is alsoo(T').

215



Proof. Let 3,(m) = max {Ei:tfm L €5, T/ } and note that

Z €s + M < Qﬁt(m)7

m
s=t—m+1

so that Theorerin 11.18 (combined with the fact that the pridjt;abf a mistake on a given round

,,,,,

.....

Fix any M € N. For a givert, if m; < M, then it must be that>'_, ,,,, ¢, > 0ell/d),
Also, since
T t M-—1 T
Z 68:Ztet+M26t—o(T),
t=M s=t—M+1 t=1 t=M
and

we have that

> Imj < M] = o(T).
t=M
Furthermore, consider aryfor whichm; > M. Then

min_ ) < max{ Z dlog—]W/d)}

s=t—M-+1

T t
dlog(M/d log(M
§#T+§Hlm;<MormgzMand E ES>W]
t=1 s=t—M+1

. dlog](wM/d)T+ZH [ S s dlogJ(WM/d)]

t=1 s=t—M-+1
log(M
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Since this is true of any/ € N, we have that
T

.1 : . dlog(M/d)
- < - = I 7
111_13;0 E mlnil} Bi(m) A1 < lim

=0
— M o0 M ’

so that the expected number of mistakes(i5), as claimed.
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Chapter 12

Surrogate Losses in Passive and Active

Learning

Abstract

HActive learning is a type of sequential design for supexviseachine learning, in which the
learning algorithm sequentially requests the labels aécdell instances from a large pool of
unlabeled data points. The objective is to produce a classifirelatively low risk, as measured
under the 0-1 loss, ideally using fewer label requests thamtumber of random labeled data
points sufficient to achieve the same. This work investg#te potential uses of surrogate loss
functions in the context of active learning. Specificaltypriesents an active learning algorithm
based on an arbitrary classification-calibrated surrolgatefunction, along with an analysis of
the number of label requests sufficient for the classifiarrnetd by the algorithm to achieve a
given risk under the 0-1 loss. Interestingly, these resaltgot be obtained by simply optimizing
the surrogate risk via active learning to an extent suffidieprovide a guarantee on the 0-1 loss,
as is common practice in the analysis of surrogate lossgmisive learning. Some of the results

have additional implications for the use of surrogate Isssgassive learning.

The chapter is based on joint work with Steve Hanneke.
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12.1 Introduction

In supervised machine learning, we are tasked with learainotassifier whose probability of
making a mistake (i.e., error rate) is small. The study of mités possible to learn an accurate
classifier via a computationally efficient algorithm, anavto go about doing so, is a subtle and
difficult topic, owing largely to nonconvexity of the lossriction: namely, thé-1 loss. While
there is certainly an active literature on developing cotaponally efficient methods that suc-
ceed at this task, even under various noise conditionsersdair to say that at present, many
of these advances have not yet reached the level of robgsafésiency, and simplicity required
for most applications. In the mean time, practitioners hawveed to various heuristics in the
design of practical learning methods, in attempts to cincemmb these tough computational prob-
lems. One of the most common such heuristics is the use of\@ganrrogateloss function

in place of the0-1 loss in various optimizations performed by the learninghadt The con-
vexity of the surrogate loss allows these optimizationsaqgbrformed efficiently, so that the
methods can be applied within a reasonable execution tiue® with only modest computa-
tional resources. Although classifiers arrived at in thig aee not always guaranteed to be good
classifiers when performance is measured undedthéoss, in practice this heuristic has often
proven quite effective. In light of this fact, most moderarging methods either explicitly make
use of a surrogate loss in the formulation of optimizatioobems (e.g., SVM), or implicitly
optimize a surrogate loss via iterative descent (e.g., AdaBolndeed, the choice of a surrogate
loss is often as fundamental a part of the process of apprapalearning problem as the choice
of hypothesis class or learning bias. Thus it seems esbk#r@tave come to some understanding
of how best to make use of surrogate losses in the design wfilgamethods, so that in the
favorable scenario that this heuristic actually does wakhave methods taking full advantage

of it.

In this work, we are primarily interested in how best to useagate losses in the context

of active learning which is a type of sequential design in which the learnirgpathm is pre-
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sented with a large pool of unlabeled data points (i.e., tmdycovariates are observable), and
can sequentially request to observe the labels (respomsdbes) of individual instances from
the pool. The objective in active learning is to produce agiféer of low error rate while access-
ing a smaller number of labels than would be required for ehostbased on random labeled
data points (i.e.passive learningto achieve the same. We take as our starting point that we
have already committed to use a given surrogate loss, anéstiéct our attention to just those
scenarios in which this heuristic actuatipeswork. We are then interested in how best to make
use of the surrogate loss toward the goal of producing aitixssith relatively small error rate.

To be clear, we focus on the case where the minimizer of thegate risk also minimizes the

error rate, and is contained in our function class.

We construct an active learning strategy based on optignthie@ empirical surrogate risk over
increasingly focused subsets of the instance space, ane derunds on the number of label
requests the method requires to achieve a given error naterebktingly, we find that the basic
approach of optimizing the surrogate risk via active leagro a sufficient extent to guarantee
small error rate generally does not lead to as strong of tesun fact, the method our results
apply to typicallydoes notoptimize the surrogate risk (even in the limit). The insitgading
to this algorithm is that, if we are truly only interested ichgéeving low0-1 loss, then once we
have identified thaignof the optimal function at a given point, we need not optinttze value
of the function at that point any further, and can therefos the label requests elsewhere. As
a byproduct of this analysis, we find this insight has imgiaas for the use of certain surrogate

losses in passive learning as well, though to a lesser extent

Most of the mathematical tools used in this analysis areredy recently-developed tech-
niques for the study of active learning [Hanneke, 2009, 28bltchinskii,[2010], in conjunction
with the results of Bartlett, Jordan, and McAuliffe [2006]umaling the excess error rate in terms
of the excess surrogate risk, and the works of Koltching@06] and Bartlett, Bousquet, and

Mendelson|[2005] on localized Rademacher complexity bounds
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12.1.1 Related Work

There are many previous works on the topic of surrogate $asgée context of passive learning.
Perhaps the most relevant to our results below are the woBadfett, Jordan, and McAuliffe
[2006] and the related work of Zhang [2004]. These develoerewnl theory for converting
results on excess risk under the surrogate loss into resnlexcess risk under th&1 loss.
Below, we describe the conclusions of that work in detail, esedbuild on many of the basic

definitions and insights pioneered in these works.

Another related line of research, initiated by Audibert disgbakov|[2007], studies “plug-in
rules,” which make use of regression estimates obtainegbgnizing a surrogate loss, and are
then rounded td —1, +1} values to obtain classifiers. They prove results under snnest as-
sumptions on the actual regression function, which (reataly are ofterbetterthan the known
results for methods that directly optimize thé loss. Under similar conditions, Minsker [2012]
studies an analogous active learning method, which agakesnase of a surrogate loss, and
obtains improvements in label complexity compared to thespa learning method of Audibert
and Tsybakovi[2007]; again, the results for this method dhasea surrogate loss are actually
better than those derived from existing active learninghma$ designed to directly optimize
the0-1 loss. The works of Audibert and Tsybakov [2007] and Minsi&&12] raise interesting
guestions about whether the general analyses of methaosgtiaize the0-1 loss remain tight
under complexity assumptions on the regression functiod, potentially also about the design
of optimal methods for classification when assumptions &raged in terms of the regression

function.

In the present work, we focus our attention on scenarios evtier main purpose of using the
surrogate loss is to ease the computational problems assdavith minimizing an empirical
risk, so that our statistical results are typically strastgehen the surrogate loss is thd loss
itself. Thus, in the specific scenarios studied by Minsk@1P3, our results are generally not

optimal; rather, the main strength of our analysis liessrgiénerality. In this sense, our results
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are more closely related to thosel of Bartlett, Jordan, and W@ [2006] and . Zhang [2004]
than to those of Audibert and Tsybakav [2007] and MinskerlEJ0 That said, we note that
several important elements of the design and analysis odidtiee learning method below are
already present to some extent in the work of Minsker [2012].

There are several interesting works on active learning austhhat optimize a general loss
function.!Beygelzimer, Dasgupta, and Langford [2009] andtdfinskil [2010] have both pro-
posed active learning methods, and analyzed the numbebef taquests the methods make
before achieving a given excess risk for that loss functidime former method is based on
importance weighted sampling, while the latter makes cdminteresting connection to local
Rademacher complexities. One natural idea for approachagroblem of active learning with
a surrogate loss is to run one of these methods with the saaterdoss. The results of Bartlett,
Jordan, and McAuliffe [2006] allow us to determine a suffintig small valuey such that any
function with excess surrogate risk at mashas excess error rate at maestThus, by evalu-
ating the established bounds on the number of label reqsefisient for these active learning
methods to achieve excess surrogate fiske immediately have a result on the number of label
requests sufficient for them to achieve excess errorsatehis is a common strategy for con-
structing and analyzing passive learning algorithms thelteruse of a surrogate loss. However,
as we discuss below, this strategy does not generally lethe tbest behavior in active learning,
and often will not be much better than simply using a relataskve learning method. Instead,
we propose a new method that typically does not optimizeuh®gate risk, but makes use of it
in a different way so as to achieve stronger results wheropegnce is measured under the

loss.

12.2 Definitions

Let (X, By) be a measurable space, whéfes called thenstance spaceor convenience, we

suppose this is a standard Borel space. Y et {—1, +1}, and equip the spac& x ) with its
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producto-algebra:B = By ®2”. LetR = RU{—o0c, 0o}, let F* denote the set of all measurable
functionsg : X — R, and letF C F*, whereF is called thefunction class Throughout, we fix

a distributionPxy overX’ x ), and we denote bf the marginal distribution Py, overX’. In
the analysis below, we make the usual simplifying assumpliat the events and functions in the
definitions and proofs are indeed measurable. In most ciasg$olds under simple conditions
on F andPyy [see e.g., van der Vaart and Wellner, 2011]; when this is imtcase, we may

turn to outer probabilities. However, we will not discusegh technical issues further.

For anyh € F*, and any distributionP over X x ), denote theerror rate by er(h; P) =
P((z,y) : sign(h(z)) # y); whenP = Pxy, we abbreviate this as(h) = er(h; Pxy). Also,
let n(X; P) be a version oP(Y = 1|X), for (X,Y) ~ P; whenP = Pxy, abbreviate this as
n(X) = n(X; Pxy). In particular, note thatr(h; P) is minimized at any: with sign(h(z)) =
sign(n(x; P) —1/2) for all z € X. In this work, we will also be interested in certain conditib
distributions and modifications of functions, specified @fofvs. For any measurablé C X
with P(U) > 0, define the probability measur,(-) = Pxy (-|[U xY) = Pxy (-NUX V) /PU):
that is, Py, is the conditional distribution ofX,Y") ~ Pxy given thatX € U. Also, for any
h,g € F*, define the spliced functiohy ,(z) = h(z)ly(x) + g(z)lyw(z). For a setd C F*,
denoteHy y = {hug: h € H}.

For anyH C F*, define theregion of sign-disagreememIS(H) = {x € X : 3h,g €
H s.t.sign(h(z)) # sign(g(z))}, and theregion of value-disagreememISF(H) = {z €
X : 3h,g € Hs.t.h(z) # g(x)}, and denote bYIS(H) = DIS(H) x Y andDISF(H) =
DISF(H) x Y. Additionally, we denote byH] = {f € F* : Vo € X, infpcqy h(z) < f(z) <

suppey h(z)} the minimal bracket set containirig.

Our interest here is learning from data, sadet {(X;,Y)), (Xs, Y2),...} denote a sequence
of independenPy,--distributed random variables, referred to asléie=led datssequence, while
{X1, X, ...} is referred to as thanlabeled datasequence. For € N, we also denote,,, =

{(X1,Y1),..., (X, Ym)}. Throughout, we will let € (0,1/4) denote an arbitrary confidence
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parameter, which will be referenced in the methods and ématatements.

The active learningprotocol is defined as follows. An active learning algoritieinitially
permitted access to the sequenGe X, . . . of unlabeled data. It may then select an indeg N
andrequestto observey;,; after observingy;,, it may select another index € N, request to
observey;,, and so on. After a number of such label requests not excgedime specified bud-
getn, the algorithm halts and returns a functibre F*. Formally, this protocol specifies a type
of mapping that maps the random variaileo a functionk, whereh is conditionally indepen-
dent of Z given X, X,,... and (i1, Y;,), (i2,Ys,), - . ., (in, Yi, ), Where eachi, is conditionally

independent of andiy1, ..., i, given Xy, Xo, ... and(iy,Ys, ), ..., (ik—1, Y, ).

12.2.1 Surrogate Loss Functions for Classification

Throughout, we let : R — [0, oo] denote an arbitrargurrogate loss functigrwe will primarily
be interested in functioné that satisfy certain conditions discussed below. To siyp@ome
statements below, it will be convenient to suppeseR = /(z) < oco. For anyg € F* and dis-
tribution P overX’ x ), letR,(g; P) = E [¢(¢(X)Y)], where(X,Y) ~ P;inthe case’® = Pxy,
abbreviat&R/(g) = Re(g; Pxy). Also definel = 1V sup, ¢y Supj,c» max,e—1,113 {(yh(z)); we
will generally supposé < oo. In practice, this is more often a constraintBrthan on/; that is,
we could have unbounded, but due to some normalization of the functioas?, ¢ is bounded
on the corresponding set of values.

Throughout this work, we will be interested in loss funcdrwhose point-wise minimizer
necessarily also optimizes thel loss. This property was nicely characterized by Bartlett; Jo
dan, and McAuliffe [2006] as follows. Fof, € [0, 1], definel*(ny) = inf,z(nol(z) + (1 —
10)¢(—2)), andl* (no) = infcg.. (29 1)<0(Ml(2) +(1 = mo)l(—2)).

Definition 12.1. The los¥ is classification-calibrated, v, € [0, 1] \ {1/2}, £* (n9) > €*(no).

In our context, forX ~ P, ¢*(n(X)) represents the minimum value of the conditiofraisk

atX, so thatl[¢*(n(X))] = infre - Re(h), while £* (n(X)) represents the minimum conditional
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¢-risk at X, subject to having a sub-optimal conditional error rateXati.e., sign(h(X)) #
sign(n(X) —1/2). Thus, being classification-calibrated implies the mizieniof the conditional
¢-risk at X necessarily has the same sign as the minimizer of the condlterror rate afX.
Since we are only interested here in usiras a reasonable surrogate for €heloss, throughout

the work below we suppogés classification-calibrated.

Though not strictly necessary for our results below, it Wil convenient for us to suppose
that, for alln, € [0, 1], this infimum valuel*(n,) is actuallyobtainedasno/(z*(ny)) + (1 —
no)¢(—2z*(ny)) for somez*(ny) € R (not necessarily unique). For instance, this is the case
for any nonincreasing right-continuodés or continuous and conve% which include most of
the cases we are interested in using as surrogate losseayanyle proofs can be modified in a
natural way to handle the general case, simply substitaimyg with conditional risk sufficiently
close to the minimum value. For any distributiéh denoteh*p(z) = z*(n(x; P)) for all x €
X. In particular, note that*p obtainsR,(h*p; P) = inf,cz+ Ri(g; P). WhenP = Pxy, we

abbreviate this ak* = h* Furthermore, i is classification-calibrated, theign(h*p(z)) =

Pxy-+

sign(n(z; P)—1/2) forall z € X with n(z; P) # 1/2, and hencer(h*p; P) = infyc 7« er(h; P)

as well.

For any distribution? over X’ x ), and anyh, g € F*, define thdoss distanc®,(h, g; P) =

\/E [(L(M(X)Y) — £(9(X)Y))?], where(X,Y) ~ P. Also define thdoss diameteof a class
H C FrasDy(H; P) = supy, ;e De(h, g; P), and thel-risk e-minimal set ofH asH(e; (, P) =
{h € H : Re(h; P) —inf ey Ro(g; P) < €}. WhenP = Pxy, we abbreviate these &5 (%, g) =
D¢(h,g9; Pxy), De(H) = Do(H;Pxy), andH(e; ) = H(e; ¢, Pxy). Also, for anyh € F*,
abbreviatey, = hy -, and for anyH C F*, defineHy = {hy : h € H}.

We additionally define related quantities for thd loss, as follows. Define thdistance
Ap(h,g) = P(x : sign(h(z)) # sign(g(x))) andradiusradius(H; P) = sup,cy Ap(h, h*p).
Also define thes-minimal set of{ as#(g; 01, P) = {h € H : er(h; P) — inf ey er(g; P) < €},

and forr > 0, define ther-ball centered at in H by By, p(h,7) = {g € H : Ap(h,g9) < r}.
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WhenP = Pxy, we abbreviate these agh, g) = Ap,, (h, g), radius(H) = radius(H; Pxy),
H(g;0) = H(s;o, Pxy), andBy(h,r) = Bypy,, (h,r); whenH = F, further abbreviate
B(h,r) = Bx(h,r).

We will be interested in transforming results concerningelkcess surrogate risk into results
on the excess error rate. As such, we will make use of thewWollp abstract transformation.

Definition 12.2. For any distributionP over X x Y, and anye € [0, 1], define
Ti(e; P) = sup{y > 0: F*(7;(, P) C F'(g;01, P)} U {0},
Also, for anyy € [0, o), define the inverse
Ee(y; P) =inf{e>0:7 <Ty(s; P)}.

WhenP = Pxy, abbreviatel',(¢) = I'y(e; Pxy) and () = Eu(7; Pxy)-

By definition,I", has the property that
Vh e F*,¥e € [0,1], Re(h) —Ry(h") <Ty(e) = er(h) —er(h*) <e. (12.1)

In fact, T, is defined to be maximal with this property, in ttaaty I", for which (12.1) is satisfied
must havd",(¢) < I'y(¢) forall e € [0, 1].

In our context, we will typically be interested in calcutagi lower bounds o', for any
particular scenario of interest. Bartlett, Jordan, and Mdfsu[2006] studied various lower
bounds of this type. Specifically, far € [—1,1], definey,(¢) = ¢= (2¢) — ¢+ (1£¢), and
let ¢, be the largest convex lower bound q{)j on [0, 1], which is well-defined in this context
[Bartlett, Jordan, and McAuliffe, 2006]; for conveniencésaadefiney,(x) for z € (1, 00)
arbitrarily subject to maintaining convexity af,. Bartlett, Jordan, and McAuliffe [2006] show
1y, is continuous and nondecreasing(onl), and in fact that: — v, (z) /= is nondecreasing on
(0,00). They also show everly € F* hasyy(er(h) —er(h*)) < Re(h) —R4(h*), so thaty, < T,
and they find this inequality can be tight for a particularice@f Py . They further study more
subtle relationships between excégssk and excess error rate holding for any classification-

calibrated/. In particular, following the same argument as in the prddheir Theorem 3, one
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can show that if is classification-calibrated, evelye F* satisfies

A(h, h*) -y (%) < Re(h) = Re(h).

The implication of this in our context is the following. Finy nondecreasing functiow, :

[0,1] — [0, c0) such that’e > 0,

Uy(e) < radius(F*(e;01)), (Qradius(;*(e‘m))) : (12.2)

Any h € F*with Ry(h)—Re(h*) < ¥,(e) also hag\(h, h*), <%€r}f’;)) < ¥,(e); combined

with the fact thatz — (x)/z is nondecreasing of, 1), this impliesradius(F*(er(h) —

er(h*);o1))¢e (gmdm 35";3;;3@;‘2(,1*);01))) < y(e); this meansly(er(h) — er(h*)) < W,(e), and
monotonicity of¥, implieser(h) — er(h*) < . Altogether, this impliesl,(¢) < I',(¢). In fact,
though we do not present the details here, with only minorifitadions to the proofs below,
whenh* € F, all of our results involving',(¢) will also hold while replacind’,(¢) with any

nondecreasing’, such that/e > 0,

W)(c) < radius(F(s; o))t (2ra dius(gf = m))) , (12.3)

which can sometimes lead to tighter results.

Some of our stronger results below will be stated for a reteti family of losses, originally
explored by Bartlett, Jordan, and McAuliffe [2006]: namedyooth losses whose convexity
is quantified by a polynomial. Specifically, this restrictice characterized by the following
condition.

Condition 12.3. F is convex, with/z € X, sup;. x| f(z)| < B for some constanB € (0, o),
and there exists a pseudometiic: [ B, B]?> — [0, d,] for some constant, € (0, o), and con-
stantsL, C; € (0, 00) andr, € (0, 00] such thatvx,y € [-B, B, |¢(x) — {(y)| < Ld(z,y) and
the functiond,(¢) = inf {30(z) + 30(y) — (32 + Ly) 1 2,y € [-B, B, d(z,y) > €} U {oc}

satisfiesve € [0, 00), d¢(g) > Cye™.
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In particular, note that ifF is convex, the functions itF are uniformly bounded, andis
convex and continuous, Condition 1.3 is always satisfiedu@h possibly withr, = oo) by
takingd(z, y) = |z — y|/(4B).

12.2.2 A Few Examples of Loss Functions

Here we briefly mention a few loss functioisin common practical use, all of which are
classification-calibrated. These examples are taken thiréfom the work of Bartlett, Jor-
dan, and McAuliffe [2006], which additionally discussesnyadther interesting examples of

classification-calibrated loss functions and their cqroeslingy, functions.

Example 1 The exponential losss specified a€(x) = e *. This loss function appears in
many contexts in machine learning; for instance, the poAdaBoost method can be viewed as
an algorithm that greedily optimizes the exponential |I¢3glind and Schapire, 1997]. Bartlett,
Jordan, and McAuliffel [2006] show that under the exponéhdis, () = 1—+/1 — 22, which

is tightly approximated by:?/2 for smallz. They also show this loss satisfies the conditions on

¢ in ConditionIZ.B withd,(z,y) = | — y|, L = ¢, C; = e~ B /8, andr, = 2.

Example 2 Thehinge lossspecified ag(z) = max {1 — z, 0}, is another common surrogate
loss in machine learning practice today. For instance, used in the objective of the Support
Vector Machine (along with a regularization term) [Cortes Mapnik,/1995]. Bartlett, Jordan,
and McAuliffe [2006] show that for the hinge loss(z) = |z|. The hinge loss is Lipschitz con-
tinuous, with Lipschitz constant However, for the remaining conditions é6m Condition 12.8,

anyz,y < 1 havel((z) + 1((y) = (32 + Ly), so thaty,(¢) = 0; hencey, = oo is required.

Example 3 The quadratic loss(or squared loss), specified &) = (1 — x)?, is often used
in so-calledplug-in classifiers|[Audibert and Tsybakav, 2007], which approdehgroblem of

learning a classifier by estimating the regression fundign| X = z] = 2n(z) — 1, and then
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taking the sign of this estimator to get a binary classifidre Guadratic loss has the convenient
property that for any distributio® overX x Y, h*p(-) = 2n(+; P)—1, so that it is straightforward
to describe the set of distributior? satisfying the assumptioli*» € F. Bartlett, Jordan, and
McAuliffe [200€] show that for the quadratic losg,(z) = z2. They also show the quadratic
loss satisfies the conditions érin Condition[IZ.8, with, = 2(B + 1), C, = 1/4, andr, = 2.

In fact, they study the general family of loss#s) = |1 — z|?, for p € (1, 00), and show that

¥(x) andr, exhibit a range of behaviors varying with

Example 4 Thetruncated quadratic loss specified ag(z) = (max{1 — x,0})%. Bartlett,
Jordan, and McAuliffe|[2006] show that in this cage(x) = z%. They also show that, under

the pseudometrid,(a,b) = | min{a, 1} — min{b, 1}

, the truncated quadratic loss satisfies the

conditions or¢ in Condition[12.8, withl, = 2(B + 1), C;, = 1/4, andr, = 2.

12.2.3 Empirical /-Risk Minimization

Foranym € N,g: X — R,andS = {(z1,%1), - - -, (Tm, Ym)} € (X x V)™, define theempirical
(-risk asRy(g; S) = m=t 37" l(g(x;)y;). At times it will be convenient to keep track of the
indices for a subsequence 8f, and for this reason we also overload the notation, so that fo
any @ = {(ir,n1),---, (im,ym)} € (N x V)™, we defineS[Q] = {(Xi,v1),---, (Xi,, Um) }
andR,(g; Q) = Ry(g; S[Q]). For completeness, we also generally defiaéy; )) = 0. The
method of empirical-risk minimization, here denoted ByRM,(#, Z,,), is characterized by
the property that it returng = argmin, ., Ry(h; Z,,). This is a well-studied and classical
passive learning method, presently in popular use in agipdies, and as such it will serve as our

baseline for passive learning methods.
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12.2.4 Localized Sample Complexities

The derivation of localized excess risk bounds can esdigritia motivated as follows. Suppose
we are interested in bounding the excésssk of ERM,(H, Z,,). Further suppose we have a
coarse guarante®,(#,m) on the excessg-risk of the h returned byERM,(#H, Z,,): that is,
Re(h) — Re(h*) < U,(H,m). In some sense, this guarantee identifies &%&et 7{ of functions
that a priori have theotentialto be returned b RM,(H, Z,,,) (namely,H' = H(U,(H,m); 1)),
while those in \ ‘H’' do not. With this information in hand, we can think &f as a kind of
effectivefunction class, and we can then thinklelRM,(H, Z,,) as equivalent t&RM,(H’, Z,,).
We may then repeat this same reasoningf&M,(#', Z,,), calculatingU,(#', m) to determine
asetH” = H' (U, (H',m);¢) C H' of potential return values fahis empirical minimizer, so
thatERM,(#H', Z,,) = ERM,(H", Z,,), and so on. This repeats until we identify a fixed-point
setH () of functions such tha#/ (=) (U,(H>), m); ¢) = H>), so that no further reduction is
possible. Following this chain of reasoning back to the ineigig, we find thalERM,(H, Z,,,) =
ERM,(H(), Z,,), so that the functiork returned byERM,(H, Z,,) has excesg-risk at most
Uy (H*), m), which may be significantly smaller thdn (%, m), depending on how refined the
original U,(#, m) bound was.

To formalize this fixed-point argument f&fRM,(H, Z,,,), [Koltchinskil [2006] makes use of
the following quantities to define the coarse bound?#., m) [see also Bartlett, Bousquet, and
Mendelson, 2005, Giand Koltchinskii, 2006]. For arjf C [F], m € N, s € [1, ), and any

distributionP on X x ), letting@ ~ P™, define

de(H;m, P)=E [hsu%{ (Re(h; P) — Ry(g; P)) — (Re(h; Q) — Re(y; Q))} 7
g€
Ue(H;Pvm, s) = K1¢z(7‘[;m,P) +K’2DZ(H;P) %Jr sts’

: : i
Uu(Hs P, ) = K (@(”H; m.P)+ Dy P)y [ + 5) |

whereK, K,, K3, andK are appropriately chosen constants.

We will be interested in having access to these quantitigearcontext of our algorithms;
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however, sincePyy is not directly accessible to the algorithm, we will need ppr@ximate
these by data-dependent estimators. Toward this end, weedég following quantities, again
taken from the work of Koltchinskii [2006]. Far > 0, letZ. = {j € Z : 2/ > ¢}. For any
H C [Fl,q € N,andS = {(x1,11), ..., (x5, yg)} € (X x {=1,41})7, letH(e;¢,5) = {h €
H : Re(h; S) — infyey Re(g; S) < €}; then for any sequence = {,.}7_, € {—1,+1}9, and

anys € [1,00), define

bu(H:8,2) = sup ~ 5 - (L) — Hg(oe)me))
h,geH 4 1
Du(H: S)2 = sup ~ 3 (((h(wn)u) — Uglam)’.
h,geH 4 1

~ A A 7520,
Ul(H; S, 2, s) = 12¢4(H; S, Z) + 34Dy (H; s)\/§+ p 5

For completeness, defime(#; 0, 0) = D,(7;0) = 0, andU,(H; 0,0, s) = 7520s.

The above quantities (with appropriate choice&ef K, K3, andK) can be formally related
to each other and to the excesssk of functions inH via the following general result; this
variant is due to Koltchinskii [2006].

Lemma 12.4.For anyH C [F], s € [1,00), distribution P over X x Y, and anym € N, if
Q ~ P"and= = {&,...,&n} ~ Uniform({—1,+1})™ are independent, and* € # has
Re(h*; P) = infrey Re(h; P), then with probability at least — 6e~*, the following claims hold.

Vh € H,Re(h; P) = Re(h*; P) < Ry(h; Q) — Re(h*; Q) + Up(H; Pym, s),
Vh € H,Ry(h; Q) — %E Re(g; Q) < Re(h; P) — Re(h*; P) + Uy(H; Pym, s),
g
Ué(Ha P7 m, S) < UK<%7 Qa E’a 8) < 0@(7{7 P7 m, S)‘
We typically expect thé/, U/, andU quantities to be roughly within constant factors of each
other. Following Koltchinskii[2006] and G&and Koltchinskii[[2006], we can use this result

to derive localized bounds on the number of samples suffié@RM,(#, Z,,) to achieve a

given excesg-risk. Specifically, forH C [F], distributionP over X x Y, valuesy,y1,v, > 0,
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s € [1,00), and any functios : (0,00)? — [1, c0), define the following quantities.

My (71, v2; H, P, s) = min {m € N: Uy(H(v2; 4, P); P,m, s) < 71} ,

M(v; H, P, s) = sup Mo(7//2,7"; H, P,s(v,7)),
v >y

My(71,72; H, P, s) = min {m eEN: Ug(’}{(fyg;ﬁ, P); P,m,s) < ’yl} ,

M(vy; H, P,s) = sup My(v'/2,7s 1, P,5(7,7)).

V=Y

These quantities are well-defined for, v, > 0 whenlim,, ., ¢o(#;m, P) = 0. In other
cases, for completeness, we define them toche

In particular, the quantitpl,(v; F, Pxy,s) is used in Theorem 12.6 below to quantify the
performance ofSERM,(F, Z,,). The primary practical challenge in calculativg(; #, P, s)
is handling thep,(H(v'; ¢, P); m, P) quantity. In the literature, the typical (only?) way such
calculations are approached is by first deriving a bound@ft’; m, P) for everyH' C H
in terms of some natural measure of complexity for the fudissiH (e.g., entropy numbers)
and some very basic measure of complexity ¥t most oftenD,(#’; P) and sometimes a
seminorm of an envelope function f@t’. After this, one then proceeds to bound these basic
measures of complexity for the specific subgéts’; ¢, P), as a function ofy’. Composing these
two results is then sufficient to bourd(#(+'; ¢, P); m, P). For instance, bounds based on an
entropy integral tend to follow this strategy. This apptoatfectively decomposes the problem
of calculating the complexity of.(+'; ¢, P) into the problem of calculating the complexity &f
and the problem of calculating some much more basic pr@sedfit/(+'; ¢, P). See [Bartlett,
Jordan, and McAuliffe, 2006, Géand Koltchinskii. 2006, Koltchinskii, 2006, van der Vaantd
Wellner, 1996], or Section 12.5 below, for several expkoiamples of this technique.

Another technique often (though not always) used in corjancowith the above strategy
when deriving explicit rates of convergence is to rdlax#(+'; ¢, P); P) to D,(F*(v'; ¢, P); P)
or Dy([H|('; ¢, P); P). This relaxation can sometimes be a source of slack; howeverany

interesting cases, such as for certain logspsg., Bartlett, Jordan, and McAuliffe, 2006], or
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even certain noise conditions [e.g., Mammen and Tsybal@89 1Tsybakav, 2004], this relaxed
guantity can still lead to nearly tight bounds.

For our purposes, it will be convenient to make these commaohniques explicit in the
results. In later sections, this will make the benefits of proposed methods more explicit,
while still allowing us to state results in a form abstracbegh to capture the variety of specific
complexity measures most often used in conjunction withath@ve approach. Toward this end,
we have the following definition.

Definition 12.5. For every distribution” over X’ x ), let ggg(o—,?-t;m, P) be a quantity defined
for everyo € [0, oc], H C [F], andm € N, such that the following conditions are satisfied when

h'peH.

fO0<o <o HCH C[Fl,UCX, andm’ <m,
theng, (o, Hypep; m, P) < go(a’ . H';m’, P). (12.4)

Vo > Dy(H; P), ¢o(H;m, P) < du(0, H;m, P). (12.5)

For instance, most bounds based on entropy integrals caratie to satisfy this. See Sec-
tion[12.5.3 for explicit examples of quantitié}@ from the literature that satisfy this definition.
Given a functiong, of this type, we define the following quantity fon € N, s € [1,00),

¢ € [0,00], H C [F], and a distributior over X’ x ).

(}E(;LL Ca Pa m, S)

=K (J»(De([%](c;& P): P), H;m, P) + Dy([H](¢; 4, P); P)\ﬁ+ E_S) _

m - m

Note that whem*p € H, sinceD,([H](~; ¢, P); P) > Dy(H(v; ¢, P); P), Definition[IZ.5 im-
pliesy(H(v; ¢, P);m, P) < ¢o(Du([H](v; ¢, P); P), H(v;(, P); P,m), and furthermoré{(v; (, P) C
 so thaitg (Dy([H](7; £, P); P), H(v: €, P); Pm) < ¢u(De([H](v: ¢, P); P), H; P,m). Thus,

UE(H(’y;é, P); P,m,s) < (O]g(H(’y;E, P),v; P,m,s) < (D]g(’;’-[,v; P,m,s). (12.6)
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Furthermore, when*p» € H, for any measurable! C U/ C X, any+y’ > ~ > 0, and any

H C [F]withH C H/,
ﬁg(%uﬁ*}j,y; P,m,s) < fj@(%lu/,h*pﬁ/? P,m,s). (12.7)

Note that the fact that we ude,([H](v; ¢, P); P) instead ofD,(H(v; ¢, P); P) in the defini-
tion of U, is crucial for these inequalities to hold; specifically, stnot necessarily true that
Do(Hunp (734, P); P) < Do(How 1+ (775 ¢, P); P), butitis always the case thi@y, »+ .| (v; ¢, P) C
(Mo np)(7; €, P)whenh*p € [H], sothaD,([Hyn ] (7; 4, P); P) < Do([Hur pep ) (73 ¢, P); P).
Finally, for # C [F], distribution P over X’ x ), valuesy,v;,72 > 0, s € [1,00), and any

functions : (0,00)? — [1, 00), define

o

My(71,7v2; H, P, s) = min {m eN: lo]g(H,%; P,m,s) < 71} ,

My(y; H, P,s) = sup My(~'/2,7'; 1, P, s(7, "))

2y
For completeness, defiﬂfég(%,w; H, P, s) =00 Whenlofe(H,%; P,m,s) > ~ for everym €
N.
It will often be convenient to isolate the termslf/f@ when inverting for a sufficient:, thus

arriving at an upper bound arl,. Specifically, define

. / l
My(v1,7v2; H, P, 8) = min {m € N: Dy([H](72;¢, P); P) % + = < 71} ,

My (71, v2; H, P) = min {m eN: qzoﬁg (De([H](72; ¢, P); P),H; P,m) < 71} )

This way, foré = 1/(2K), we have

o

Mf(71772;7-[7p7 8) < maX{M@(&’}/l,’)/Q;H,P),M@(E’Yl,’}/g;%,P, S)} . (128)

Also note that we clearly have

. 4 . . 2 i
1 1

so that, in the task of boundind,, we can simply focus on boundingd,.
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We will express our main abstract results below in termsefritkremental valudﬁg(71, Yo; H, Pxvy, S);

the quantitylfdg(v; H, Pxy,s) will also be useful in deriving analogous results ERRM,. When

h*p € H, (12.6) implies

M(v;H, P,s) < My(y; H, P,s) < My(v;H, P,s). (12.10)

12.3 Methods Based on Optimizing the Surrogate Risk

Perhaps the simplest way to make use of a surrogate lossdaieto try to optimizek,(h) over
h € F, until identifying h € F with Ry(h) — Re(h*) < I';,(¢), at which point we are guaranteed
er(h) —er(h*) < e. In this section, we briefly discuss some known results fi Ilasic idea,

along with a comment on the potential drawbacks of this aggrdor active learning.

12.3.1 Passive Learning: Empirical Risk Minimization

In the context of passive learning, the methoewipirical/-risk minimizations one of the most-
studied methods for optimizinB,(h) overh € F. Based on Lemma_12.4 and the above defini-
tions, one can derive a bound on the number of labeled datésposufficient forERM, (F, Z,,)

to achieve a given excess error rate. Specifically, theviatig theorem is due to Koltchinskii
[2006] (slightly modified here, following Ginand Koltchinskii[2006], to allow for general
functions). It will serve as our baseline for comparisorhiea applications below.

Theorem 12.6. Fix any functions : (0,00)> — [1,00). If h* € F, then for anym >

M,(Ty(¢); F, Pxy,s), with probability at leastl — 6e°e(©):2) ERM,(F, Z,,) pro-

jGng(s)

duces a functiot such thatker(h) — er(h*) < e.

12.3.2 Negative Results for Active Learning

As mentioned, there are several active learning methodgrss to optimize a general loss

function [Beygelzimer, Dasgupta, and Langford, 2009, Katiskil, ' 2010]. However, it turns
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out that for many interesting loss functions, the numberbgls required for active learning to
achieve a given excess surrogate risk value is not signijcamaller than that sufficient for

passive learning bizRM,.

Specifically, consider a problem witki = {z¢, z}, letz € (0,1/2) be a constant, and for
e €(0,2),letP({x1}) =¢/(22), P({xo}) = 1—P({z1}), and suppos& and/ are such that for
n(x1) = 1/2 4+ z and anyn(x,) € [4/6,5/6], we haveh* € F. For this problem, any functioh
with sign(h(z1)) # +1 haser(h) —er(h*) > ¢, sothat’y(¢) < (¢/(22))(¢* (n(x1)) —€*(n(x1)));
when/ is classification-calibrated arfd< oo, this isce, for somel-dependent € (0, co). Any
functionh with Ry(h) — R,(h*) < ce for this problem must havB,(h; Pyayy) — Re(h*; Pragy) <
ce/P({xo}) = O(e). Existing results of Hanneke and Yang [2010] (with a slighadification
to rescale fom(z¢) € [4/6,5/6]) imply that, for many classification-calibrated losseghe
minimax optimal number of labels sufficient for an activerteag algorithm to achieve this is
O(1/¢). Hanneke and Yang [2010] specifically show this for loss#sat are strictly positive,
decreasing, strictly convex, and twice differentiablewgbntinuous second derivative; however,
that result can easily be extended to a wide variety of otlasstication-calibrated losses, such
as the quadratic loss, which satisfy these conditions inighberhood of0. It is also known
[Bartlett, Jordan, and McAuliffe, 2006] (see also below)ttwe many such losses (specifically,
those satisfying Conditidn 12.3 with = 2), ©(1/¢) random labeled samples are sufficient for
ERM, to achieve this same guarantee, so that results that onlydbie surrogate risk of the
function produced by an active learning method in this sgertan be at most a constant factor

smaller than those provable for passive learning methods.

In the next section, we provide an active learning algoritimd a general analysis of its per-
formance which, in the special case described above, gieasexcess error rate less thamith
high probability, using a number of label requeSt8og(1/<) loglog(1/¢)). The implication is
that, to identify the improvements achievable by activeriesy with a surrogate loss, it is not

sufficient to merely analyze the surrogate risk of the fuorcproduced by a given active learning
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algorithm. Indeed, since we are not particularly inter@stethe surrogate risk itself, we may
even consider active learning algorithms that do not alstwgitimize R,(h) overh € F (even

in the limit).

12.4 Alternative Use of the Surrogate Loss

Given that we are interestedfronly insofar as it helps us to optimize the error rate with pam
tational efficiency, we should ask whether there is a methatidsometimes makes more effective
use of/ in terms of optimizing the error rate, while maintaining essally the same computa-
tional advantages. The following method is essentiallyiaxegion of the methods of Koltchin-
skii [2010] and Hanneke [2012]. Similar results should &lstwl for analogous relaxations of the
related methods of Balcan, Beygelzimer, and Langford [20Dékgupta, Hsu, and Monteleoni
[2007a], Balcan, Beygelzimer, and Langford [2009], and Begigedr, Dasgupta, and Langford

[2009].

Algorithm 1:
Input: surrogate losg unlabeled sample budgetlabeled sample budget

Output: classifief,

0.V F,Q+{},m+1,t+<0
1. Whilem < wandt < n
2. m+<—m+1
If X,, € DIS(V)
Request label;, and letQ < QU {(m,Y,,)}, t + t + 1

Vo {h €V : Ro(h; Q) — infyer Re(g: Q) < Tu(V; Q,m)}
Q<+ {}

3
4
5. Iflogy(m) € N
6
7
8. Returnh = argming .y Re(h; Q)
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The intuition behind this algorithm is that, since we areyointerested in achieving low
error rate, once we have identifiegn(h*(x)) for a givenxz € X, there is no need to further
optimize the valué[¢(h(X)Y)|X = z]. Thus, as long as we maintafri € V, the data points
X, ¢ DIS(V) are typically less informative than thosg,, € DIS(V'). We therefore focus the
label requests on thosg,, € DIS(V/), since there remains some uncertainty albiut(7* (X))
for these points. The algorithm updat&speriodically (Step 6), removing those functiohs
whose excess empirical risks (under the current samplisigitalition) are relatively large; by
setting this threshold, appropriately, we can guarantee the excess empirical fiskie smaller
than7,. Thus, the algorithm maintains® € V as an invariant, while focusing the sampling
regionDIS(V).

In practice, the sét’ can be maintained implicitly, simply by keeping track of ttwnstraints
(Step 6) that define it; then the condition in Step 3 can belateby solving two constraint sat-
isfaction problems (one for each sign); likewise, the valife-y Ry(g; Q) in these constraints,
as well as the finak, can be found by solving constrained optimization probleffikus, for
convex loss functions and convex classes of function, theges typically have computationally
efficient realizations, as long as tiievalues can also be obtained efficiently. The quartitin
Algorithm 1 can be defined in one of several possible ways.uhpoesent abstract context, we
consider the following definition. Lt} } .en denote independent Rademacher random variables
(i.e., uniform in{—1,+1}), also independent fror&; these should be considered internal ran-
dom bits used by the algorithm, which is therefore a randechagorithm. For any € NU {0}
andQ = {(ir.51)...., (i)} € (N x {=1,+1})7% let S[Q) = {(Xi,,4).--.. (Xip 1)},
E[Q] = {&, }izy- Fors € [1,00), define

UZ(Ha Qa S) = Uf(Ha S[Q]a E[Q]a S)'
Then we can define the quantify in the method above as

Ty(H; Q,m) = Us(H; Q,5(m)), (12.11)
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for somes : N — [1, 00). This definition has the appealing property that it allowsaisterpret
the update in Step 6 in two complementary ways: as compdragrnpirical risks of functions in
V' under the conditional distribution given the region of diseemenp gy, and as comparing
the empirical risks of the functions 5.y under the original distributio®yy. Our abstract
results below are based on this definitionZof This can sometimes be problematic due to the
computational challenge of the optimization problem indednitions of$, andD,. There has
been considerable work on calculating and boundinfpr various classe& and losse$ [e.g.,
Bartlett and Mendelson, 2002, Koltchinskii, 2001], but ihist always feasible. However, the
specific applications below continue to hold if we instedatd, based on a well-chosen upper
bound on the respecti\lé function, such as those obtained in the derivations of thesgective
results below; we provide descriptions of such efficiemtbynputable relaxations for each of the
applications below (though in some cases, these boundsahavikel dependence oRyy via
certain parameters of the specific noise conditions coresidbere).

We have the following theorem, which represents our mairratisresult. The proof is
included in Appendik12]6.
Theorem 12.7.Fix any functiors : N — [1,00). Letj, = —[log,(¢)], definew;, » = u;, 1 = 1,
and for each integey > j,, let 7; = F(E4(2°77); 1) pis(Fe, (22-)on)), U; = DIS(F;), and

suppose:; € N satisfiedog,(u;) € N and
Uj 2 2Mg(2_j_1, 22_j; JT‘.]‘, 'ny,ﬁ(uj')) V Uj—1 V QUj_g. (1212)
Supposé* € F. Foranye € (0,1) ands € [1,00), letting j. = [log,(1/T4(¢))], if

je
u >y, and n>s+2e ZP(Z/{j)uj,
J=Je
then, with arguments, «, andn, Algorithm 1 uses at most unlabeled samples and makes at

mostn label requests, and with probability at least

lOgQ(ujs) )
1—27°— 6e ),
=1
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returns a functiorh, with er(h) — er(h*) < e.

The number of label requests indicated by Thedrem 12.7 ¢an (though not always) be sig-
nificantly smaller than the number of random labeled datatpaufficient forERM, to achieve
the same, as indicated by Theorem 12.6. This is typicallcése wheP(U;) — 0 asj — oo.
When this is the case, the number of labels requested by thathalg is sublinear in the number
of unlabeled samples it processes; below, we will deriveeneaplicit results for certain types of
function classes, by characterizing the rate at whi@h(/;) vanishes in terms of a complexity

measure known as the disagreement coefficient.

For the purpose of calculating the valuds in Theoreni 1277, it is sometimes convenient to
use the alternative interpretation of Algorithm 1, in teraissampling from the conditional
distributionPps(v). Specifically, the following lemma allows us to replace c#dtions in terms
of F; andPxy with calculations in terms aF (€,(2'77); 1) andPpys(#,). Its proof is included
in Appendix1Z.6
Lemma 12.8. Let gzosg be any function satisfying Definitign 12.5. Liétbe any distribution over
X x Y. For any measurablgf C X x Y with P(U) > 0, defineP,(-) = P(-|U{). Also, for any
o >0,H C [F],andm € N, if P (DISF(H)) > 0, define

dy(o, H:m, P) =
. . o . . iﬁ i T
32 (M%éé%’;{) P(U)gy, (W,”H, [(1/2)P(U) W,Pu> + 4 \/;> . (12.13)

and otherwise definé’f(a, H;m, P) = 0. Then the functiod}g also satisfies Definition 12.5.

Plugging thngzoég function into Theorerh 1217 immediately yields the follogicorollary, the
proof of which is included in Appendix 12.6.

Corollary 12.9. Fix any functions : N — [1, 00). Letj, = —[log,(¢)], defineu;,_o = u;,—1 =

1, and for each integej > j,, let F; andl{; be as in Theoref 12.7, andAf(l{;) > 0, suppose
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u; € N satisfiedog,(u;) € N and

. 2=j=T 92=j A
Uj > 473(2/13')711\/[@ <m, W;E,Pb[j,5<1ﬁj)) V Uj—1 \ 2Uj,2. (1214)
J J

If P(U;) = 0, letu; € N satisfylog,(u;) € Nandu; > K08(u;)272 V u; V 2uj_. Suppose
h* € F. Foranye € (0,1) ands € [1, 00), letting j. = [log,(1/T(e))], if
Je
u > and n>s+2e Z P(Uj)uy,
J=Je
then, with arguments, «, andn, Algorithm 1 uses at most unlabeled samples and makes at

mostn label requests, and with probability at least
loga(uge)
=27 — " 6e*(),
=1
returns a functiorh, with er(h) — er(h*) < e.
Algorithm 1 can be modified in a variety of interesting waysding to related methods that
can be analyzed analogously. One simple modification iseausore involved bound to define

the quantityZ}. For instance, fof) as above, and a functidgn: (0, 00) x Z x N — [1, ), one

could define

To(H;: Qm) = (3/2)¢" ' inf {)\ > 0:Vk € Zy,

U (H (3¢7'25:4,51Q)) ;Q,5(\, k,m)) < 2’“‘4q‘1},

for which one can also prove a result similar to Lenimall12.é4|[S&e and Koltchinskiil 2006,
Koltchinskil, [2006]. This definition shares the convenienil-interpretations property men-
tioned above abouf,(#; Q, §(m)); furthermore, results analogous to those above for Algorit
1 also hold under this definition (under mild restrictionstioa alloweds functions), with only a
few modifications to constants and event probabilities. (sigmming over thé € Z, argument
to 5 in the probability, while setting the argument t@~ for the largesyj with u; < 27).

The update trigger in Step 5 can also be modified in severas wegding to interesting re-

lated methods. One possibility is that, if we have updateditlsetk — 1 times already, and
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the previous update occurredat = m;_;, at which pointV = V,_ 1, @ = Q,_1 (before

the update), then we could choose to upddta k" time whenlog,(m — m;_;) € N and

UiV Q,8(Fk_1,m — mp_1)) =22 < 4,1 /2, for some functiors : (0,00) x N — [1, 00),

m—mjy_1

|Qr—1|V1
Mp_1—Mpg_2

where4;,_; is inductively defined a§,_, = Ug(Vk_l; Qr—1,5Yk—2,Mp_1 — My_2))
(and4, = £), and we would then us&,(V; Q, 5(5x_1, m — my_,)) for the T, value in the up-
date; in other words, we could upddtewhen the value of the concentration inequality used in
the update has been reduced by a facto2.off his modification leads to results quite similar
to those stated above (under mild restrictions on the atfowtinctions), with only a change
to the probability (namely, summing the exponential falprobabilitiese—*(2""2") over values

of j betweenj, andj., and values ot betweenl andlog,(u;)); additionally, with this modifi-
cation, because we check flog,(m — m;_1) € N rather thanog,(m) € N, one can remove
the “Vu;_y V 2u;_5" term in (12.12) and[(12.14) (though this has no effect far #pplications
below). Another interesting possibility in this vein is tpdate wherog,(m — my_1) € N
andU,(V; Q, $(Ty(27%), m — mk—l))% < Ty(27%). Of course, the valug,(27*) is typi-
cally not directly available to us, but we could substitutistribution-independent lower bound
on I',(27%), for instance based on thg function ofBartlett, Jordan, and McAuliffe [2006];
in the active learning context, we could potentially useabeled samples to estimatePa

dependent lower bound an(27%), or everdiam (V)1 (27*/2diam(V)), based ori{12]3), where
dlarn(V) = Suph,gEV A(h7 g)

12.5 Applications

In this section, we apply the abstract results from abovefewacommonly-studied scenarios:
namely, VC subgraph classes and entropy conditions, witteslditional mention of VC major
classes and VC hull classes. In the interest of making thdtsasiore concise and explicit, we
express them in terms of well-known conditions relatingatises to excess risks. We also

express them in terms of a lower boundlaite) of the type in[(12.2), with convenient properties
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that allow for closed-form expression of the results. Toify the presentation, we often omit
numerical constant factors in the inequalities below, andHtis we use the common notation

f(z) < g(x) to mean thaff (x) < cg(x) for some implicit universal constante (0, co).

12.5.1 Diameter Conditions

To begin, we first state some general characterizationsngldistances to excess risks; these
characterizations will make it easier to express our resulbre concretely below, and make
for a more straightforward comparison between resultsHerabove methods. The following
condition, introduced by Mammen and Tsybakov [1999] andb@kgv [2004], is a well-known
noise condition, about which there is now an extensiveditee [e.q., Bartlett, Jordan, and
McAuliffe, 2006, Hanneke, 2011, 2012, Koltchinskii, 2006]

Condition 12.10. For somex € [1,00) anda € |0, 1], for everyg € F*,
A(g, h") < a(er(g) —er(h?))".

Condition[12.1D can be equivalently expressed in terms ¢dicenoise conditions [Bartlett,
Jordan, and McAuliffe, 2006, Mammen and Tsybakov, 1999 b@kev, 2004]. Specifically,
satisfying Condition 12,10 with some < 1 is equivalent to the existence of somlec [1, o)
such that, for alk > 0,

Pz |n(z)—1/2| <e) < a9,
which is often referred to aslaw noisecondition. Additionally, satisfying Conditidn 12.1.0 with
a = 1is equivalent to having some € [1, co) such that

P(x:[n(x) —1/2] <1/a’) =0,

often referred to as bounded noiseondition.
For simplicity, we formulate our results in termso&nda from Condition 12.10. However,

for the abstract results in this section, the results remalid under the weaker condition that
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replacesF* by F, and adds the condition that € F. In fact, the specific results in this section
also remain valid using this weaker condition while addiéitty using [12.8) in place of (12.2),
as remarked above.

An analogous condition can be defined for the surrogate losstibn, as follows. Similar
notions have been explored by Bartlett, Jordan, and McAu|#006] and Koltchinskii [2006].

Condition 12.11. For someb € [1,00) and§ € [0, 1], for everyg € [F],
Dy (g,h"p; P)? < b(Re(g; P) — Re(h*p; P))”.

Note that these conditions aaévayssatisfied forsomevalues ofa, b, o, 3, sincea = 5 =0
trivially satisfies the conditions. However, in more benggpenarios, values ef and 3 strictly
greater thard can be satisfied. Furthermore, for some loss functigriGondition[12.1ll can
even be satisfiedniversally in the sense that a value 8> 0 is satisfied fomll distributions. In
particular| Bartlett, Jordan, and McAuliffe [2006] showttHas is the case under Condition 112.3,
as stated in the following lemma [see Bartlett, Jordan, andwlffe, 2006, for the proof].
Lemma 12.12.Suppose Conditidi12.3 is satisfied. Bet min{1, 2} andb = (2C,d,"™"*">")-4 L2,
Theneverydistribution P over X x ) with h*p € [F| satisfies Condition 1Z.11 with these values
of bandp.

Under Conditiori 12.10, it is particularly straightforwamddbtain bounds ofi,(¢) based on
a function, () satisfying [(12.R). For instance, sinece— z1,(1/x) is nonincreasing of0, co)

[Bartlett, Jordan, and McAuliffe, 2006], the function
Uy(e) = ac®yy (e'7°/(2a)) (12.15)

satisfiesV,(¢) < I',(¢) [Bartlett, Jordan, and McAuliffe, 2006]. Furthermore, ftagsification-
calibrated?, ¥, in (12.15) is strictly increasing, nonnegative, and camins on(0. 1) [Bartlett,
Jordan, and McAuliffe, 2006], and hds(0) = 0; thus, the invers&; ' (v), defined for alty > 0
by

U, (y) =inf{e > 0: 9 < Uy(e)} U {1}, (12.16)
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is strictly increasing, nonnegative, and continuous @nl,(1)). Furthermore, one can easily

showz — ¥, !(z)/x is nonincreasing of0, co). Also note that'y > 0, &,(y) < ¥, (7).

12.5.2 The Disagreement Coefficient

In order to more concisely state our results, it will be cameat to boundP (DIS(#)) by a linear
function ofradius(#), for radius(#) in a given range. This type of relaxation has been used
extensively in the active learning literature [Balcan, Hekan and Vaughan, 2010, Beygelzimer,
Dasgupta, and Langford, 2009, Dasaupta, Hsu. and Monte[2007a/ Friedman, 2009, Han-
neke, 2007a, 2009, 2011, 2012, Koltchinskii, 2010, Maletb#s) 2011, Raginsky and Rakhlin,
2011, Wang, 2011], and the coefficient in the linear functmtypically referred to as thdis-
agreement coefficientSpecifically, the following definition is due 1o Hanneke (@@, 2011];

related quantities have been explored by Alexander [198d@)Gire and Koltchinskiil[2006].

Definition 12.13. For anyr, > 0, define thedisagreement coefficienf a functioni : X — R

with respect toF underP as

V1.

1 (ru) — sup PPISBE)

r>rQ r

If h* € F, define the disagreement coefficient of the classd(rq) = 0« (ro).

The value of(¢) has been studied and bounded for various function claSse®ler various
conditions onP. In many cases of interest(c) is known to be bounded by a finite constant
[Balcan, Hanneke, and Vaughan, 2010, Friedman,|2009, Hen2ék7a, 2011, Mahalanabis,
2011], while in other case®# =) may have an interesting dependence=dBalcan, Hanneke,
and Vaughan, 2010, Raginsky and Rakhlin, 2011, Wang,/2011¢ ré&ader is referred to the

works of Hanneke [2011, 2012] for detailed discussions erdisagreement coefficient.
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12.5.3 Specification of),

Next, we recall a few well-known bounds on the function, which leads to a more concrete
instance of a functior{ie satisfying Definition 12J5. Below, we I€t* denote the set of measurable
functionsg : X x Y — R. Also, forG C G*, letF(G) = sup, |g| denote the minimatnvelope
function forg, and forg € G* let||g||% = [ ¢>d P denote the squarekl,(P) seminorm ofy; we

will generally assumé&'(G) is measurable in the discussion below.

Uniform Entropy The first bound is based on the workiof van der Vaart and We[@@11];
related bounds have been studied bvé&zand Koltchinskiil[2006], Gia, Koltchinskii, and Well-
ner [2003], van der Vaart and Wellher [1996], and others. d&distributionP over X' x ),
asetg C G*, ande > 0, let N(¢,G, Ly(P)) denote the size of a minimatcover ofG (that
is, the minimum number of balls of radius at mesufficient to covelj), where distances are
measured in terms of the,(P) pseudo-metric(f,g) — ||f — g||p. Foroc > 0 andF € G*,

define the function

J0.G.F) =sup [ /14 mN(E[Fl.6. L(Q))d=
Q Jo

where(@) ranges over all finitely discrete probability measures.

Fix any distributionP over X x ) and anyH C [F| with h*p € H, and let
Gn = {(2,y) = L(h(x)y) : h € H},
andGy p = {(z,y) — L(h(z)y) — L(R*p(x)y) : h € H}. (12.17)
Then, since/(c.Gy.F) = J(0,.Gy p.F), it follows from Theorem 2.1 of van der Vaart and

Wellner [2011] (and a triangle inequality) that for somewensal constant € [1, co), for any

m € N, F > F(Gy,p), ando > Dy(H; P),

de(H; P,m) < (12.18)
o 1 J (HFU|\P79%F> [igva
cJ (WagﬂyF) |F||p (\/m + g .
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Based on[(12.18), it is straightforward to define a funct&zmhat satisfies Definition_12.5.

Specifically, define
ngl) (07 7—[7 m, P) =

inf infes (2 Gy F)IF 1 J(”FA”P’QH’F) IFll-¢ 12.19
ponin, e g 9 F ) IEle | 2+ N - (12.19)

for c as in [I2Z.1B). By[(12.18),." satisfies[(12]5). Also note that — ¢." (o, H;m, P) is non-

increasing, whiler — g%l)(a,’}-[; m, P) is nondecreasing. Furthermofié,— N (g, Gy, L2(Q))
is nondecreasing for ath), so that® — J(o,Gyx,F) is nondecreasing as well; sinG¢ —
F(Gy p) is also nondecreasing, we see that— (fsgl)(a,%; m, P) is nondecreasing. Similarly,
forth € X, N(e,Gny e, L2(Q)) < N(e,Gu, Lo(Q)) for all Q, so thatJ (o, Gy, ,. . F) <

J(0,Gy. F); becaus@ (Gay,, . . p) < F(Ga.p), we haves" (o, Hypeim, P) < 6y (0, H;m, P)
as well. Thus, to satisfy Definitidn 12.5, it suffices to tziige: @g”.

Bracketing Entropy Our second bound is a classic result in empirical processryh For func-
tionsg; < go, abracket|g;, g-] is the set of functiong € G* with g, < g < g9; [91, g2] is called
ane-bracket undef,(P) if || g1 — g2 p < €. ThenN(e, G, L,(P)) denotes the smallest number

of e-brackets (undef.»(P)) sufficient to cove. Foro > 0, define the function

Jy(0.G. P) :/0 1+ (e, G, La(P))de.

Fix anyH C [F], and letGy, andGy, p be as above. Then sindg (o, Gy, P) = Jy(o, Gu,p, P),
Lemma 3.4.2 of van der Vaart and Wellner [1996] and a triaimgdguality imply that for some
universal constant € [1, co), for anym € N ando > D,(#; P),

1 L J[] (o, QH,P)Z
vm am '

As-is, the right side of(12.20) nearly satisfies DefinifidghSlalready. Only a slight modification

do(H; P,m) < cJy (0,Gy, P) ( (12.20)

is required to fulfill the requirement of monotonicity 4n Specifically, define

1 Ji(\Gy, P
+n( Gn ))’

Ve - (12.21)

0y (0,1 P,m) = inf ¢Jy (A, Gy, P) (
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for ¢ as in [I2.2D). Then taking, = ¢\* suffices to satisfy Definition 12.5.

Since Definition 1235 is satisfied for bath') and¢!”, it is also satisfied for
e = min {d‘;gw, ng2>} . (12.22)

For the remainder of this section, we supposés defined as in{12.22) (for all distributios
overX’ x )), and study the implications arising from the combinatibthes definition with the

abstract theorems above.

12.5.4 VC Subgraph Classes

For a collectionA of sets, a se{zy,...,z} of points is said to behatteredby A if |[{A N
{z1,...,2} + A € A} = 2*. The VC dimensionrc(A) of A is then defined as the largest
integerk for which there exist: points{z, ..., z;} shattered by4 [Vapnik and Chervonenkis,
1971]; if no such largest exists, we definec(.A) = oo. For a seg of real-valued functions,
denote byc(G) the VC dimension of the collectiofY (z,v) : y < g(z)} : g € G} of subgraphs
of functions inG (called the pseudo-dimension [Haussler, 1992, Pollar@0P)9 to simplify
the statement of results below, we adopt the conventionvihah the VC dimension of this
collection is0, we letve(G) = 1. A setG is said to be a VC subgraph classvif(G) < oo
[van der Vaart and Wellner, 1996].

Because we are interested in results concerning valu&s (@) — R,(h*), for functionsh
in certain subset$/ C [F], we will formulate results below in terms ot.(Gy, ), for Gy defined
as above. Depending on certain propertieg,dhese results can often be restated directly in
terms ofvc(H); for instance, this is true whehis monotone, sincec(Gy) < vc(#H) in that case
[Dudley,[1987, Haussler, 1992, Nolan and Pollard, 1987].

The following is a well-known result for VC subgraph clas§e=e e.g., van der Vaart and
Wellner, 1996], derived from the works lof Pollard [1984] dfdussler[1992].

Lemma 12.14.For anyG C G*, for any measurabl& > F(G), for any distributionc such that
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|Fllg > 0, for anye € (0,1),

2ve(9)
N(ElFll, 6, 1(Q)) < A©) (1) |

S
whereA(G) < (ve(G) + 1)(16e)ve9),
In particular, Lemm&a12.14 implies that agyC G* has,vo € (0, 1],

J(0,G,F) < / ’ VIn(eA(G)) 4 2ve(G) In(1/¢)de (12.23)
< 20+/In(eA(G)) + /8vc(G) /U VIn(1/e)de
o/In(eA(G)) + o/8ve(G) In(1/0) + /27ve(G)erfe ( ln(l/cr)) :

Sinceerfc(r) < exp{—=z?} for all x > 0, (I2.23) impliesvo € (0, 1],

J(0,G,F) < o+/ve(G)Log(1/0). (12.24)

Applying these observations to bouddo, Gy p, F) for H C [F] andF > F(Gy p), noting
J(0,G%,F) = J(0,Gy p,F) andve(Gy p) = ve(Gy), and plugging the resulting bound into
(IZ.19) yields the following well-known bound @)’ due ta Giré and Koltchinskii [2006]. For

anym € Nando > 0,

&V (o, H; m, P)

we(G) Lo (IEE3212)
_|_

m m

(12.25)

)\>a

Specifically, to arrive a{{12.25), we relaxed tinép>pg,, ) in (I2.19) by takingd > F(Gy, p)
such that|F||p = max{o, ||F(Gx p)||r}, thus maintaining\/||F||» € (0, 1] for the minimizing
A value, so thaf{(12.24) remains valid; we also made use otitte¢tiatl.og > 1, which gives us

Log(||F[|/A) = Log([F(G.r)l| /) for this case.
In particular, [12.25) implies

Mo (1,725 H, P)
.
< e <"— + ﬁ) ve(Gy)Log (M) . (12.26)

™ o>Dy(H(2:6.P)P) \ V2 M
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Following |Giré_and Koltchinskii [2006], forr > 0, defineBy p(h*p,7;¢) = {g € H :

D¢(g, h*p; P)* < r}, and forrg > 0, define

T¢(ro; H, P) = sup H (gBH’P(h s ’e)’P)

r>r0 r

2

When P = Pxy, abbreviate this as,(ro; H) = 7(ro; H, Pxy), and whenH = F, further
abbreviatery(rg) = 7(ro; F, Pxy). ForA > 0, whenh*p € H and P satisfies Condition 1211,

([12.26) implies that,

sup My(v/(4K),v; H(v; ¢, P), P)

TZA

< (A% + ;) ve(Gy)Log (70 (WA H, P)) . (12.27)

Combining this observation with (12.6)), (12.8), (12.9),.00), and Theorein 12.6, we arrive
at a result for the sample complexity of empiriéaisk minimization with a general VC subgraph
class under Conditioris 12]10 and 12.11. Specificallys fof0, c0)? — [1,00), whenh* € F,
(12.8) implies that

M (Te¢(e); F, Pxy,s) < MZ(FZ<5)§~F7 Pxy,5)

= sup My(7/2,7% F(7: ), Pxy,s(Le(e), 7))

v>Ty(e)

< sup My(v/2,7; F(7:0), Pxy,5(Te(e), 7). (12.28)

¥>T(e)
SupposingPyy satisfies Conditions 12.110 add 12.11, applying (12[8), j1&8d (12.2]7) to
(IZ.28), and taking(),~) = Log (32), we arrive at the following theorem, which is implicit in
the work of Gire and Koltchinskiil[2006)].
Theorem 12.15.For a universal constant € [1,00), if Pyy satisfies Conditioh 1210 and
Condition[12.1L ¢/ is classification-calibratedh* € F, and ¥, is as in(12.15) then for any

€ (0,1), lettingr, = 7 (bW, (¢)?), for anym € N with

b l
m>c <\I/e(€)2_'3 + \114(5)) (ve(Gr)Log (1) + Log (1/9)) , (12.29)

with probability at leastl — §, ERM,(F, Z,,) producesh with er(h) — er(h*) < e.
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As noted by Gig and Koltchinskiil[2006], in the special case whé@s itself the 0-1 loss, the
bound in Theorer 12.15 simplifies quite nicely, since in e8| F(Gs,- » (v .r0),pxy )y =
P (DIS (B (h*,r))), so thatr(ry) = 60(ry); in this case, we also hawe:(Gr) < vc(F) and

U,(e) = ¢/2, and we can také = a andb = «, so that it suffices to have
m > cac® " (ve(F)Log (0) + Log (1/6)) , (12.30)

wheref = 0 (ac®) andc € [1, 00) is a universal constant. It is known that this is sometimes th
minimax optimal number of samples sufficient for passivergry [Castro and Nowak, 2008,
Hanneke, 2011, Raginsky and Rakhlin, 2011].

Next, we turn to the performance of Algorithm 1 under the étons of Theoreni 12.15.
Specifically, suppos®yy satisfies Conditions 12,110 ahd 12.11, andhfpr> 0, define

P (DIS (B (h*, al “
Xe(70) = sup ( ( (b 3 ()))) V1.
>0 Y
Note that||F(Gr, py, )5, < P (DIS(F (€,(2%77);m))). Also, note thatc(Gr,) <

ve(Gree,(22-iy01)) < ve(Gr). Thus, by[(12.26), foy, < j < [log,(1/¥,(¢))],

M (272K 2279, Fj Pxy) S (027379 + 027) ve(Gr)Log (xe (We(e)) £) . (12.31)

With a little additional work to define an appropriadefunction and derive closed-form
bounds on the summation in Theorém 12.7, we arrive at thewolly theorem regarding the
performance of Algorithm 1 for VC subgraph classes. For detepess, the remaining techni-
cal details of the proof are included in Appendix 12.6
Theorem 12.16.For a universal constant € [1, o), if Pxy satisfies Condition 12.10 and Con-
dition[I1Z.11/ is classification-calibratedy* € F, and¥, is as in(12.15) for anye € (0, 1), let-
ting 0 = 6 (a"), X = xe(We(e)), A1 = ve(Gr)Log(xel)+Log(1/0), By = min { ks Log(P/W(e)) },
andC) = min {+ Log(f/\llg(a))}, if

1—2(a=1)>

b l
u>c (\I/g(e)2_5 + q’e(@) Ay (12.32)



and

b(A; + Log(By)) B N (A + Log(Cl))Cl) |

()2 Vo) (12.33)

n > chac® (

then, with arguments, «, andn, and an appropriates function, Algorithm 1 uses at most
unlabeled samples and makes at moedabel requests, and with probability at least— 4,

returns a functiorh, with er(h) — er(h*) < e.

To be clear, in specifyind3; andC}, we have adopted the convention thdt = oo and
min{oo,z} = z for anyz € R, so thatB; andC are well-defined even whem = g = 1,
or « = 1, respectively. Note that, whem + 5 < 2, By = O(1), so that the asymptotic
dependence onin (I2:33) isO (0>, (c)’~*Log(x.)), while in the case oft = 3 = 1, itis
O (ALog(1/¢)(Log(#) + Log(Log(1/¢)))). Itis likely that the logarithmic and constant factors
can be improved in many cases (particularly the(y.(), B;, andC, factors).

Comparing the result in Theoreim 12.16 to Theofem 12.15, wethssethe condition on
u in (12.32) is almost identical to the condition anin (12.29), aside from a change in the
logarithmic factor, so that the total number of data poirgeded is roughly the same. However,
the number ofabelsindicated by[(12.33) may often be significantly smaller tktzan condition
in (12.29), reducing it by a factor of roughty:=®. This reduction is particularly strong whén
is bounded by a finite constant. Moreover, this is the seypeof improvement that is known to
occur wherY is itself the0-1 loss [Hanneke, 2011], so that in particular these resultseagith
the existing analysis in this special case, and are thersfmmetimes nearly minimax [Hanneke,
2011, Raginsky and Rakhlin, 2011]. Regarding the slight difiee between (12.B2) anid (12.29)
from replacingr, by ./, the effect is somewhat mixed, and which of these is smalésraepend
on the particular clas and los</; we can generally boung, as a function o (ac®), ¥y, a, «,
b, and. In the special case dfequal thed-1 loss, bothr, andy,/ are equal td(a(s/2)%).

We note that the valuegm) used in the proof of Theorelm 12]16 have a direct dependence on
the parameters (3, a, a, andy,. Such a dependence may be undesirable for many applications

where information about these values is not available. Hew®ne can easily follow this same
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proof, takings(m) = Log (M) instead, which only leads to an increase bipglog

factor: specifically, replacing the factor df;, in (12.32), and the factors4,; + Log(B;)) and
(A; + Log(Cy)) in (IZ33), with a factor of A; + Log(Log(¢/¥,(¢)))). Itis not clear whether
it is always possible to achieve the slightly tighter resfifheoreni 12,716 without having direct
access to the valuésg, a, a, andyy in the algorithm.

As mentioned above, though convenient in the sense thdeitsad completely abstract and
unified approach, the choice ﬁj(v; @, m) given by [12.111) may often make Algorithm 1 com-
putationally inefficient. However, for each of the applioas studied here, we can relax tHis
function to a computationally-accessible value, whicH tien allow the algorithm to be effi-
cient under convexity conditions on the loss and class oftfans. In particular, in the present
application to VC Subgraph classes, Theofem 12.16 remalitsif’we instead definé} as fol-
lows. If we letV (™ and@,, denote the set§ and(Q upon reaching Step 5 for any given value
of m with log,(m) € N realized in Algorithm 1, then consider definifigin Step 6 inductively

by letting 4,/ = 89m/2lVD) (TE(VW/?);Qm/g?m/Q) /\E) (or Ay /e = L if m = 2), and taking

m

(with a slight abuse of notation to allo# to depend on sets ™) and(@,,, with m’ < m)

,-ZAZ(L( )7Qm7m)
2 R b Z (Qm —|—5A m N
CO‘QTZ(\/ 1 J ;6;/27711 ( C< ) ( (‘ ml)A/B ( ))> 5(m>>

v <vc<gf>Log (W’"’ Eg(m”) +ﬁ<m>> . (1234)

for an appropriate universal constagt This value is essentially derived by upper bounding
%Ug(vms(v);ny,m/2,§(m)) (which is a bound on[{1Z.11) by Lemma 12.4), based on
(IZ.25) and Condition 1Z.11 (along with a Chernoff bound taiat@,,| ~ P(DIS(V))m/2);

since the sample sizes derived forand n in Theoren12.16 are based on these relaxations

anyway, they remain sufficient (with slight changes to thestant factors) for these relax&d
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values. For brevity, we defer a more detailed proof thatehesues ofl} suffice to achieve
Theoren12.16 to Appendix 12.7. Note that we have introdecedeépendence omand 5 in
(12.34). These values would indeed be available for somécagipns, such as when they are
derived from Lemma_12.12 when Condition 12.3 is satisfied;dwas in other cases, there may
be more-favorable values éfand g than given by Lemma_12.12, dependent on the specific
Pxy distribution, and in these cases direct observation ofetvatues might not be available.
Thus, there remains an interesting open question of whiikes exists a functiof,(V; Q, m),
which is efficiently computable (under convexity assummijoand yet preserves the validity of
Theorenm_12.1l6; this same question applies to each of thégdeslow as well.

In the special case whéefrsatisfies Condition 12.3, we can derive a sometimes-straegatlt
via Corollary[12.9. Specifically, we can combihe (12.26)..8)2(12.9), and Lemma 1212, to
get that if* € F and Conditiori_12]3 is satisfied, then fpor j, in Corollary[12.9,

w, (270 27 5 p 12.35
YA <P(UJ)JP(UJ)7 j’ Z/{j75> ( . )

< (2P + 2IPWU)) (ve(Gr)Log ((27PU) /1) +5)

whereb ands are asin Lemmia12.12. Plugging this into Corollary 12.9, witlefined analogous
to that used in the proof of Theordm 12.16, and bounding thesation in the condition fon

in Corollary[12.9, we arrive at the following theorem. Theailstof the proof proceed along
similar lines as the proof of Theordm 12.16, and a sketch@®fd¢maining technical details is
included in Appendik12]6.

Theorem 12.17.For a universal constant € [1,00), if Pxy satisfies Conditioh 1210, is
classification-calibrated and satisfies Condition 13, F, ¥, is as in(12.15) andb and g
are as in LemmBa_12.12, then for any (0, 1), lettingd = 0(ac®), A =

ve(Gr)Log ((E/b) (afe® /qu(g))ﬂ) + Log (1/8), By = min {m Log (7/W,(e)) } and
Cy = min {ﬁ, Log (g/llfg(a))}, if

b(afe)' P 7
u>c ( U, ()27 + \Ifg(5)> As, (12.36)
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and

abe abe

a\ 2-8 @
n>c (b(Ag + Log(B2))Bs (m) + ((As + Log(Cy))Cy (m)) , (12.37)

then, with argumentg, «, andn, and an appropriates function, Algorithm 1 uses at most
unlabeled samples and makes at moedabel requests, and with probability at least— 4,
returns a functiorh, with er(h) — er(h*) < e.

Examining the asymptotic dependence=an the above result, the sufficient number of un-

Ty(e)2—F Wy(e)

@) <(£;(Z)>2_ﬁ Log ((fj(z)>6)> inthe case that < 1, orO (6>~Log(1/¢)Log (6°Log(1/¢)))

in the case thatv = 1. This is noteworthy in the case > 0 andr, > 2, for at least two rea-

ayl— « /B - .
labeled samples i® ((95 ) ﬂLog (( b > )) and the sufficient number of label requests is

sons. First, the number of label requests indicated by #sslt can often be smaller than that
indicated by Theorem 12.116, by a factor of roug@l;((ee‘")l‘ﬂ ) ; this is particularly interesting
whend is bounded by a finite constant. The second interestingrieafithis result is that even
the sufficient number ofinlabeledsamples, as indicated by (12.36), can often be smaller than
the number ofabeledsamples sufficient foERM,, as indicated by Theoreim 12115, again by a
factor of roughlyO ((Qsa)kﬁ). This indicates that, in the case of a surrogate losatisfying
Condition[12.8 withr, > 2, when Theorerh 12.15 is tight, even if we have complete adoess
fully labeled data set, we may still prefer to use Algorithmather thariRM,; this is somewhat
surprising, since (a§ (12.37) indicates) we expect Alparitl to ignore the vast majority of the
labels in this case. That said, it is not clear whether theist eatural classification-calibrated
lossest satisfying Conditio 1213 with, > 2 for which the indicated sufficient size of in
Theoren 1275 is ever competitive with the known resultsriethods that directly optimize the
empirical0-1 risk (i.e., Theorerh 12.15 withthe0-1 loss); thus, the improvements«drandn re-
flected by Theorein 12.17 may simply indicate that Algorithig, 10 some extentompensating
for a choice of losg that would otherwise lead to suboptimal label complexities

We note that, as in Theorem 12116, the valgassed to obtain this result have a direct

dependence on certain values, which are typically not tyrexcessible in practice: in this
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case,a, o, andd. However, as was the case for Theorlem 12.16, we can obtansbghtly
worse results by instead takiggn) = Log (M) which again only leads to an increase
by aloglog factor: replacing the factor ofl; in (12.36), and the factor&4, + Log(B:)) and
(As + Log(Cy)) in (I2.3T), with a factor of A, + Log(Log(¢/¥,(¢)))). As before, it is not clear
whether the slightly tighter result of Theorém 12.17 is afsvavailable, without requiring direct

dependence on these quantities.

As was also true of Theorelm 12116, while the above choicg @f; Q, m) given by [12.11)
provides an elegant unifying perspective, it may often ieasible to calculate efficiently. How-
ever, as was possible in that case, we can define an altertizditis specialized to the conditions
of Theoren_12.17, for which the theorem statement remailis. \Bpecifically, consider instead

defining7} in Step 6 as

TK(V(m); Qm7 m)
B b Z |Qm| 255 . Qiﬁ B
= ¢y (W (VC(gf)LOg (5 (W) ) +5(m))> AN, (12.38)

for bands as in Lemma12.12, and for an appropriate universal congaifhis value is essen-
tially derived by bounding/,(V; Poisvy, 5(m)), which is informative in Step 6 via Lemra 12.4.
Since Theoremn 12.17 is proven by considering concentraitiaier the conditional distributions
Py, via Corollary[12.9, and (12.88) represents the concentrdtamind one gets from directly
applying Lemma 12]4 to the samples from the conditionatidistion Py, )y, ONe can show
that the conclusions of Theorém 12.17 remain valid for thexification off; in place of (IZ.111).
For brevity, the details of the proof are omitted. Note thiaijke the analogous result for The-
orem[1Z.1b based oR {12]34) above, in this case all of thetigearin 7,(V; Q,m) are directly

observable (in particulab,and3), aside from any possible dependence arising in the specific

tion of s.
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12.5.5 Entropy Conditions

Next we turn to problems satisfying certain entropy cowdii. In particular, the following
represent two commonly-studied conditions, which allomdoncise statement of results below.

Condition 12.18. For someg > 1, p € (0,1), andF > F(Gr p,, ), eitherve > 0,
In N (e||lF lpyy > GF, La(Pxy)) < qe~ %, (12.39)
or for all finitely discreteP, Ve > 0,
InN(e||F||lp, Gr, La(P)) < qe™ 2. (12.40)

In particular, note that whe# satisfies Condition 12.18, for< o < 2||F||p,

_1—p 1 2p

: VAllF |5, 07 5o g ||F|| 5
o, F;Pxy,m) < S , X8 12.41
Pe(r Fi Pryym) 3 (= mi (1 ) emts (12.41)

SinceDy([F]) < 2|F||p.,, this implies that for any numerical constane (0, 1], for every

v € (0, 00), if Pxy satisfies Condition 12,11, then

. F||%
Me(ey, v F, Pxy) S q(‘l|_|—’7;;§§ max {1 Py0mP)72 ploey =)l (12.42)

Combined with[(1218)[(1219) (12.10), and TheofemN2.6nk(\, 7) = Log (+22), we arrive
at the following classic result [e.d., Bartlett, Jordan, &hcAuliffe, 2006, van der Vaart and
Wellner, 1996].

Theorem 12.19.For a universal constant € [1,00), if Pxy satisfies Condition-12.10 and
Condition 12,111 ,F and Pxy satisfy Condition 12.18,is classification-calibrated;* € F, and
U, is as in(12.15) then for anye € (0, 1) andm with

RSO L G e B
== \Worn  E

*C(wagiﬂ'%wja)lﬁg(g)’

with probability at leastl — §, ERM,(F, Z,,) producesh with er(h) — er(h*) < e.
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Next, turning to the analysis of Algorithm 1 under these sam@litions, combinind (12.42)
with (12.8), (12.9), and Theorem 12.7, we have the followiegult. The details of the proof
follow analogously to the proof of Theordm 12.16, and areetfoge omitted for brevity.
Theorem 12.20.For a universal constant € [1,00), if Pxy satisfies Conditioh 12.10 and
Condition 12,111 7 and Py satisfy Condition 12.18,is classification-calibrated;* € F, and
U, is as in([12.15) then for any= € (0, 1), letting B; and C; be as in Theorermn 12.163; =
min {m, Log(?/\lfg(s))}, C3 = min {m, Log(Z/\I/g(a))}, andd = 0 (ac®),
if

Pxy

_ alFJ pior s
Y o \TeE e T e

b l 1
+c (‘1’4(5)25 + \114(5)) Log (5> (12.43)

and
n > C@aga qHF“?’l;Y blipBS + Zlipc?,
B (L= p)2 \Wy(e)2P0=P) = Wy(e)te

bBLog(B,/8)  {CLog(C,/6)
U,(e)2-h Uy(e)

© hace ( ) . (12.48)

then, with arguments, «, andn, and an appropriates function, Algorithm 1 uses at most
unlabeled samples and makes at moedabel requests, and with probability at least— 6,
returns a functiorh, with er(h) — er(h*) < e.

The sufficient size of, in Theoreni 12.20 is essentially identical (up to the condttors)
to the number of labels sufficient felR M, to achieve the same, as indicated by Thedrem 12.19.
In particular, the dependence oin these results i® (¥,(¢)?'~?=2). On the other hand, when
0(e*) = o(e™®), the sufficient size of. in Theoreni 12.2@loesreflect an improvement in the
number of labels indicated by Theorém 12.19, by a factor dépendence onof O (0c*).

As before, in the special case whérsatisfies Conditio 12.3, we can derive sometimes
stronger results via Corollary 12.9. In this case, we wiltidguish between the cases [of (12.40)

and [12.3D), as we find a slightly stronger result for the farm
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First, supposd (12.40) is satisfied for all finitely discr&tand alle > 0, with F < 7. Then
following the derivation of[(12.42) above, combined witi2{d), [12.8), and Lemna 12112, for
values ofj > j, in Corollary[12.9,

. 2—j=T 92—j
MZ <—7—7-F77D j,S)
P PUy)
g

1—p (o) 2=B(1=p) | 71—p (oF 1+p
S g (0 P 2 (2P ™)

= (b PR+ 2PE) s,

whereq andp are from Lemma&a12.12. This immediately leads to the follgyi@sult by reason-
ing analogous to the proof of Theorém 12.17.

Theorem 12.21.For a universal constant € [1,00), if Pyy satisfies Conditioh 1210, is
classification-calibrated and satisfies Condition 12.3¢ F, ¥, is as in(12.15) b and 5 are as
in Lemmal12.12, anf2.40)is satisfied for all finitely discret® and alle > 0, withF < 7, then

foranye € (0, 1), letting B, andC be as in Theorem 121 B, = min { T Log(?/\lfg(e))},
Cy = min { syt Log(€/We(2)) }, andd = 0 (a=?), if

() () (66) - (6m) G5))

wo((5t) (555) ) e
and

qZQp ) . ( afe® )Qﬁ(lp) - ( abhe )Hﬂ
n>c Bsb* + Oyl *
2o (1 (4 ) SN

be (BQLog(BQ 15 (;ff:))w + CyLog(Cy/6)0 (%)) ,

then, with arguments, «, andn, and an appropriates function, Algorithm 1 uses at most
unlabeled samples and makes at moedabel requests, and with probability at least— 4,

returns a functiorh, with er(h) — er(h*) < e.
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Compared to Theorein _12]20, in terms of the asymptotic depeerdens, the sufficient
sizes for both: andn here may be smaller by a factor @f((&ea)l_ﬁ(l_p)>, which sometimes
represents a significant refinement, particularly whénmuch smaller than—?. In particular,
as was the case in Theorem 12.17, when = o(1/¢), the size of. indicated by Theoreimn 12.P1
is smaller than the known results fBRM,(F, Z,,,) from Theoreni 12.19.

The case wheré (12.89) is satisfied can be treated simithdygh the result we obtain here
is slightly weaker. Specifically, for simplicity suppo§&(39) is satisfied witlf = ¢ constant. In
this case, we hawe> F(Gr, 7,,) as well, whileNy(el, Gz, Lo(Py,)) = Ny(el/PU;), Gx,, Lo(Pxvy)),
which is no larger that\}(s(\/PU;), G, La(Pxy)), SO thatF; andP;, also satisfy[(12.39)
with F = ¢; specifically,

In NV (557, Gr,, Lz(Puj)) < qP(U;) " .

Thus, based ol (12.42), (12.9). (12.9), and Lerhma 12.12,awe that ifh* € F and Condi-
tion[12.3 is satisfied, then fgr> j, in Corollary[12.9,

v (2 20w p
((P(u])ap(u]_)7 7 Z/{j75)

5(5%%9¢“@p@1%?mwn2“p)élwwmu»“ﬂ

(b P@)* "+ 2PE) s

whereb andg are as in Lemma_12.12. Combining this with Corollary 12.9 ardoeing analo-

gously to the proof of Theorem 12]17, we have the followirsute

Theorem 12.22.For a universal constant € [1,c0), if Pyy satisfies Conditioh 1210, is
classification-calibrated and satisfies Condition 1243, € F, ¥, is as in(12.15) b and g
are as in Lemma12.12, an@2.39)is satisfied withf = ¢ constant, then for any < (0, 1),
letting B, and C;, be as in Theorem IZ.1B5; = min { 1_2<a,1)(21ﬂ<1 =7 LOg ( )} Cs =
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min {1_26+1,p, Log (\ij(a)> }, andd = 0 (ac®), if

oo ((al) (35) ™ wire)

e ((W;@) ( ;j;;)l‘ﬂ s qﬁ Log(1/0)

. ql72p Bsblfp ahe® 1+(1-8)(1-p) N Osglfpaega
— \(1-p)? e(e)r ) \ Wile) Wy(e)tte
afs®

+c (ngLog(Bg /9) (m> o + 0CyLog(Cy /) (%)) :

then, with arguments, «, andn, and an appropriates function, Algorithm 1 uses at most

unlabeled samples and makes at moedabel requests, and with probability at least— 4,
returns a functiorh, with er(h) — er(h*) < e.

In this case, compared to Theorém 12.20, in terms of the asfimplependence ox the
sufficient sizes for botl andn here may be smaller by a factor@f((esa)(lfﬁ)“*p)), which
may sometimes be significant, though not quite as dramatefiaement as we found under
(12.40) in Theorerh 12.21. As with Theor€ém 12.21, whén = o(1/¢), the size ofu indicated
by Theoreni 12.22 is smaller than the known result¥Bn, (F, Z,,) from Theoreni 12.19.

12.5.6 Remarks on VC Major and VC Hull Classes

Another widely-studied family of function classes inclsdéC Major classes. Specifically, we
sayg is a VC Major class with index if d = ve({{z : g(z) > t} : g € G,t € R}) < oc.
We can derive results for VC Major classes, analogously ¢écatbhove, as follows. For brevity,
we leave many of the details as an exercise for the readeramyoC Major clasgy C G*
with indexd, by reasoning similar to that of Génand Koltchinskiil[2006], one can show that if

F = /I, > F(G) for some measurablé C X x ), then for any distributior? ande > 0,

InN (¢||F||p, G, La(P)) < glog (§> log (1) )

€
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This implies that fotF a VC Major class, andclassification-calibrated and either nonincreasing
or Lipschitz, if h* € F andPxy satisfies Condition 12,10 and Condition 12.11, then the condi-
tions of Theorenh 1217 can be satisfied with the probabilityrtabbeing at least — ¢, for some

u=0 (% + \I/g(e)/H) andn = O <% + 0&“%(&)5‘2), whered = 6(ae®), and

O(-) hides logarithmic and constant factors. Under Conditio1®ith 5 as in Lemma 12.12,
the conditions of Corollary 12.9 can be satisfied with the plolity bound being at leadt— ¢,

forsomeu = 0 ((52) (¢5) ) andn =0 ((45) ")

For example, fortt = [0, 1] and F the class of all nondecreasing functions mappigo

[—1,1], F is a VC Major class with index, and#(0) < 2 for all distributions?. Thus, for
instance, ify is nondecreasing arids the quadratic loss, thért € F, and Algorithm 1 achieves

excess error ratewith high probability for some: = O (¢2*~3) andn = O (e3e7D).

VC Major classes are contained in special typeg©fHull classes, which are more generally
defined as follows. Lef be a VC Subgraph class of functions&nwith bounded envelope, and
for B € (0,00), let F = Bconv(C) = {x = By Ahi() s 32 NI <1,k € (C} denote the
scaled symmetric convex hull &f; thenF is called a VC Hull class. For instance, these spaces
are often used in conjunction with the popular AdaBoost legrmlgorithm. One can derive
results for VC Hull classes following analogously to the ahaising established bounds on the
uniform covering numbers of VC Hull classes [see van der Maad Wellner, 1996, Corollary
2.6.12], and noting that for any VC Hull clagswith envelope functior’, and anyi/ C X, F,
is also a VC Hull class, with envelope functibti,,. Specifically, one can use these observations
to derive the following results. For a VC Hull clags = Bconv(C) with d = 2ve(C), if £ is
classification-calibrated and Lipschitz; € F, andPxy satisfies Condition 12.10 and Condi-
tion[12.11, then the conditions of Theorem 12.7 can be sadisgifith the probability bound being
at leastl — ¢, for someu = O ((Qsof)fi2 \114(5)%’2) andn = O ((950‘)2%2 \114(5)%’2) un-
der Condition 1213, witht as in Lemma& 12.12, the conditions of Corollary 12.9 can befoedi
with the probability bound being at least— 4, for someu = O <(L> (£>1—ffz> and

Wy(e) Wy(e)
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2
o ~ e d+2
n=0 ((w;a))

any practical implications, since we do not know of any exkespf VC Hull classes where these

). However, it is not clear whether these results for VC Hudkslkes have

results reflect an improvement over a more direct analysisRi¥l, for these scenarios.

12.6 Proofs

Proof of Theoreri 121 7Fix anye € (0, 1), s € [1, 00), valuesu; satisfying (12.1R), and consider
running Algorithm 1 with values of. andn satisfying the conditions specified in Theorem 12.7.
The proof has two main components: first, showing that, widi lprobability,2* € V' is main-
tained as an invariant, and second, showing that, with highability, the set” will be suffi-
ciently reduced to provide the guarantee/oafter at most the stated number of label requests,
given the value of: is as large as stated. Both of these components are served folltdwing
application of Lemma124.

Let S denote the set of values of obtained in Algorithm 1 for whichog,(m) € N. For
eachm < S, let V™ and Q,, denote the values of and Q) (respectively) upon reaching
Step 5 on the round that Algorithm 1 obtains that valuergfand letV(™ denote the value
of V upon completing Step 6 on that round; also dendte = DIS(V ™) and£Z,, = {(1 +
m/2,Yiyms2),-- -, (m,Yy)}, and defind’() = F andD, = DIS(F).

Consider anyn € S, and note thath, g € V™,

(|Qm| \ 1) (Rf(h7 Qm) - Rﬁ(.g? Qm))
= % (Re(hp,; L) — Re(9p,; L)), (12.45)
and furthermore that

(1Qu| V)TV ; Qi 8(m)) = SOV Lyn, 5(m)). (12.46)

m )

Applying LemmaIZ} under the conditional distributionegii’ ™), combined with the law of

total probability, we have that, for every € N with log,(m) € N, on an event of probability
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at leastl — 6e=*(™ if h* € V(™ andm e S, then lettingU,,, = U, (V},’Z); L‘m,é(m)), every

hp,, € ng) has

Re(hp,,) — Re(h*) < Re(hp,,; Lm) — Re(h*; L) 4 Up, (12.47)
Re(hp,; L) — min  Re(gp, : L) < Re(hp, ) — Re(h*) + Uy, (12.48)
gD,nGVDT:I

and furthermore
U,, < U, (Vg”;);ny,m/z,ﬁ(m)) . (12.49)

) 652", for everym € S

By a union bound, on an event of probability at least Zioff(“fs
with m < u;_andh* € V™, the inequalities(12.47). (12}48), afd (12.49) hold. Qat event
E.

In particular, note that on the eveft for anym € S with m < u;. andh* € V™, since

h*p,, = h*, (12.4%),[(12.48), and (12.A6) imply

(0l v1) (Ru5Qu) — i, Re(5i2)

m .
2 9D €V
mo b (). .

so thath* € V(™ as well. Sincei* € V@, and everyn € S with m > 2 hasV (™ = y(m/2),
by induction we have that, on the evefit everym € S with m < w; hash* € V(™ and
h* e V™ this also implies tha{{12.47), (12148), ahd (12.49) altHor these values of: on
the eventt.

We next prove by induction that, on the evéntvj € {jo — 2,50 — 1, js, ..., je}, if u; €
SuU{1}, then\?&j’_) C [FI(2779;0) andV ) C F (€,(277);m). This claim is trivially satisfied
for j € {j, — 2,7, — 1}, since in that casfF|(277;¢) = [F] D V&i) and F(&,(277);m) = F,
so that these values can serve as our base case. Now takeramhiative hypothesis that, for

somej € {js...,Jc}, if uj_o € S U{1}, then on the evenk, ‘71()?72) C [F](2*7;¢) and

j—2
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Vi-2) C F(&(2277);n), and suppose the evehtoccurs. Ifu; ¢ S, the claim is trivially
satisfied; otherwise, suppose € S, which further implies:;_, € S U {1}. Sinceu; < u;_, for

anyh € V), (2.4T) implies
2 (Ralho,,) = Ra(h)) < Z- (Relho, 3 £a,) = Re(h £,) + U )
Since we have already established thiat V (%), (12.45%) and{12.46) imply
(Rg(hDu L4) = Ra(W; £4,) + Uy )
= (1Qu, |V 1) (Relh: Qu,) = Rel: Qu)) + DV Quy 5(1y)))
The definition ofl/ (%) from Step 6 implies
(1Qu, | V1) (Rehs Qu,) = Rall'3Qu,) + T VE): Qu, 8(0,)
< (1Qu ] v 1) (200V; Quy 5(w))
By (12.46) and[(12.49),
(1Qu, | v 1) (200(V ) Quy,8(u7)) ) = w300, < u T (Vs Py /2, 5wy
u; ¢ U 9 = Uj U < U;Uyg Duj ) XY;UJ/ 75<uj) :
Altogether, we have that/h € V (),
Re(hp,,) — Re(h*) < 20, (v Py )2, s(u])> (12.50)

By definition of M,, monotonicity ofm — Uy(-, -; -, m, -), and the condition on; in (IZ12), we
know that

U (Fj, 2579 Py uj /2, 8(uy)) < 27971

The fact that:; > 2u;_,, combined with the inductive hypothesis, implies
V) C V-2 C F(€,(2277);m).
This also impliesD,,, € DIS(F(€,(2*77);n)). Combined with[(IZ]7), these imply
U (V52,227 Py /2, 8(uy) ) <2797,
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Together with[(126), this implies
7, (V) (923 py. 9 (. —j-1
Ug VDuj (2 ,E),ny,u]/2,5(u]) §2 .

(

The inductive hypothesis |mplld$;” = (22 J; 0), which means

Ug( ny,u]/Q s(u])> §2_j_1.
Plugging this into[[I2.50) implies/h € V%),
Re(hp,,) — Re(h") < 279, (12.51)

In particular, sincé* € F, we always havé?,éji) C [F], so that[[IZ.51) establishes th?é&’j) C
[F)(277; ¢). Furthermore, sincé* € V) on , sign(hp, ) = sign(h) for everyh € V), so
that everyh € V() haser(h) = er(hp,, ), and therefore (by definition &(-)), (IZ51) implies

er(h) —er(h") = er(hp, ) —er(h’) < & (277).

This impliesV (%) C F (£,(277); 1), which completes the inductive proof. This implies that, on

the eventt, if u;. € S, then (by monotonicity o€, (-) and the fact thag,(I',(¢)) < ¢)
V(e - F(Sg(Q_jE); 01) - .F(gg(rg({f)); 01) - JT"(S; 01).

In particular, since the update in Step 6 always keeps at tegselement i/, the function
h in Step 8 exists, and hds € V() (if uj. € S). Thus, on the evenk, if u;. € S, then
er(h) — er(h*) < e. Therefore, since: > u,_, to complete the proof it suffices to show that
takingn of the size indicated in the theorem statement suffices toagteeu;. € S, on an event
(which includesF) having at least the stated probability.

Note that for anyj € {ji,...,j-} withu;_; € SU{1}, everym € {u; 1+ 1,...,u;} NS
hasV(™ C V(-1); furthermore, we showed above that on the evénif v, ; € S, then
V-1 C F(&4(27);m), so thatDIS(V ™) C DIS(V®™-1)) C DIS(F(&(2"7);m)) C U,.
Thus, on the event, to guarantee;. € S, it suffices to have

je uj
n>y" > Iy(X
j=je m=uj_1+1
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Noting that this is a sum of independent Bernoulli randomalads, a Chernoff bound implies

that on an evenk’ of probability at least — 2%,

Je Uj Je Uj
SO mnssrad Y Pw
J=Jje m=uj_1+1 Jj=je m=uj_1+1
Je Je
=5+ 2e Z PU;)(uj —uj_q) < s+ 2e Z P(U;)u;.
J=Je J=Je
Thus, forn satisfying the condition in the theorem statement, on tlenek N £, we have
u;, € S, and therefore (as proven above)h) — er(h*) < e. Finally, a union bound implies that
the eventty N E’ has probability at least
10g2(uj5) oy
1—27— Y e,
=1

as required. [

Proof of Lemm&12I8If P (DISF(H)) = 0, thengy(H;m, P) = 0, so that in this casey),
trivially satisfies [I2)5). Otherwise, suppoBgDISF(#)) > 0. By the classic symmetrization
inequality [e.g., van der Vaart and Wellner, 1996, Lemma12,3

¢e(H,m, P) < 2E H@(H;Q,EM)H :

where ~ P™ andZp, = {&,...,&,} ~ Uniform({—1,+1}") are independent. Fix any
measurablé/ O DISF(H). Then

E H@(H;Qﬁ[m])ﬂ =E U@(’H;Q ﬂU,E[IQmuu)‘ @ ﬁZ/{|] :

(12.52)

whereZ ) = {&,..., &} foranyq € {0,...,m}. By the classic desymmetrization inequality
[see e.g., Koltchinskil, 2008], applied under the condigibdistribution giveri@ N /|, the right
hand side of[(12.52) is at most

E [2¢(H, |Q NU|, Py)

+ sup |Re(h; Puy) — Re(g; Pu)l
h,geH

|Q2”| (12.53)

E|VQnd]
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By Jensen’s inequality, the second term(in (1P2.53) is at most

$QMWB04Ma&mﬂ%Qsmmﬁm %?—DM#HJ%

Decomposing based a@ N |, the first term in[(12.53) is at most

& (20,4, [Q ), R0 Y]

11Q Ul > (1/2 ety
+20PUP (|Q NU| < (1/2)PU)m). (12.54)

Since|Q@ NU| > (1/2)P(U)m = |Q NU| > [(1/2)P(U)m], andg.(H, q, P,) is nonincreasing

in ¢, the first term in[(12.54) is at most

QNY|
m

200(H, [(1/2) PU)m], F)E { ] = 20u(H, [(1/2) PU)m). Pu) PUA),

while a Chernoff bound implies the second terniin (12.54) imast

20P(U) exp {—PU)m/8} < %Z

Plugging back into(12.53), we have
do(H,m, P) < 4d¢o(H, [(1/2)P(U)m], Py)P(U) + 3%5 + 2Dy(H; P)\/g (12.55)

Next, note that, for any > D,(H; P), \/ﬁ > Dy(H; By). Also, ifid = U’ x Y for some

U' O DISF(H), thenh*p, = h*p, so that ifh*p € H, (IZ.3) implies

(M, [(1/2)PU)m], Pu) < or < , H; [(1/2)P(U)mlpu> : (12.56)

o
VPU)
Combining [12.5b) with[(12.56), we see thzoatsatisfies the condition (12.5) of Definition 1R.5.

Furthermore, by the fact that satisfies[(12]4) of Definition 12.5, combined with the mono-
tonicity imposed by the infimum in the definition éf, it is easy to check tha{i@ also satisfies
(IZ2) of Definition[IZ.b. In particular, note that ag§/ C H' C [F] andid” C X have
DISF(H},,) € DISF(H'), so that the range @f in the infimum is never smaller fok = #;,.,

relative to that for{ = H'. O

268



Proof of Corollary{IZ.9.Let ¢, be as in Lemm&12.8, and define for anye N, s € [1, ),
¢ € [0,00], andH C [F],

ﬁé(Ha C7 PXY; m, S)

S

=K (CZZ(De([HKC;E)),H;m,PXY) FDUHICG O]+ ﬁ_S) '

m m
That is,(ofg is the function/, that would result from usind} in place ofg?;g. Letid = DISF(H),

and suppos® (/) > 0. Then sinceDISF([H]) = DISF(#) implies
De([H](¢: 6)) = De([HI(C: ) Pu) v/ PWU)
= Del([H)(C/PU); £, Pu); Pu)V/PU),
a little algebra reveals that for > 2P(14) ",
UM, G Py m, s) < 33PUU(H, ¢/PU); Pu, [(1/2)PU)m], 5). (12.57)

In particular, for; > j,, takingH = F;, we have (from the definition oF;) &/ = DISF(H) =
DIS(H) = U,, so that wherP(U;) > 0, any

9—j—1 22-j
33P(U;) P(U;)

m Z 27)(1/{]‘)_11\0/13 ( ;E,Puj,g(Qm))

suffices to make the right side df (12/57) (with= §(2m) and¢ = 2%77) at most2=7~1; in
particular, this means taking; equal to2m V u;_; V 2u;_, for any suchm (with log,(m) €
N) suffices to satisfy[{12.12) (with thel, in (IZ.12) defined with respect to tl?ié function);
monotonicity of 1\0/[[( ,%;E,Puj,ﬁ@m)) implies (12.14) is a sufficient condition
for this. In the special case wheR(l(;) = 0, Uj(F;,2>/; Pxy,m,s) = K2, so that taking
u; > K05(u;)22 v, V2u;_, suffices to satishy{I2:12) (again, with thé in (IZ.12) defined

in terms of(fsg). Plugging these values into Theorem 12.7 completes thef pro O

Proof of Theoreri1Z.16Letj. = [log,(1/¥,(¢))]. Forj, < j < j., lets; = Log (48(2+§’s—j) )

and definas; = 2°&2(“))1 where

U; _J (b2j(2—5) + ZQJ') (VC (g}.) Log (XK(T) + Sj) , (12.58)
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for an appropriate universal constante [1,00). A bit of calculus reveals that fof, + 2 <

J < g u; > u;._l andu;. > 2u;_2, so thatu; > w;_; andu; > 2u;_, as well; this is also
trivially satisfied forj € {j,, jo + 1} if we takeu;_» = 1 in these cases (as in Theorem 12.7).
Combining this fact with[(12.31)[ (12.8), and (12.9), we fihdtt for an appropriate choice of
the constant’, theseu; satisfy [12.1P) when we defirtesuch that, for every € {j,, ... e b

VYm € {21[,]',1, R ,UJ} with logz(m) S N,

§(m) = Log <1210g2 <4uj/m;2 (2+: =) ) |

Additionally, lets = log,(2/9).

Next, note that, sinc#&,(c) < I';(¢) andu; is nondecreasing i,

uj, < uz, < 26 (‘1’4(:)2_5 + \Ilj(g)) (ve (Gx) Log (xel) + Log(1/9)),

so that, for any: > 26¢/, we haveu > u;_, as required by Theorem 12.7.
Fori{; as in Theorerh 127, note that by Condition 12.10 and the definiff 6,

P () =P (DIS (F (& (227) 1)) <P (DIS (B (k" 0t (2:7)"))

< fmax {a& (22_j)a ,aeo‘} < fmax {a\Ifg_l (22_j)a , aaa} .

Becausel, is strictly increasing o0, 1), for j < j., ¥, ' (2277) > ¢, so that this last expression

is equal todal, ' (2277)”. This implies

27’(%‘)%‘ < XE:P (U5) u;

J=Je J=Je
i
<Y Ut (2279)" (020479 4 027) (Ay + Log (24 - — §)) - (12.59)
J=Je

We can change the order of summation in the above expresgietting: = j. —j and summing

from0to N = j. — j,. In particular, sinc&’ < 2/0,(¢), (IZ.59) is at most

N . — .
= e [(4p205=2) 202
Ou,t (22772 Ay + Log(i +2)) . 12.60
;a ; < ) (m((5)2—6+qf@(g))< 1+ Log(i + 2)) ( )
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Sincex — W, '(z)/z is nonincreasing o0, o), ¥, ' (22—5621') < 22yt (2—36), and
since¥, ! is increasing, this latter expression is at n3st ¥, ' (¥, (¢)) = 2i+2¢. Thus, [IZ.6D)

is at most
b21(a+5 2) £2i(a—1)

16afe” Z( = \Mg) )(A1+Log(i+2)). (12.61)

In general,Log(i + 2) < Log(N + 2), so that>¥ 21+6-2 (A, + Log(i +2)) < (A +
Log(N+2))(N+1)and>_ N 2/@=1 (A, 4 Log(i 4 2)) < (A,+Log(N+2))(N+1). Whena+
B <2, wealso havé )Y 2ia+6-2) < S~ gilets=2) = —__ 1 andy "} 21 tF- 2D Log(i +
2) <>, 2"(‘”5*2)L0g(i+2) < @ Log (W) Similarly, if « < 1,37 2i@~1 <
Z;’io gite=1) — 1 and likewise} Y , 2/ DLog(i + 2) < 32,21 DLog(i + 2) <

2 _Log <1 5= 1>) By combining these observations (along with aconventlaniehm =

oo whena = 1, andm = oo Whena = 8 = 1), we find that[(12.61) is

o b(Al + LOg(Bl))Bl Z(Al + Log(C’l))C’l
S abe ( T L )

Thus, for an appropriately large numerical constaminyn satisfying (12.3B) has

~

n>s+26273 g,

J=Je

as required by Theorem 12.7.
Finally, we need to show the success probability from Thedf2.7 is at least — ¢, for 5

ands as above. Toward this end, note that
lng(uJE

logy (u;)

By ’

N2 ~ A 2
J=Je i=logy (u;_ 1)+12(2+10g2(uj) _Z> (2+]€_])

.75 logy UJ/UJ 1)—1 5
_2 Z 22+ )2 (2+J. — j)°

- )
<Z <Zm<5/2.

2
J=Je 2+]8_j) t=0
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Noting that2—° = ¢/2, we find that indeed

logy (uj. )

1—9275 — Z 6e2) > 1 _ 5.
=1

Therefore, Theorein 12.7 implies the stated result. O

Proof Sketch of Theorelm 1Z11The proof follows analogously to that of Theorém 12.16, with
the exception that now, for each integewith j, < j < j., we replace the definition of; from
(IZ58) with the following definition. Letting; = vc(G#)Log ((Z/b) (a921\1151(22‘j)a)6),

define

u; = <b2j(2_5) (aQ\I/ZI(ZQ_j)a)l_B + €_2j> (c;+s;),

wherec’ € [1, c0) is an appropriate universal constant, ands as in the proof of Theorem 12]16.
With this substitution in place, the valuesands, and functiors, are then defined as in the proof
of Theoreni-12.16. Since — ¥, '(1/z) is nondecreasing, a bit of calculus reveals> u;,_,
andu; > 2u;_,. Combined with[(12.35)[(12.9), (12.8), and Lemma_1P.13 itmiplies we can
choose the constant so that these; satisfy [12.14). By an identical argument to that used in

Theoren 12.16, we have

log, (uje

)
1—275— Z 6e ) > 1 4.
=1

It remains only to show that any valueswfndn satisfying [12.36) and (12.B87), respectively,

necessarily also satisfy the respective conditions.fandn in Corollary[12.9.

Toward this end, note that sinee— ¥, '(1/z) is nondecreasing off), o), we have that

b(afe)' " l
<y < .
uj. <up S ( V()2 + ,(2) Ao

Thus, for an appropriate choice a@fanyu satisfying (12.36) has > u;_, as required by Corol-
lary[12.9.
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Finally, note that fot/; as in Theorern 127, and = j. — j,

ip( i < Zaeqf (227)
J=je J=je

< b (ab27 w1 (2279)?) 7 (Ay + Log (i + 2))

J=Je

+ Zgaé’Qj\I/[l(QQ_j)“ (As + Log (i; +2)) .

J=Je
By changing the order of summation, now summing over valugsfodm 0 to N = Je—7je <
log,(40/W,(¢)), and noting2’s < 2/W,(e), and ¥, }(279-22+1) < 2%+ie for i > 0, this last

expression is

N (92zo¢ 1 2-8
Z b <a ) (A + Log (i + 2)) (12.62)

N
6)21(a 1
Z A2+Log(z'+2)).

Considering these sums separately, we Baye, 2/ 5) (A, + Log(i+2)) < (N +1)(Ay+
Log(N +2)) and>_Y , 2/@=D (A, 4 Log(i 4 2)) < (N + 1)(Ay + Log(N + 2)). Whena < 1,
we also havey " 21D (A, 4 Log(i + 2)) < Y202, 21 DA (A, + Log(i + 2)) <

—enaa Log (1_2@}1)(27@) + e As, and similarlyy Y 267D (A, +Log (i+2)) <
A2 + 755 Log (1 ST ) Thus, generallyy"Y | 2/=DC=8) (A, + Log(i + 2)) <
By(Ag + Log(B,)) andY" N, 21D (Ay 4 Log(i +2)) < Ca(A; + Log(Cy)). Plugging this into

(12.62), we find that for an appropriately large numericalstantc, anyn satisfying [12.3[7) has
n > Y’ P(U;)u,, as required by Corollafy 12.9. O

J=Je

12.7 Results for Efficiently Computable Updates

Here we include more detailed sketches of the argumentibpaol computationally efficient

variants of Algorithm 1, for which the specific results provabove for the given applications
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remain valid. Throughout this section, we adopt the notaticonventions introduced in the
proof of Theoreni 1217 (e.g¥/™, V™, Q,., L., S), except in each instance here these are

defined in the context of applying Algorithm 1 with the resjpeestated variant of .

12.7.1 Proof of Theorem 12.16 unde12.33)

We begin with the application to VC Subgraph classes, fisnahg that if we specif@(v; Q,m)
as in [12.34), the conclusions of Theorem 12.16 remain vBlidanys function (to be specified
below), and fix any value of € (0, 1). First note that, for anyn with log,(m) € N, by a Cher-
noff bound and the law of total probability, on an evéit of probability at least — 2! (™) if

m € S, then
(1/2)mP(Dyn) — /5(m)mP(D,,) < |Qm| < 5(m) + emP(Dy,). (12.63)

Also recall that, for anyn with log,(m) € N, by Lemm&d 124 and the law of total probability,

on an eveniz,, of probability at least — 6e=*(™), if m € S andh* € V™, then

(10m] V1) (w*; On)— inf Rg<g;@m>)

geVv(m)

= % (Rg(h*, ,Cm) — inf Rg(gDm; ,Cm)>

9D, EV,;(;ZL)

< %Ug (V[(,:);ny,m/Q,é(m)> (12.64)
andvh € V(m),

5 (Re(lhp,) = Re(h"))

< (Rg(th; L) — Re(h*: L) + U (vlg?; ny,m/z,g(m)) A e‘)

2 ~€
= |Qm| Re(h; Qm) — Re(h*; Q) + % (@ (vg?; Pxy,m/2,5(m)) A é)
< (1Qul VT (V5 Qo) + 5 (T (VY Pryym/2.8(m) ) AT) . (12.65)
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Fix a valuei. € N (an appropriate value for which will be determined below) et y, =

Xe(Pe(e)). Form € N with log,(m) € N, let

1

2-p3

Tim) = cx (2 (ve(Gr)Loz() + 5(m) )
+ 02% (Vc(gf)Log(XgZ) +§(m)) ,

for an appropriate universal constante [1,c0) (to be determined below); for completeness,
also defineTg(l) = (. We will now prove by induction that, for an appropriate \&lof the
constantc, in (IZ:33), for anym’ with log,(m’) € {1,...,i.}, on the evenf)%"") =" £, n
EY.,,if m' € S, thenh* € V),

VER) € 1] ey 0) € [F)To(m'/2) v We(e): ),

V) C F(&(mya)i o) € F(E,2To(m'[2) V Wi (e)); ),

Q| V 1

Ug (Vé:i),PXy,m’/Z,é(m’D /\ES m/—/2

(7 (VO; Q') A D)
and if 4, o > Wy(e),

|Qm” V1
m' /2

(T} <v<m’>; Qm,,m') A Z) < Ty(m).

As a base case for this inductive argument, we note thatfoe= 2, we have (by definition)
Ymi 2 = £, and furthermore (ity A ¢z > 2) T,(V®:Q,,2) > ¢ andT,(1) > ¢, so that the
claimed inclusions and inequalities trivially hold. Nowr the inductive step, take as an inductive
hypothesis that the claim is satisfied faf = m for somem € Nwith log,(m) € {1,...,i.—1}.

Suppose the evemiojf(m) Ey N EY,, oceurs, and thatm € S. By the inductive hypothesis,

combined with[(I2.64) and the fact tha®,,| vV 1)R¢(h*; Q,,) < (m/2)¢, we have

(10m] v 1) (sz*; On)— inf Rg<g;@m>)
geVv(m)

m

< 5 (0 (VB2 Py sm/2.80m) ) A L) < (1Qul v T3 (VI Q)
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Thereforeh* € V™ as well, which implies* € V2™ = V(™) Furthermore, by[{12.65), the
inductive hypothesis, and the definition16f™ from Step 6\h € V&™) = V(™)

|Qm| V1
m/2

and if4,,,/2 > ¥,(¢), then this is at mosa7;(m).

Ry(hp, ) — Re(h*) < 2 (n (VO Q) A E) ,

m/2

Since?,, = 2= (Tg (VO Qpym) /\Z), andRy(hp,,,) < Re(hp,,) for everyh €
VEmd, we haveV[()Z:) C [FlGm: 0) C [FI2T(m) Vv ¥,(e); £). By definition of €,(-), we
also haveer(hp,, ) — er(h*) < &i(4m) for everyh € V™; sinceh* € V™, we have
sign(hp,,, ) = sign(h), sothaer(h)—er(h*) < &,(3,,) as well: thatisy @™ C F(E&y(Y);m) C
F(&4(2Ty(m) V ¥y(€)); o). Combining these facts with (12.5), (12.25), Condifion TRrfidno-

tonicity of ve(Gy,) in botht/ and#, and the fact tha{F(G,.cm 3, < PP(Dan), We

Daom,

have that

B ) ve(Gr)Log (%) +5(2m)
U, <VD2: ;ny,m,§(2m)> < e\ VA5, WZ’"

ve(Gr)Log (%) +5(2m)
+ 01€ n:m

. (12.66)

for some universal constaat € [1, o). By (12.63), we hav® (D,,,) < 2(|Qa| +§(2m)), SO
that the right hand side df (12J66) is at most

2mbiL,

ve(Gr)Log (M) +5(2m)
e\ bim E

ve(Gr)Log (“U9nbSEm) ) 4 5(om)

+ Clg QTW;Lbﬁm
5 ve(Gr)Log (W) © 5(2m)
S 8C1 bfA}/m 2 B
m
_ve(Gr)Log (W) ©s2m)
+ 8016 m |

2m

Thus, if we take, = 8¢; in the definition ofl} in (I2.33), then we have

- N _ ml V1 /.~
O (Vs Prcy,m,5(2m) ) AT < % (72 (VE™; Qom, 2m) A7)

276



Furthermore[(12.63) implig&)2,,| < §(2m)+2emP (D). In particular, ifs(2m) > 2emP(Day,),

then

25(2m){

)

m

(2m) + 2677”L73(D2m)Z <
m m

(70 (V": Qo 2m) A E) < 2

and taking any;, > 4 guarantees this last quantity is at md$(2m). On the other hand,
if §(2m) < 2emP(Dap), then|Qs,| < 4emP(D2y,), and we have already established that

V@) C F(&y(Am); o), SO that

- (T} (VE™: Qo 2m) A E)

ve(Gr)Log <l73e73(DIS(-7‘1(§£(’:/m)§01)))) +5(2m)
S 801 b’?ﬁ@

bym
2m

ve(Gr)Log <e’3e7>(DIS(f(£e(&m);m)))) +5(2m)

B
+ 861£ bim

o (12.67)

If 4, > Uy(e), then this is at most

2m 2m

8e; (\/b’AYﬁ ve(Gr)Log (3exel) + 5(2m) N ZVc(g]r)Log (3exel) + §(2m)>

2m 2m

< 48¢, (\/bﬁfnvc(gf)LOg (xel) +5(2m) L E—VC(QI)Log (xel) +§(2m)) .

For brevity, letk = Yc@rlosbu+5@m) -~ Aq arqued abovey,, < 27;(m), so that the right hand

2m

side of the above inequality is at most
48v/2¢, ( bT,(m)PK + EK) .

Then sinces(m) < 25(2m), the above expression is at most

1 _ B _
48 - der /e <\/b ((bK)ﬂ v EK) K+ EK) . (12.68)
If /K < (bK)7 7, then [IZ:6B) is equal

48 - 4e1 /o ((bK)ﬁ + ZK) .
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On the other hand, K > (bK)ﬁ, then [12.6B) is equal

48 - dey\/co <\/m+ ZK)

< 48 - deyv/ey (\/ ((K)2-B(IK)P + ZK) =48 - 8¢/l K.

In all of the above cases, taking = 9 - 2'4¢? in the definition of7} yields

VL AN
‘QQTJL (Te (V(Z ): Qam, 2m) /\E) < Ty(2m).

This completes the inductive step, so that we have proverthkeaclaim holds for alln’ with
log,(m') € {1,...,i.}.

Let jo = —[logy(0)], j- = [logy(1/W,(€))], and for eachy € {j;,...,5.}, lets; =
log, (M) define

m)y = 32c3 (b2~ + 127) (ve(Gr)Log(xel) + 5;) .

and letm; = 2M°&2(m)1 Also definem;, , = 1. Using this notation, we can now define
the relevant values of the function as follows. For each € {j,,...,j.}, and eachn €

{m;_1+1,...,m;} with log,(m) € N, define

. 16 log, (4m;/m)*(2 + j- — j)°
5(m) = log, ( 5 ) ’

In particular, taking. = log,(m;_), we have thaRT,(2~1) < U,(e), so that on the event
N By N EY,,, if we have2s € S, thenh € V) C F(E/(2Ty(2=7) V Uy(e)); o) =
F(Eo(Ty(e)); o) € F(U7H(Wy(e)); 1) = F(e;m), so thater(h) — er(h*) < e.

Furthermore, we established above that, on the eﬂi@l Ey N Ey.y, for everyj €
{jo, ..., Je} with m; € S, and everym € {m;_, + 1,...,m;} with log,(m) € N, V(™ C
F(&o(2Ty(m/2) V Wy(e));01) € F(Ex(2Ty(mj_1) V Uy(e)); ). Noting that2Ty(m, ;) < 2!,

we have

38 mj
Y@l >0 D Ins@ese - (Xm)-

mES:mSm;E J=je m=mj_1+1
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A Chernoff bound implies that, on an evefit of probability at least — ¢/2, the right hand side

of the above inequality is at most

log,(2/0) +262 — ;1) P(DIS(F(Ee(2'7);01)))

J=Je

< log,(2/9) + 2e i m,;P(DIS(F (¥, 1 (277);m))).

J=Je
By essentially the same reasoning used in the proof of The@2h®, the right hand side of this

inequality is
b(Al + LOg(Bl))Bl K(Al —+ LOg(Cl))Cl

S“QEQ( CE T W) )

b 0
- <
mje ~ <\IJK(E)2_/B + \Ilf(g)) Ala

the conditions on: andn stated in Theorern 12,116 (with an appropriate constasuffice to

Since

guaranteer(h) —er(h*) < e on the even’ N(:<;" Fy: N E7,... Finally, the proof is completed

by noting that a union bound implies the evéfin ﬂzf_l Eyi N Ey;., has probability at least

) et 1_g(2i+1 2(oi
_ E (29 —5(2%)

logy (my)

SEE >

J=jei=logy(mj_1)+

)
| 2(2 + logy(my) — 0)2(2 + je — 5)?

Note that, as in Theorefmn_12]16, the functidim this proof has a direct dependence gn
«, andyy,, in addition tob and 5. As before, with an alternative definition &f similar to that
mentioned in the discussion following Theorem 12.16, itasgble to remove this dependence,

at the expense of the same logarithmic factors mentionedeabo
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Chapter 13

Online Allocation and Pricing with

Economies of Scale

Abstract

HAIIocating multiple goods to customers in a way that maxesizsome desired objective is a
fundamental part of Algorithmic Mechanism Design. We cdesihere the problem of offline

and online allocation of goods that have economies of soaligcreasing marginal cost per item
for the seller. In particular, we analyze the case whereocwmsts have unit-demand and arrive
one at a time with valuations on items, sampled iid from someawn underlying distribution

over valuations. Our strategy operates by using an iniaahe to learn enough about the
distribution to determine how best to allocate to futuretcoeers, together with an analysis of
structural properties of optimal solutions that allow faiform convergence analysis. We show,
for instance, if customers have binary valuations over steamd the goal of the allocator is to
give each customer an item he or she values, we can efficigrittjuce such an allocation with
cost at most a constant factor greater than the minimum adr allocations in hindsight, so

long as the marginal costs do not decrease too rapidly. VWegale a bicriteria approximation

1This chapter is based on joint work with Avrim Blum and YisHdgnsour.
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to social welfare for the case of more general valuationtions when the allocator is budget

constrained.

13.1 Introduction

Imagine it is the Christmas season, and Santa Claus is taskiedNacating toys. There is a
sequence of children coming up with their Christmas listogéthey want. Santa wants to give
each child some toy from his or her list (for simplicity, assuall children have been good this
year). But of course, even Santa Claus has to be cost-conssmiee wants to perform this
allocation of toys to children at a near-minimum cost to rethall this the Thrifty Santa Claus
Problem). Now if it was the case that every toy had a fixed ptitis would be easy: simply
allocate to each child the cheapest toy on his or her list aoekron to the next child. But here
we are interested in the case where goods have economiesalef $or example, producing a
millon toy cars might be cheaper than a million times the abgiroducing one toy car. Thus,
even if producing a single toy car is more expensive than glesiglmo doll, if a much larger
number of children want the toy car than the Elmo doll, theimum-cost allocation might give
toy cars to many children, even if some of them also have thekloll on their lists.

The problem faced by Santa (or by any allocator that mustfgaticollection of disjunctive
constraints in the presence of economies of scale) makes sehoth offline and online settings.
In the offline setting, in the extreme case of goods such awad where all the cost is in the first
copy, this is simply weighted set-cover, admittin@ @og n) approximation to the minimum-cost
allocation. We will be interested in the online case wherg@mers are iid samples from some
arbitrary distribution over subsets of item-gefi.e., Christmas lists), where the allocator must
make allocation decisions online, and where the marginst cbgoods does not decrease so
sharply. We show that for a range of cost curves, includiegtise that the marginal cost of copy
t of an item ist~*, for somex € [0, 1), we will be able to get a constant-factor approximation so

long as the number of customers is sufficiently large contpréhe number of items.
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One basic observation we show is that, if the marginal cast®i@n-increasing, there is al-
ways an optimal allocation that can be described as an oglefithe possible toys, so that as
each child comes, Santa simply gives the child the first tayhé@ordering that appears on the
child’s list. Another observation we prove is that, if thengiaal costs do not drop too quickly,
then if we are given the lists of all the children before detieing the allocation, we can effi-
ciently find an allocation that is within a constant factottted minimum-cost allocation, as op-
posed to the logarithmic factor required for the set-covebfem. Since, however, the problem
we are interested in does not supply the lists before theatitans, but rather requires a decision
for each child in sequence, we rely on the iid assumption aeddeas from machine learning,
as follows: after processing a small initial number of cteld (with no nontrivial guarantees on
allocation costs for these), we take their wish lists asesgntative of the future children, and
find the optimal solution (in hindsight) for those, whiledteg each of these children as repre-
senting many future children (supposing we know the totahloer of children ahead of time).
We then take the ordered list of toys from this solution, almtate according to this preference
ordering in the future (allocating to each child the eatlteg in the ordering that is also on his
or her list). We show that, as long as we take a sufficientiydarumber of initial children, this

procedure will find an ordering that will be near-optimal &llocating to the remaining children.

More generally, we can imagine the case where, rather tmapleilists of items, the lists
also provide valuations for each item, and we are interastttk trade-off between maximizing
the total of valuations for allocated items while minimigitne total cost of the allocation. In this
case, we might think of the allocator as being a large compathymany different projects, and
each project has some valuations over different resouecgs fypes of laptops for employees
involved in that project), where it could use one or anotlesource but prefers some resources
over others. One natural quantity to consider in this cdrigethe social welfare: the difference
between the happiness (total of valuations for the allooatninus the total cost of the allocation.

In this case, it turns out the optimal allocation rule can beatibed by a pricing scheme. In
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another words, whatever the optimal allocation is, thesags exist prices such that if the buyers
purchase what they most want at those prices, they will dgtooduce that allocation. We note
that, algorithmically, this is a harder problem than theliased problem (which corresponds to
binary valuations).

Aside from social welfare, it is also interesting to considevariant in which we have a
budget constraint, and are interested in maximizing tre t@luation of the allocation, subject
to that budget constraint on the total cost of the allocatibturns out this latter problem can be
reduced to a problem known as the weighted budget maximumrage problem. Technically,
this problem is originally formulated for the case in whidtetmarginal cost of a given item
drops to zero after the first item of that type is allocatedridbe set cover reduction mentioned
above); however, viewed appropriately, we are able to féateuthis reduction for arbitrary
decreasing marginal cost functions. What we can then do ismuaigorithm for the weighted
budget maximum coverage problem, and then convert thei@olimto a pricing. As before, this
strategy will be effective for the offline problem, in whichaf the valuations are given ahead of
time. However, we can extend it to the online setting withviduation functions by generating
a pricing based on an appropriately-sized initial sampleaddiation functions, and then apply
that pricing to sequentially generate allocations for #maining valuations. Again, as long as
the marginal costs are not decreasing too rapidly, we caairohh allocation strategy for which
the sum of valuations of the allocated items will be withinastant factor of the maximum

possible, subject to the budget constraint on the cost.

13.1.1 Our Results and Techniques

We consider this problem under two, related, natural oljest In the first (the “thrifty Santa
Claus” objective) we assume customers have bigéry} valuations, and the goal of the seller is
to give each customer a toy of value 1, but in such a way thanmies the total cost to the seller.

We show that so long as the number of buyers large compared to the number of itema&nd
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so long as the marginal costs do not decrease too rapidly éergtel /¢« for some) < a < 1),

we can efficiently perform this allocation task with cost atsha constant factor greater than that
of the optimal allocation of items in hindsight. Note thatdsts decrease much more rapidly,
then even if all customers’ valuations were known up frorg, would be faced with (roughly)
a set-cover problem and so one could not hope to achieveofogtn) times optimal. The
second objective we consider, which we apply to customesshofrary unit-demand valuation,
is that of maximizing total social welfare of customers sabjo a cost bound on the seller; for
this, we also give a strategy that is constant-competitiiie espect to the optimal allocation in

hindsight.

Our algorithms operate by using initial buyers to learn goabout the distribution to de-
termine how best to allocate to the future buyers. In fadredlare two main technical parts of
our work: the sample complexity and the algorithmic aspeEtem the perspective of sample
complexity, one key component of this analysis is examiriiog complicated the allocation
rule needs to be in order to achieve good performance, becaupler allocation rules require
fewer samples in order to learn. We do this by providing a atigrization of what the op-
timal strategies look like. For example, for the thrifty &aiClaus version, we show that the
optimal solution can be assumed wlog to have a simple petiontstructure. In particular, so
long as the marginal costs are nonincreasing, there is alaayptimal strategy in hindsight of
this form: order the items according to some permutationfan@ach bidder, give it the ear-
liest item of its desire in the permutation. This charaetion is used inside both our sample
complexity results and our algorithmic guarantees. Spmedifi we prove that for cost function
cost(t) = St_, 1/7%, for a € [0,1), running greedy weighted set cover incurs total cost at
mostﬁOPT. More generally, if the average cost is within some factothef marginal cost,
we have a greedy algorithm that achieves constant appréigimatio. To allocate to new buy-

ers, we simply give it the earliest item of its desire in tharke permutation. For the case of

general valuations, we give a characterization showingthieaoptimal allocation rule in terms
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of social welfare can be described by a pricing scheme. Hydheére exists a pricing scheme
such that if buyers purchased their preferred item at theses the optimal allocation would
result. Algorithmically, we show that we can reduce to a wig budgeted maximum coverage
problem with single-parameter demand for which there is@knconstant-approximation-ratio

algorithm [Khuller, Moss, and Naar, 1999].

13.1.2 Related Work

In this work we focus on the case of decreasing marginal cbsere have been a large body
of research devoted to unlimited supply, which is implictbnstant marginal cost (e.g., [Nisan,
Roughgarden, Tardos, and Vazirani, 2007] Chapter 13), whergdal is to achieve a constant
competitive ratio in both offline and online models. The cakencreasing marginal cost was
studies in![Blum, Gupta, Mansour, and Sharma, 2011] wherstaahcompetitive ratio where

given.

We analyze an online setting where buyers arrive one at a tsa@pled iid from some
unknown underlying distribution over valuations. Othdated online problems with stochastic
inputs such as matching problems have been studied in atbasi¢Goel and Mehte, 2008,
Mehta, Saberi, Vazirani, and Vazirani, 2007]. Algorithallg, our work is related to the online
set cover body of work where [Alon, Awerbuchy, Azarz, Buchign and Naor, 2009] gave the
first O(log mlogn) competitive algorithm (here is the number of elements in the ground set
andm is size of a family of subsets of the ground set). The problemnstudy are also related to
online matching problems [Devanur and Hayes, 2009, DevandrJain. 2012, Karp, Vazirani,
and Vazirani, 1990] in the iid setting; however our problena ibit like the “opposite” of online

matching in that the cumulative cost curve for us is concatieer than convex.
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13.2 Model, Definitions, and Notation

We have a sef of r items. We have a sé{ = {1,...,n} indexingn unit demand buyers. Our

setting can then generally be formalized in the followingris.

13.2.1 Utility Functions

Each buyer € N has a weight,;; for each itemi € Z. We suppose the vectots. are sampled
i.i.d. according to a fixed (but arbitrary and unknown) disition. In theonline setting we are
interested in, the buyers’ weight vectars. are observed in sequence, and for each one (before
observing the next) we are required to allocate a set of itBms 7 to that buyer. Thaeuitility
of buyer j for this allocation is then defined ag(7;) = maxer, u;;. A few of our results
consider a slight variant of this model, in which we are omguired to begin allocating goods
after some initiab(n) number of customers has been observed (to whom we may alibeats
retroactively).

This general setting is referred to as tlweighted unit demandetting. We will also be
interested in certain special cases of this problem. Iriqudar, many of our results are for the
uniform unit demandaetting, in which every € N andi € 7 haveu;; € {0,1}. In this case,

we may refer to the sef; = {i € 7 : u;; = 1} as the list of items buyer wants(one of).

13.2.2 Production cost

We suppose there apeimulative cost functionsst; : N — [0, oo] for each itemi € Z, where
for ¢t € N, the value otost;(t) represents the cost of producihgopies of itemi. We suppose
eachcost;(-) is nondecreasing.

We would like to consider the case décreasing marginal coswheret — cost;(t + 1) —
cost;(t) is nonincreasing for eache .

A natural class of decreasing marginal costs we will be aapgenterested in are of the
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form ¢~ for a € [0,1). Thatis,cost;(t) = co >0 _, 77°.

13.2.3 Allocation problems

After processing the buyers, we will have allocated some set of it€émgonsisting ofn;(T") =
>_jen Iz, (i) copies of each item € Z. We are then interested in two quantities in this setting:
the total (production) costcost(T") = >, 7 cost;(m;(T)) and thesocial welfareSW (T') =

> jen i (T5).

We are interested in several different objectives withis #etting, each of which is some
variant representing the trade-off between reducing fmtadluction cost while increasing social
welfare.

In theallocate allproblem, we have to allocate to each buyet N one itemi € S; (in the
uniform demand setting): that iS//(T') = n. The goal is to minimize the total costst(7),
subject to this constraint.

Theallocate with budgeproblem requires our total cost to never exceed a given lirfiie.,
cost(T") < b). Subject to this constraint, our objective is to maximize social welfare&SW (7).
For instance, in the uniform demand setting, this corredpdo maximizing the number of
satisfied buyers (that get an item from their Sgt

The objective in themaximize social surplugroblem is to maximize the difference of the

social welfare and the total cost (i.6W (1") — cost(T)).

13.3 Structural Results and Allocation Policies

We now present several results about the structure of optand non-optimal but “reasonable”)
solutions to allocation problems in the setting of decregsnarginal costs. These will be impor-
tant in our sample-complexity analysis because they al®¥odocus on allocation policies that

have inherent complexity that depends only on the numbé&enfsand not on the number of
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customersallowing for the use of uniform convergence bounds. Tha Emall random sample
of customers will be sufficient to uniformly estimate thefpemance of these policies over the

full set of customers.

13.3.1 Permutation and pricing policies

A permutation policyhas a permutation overZ and is applicable in the case of uniform unit
demand. Given buyef arriving, we allocate to him the minimal (first) demandeadnta the
permutation, i.e.arg mincs; (7). A pricing policy assigns a pricerice; to each itemi and is
applicable to general quasilinear utility functions. Giveuyer; arriving, we allocate to him
whatever he wishes to purchase at those pricesai@maxr, u;(1}) — ZieTj price;

We will see below that for uniform unit demand buyers, thdveags exists a permutation
policy that is optimal for the allocate-all task, and for gead quasilinear utilities there always
exists a pricing policy that is optimal for the task of maxamg social surplus. We will also
see that for weighted unit demand buyers, there alwaysseaigtricing policy that is optimal
for the allocate-with-budget task; moreover, for any even-nptimal solution (e.g., that might
be produced by a polynomial-time algorithm) there existsieing policy that sells the same
number of copies each item and has social welfare at leasighs(énd can be computed in

polynomial time given the initial solution).

13.3.2 Structural results

Theorem 13.1. For general quasilinear utilities, any allocation that mexzes social surplus
can be produced by a pricing policy. That is;if= {7},...,T,} is an allocation maximizing
SW(T) — cost(T) then there exist priceprice,, ..., price, such that buyers purchasing their

most-demanded bundle recov8rsassuming that the marginal cost function is strictly desre

2When more that one subset is applicable, we assume we havedde to select any such set.
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Proof. Consider the optimal allocatiodPT. Defineprice, to be the marginal cost of the next
copy of item: underOPT, i.e.,price; = cost;(#;(OPT)+1). Suppose some buygis assigned

setT} in OPT but prefers sef’; under these prices. Then,

€T} i€T;
which implies
u; (Tj) — u;(Ty) + Z price; — Z price; > 0. (13.1)
€T\T! {€TI\T;

Now, consider modifyingDPT by replacingT; with T7. This increases buyej’s utility by
u;(T5) — u;(T}), incurs an extra purchase cestactly) ;. r, price; and a savings of strictly

more thanZieTj\T/ price; (because marginal costs are decreasing). Thus, byl (13slytuld

be a strictly preferable allocation, contradicting theimjadity of OPT. O

Corollary 13.2. For uniform unit demand buyers there exists an optimal atmn that is a

permutation policy, for thallocate alltask.

Proof. Imagine each buyef had valuatiorny,,,, on items inS; wherev,,,, is greater than the
maximum cost of any single item. The allocatio®T that maximizes social surplus would
then minimize cost subject to allocating exactly one iteneach buyer and therefore would
be optimal for the allocate-all task. Consider the pricingoagated to this allocation given by
Theorem 13]1. Since each buyes uniform unit demand, he will simply purchase the cheapest
item in.S;. Therefore, the permutationthat orders items according to increasing price according

to the prices of Theorem 13.1 will produce the same allonatio O

We now present a structural statement that will be usefutferallocate-with-budget task.

3If the marginal cost function is only non-increasing, we ¢tave the same result, assuming we can select

between the utility maximizing bundles.
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Theorem 13.3. For weighted unit-demand buyers, for any allocatirnthere exists a pricing
policy that allocates the sanmaultisetof itemsT (or a subset ofl’) and has social welfare at
least as large a§~. Moreover, this pricing can be computed efficiently frgnand the buyers’

valuations.

Proof. Let T" be the multiset of items allocated By. Weighted unit-demand valuations satisfy
the gross-substitutes property, so by the Second Welfagerém (e.q., see [Nisan, Roughgar-
den, Tardos, and Vazirani, 2007] Theorem 11.15) theresa&isWalrasian equilibrium: a set of
prices for the items i7" that clears the market. Moreover, these prices can be cewahmiti-
ciently from demand queries (e.g., [Nisan, Roughgarderdd&rand Vazirani, 2007], Theorem
11.24), which can be evaluated efficiently for weighted-a@imand buyers. Furthermore, these
prices must assign all copies of tk@meitem in'T" the same price (else the pricing would not be
an equilibrium) so it corresponds to a legal pricing polidyus, we have a legal pricing such
that if all buyers were shown only the items represented it these prices, then the market
would clear perfectly (breaking any ties in our favor). We ealdress the fact that there may be
items not represented i (i.e., they had zero copies sold) by simply setting theeto infinity.
Finally, by the First Welfare Theorem (e.g., [Nisan, Rougdea, Tardos, and Vazirani, 2007]
Theorem 11.13), this pricing maximizes social welfare aléallocations of7’, and therefore

achieves social welfare at least as larggdaas desired. O

The above structural results will allow us to use the follogvsketch of an online algorithm.
First sample an initial set of buyers. Then, for the allocate-all problem, compute thd bes
(or approximately best) permutation policy according te émpirical frequencies given by the
sample. Or, for the allocate-with budget task, compute €% @r approximately best) allocation
according to these empirical frequencies and convert @ @fricing policy. Then run this
permutation or pricing policy on the remainder of the custesn Finally, using the fact that
these policies have low complexity (they are lists or vextora space that depends only on the

number of items and not on the number of buyers) compute #eeasiinitial sample needed to
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ensure that the estimated performance is close to truerpafwe uniformly over all policies in

the class.

13.4 Uniform Unit Demand and the Allocate-All problem

Here we consider the allocate-all problem for the settingroform unit demand. For intuition,
we begin by considering the following simple class of desm@marginal cost curves.
Definition 13.4. We say the cost functiamst(¢) is a-poly if the marginal cost of iterhis 1/t
for a € [0,1). Thatis,cost(t) = S0 _, 1/7.

Theorem 13.5.If each cost function ia-poly, then there exists an efficient offline algorithm that

given a setX of buyers produces a permutation policy that incurs totatcad mostﬁOPT.

Proof. We run the greedy set-cover algorithm. Specifically, we ceabe item desired by the
most buyers and put it at the top of the permutationWe then choose the item desired by
the most buyers who did not receive the first item and put it,n@xd so on. For notational
convenience assumeis the identity, and les; denote the set of buyers that receive itgrRor
any setS C X, letOPT(S) denote the cost of the optimal solution to the subprohfefie., the
problem in which we are only required to cover buyers)n ClearlyOPT(S,) = cost(|S,|) =
Z'T‘S:‘l /7% > ZL‘;' 1‘8’5‘ z~*dz = £|S,|'"* — 1, since any solution using more than one set
to cover the elements &, has at least as large a cost.

Now, for the purpose of induction, suppose that séme {2, ...,r} hasOPT(|J;_, ;) >
Sor_.|Si|' ™. Then, sinceS;_; was chosen to be the largest subset )f, , S; that can be
covered by a single item, it must be that the sets used by éogatibn for thel J;_, , S: sub-
problem achievinPT(|J;_, , S:) have size at mostS;_|, and thus the marginal costs for
each of the elements &,_; in theOPT(|J;_, , S:) solution is at least/|Sj_1|°.

This impliesOPT(U,_;,_, St) > OPT(U,_. St) + > pes,, 1/[Sk-1]® = OPT(Ui_, Si) +

|Sk—1|' . By the inductive hypothesis, this latter expression isagtles large as ;_, | |Si|' .
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By induction, this impliesOPT(X) = OPT(U;_,; S:) > >_i_,|S:/'~®. On the other hand,
the total cost incurred by the greedy algorithmig_, Z‘f’:'l /e < >, fo"st‘ r%dr =

>, |S:|*~™. By the above argument, this is at mgst OPT(X). O

More general cost curves We can generalize the above result to a natural class of sigais-
creasing cost curves. Define the average cost ofitgimen to setS; of buyers aslvgC(i, |S;|) =
cost(|S;|

A ). Define the marginal cost/arC (i, t) = cost;(t) — cost;(t — 1). Here is a greedy algo-

rithm.

Algorithm: GreedyGeneralCost(S)
0. i = argmin AvgC/(1, |S;])
1. CallGreedyGeneralCost(S — ;)

We make the following assumption:
Assumption 13.6.Vi,t, AvgC'(i,t) < BMarC(i,t), for somesd > 0.

For example, for the case of amnpoly cost, we have:MarC(t) = t% and AvgC' =

1 t 1 o t7@. _ 1
T r—1 7a = 1, SO, therefore we have = —.

1— o

Theorem 13.7.The algorithm GreedyGeneralCost achieves approximatitio ra

Proof. Order the elements in the order that GreedyGeneralCostasdiechem. LetV; be the
set of consumers that receive itemand N = UN, in GreedyGeneralCost. For consumer
i let item,, (i) be the item thaD PT allocates to consumer Let /,,.(j) be the number of
consumers that are allocated itgmBy Assumption 13J6 we hav&larC'(j,1) < AvgC(j,1) <

BMarC(j,1) (the first inequality is due to having decreasing marginat)co
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We would like to consider the influence of the consumerdjron the cost of) PT'. Let
OPT(N) — OPT(N — N1) > > oy, MarC(itemop (i), Lopt(itemp (i)))

> Zie]\h %A'I}gC(itemopt (2)7 gopt (itemopt (Z)))

> $|Ni[AvgC(1, | Ni]) = §GreedyCost(Ny)

The first inequality follows since taking the final marginastcan only reduce the cost (decreas-
ing marginal cost). The second inequality follows from Asgtion[13.6. The third inequality
follows since GreedyGeneralCost selects the lowest aveagef any allocated item .

We can now continue inductively. L&, = N, Ty = N — Ny, andT; = T;_; — N;. We can

show similarly that,
OPT(T;—,) — OPT(T;) > %Gr@edy@ost(]\fi)
Summing over alf we have

OPT(T) — OPT(0) = Z OPT(T,_,) — OPT(T}) > % Z GreedyCost(N;)
1

= BGreedyCost(N)

]

Corollary 13.8. If the cost function isv-poly, then for3 = -, Assumptiofi 1316 holds. Thus

GreedyCost(S;) 1
OPTCost(S;) — 1—a°
Additionally, the following property is satisfied for theSenice cost functions.
Lemma 13.9. For cost satisfying Assumptidn 13.6x € N, Ve € (0,1), Vi < r, cost;(ex) <

L
61°g2(1+2ﬁ)costi(m).

Proof. By the fact that marginal costs are non-negativegC'(2¢x) > cost;(ex)/(2ex). There-
fore, by Assumption 1316}/ arC(2¢x) > cost;(ex)/(2ex(). By the decreasing marginal cost

property, we have

cost;(2ex) > cost;(ex) + exMarC(2ex) > cost;(ex) + cost;(ex)/(26) = (1 + %)COSQ(E$).
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Applying this argumenlog,(1/¢) times, we have
1 1
cost;(x) > (1 + %)bg?(l/e)costi(ex) = (—)logZ(Hi)costi(ex).
€

Multiplying both sides by'°22(1*25) completes the proof. O

13.4.1 Generalization Result

Sayn is the total number of customerg;is the size of subsample where we do estimate on;

r is the total number of itemsy € (0,1] is some constant, and the costdgpoly, so that

11—« t

cost(t) = S0 1/7% =~ fot y~*dy = [y L — =% We have the following generalization

-« l-a”

result:
Theorem 13.10.Suppose. > ¢ and the cost function is-poly. With probability at least — 6,

for any permutation$l,

11—«

cost(IL, £)(1 +€) > (%) < cost(IT,n) < cost(TT, £)(1 + ¢)2(1=) <E>1a’

l
whered®) = r27(5; + d, + 83) and §; = exp{—¢> (f)ﬁ n/3}, 0y = exp{—€*( (f)ﬁ /3},

03 = exp{— (£) " ne?/2}.

Proof. Fix a permutationll. Let 7; denote the event that a customer buys itdmand not
covered by itemsI; throughll;_,. Namely, the probability that the consumer set of desired
items includej and none of the items, ..., j — 1. Letg; denotePr[r;|, and letg; denote the
fraction ofI1; on the initial/-sample.

Item j to is a “Low probability item” ifg; < (f)ﬁ; and “High probability items” ifg; >
(f)ﬁ. Let the set “Low” include all “Low probability items”; andhe set “High” include all
“High probability items”.

First we address the case of itejmof low probability. The quantity of iteny that we
will sell is at most(f)ﬁ n(1 + €) (Chernoff bound) with probability at least — ¢; with
5, = exp{—¢? (£)™= n/3}. By a union bound, this holds for all low probability itejn with

probability at least — |Low|d;.
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Next, we supposeg has high probability. In this case, the quantity of itgnve will sell is at
mostg;n(1 + €), with probability at least — exp{—e*¢;n/3} > 1 — ¢;. Again, a union bound
implies this holds for all high probability with probability at least — |High|d;.

We have that (by Chernoff bounds), with probability at ldasexp{—e*(q;/3} > 1—4,, we
haveg;/¢; < (14¢€). A union bound implies this holds for all high probabilityvith probability
1 —1rd,.

Furthermore, noting thagn(1 + €) = g;n(1 + e)g—;, and upper boundin% by 1+ ¢, we get
thatg;n(1 + €) < (1 + €)?g;n, with probability1 — d,. Thus,

cost(IT,n) < cost(Low) + cost(High)

r<<§>1l°‘n(1+e))la+z (1+€)%Gn)

j€High

IN

IN

€(1+ €)1 4 (1 4 ¢)2U0)pl-e Z (Qj)l_a .
j€High

Note that the total cost of all low probability items is at hegraction of OPT which is at least

la

. Also,

(14 ¢)2(me)pt-e Z (@) = (1+e?0 ( >1_QZ (G0

j€High J

11—
) cost(IL, ¢)

~| 3

= (1+ 6)2(1704) (

~| 3

by definition ofcost(I1, ¢).

Therefore we showed,

11—«

11—
+ (1420 <2> cost (I, ¢)

cost(IL,n) < e(l +e)t ot <%) 7

< (14 5¢) (%) B cost(I1, £)

_1
The lower bound is basically similar. Fgr € Low, we haveg; < (£)™* andg; <
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(f)ﬁ (1 + ¢) (by Chernoff bounds). So we have

€

(7]
§>
(S
S~—
T
Q
VAN
VR
/N
= |
N———
1
Q
—~
—_
+
@)
N—
~
N———
—
|
Q

Thus,

cost(IL,4) = Z (G0 + Z (4,0

jeLow J;eHigh i .
< cos(mne (£ <1+e>1-a+je%h<an>l—“ (i) (%)
< eostmne () Taror X @ (L) Tavo

with probability at least — exp {—g;ne?/2} > 1 — d;. For low-probabilityj, the number of
item j sold is> (5)ﬁ n(1 — €) with probability at least — 3. A union bound extends these
to all j with combined probability — r4s.

Thus we obtain the upper boundlist(IT, n) < cost(IL, £)(1 + ¢)21~*) (2)'~* and the lower

bound:cost(IT, n) > cost(IL, £)(1 +¢)~2 (2)'~*, with probability at least — r2"(8; + d, + d3).

A naive union bound can be done over all the permutationsghwhill add a factor ofr!,
we can reduce the factor t@" by noticing that we are only interested in events of the type
namely a given item (say) is in the set of desired items, and another set (§gy,..,j — 1}) is

not in that set. This has onh2" different events we need to perform the union over. O
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13.4.2 Generalized Performance Guarantees

We defineGreedyGeneralCost(¢,n) as follows. For the first customers it allocates arbi-
trary items they desire, and observed their desired setge Be sets of the firgt customers,

it runs GreedyGeneralCost and computes a permutatidh of the items. For the remaining
customers it allocates using permutatiénNamely, each customer is allocated the first item in
the permutatioril that is in its desired set. The following theorem bounds thégpmance of
GreedyGeneralCost(¢,n) for a-poly cost functions.

Theorem 13.11.With probabilityl — 6 (for 6 as in Theoreri 13.10), the cost of

GreedyGeneralCost({,n) is at most

(1+¢)t2
l1—«

¢+ OPT

Proof. Let II be the permutation policy produced by GreedyGeneralCost; #fe/ first cus-

tomers. By Theorem 13.7,

~

cost(Il, £) <

min cost(IL, ¢).
J— Of II

By Theoreni 13.10, with probability — 6,
g -«
. . 2 ([ *
min cost(IL, ¢) < min cost(Il,n)(1 +¢) (n) .
Additionally, on this same event,

~ ~ 1-a
cost(IT, n) < cost(IL, £)(1 + €)21=%) (%) .

Altogether, this implies

. 1 2(1-a) 1-a A
cost(II, n) < % (%) mnin cost(IT,n)(1 + €)? (—)
-« n
(1 +€)472a

= ————mincost(I,n).
1l -« I
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Corollary 13.12. For any fixed constant € (0, 1), for any

=3 () ()
()"
€

with probability at leastl — § we haveGreedyGeneralCost(n, () is at most

(w + e) OPT

and

11—«

13.4.3 Generalization for3-nice costs

Toward extending the offline-model results under Assunmii®.6 to the online setting, consider
the following lemma.
Lemma 13.13.For any costcost satisfying Assumptidn 13.6 with a givénfor anyk > 1, the

costcost’ with cost/,(x) = cost,;(kz) also satisfies Assumption1B.6 with the saime

Proof.

cost; (kx) _ s (kz) < Bk(cost;(kx) — cost;(kx — 1)).

T kx

Also, the property of nonincreasing marginal costs impites {1,...,k},
cost; (kx) — cost;(kx — 1) < cost;(kx — (t — 1)) — cost;(kz — t),
so that
k
k(cost;(kx)—cost;(kz—1)) Z (cost;(kx—(t—1))—cost;(kx—t)) = cost;(kx)—cost;(k(z—1)).
t=1

Therefore,
cost; (kx)

" < fB(cost;(kx) — cost;(k(x — 1))).
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Now the strategy is to run GreedyGeneralCost with the redaabdst functioncost)(z) =
cost;(%x). This provides a8-approximation guarantee for the rescaled problem. THeviaig
theorem describes the generalization capabilities ofstinégegy.

Theorem 13.14.Suppose: > ¢ and the cost function satisfies Assumpfion]13.6, and\that
cost;(1) € [1, B], whereB > 1 is constant. Letost;(x) = cost;(7x). With probability at least

1 — 6O, for any permutationsI,

1-— 1 2
1—|—2—Ei62 < cost(Il,n) < cost’(H,K)( k)

cost/ (1, ¢)

wheres® = r2271(5, + 6,), 6, = exp{—e*n'"20+25) /(3r B(1 + ¢))}, and

dy = exp{—e%rB(iﬂ)nlogQ(”%)_l/S}. It is not necessary for the set éfcustomers to be

contained in the set af customers for this.

Proof. Fix a permutationll. Let 7; denote the event that a customer buys itdmand not
covered by itemdl; throughIl;_,. Namely, the probability that the consumer set of desired
items includej and none of the items, ..., j — 1. Letg; denotePr(r;|, and letg; denote the

fraction ofI1; on the initial/-sample.

Letq* = TB(Lﬁ)nC*l, wherec = log, (1 + ﬁ). Itemj is a “Low probability item” if ¢; < ¢*,
and is called a “High probability item” if; > ¢*. Let the set “Low” include all “Low probability
items”; and the set “High” include all “High probability ites”.

First we address the case of itgnof low probability. By a Chernoff bound, the quantity of
item ;5 that we will sell when applyindl to n customers is at mosgtn(1 + ¢€), with probability
at leastl — exp{—¢€*¢*n/3} =1 — §;. By a union bound, this holds for all low probability items
J with probability at least — |Low|d;.

Next, suppose has high probability. In this case, the quantity of itgrwe will sell when
applyinglIl to n customers is at mog§n (1 + €), with probability at least — exp{—e?*q;n/3} >
1—4;. Again, a union bound implies this holds for all high probipi; with probability at least
1 — |Highlé;.
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We have that (by Chernoff bounds), with probability at leasexp{—e*(q;/3} > 1—d,, we
haveg;/d; < (1+¢). A union bound implies this holds for all high probabilityvith probability
1 —rds.

Furthermore, noting thatn(1 + ¢) = ¢;n(1 + 6)%’ and upper boundin% by 1+ ¢, we get
thatg;n(1 + €) < (1 + €)%g;n, with probability at least — d,. Thus, with probability at least
1 —1rd — rds,

cost(IT,n) < cost(Low) + cost(High)
Z cost; (¢"n(1 +€)) + Z cost; ((1 + e)zcjjn)
jeLow jeHigh

rBg*n(1+¢) + (1 +¢)? Z cost; (g;n)
jeHigh

IN

IN

= rBg'n(l+e)+ (1 +¢)? Z cost;(IT, £).
j€High
Note that Lemma 1319 (with = 1/x) implies that onn customersOPT > min; cost;(n) >
18204 25) min;; cost; (1) > n'°®2(+35) = ne, where the third inequality is by the assumption on
the range otost;(1). Thus,rBg*n(1 + €) = en® < eOPT.

We showed that

cost(IT, n) < €OPT + (1 +¢€)? Z cost;(I1, £)
jeHigh
< ecost(TI, n) + (1 + €)? 3 pign cost; (I1, £).

Therefore,

2
cost(Il,n) < (11%6) Z cost;(I1, £)

€
j€High
(1+¢)?
— €

cost/(IL, ¢).

The lower bound is basically similar. Fgr € Low, a Chernoff bound implies we have
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¢; < q*(1 + €) with probability at least — exp{—€*¢*¢/3} > 1 — §». So we have

Z cost;(gin) < Z cost;(¢"(1+ €)n)

j€Low j€Low

rB(1+¢€)g"n

IN

= enf

IN

eOPT

< ecost(II,n).

For j € High, again by a Chernoff bound, we hayg/q; < (1 + ¢) with probability at least
1 — exp{—€2q;{/3} > 1 — &,. Thus, by a union bound, with probability at least rd,,

cost/(I1,0) = Z cost;(g;n) + Z cost;(g;n)

jeLow j€High

< ecost(Il,n) + Z cost;j(gn(l+¢€)).
jeHigh

By another application of Chernoff and union bounds, with plulity atleast —> ;i exp{—€*qn/2} >
1 — rdy, for everyj € High, the number of we will sell when applyindI to n customers is at

leastg;n(1 — €). Thus,

I+e 1+e 1
Z costj(gn(l+¢€)) = Z cost;(gn(1 — 6)1 — 6) < . Z cost;(gjn(l —¢)) < 1

j€High j€High j€High

+ €

cost(IT, n).
— €

Altogether, we have proven that with probability at lehst r(5; + ds),

1
cost' (I, £) < (e+ . +€> cost(II, n)

— €
1+ 2¢e — €2
— Lcost<]:[7 n)7
1—c¢
which implies
1—c¢

ﬁcost'(ﬂ,ﬁ) < cost(I, n).
€—e€

A naive union bound can be done over all the permutationsgchwill add a factor ofr!;

we can reduce the factor t@" by noticing that we are only interested in events of the type
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namely a given item (say) is in the set of desired items, and another set (8ay,..,j — 1}) is
not in that set. This has oni2" different events we need to perform the union over. Thus, the

above inequalities hold for all permutations with probiapit leastl — 7227 1(5; + ds). O

1
Letng =0, ny = 2 (3’"36(3”6) In (”””?“)) 20435 For each integer > 2, define

(Zin)e e

(i42)2r227+2
BrB(1+¢) In (2572200

n;

We defineGreedyGeneralCostg(n) as follows. Allocate arbitrary (valid) items to the first
n; customers. For each> 2 with Z;Zl n; < n, runGreedyGeneralCost(S) with cost func-
tion cost’, whereS is the set of buyers, 2, ..., 3"~ n;, andvj, cost () = cost;(zn;/ Y i_; n);
this produces a permutation politly We then allocate to the customeéE;;1 n;)+1, ..., 22:1 n;
using the permutation policyl.

The following theorem bounds the performancesotedyGeneralCostz(n).
Theorem 13.15.1f cost satisfies Assumptidn 18.6, and hast;(1) € [1, B] for every;j < r,

with probability at leastl — 4, the cost ofsreedyGeneralCostg(n) is at most

B, + ﬁ<1 + 6);1(1_4—6)226 — €?) S OPT(n).

i:Z;zl n;j<n

Proof. By Theoreni 1317, Lemma13J/13, and Theofem 13.14 and a unioxdbwith probability

atleastl 4, for everyi, the cost of7reedyGeneralCost g on customers+>"" "\ nj, ..., >0 n;
is at most
i—1 —1
~ (1+¢)?
cost’ (H ‘ nj> T, < 5m1n cost’ Z
j=1 J=1
1+ 1 2e¢ —
< 5m1ncost(l_[ nl)< (1 t); )
(14 €)*(1 + 2¢ — €?)
= OPT(n;).
B (1 —€)? (m:)
Summing ovet yields the result. O

302



If we are allowed to preview the utilities of some initigln) set of buyers, then we can get
the following simpler result.
Theorem 13.16.If cost satisfies Assumption 18.6, and hast;(1) € [1, B] for everyj < r, with
probability at leastl —d, the cost of applying the policy found 8 cedyGeneralCost({1,...,¢})
to all n customers is at most

(1+¢€)%(1 + 2¢ — €%)

A

OPT(n),

wherel = [nl_l"gz(Hﬁ)grBe(sHe) In (TQQ(;HH = o(n).

Proof. By Theoreni 13]7, Lemnia 13113, and Theofem 13.14, with préityadi least1 — §, the
cost of applying the policyI found byGreedyGeneralCost({1,...,¢}) to customerd, ..., n

is at most
~ 1 2 1 2
cost' (11, £) (1+¢) < Bmincost'(IT, £) (1+¢)
1—e¢ I 1—e€
1 2(1+2e— €2
< Bmincost(H,n)( +e)(lt+2e—c)
I (1—¢)?

(1+€)%(1 + 2¢ — €%)
(1—-¢)?

= p OPT(n).

Also consider the following lemma.

Lemma 13.17.If cost satisfies Assumption 18.6, then for ang N, OPT(2n) > <1 + %) OPT(n).
Proof. ]

We defineGreedyGeneralCosty(n) as follows. Allocate an arbitrary (valid) item to the first
customer. For each> 1 with i < log,(n), run GreedyGeneralCost(S), whereS is the set of
buyersl, 2,...,2"!; this produces a permutation polit}. We then allocate to the customers
2i-1 4+ 1,...,2! using the permutation policy.

The following theorem bounds the performanceotedyGeneralCostjs(n).
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Theorem 13.18.If cost satisfies Assumption 18.6, and hast;(1) € [1, B] for every; < r, let-

1
ting ¢ denote the smallest power dfjreater than(z)”B 49 In (4"2?"*2)) le21+35)  with proba-

2(1 logo (£)) logo (14 Qﬁ)

bility at least1 — Zlog?(n 2ot (22=) , the cost otzreedyGeneralCosty(n)

logs (

is at most
(1+€)%(1 + 2¢ — €%)
(1—e)?

Proof. By Theorenmi 137, Theorem 13]14 and a union bound, with thedsiatobability, for

Bl + (28)*0OPT(n).

everyi > log,(£), the cost oiGreedyGeneralCostl; on customer®™~' +1,..., 2" is at most
N 1 1
cost (H, {1,...,2" 1}) (1+¢)7 < ﬁmr}ncost (IL,{1,...,2" 1}) (1+¢)7
— € — €

(14 €)*(1 + 2¢ — €?)
(1—e)?
)OPT({Zi_l +1,...,2'}).

< Bmﬂin cost(IT, {271 +1,...,2'})

(1+¢)*(1 + 2¢ — €
(1—¢)?

= p
By Lemma 13.1%7,
OPT({QZ_I +1,... ,21}) = OPT(Qz_l) < OPT(QnQi—l—]—logQ(n)])

1 [logy(n)]+1—1
< I 20PT(n).
1+ 4

Summing this ovef € {log,(¢) +1,..., [logy(n)]} is at mostdFOPT(n). Plugging this into

the above bound on the cost supplies the stated result. O

13.5 General Unit Demand Utilities

In this section we show how to give a constant approximatotife case of general unit demand
buyers in the offline setting in the case when we have a budgethound the cost we incur and
we would like to maximize the buyers social welfare givers tidget constraint. The main tool
would be a reduction of our problem to the budgeted maximuverage problem.

Definition 13.19. An instance of thdudgeted maximum coverage probléms a universeX

of m elements where each € X has an associated weight; there is a collection ofn sets
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S such that each setS; € S has a cost;; and there is a budget. A feasible solution is a
collection of setsS" C S such thaty s .5 ¢; < L. The goal is to maximize the weight of the
elements i, i.e.,w(5") = 32, e, g5 Wie
While the budgeted maximum coverage problem is NP-comphetrets a1 — 1/e) approx-
imation algorithm|[Khuller, Moss, and Naor, 1999]. Theigalithm is a variation of the greedy
algorithm, where on the one hand it computes the greedyaditot, where each time a set which
maximizes the ratio between weight of the elements covanddfae cost of the set is added, as
long as the budget constraint is not violated. On the othed hlae single best set is computed.
The output is the best of the two alternative (either thelsibgst set of the greedy allocation).
Before we show the reduction from a general unit demandyutdithe budgeted maximum
coverage problem, we show a simpler case where for each pingera value; such that of any
item ¢ eitherv; = u;; or u;; = 0, which we callbuyer-uniform unit demand
Lemma 13.20.There is a reduction from the budgeted buyer-uniform uniaked buyers prob-

lem to the budgeted maximum coverage problem. In additiegtkedy algorithm can be com-

puted in polynomial time on the resulting instance.

Proof. For each buyer we create an element; with weightv;. For each itemk and any
subsets of buyerS we create a séfs;, = {z; : j € S} and has costost,(]S|). The budget is
set to bel. = B. Clearly any feasible allocation of the budgeted maximunecage problem
Ts, ky»---Ts, k. can be translated to a solution of the budgeted buyer-umitonit demand buyers
by simply producing itent; for all the buyers irs, ,,. The welfare is the sum of the weight of
the elements covered which is the social welfare, and thiexegactly the production cost.
Note that the reduction generates an exponential numbetsfifwe do it explicitly. How-
ever,we can run the Greedy algorithm easily, without gdmegahe sets explicitly. Assume
we havem’ remaining buyers. For each iteinand any/ € [1,m/] we compute the cost
cost;(¢)/gain;(¢), wheregain;(¢) is the weight of the buyers with highest valuation for itein

Greedy select the itemmand number of buyerswhich have the highest ratio and adding this set
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still satisfies the budget constraint. Note that given thaedy selectd’s . where|S| = ¢ then
its cost iscost(¢) and its weigh iSv(Ts ;) < gaing(¢), and hence Greedy will always select one

of the sets we are considering. O

In the above reduction we used very heavily the fact that éagkr; has a single valuation
v; regardless of which desired item it gets. In the following st®w a slightly more involved
reduction which handles the general unit demand buyers.
Lemma 13.21.There is a reduction from the budgeted general unit demarensuproblem to
the budgeted maximum coverage problem. In addition thedgrakgyorithm can be computed in

polynomial time on the resulting instance.

Proof. For each buyey we sort its valuations;;, < --- < u,;,; . We setv;; = u;; and
Vi = W, — uj;,_,. Notethaty ' v;; = u;, . For each buyej we createn elements;,,

1 <r < m. For a buyerj and itemk let X ;, be all the elements that represent lower valuation
thanu;x, i.e., X, = {z;, : u;;, < u;i}. For eachitent and any subsets of buyesswve create
asetls;, = Ujes X, and has costost(|S|). The budget is set to be = B.

Any feasible allocation of the budgeted maximum coveragblemTy, 4, , ... 7Ts, . can be
translated to a solution of the budgeted general unit derbayers producing item; for all the
buyers inT, ,. We call buyer; aswinnerif there exists somé such thatc;, € U/_, Ty, x,. Let
Winners we the set of all winner buyers. For any winner buyet Winner letitem(j) = s
such thats = max{b : z;;, € Ul_,Ts, x. }-

The cost of our allocation is by definition at mdst= B. The social welfare is

Z Vjb = Z Wj,item(j)
2 €UI_1 Ts, i, jEWinner

Again, note that the reduction generates an exponentiabeuof sets, if we do it explicitly.
However, we can run the Greedy algorithm easily, withoutegeting the sets explicitly. For
each item; and any/ € [1,m| we compute the cosist;({)/gain;({), wheregain;(¢) is the

weight of the/ buyers with highest valuation for itemn Greedy selects the iteirand number
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of buyers/ which have the highest ratio which still satisfies the budgmetstraint. Note that
given that greedy seleci& ; where|S| = ¢ then its production cost isost,(¢) and its weight
isw(Tsx) < gaing(f), and hence Greedy will always select one of the sets we asid=ing.
Once the Greedy selects a gét;, we need to update the utility of any buygre S for any
other itemi, by settingu;; = max{u;; — u;x, 0}, which is the residual valuation buyghas for

getting itemi in addition to itemk. [

Combining our reduction with approximation algorithm of [idler, Moss, and Naor, 1999]
we have the following theorem.
Theorem 13.22.There exists a poly-time algorithm for the budgeted genamdldemand buyers

problem which achieves social welfare at leéist- 1/¢)OPT.

13.5.1 Generalization

To extend these results to the online setting, we will useofdm[13.8 to represent allocations
by pricing policies, and then use the results from aboveaml@ good pricing policy based on
an initial sample.

Theorem 13.23.Suppose every;; € [0, B]. With? = O((1/€*)(r*log(rB/e) + log(1/4)))
random samples, with probability at leakt— 9, the empirical per-customer social welfare is

within +-¢ of the expected per-customer social welfare, uniformly allgarice vectors in0, B]".

Proof. We will show that, for any distributio® and value: > 0, there existV = 20("*1oa(rB/<))
functions f1, ..., fx such that, for every price vectarice € [0, B|", the functiong(z) =
Targ meax; <, oi—price; haSminkSNf |fx — g|dP < e. This valueN is known as thauniform e-
covering numberThe result then follows from standard uniform convergenoends (see e.g.,
[Haussler, 1992]).

The functionz — max;<, x; — price; is a hyperplane with slopein coordinate; and slope

0 in all other coordinates. So the subgraph (i.e., the set-pfl-dimensional pointgzx, y) for
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which max;<, z; — price; > y is a union ofr halfspaces in- + 1 dimensions. The space of
unions ofr halfspaces im + 1 dimensions has VC dimensiofir + 2), so this upper bounds the
pseudo-dimension of the space of functiams; <, x; — price;, parametrized by the price vector

price. Therefore, the uniform-covering number of this class 28 los(8/¢)

For eachi < r, the set of vectors € [0, B]" such thati = arg max x; — price, iS an
intersection ofr halfspaces in- dimensions. Thus, the function — price,, max; z;—price, 1S
contained in the family of linear combinations ofisjoint intersections of halfspaces. The
VC dimension of an intersection efhalfspaces in- dimensions is:(r + 1). So assuming the
prices are bounded in a ranfge B], the uniforme-covering number for linear combinations (with
weights in[0, B]) of r disjoint intersections of halfspaces i€°("*1°s("B/<)  To prove this, we
can take are/(2rB) cover (of{0, 1}-valued functions) of intersections ofhalfspaces, which
has size(rB/¢)°), and then take an/(2r) grid in [0, B] and multiply each function in the
cover by each of these values to get a space of real-valuetidos; there ar¢rB/¢)°”) total
functions in this cover, and for each term in the linear carabon ofr disjoint intersections of
r halfspaces, at least one of these real-valued functiohndevilvithin e /r of it. Thus, taking the
set of sums of- functions from this cover forms ancover of the space of linear combinations

of r disjoint intersections of halfspaces, with sizeB/¢)°").

Now note thatr arg max; (z; —price,) = MaxX; (x; — Price;) + PIiCey, o max; (; —price,)- SO the uniform
e-covering number for the space of possible functioRs max; (z;—price,) IS @t most the produce
of the uniform(e/2)-covering number for the space of functions— max;(x; — price;) and

the uniform(e/2)-covering number for the space of functions— price ) by the

arg max; (z; —price;

above, this produce ("’ les(rB/<)) O

13.6 Properties ofs-nice cost

Let cost(n) be as-nice cost function. We show a few properties of it.
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Claim 13.24.
1
cost(2n) > cost(n) (1 + %)

Proof. Let a = cost(n)/n be the average cost of the firsitems. Then the cost of the firgn
items is at leastn, and has an average cost of at leg&t. The marginal cost of iterdn is at

leasta/(25). Therefore the cost of the items+ 1 to 2n is at leastn/(25). O

We can get a better bound by a more refine analysis.

Claim 13.25. Leta,, = cost(n)/n be the average cost of the firstitems. Then,

n 1
Apy1 = Ay 1+
i n+1( 5(n+1))

and

1+ 1 2
TL> — 1 > 1/5 . _1“1‘(1/5)
a _a1n||(+ﬁ(t+1))_e amn

t=1

Proof. The marginal cost of item + 1 is at least,,/ 5. Therefore the cost of the first itemst 1
is at leastua,, + a,,/(5), which gives the first expression.
We get the expression af, as a function ofa; by repeatedly using the recursion. The

approximation follows from,

In(a,) >In(a;) Zln n—|—1)>
1
2 ) =G+ Z T G
> In(a;) — In(n) + %ln(n) — %
where we used the identity— ? < In(1 + z). O
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