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Chapter 1

Summary

The key insight underlying this thesis is that the right kindof interaction is the key to making

the intractable tractable. This work specifically investigates this insight in the context of learn-

ing theory. While much of the learning theory literature has traditionally focused on protocols

that are either non-interactive or involving unrealistically strong forms of interaction, there have

recently been several exciting advances in the design and analysis of methods for realistic inter-

active learning protocols.

Perhaps one of the most interesting of these isactive learning. In active learning, a learning

algorithm is given access to a large pool of unlabeled examples, and is allowed to sequentially

request their labels so as to learn how to accurately predictthe labels of new examples. This

thesis contains a number of interesting advances in our understanding of the capabilities of active

learning methods. Specifically, I summarize the main contributions below.

1.1 Bayesian Active Learning

While most of the recent advances in our understanding of active learning have focused on the

traditional PAC model (or noisy variants thereof), similaradvnaces specific to the Bayesian learn-

ing setting have largely been lacking. Specifically, suppose that in addition to the data itself, the
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learner additionally has access to aprior distribution for the target function, and we are inter-

ested in achieving a guarantee of low expected error rate, where the expectation is over both the

draw of the dataand the draw of the target concept from the given prior. This setting has been

studied in depth for the passive learning protocol, but aside from the well-known work on the

query-by-committee algorithm, little was known about thissetting for the active learning proto-

col. This lack of knowledge is particularly troubling in light of the fact that most of the active

learning methods used in practice have Bayesian interpretations, selecting their label requests

based on Bayesian notions such as label entropy, expected error reduction, or reduction in the

total probability mass of the version space.

1.1.1 Arbitrary Binary-Valued Queries

In this thesis, we present work that makes progress in understanding the Bayesian active learning

setting. To begin, we study the most basic question: how manyqueries are necessary if we

are able to askarbitrary binary-valued queries. While label requests are only a special type of

binary-valued query, a general lower bound for arbitrary binary-valued queries will also hold for

label request queries, and thus provides a lower bound on theintrinsic query complexity of the

learning problem. Not surprisingly, we find that the number of binary-valued queries necessary

for learning is characterized by a kind of entropy quantity:namely, the entropy of the Voronoi

partition induced by a maximalǫ-packing.

1.1.2 Self-Verifying Active Learning

Our next contribution is a study of a special type of active learning, characterized by the stopping-

criterion used in the learning algorithm. Specifically, consider a protocol in which the input to

the active learning algorithm is the desired error rate guaranteeǫ, and the algorithm then makes

a number of queries and then halts. For the algorithm to be considered “correct”, it must have

the guarantee that the expected error rate of the classifier it produces after halting is at most

2



the value ofǫ provided as input. We refer to this family of algorithms asself-verifying. The

label complexity of learning in this protocol is generally higher than in some other protocols

(e.g., budget-based), since the algorithm must not onlyfind a classifier with good error rate, but

must also somehow beself-awareof the fact that it has found such a good classifier. Indeed, it

is known that prior-independent self-verifying algorithms may often have label complexities no

better than that of passive learning, which isΘ(1/ǫ) for VC classes. However, we prove that

in Bayesian active learning, for any VC class and prior, thereis a prior-dependent method that

always achieves an expected label complexity that iso(1/ǫ). Thus, this represents a concrete

result on the advantages of having access to the target’s prior distribution.

1.2 Active Testing

One of the major challenges facing active learning is that ofmodel selection. Specifically, given

a number of hypothesis classes, how does one decide which oneto use? In passive learning, the

solution is simple: try them all, and then pick from among theresulting hypotheses using cross-

validation. But such solutions are not available to active learning, since the methods tailored to

each hypothesis class will generally make very different label requests, so that the label com-

plexity of producing a hypothesis from all of the classes is close to the sum of their individual

label complexities.

Thus, to avoid this problem, there is a need for procedures that quickly dermine whether the

target concept is within (or approximated by) a given concept class, by asking a much smaller

number of label requests than required forlearningwith that class: that is, fortestingmethods

that operate in the active learning protocol, which we therefore refer to asactive testing. This

way, we can simply go through each class and test whether the target is in the class or not, and

only run the full learning method on some simplest class thatpasses the test. The questions then

become how many fewer queries are required for testing compared to learning, as this quantifies

the savings from using this approach. Following the traditional literature on property testing,

3



the primary focus of such an analysis is on the dependence of the query complexity on the VC

dimension of the hypothesis class being tested. Since learning typically required a number of

queries linear in the VC dimension, a sublinear dependence is considered an improvement, while

a query complexity independent of the VC dimension is considered superb.

There is much existing literature on property testing. However, the standard model of prop-

erty testing makes use ofmembership queries, which are effectively label requests for feature

vectors of our own construction, rather than feature vectors from a given polynomial-sized sam-

ple of unlabeled examples from the data distribution. Such methods are unrealistic for our model

selection purposes, since it is well-known in the machine learning community that the feature

vectors constructed by membership queries are often unintelligible by the human experts charged

with labeling the examples. However, the results from this literature on membership queries do

provide us a useful additional reference point, since we arecertain that the query complexity of

active testing is no smaller than that of testing with membership queries, and no larger than that

of testing from random labeled examples (passive testing).

In our work on active testing, we study a number of interesting concept classes, and find

that in some cases the query complexity is nearly the same as that of testing with membership

queries, while other times it is closer to that of passive testing. However, in most (though not all)

cases, we do find that the query complexity of active testing is significantly smaller than that of

activelearning, so that this approach to model selection can indeed be quiteeffective at reducing

the total query complexity.

1.3 Theory of Transfer Learning

Given the positive results mentioned above on the advantages of active learning with access to

the target’s prior distribution, the next natural quesitonis, “How does one gain access to the

target’s prior distribution?” Traditionally, there have been a variety of answers to this question

given by the Bayesian Statistics community, ranging from subjective beliefs, to computationally-
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motivated assumptions, to estimation. Perhaps one of the most appealing, from a practical per-

spective, it the Empirical Bayes perspective, which says that we gain access to an approximation

of the prior based on analysis of past experience. In the learning context, this idea of gaining in-

sights for a new learning problem, based on experience with past learning problems, goes by the

nameTransfer Learning. The specific model of transfer learning relevant to this Empirical Bayes

setting is the following. We suppose that we are tasked with asequence ofT learning problems,

or tasks. For each task, the unlabeled data are sampled i.i.d. according to some distributionD,

independently across the tasks. Furthermore, for each taskthe target function is sampled accord-

ing to some prior distributionπ, again independently across tasks. We then approach each task as

usual, making a number of label requests and then halting with guaranteed expected error rate at

mostǫ. The hope is that, after solving a number of learning problemst < T , the label complexity

of solving taskt + 1 should be smaller than that of solving the first task, due to gaining some

information about the distributionπ.

The challenge in this problem is that we do not get direct observations of the target functions

from each task. Rather, we may only observe a small number of labeled examples. So the

question is how to extract useful information aboutπ from these limited observations. This

situation is further complicated by the fact that we are interested in minimizing the number of

samples per-task, and that the active learning method’s queries might be highly task-specific.

Indeed, in many transfer learning settings, each task is approached by a different agent, who may

be non-altruistic with respect to the other agents; thus, she may be unwilling to make very many

additional label requests merely to aid the learners that will solve future tasks.

In our work, we show that it is possible to gain benefits from transfer learning, while limiting

the number of additional queries (other than those used directly for learning) required from each

task. Specifically, we use a number of extra queries per task equal the VC dimension of the

concept class. Using these queries, we are able to consistently estimateπ, assuming only that

it resides in a known totally bounded class of distributions. We are then able to use this esti-
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mate in the context of a prior-dependent learning method to asymptotically achieve an average

label complexity equal to that of learning withdirect knowledge ofπ. Thus, we have realized

the aforementioned benefits of having knowledge of the target’s prior, including the guaranteed

o(1/ǫ) expected label complexity for self-verifying active learning. We further show that no

method taking fewer than VC dimension number of samples per task can match this guarantee at

this level of generality.

Interestingly, under smoothness conditions onπ, we also provide explicit bounds on therate

of convergence of our estimator toπ, and we additionally derive lower bounds on the minimax

rate of convergence. This has implications for non-asymptotic guarantees on the benefits of

transfer learning.

We also extend these results to real-valued functions, where the VC dimension is replaced

by the pseudo-dimension of the function class. In addition to transfer learning, we also find that

this technique for estimating a prior distribution over real-valued functions has applications to

the preference elicitation problem in a certain type of combinatorial auction.

1.4 Active Learning with Drifting Distributions and Targets

In addition to the work on Bayesian active learning, I have additionally studied the setting of

active learning without access to a prior. Work in this area is presently more mature, so that

there are known methods that are robust to noise, and have well-understood label complexities.

However, all of the previous theoretical work on active learning supposed the data were sampled

i.i.d. from some fixed (though unknown) distribution. But many realistic applications of active

learning involve distributions that change over time, so that we require some understanding of

how active learning methods behave under drifting distributions.

In my work on this topic, I study a model of distribution driftin which the conditional distri-

bution of label given features remains fixed (i.e., no targetdrift), while the marginal distribution

over the feature vectors can change arbitrarily within a given totally bounded family of distribu-
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tions from one observation to the next. I then analyze a stream-based active learning setting, in

which the learner is at each time required to make a prediction for the label of a new example,

and then decide whether to request the label or not. We are then interested in the expected num-

ber of mistakes and number of label requests, as a function ofhow many data points have been

observed.

Interestingly, I find that even with such drifting distributions, it is still possible to guarantee

a number of mistakes on par with fully-supervised learning,while only requesting a sublinear

number of labels, as long as the disagreement coefficient is sublinear in the reciprocal of its

argument under all distributions in the given family. I prove this, both under the realizable case,

and under Tsybakov noise conditions. I further provide a more detailed analysis of the frequency

of label requests and mistakes, as a function of the Tsybakovnoise parameters, the supremum of

the disagreement coefficient over the given family of distributions, and the covering numbers of

the family of distributions. To complement this, I also provide lower bounds on the number of

label requests required of any active learning method whosenumber of mistakes is on par with

the optimal performance of fully-supervised learning.

We have also studied the related problem of active learning with a drifting target concept, in

which the target function itself changes over time. In this setting, the distribution over unlabeled

samples remains fixed, while the function providing labels changes over time at a specified rate.

We then express bounds on the expected number of mistakes andqueries, as a function of this

rate of change and the number of samples.

In any learning context, the problem of efficient learning inthe presence of noise is a constant

challenge. Toward addressing this challenge, we have proposed an active learning algorithm that

makes use of a convex surrogate loss function, in place of the0-1 loss, while still providing

guarantees on the obtained error rate (under the0-1 loss) and number of queries made in the

active learning context, under the assumption that the surrogate loss is classification-calibrated,

and the minimizer of the surrogate loss resides in the function class used by the algorithm.
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1.5 Efficiently Learning DNF with Representation-Specific Queries

In addition to the basic active learning protocol, based on label requests, we have also studied

an interesting new type of learning protocol, in which the algorithm is allowed queries regarding

specific aspects of therepresentationof the target function. This setting is motivated by appli-

cations in which there are essentially sub-labels for the examples, which may be difficult for an

expert to explicitly produce, but for which they can easily recognize commonality. For instance,

in fraud detection, we may be able to ask an expert whether twogiven examples of fraudulent

transactions are representative of the sametypeof fraud.

To study this idea in formality, we specifically look at the classic problem of efficiently

learning a DNF formula. Certain variants of this problem are known to be NP-Hard if we are

permitted only labeled data (e.g., proper learning), and there are no known efficient methods for

the general problem of learning DNF, even with membership queries. In fact, under the uniform

distribution, there are no such general results known even for the problem of learning monotone

DNF from labeled data alone. Thus, there is a real need for newideas to approach the problem

of learning DNF if the class of DNF functions is to be used for practical applications.

In our work, we suppose access to a polynomial-sized sample of labeled examples, and for

any pair of positive examples from that sample, we allow queries of the type, “Do these two

examples satisfy a term in common in the target DNF?” It turnsout that the problem of learning

arbitrary DNF under arbitrary distributions is no easier with this type of query than with labeled

examples alone. However, using queries of this type, we are able to efficiently learn several

interesting sub-families of DNF, including solving some problems known to be NP-Hard from

labeled data alone (properly learning2-term DNF). Additionally, under the uniform distribu-

tion, we find many more interesting families of DNF that are efficient learnable with queries of

this type, including the well-studied family ofO(log(n))-juntas, and any DNF for which each

variable appears in at mostO(log(n)) terms.

We further study several generalizations of this type of query. In particular, if we allow the
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algorithm to ask “How many terms do these two examples satisfy in common in the target DNF?”

then we can significantly broaden the collection of subfamilies of DNF that are efficiently learn-

able. In particular,O(log(n))-juntas become efficiently learnable under arbitrary distributions,

as does the family of DNF withO(log(n)) terms.

With a further strengthening to allow the query to involve anarbitrary number of examples,

rather than just two, we find we can efficiently (properly) learn an arbitrary DNF under an arbi-

trary distribution. This is also the case if we restrict to just two examples in the query, but we

allow the algorithm to construct the feature vectors for those two examples, rather than selecting

them from a polynomial-sized sample.

Overall, we feel this is an important topic, in that it makes real progress on the practically-

important problem of efficiently learning DNF, which has otherwise been essentially stagnant for

a number of years.

1.6 Online Allocation with Economies of Scale

In addition to all of the above work on computational learning theory, this dissertation also in-

cludes work on allocations problems in which the cost of allocating each additional copy of a

good is decreasing in the number of copies already allocated. This model captures the natural

economies of scale that arise in many real-world contexts. In this context, we derive meth-

ods capable of allocating goods to a set of customers in a unit-demand setting, while achieving

near-optimal cost guarantees. We study this problem both inan offline setting, in which all of

the customer valuation functions are known in advance, and also in a type of online setting, in

which the customers arrive one-at-a-time, so that we do not know in advance what their valuation

functions will be. In the online variant of the problem, working under the assumption that the

valuation functions are i.i.d. samples, we make use of generalization guarantees from statistical

learning theory, in combination to the algorithmic solutions to the offline problem, to obtain the

approximation guarantees.
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Chapter 2

Active Testing

Abstract

1 One of the motivations for property testing of boolean functions is the idea that testing can

serve as a preprocessing step before learning. However, in most machine learning applications,

the ability to query functions at arbitrary points in the input space is considered highly unrealistic.

Instead, the dominant query paradigm in applied machine learning, calledactive learning, is one

where the algorithm may ask for examples to be labeled, butonly from among those that exist

in nature. That is, the algorithm may make a polynomial number of drawsfrom the underlying

distributionD and then query for labels, but only of points in its sample. Inthis work, we bring

this well-studied model in learning to the domain oftesting, calling it active testing.

We show that for a number of important properties, testing can still yield substantial benefits

in this setting. This includes testing unions of intervals,testing linear separators, and testing

various assumptions used in semi-supervised learning. Forexample, we show that testing unions

of d intervals can be done withO(1) label requests in our setting, whereas it is known to require

Ω(
√
d) labeled examples for passive testing (where the algorithm must pay for labels onevery

example drawn fromD) andΩ(d) for learning. In fact, our results for testing unions of intervals

1Joint work with Maria-Florina Balcan, Eric Blais, and AvrimBlum.
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also yield improvements on prior work in both the membershipquery model (where any point

in the domain can be queried) and the passive testing model [Kearns and Ron, 2000] as well. In

the case of testing linear separators inRn, we show that both active and passive testing can be

done withO(
√
n) queries, substantially less than theΩ(n) needed for learning and also yielding

a new upper bound for the passive testing model. We also show ageneral combination result that

any disjoint union of testable properties remains testablein the active testing model, a feature

that does not hold for passive testing.

In addition to these specific results, we also develop a general notion of thetesting dimension

of a given property with respect to a given distribution. We show this dimension characterizes

(up to constant factors) the intrinsic number of label requests needed to test that property; we do

this for both the active and passive testing models. We then use this dimension to prove a number

of lower bounds. For instance, interestingly, one case where we show active testing doesnothelp

is for dictator functions, where we giveΩ(log n) lower bounds that match the upper bounds for

learning this class.

Our results show that testing can be a powerful tool in realistic models for learning, and

further that active testing exhibits an interesting and rich structure. Our work in addition develops

new characterizations of common function classes that may be of independent interest.

2.1 Introduction

One of the motivations for property testing of boolean functions is the idea that testing can serve

as a preprocessing step before learning – to determine whether learning with a given hypothesis

class is worthwhile [Goldreich, Goldwasser, and Ron, 1998].Indeed, query-efficient testers have

been designed for many common hypothesis classes in machinelearning such as linear thresh-

old functions [Matulef, O’Donnell, Rubinfeld, and Servedio, 2009], unions of intervals [Kearns

and Ron, 2000], juntas [Blais, 2009, Fischer, Kindler, Ron, Safra, and Samorodnitsky, 2004],

DNFs [Diakonikolas, Lee, Matulef, Onak, Rubinfeld, Servedio, and Wan, 2007], and decision
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trees [Diakonikolas, Lee, Matulef, Onak, Rubinfeld, Servedio, and Wan, 2007]. (See Ron’s

survey [Ron, 2008] for much more on the connection between learning and property testing.)

Most property testing algorithms, however, rely on the ability to query functions on arbitrary

points – an assumption that is unrealistic in most machine learning applications. For example,

in classifying documents by topic, while selecting an existing document on the web and asking

a user “is this about sports or business?” may make perfect sense, taking an existing sports

document (represented inRn as a vector of word-counts), corrupting a random fraction ofthe

entries, and asking “is this still about sports?” does not. Early experiments yielded similar

failures for membership-query learning algorithms in vision applications when asking human

users about corrupted images [Baum and Lang, 1993]. As a result, the dominant query paradigm

in machine learning has instead been the model ofactive learningwhere the algorithm may

query for labels of examples of its choosing, butonly among those that exist in nature[Balcan,

Beygelzimer, and Langford, 2006, Balcan, Broder, and Zhang, 2007a, Balcan, Hanneke, and

Wortman, 2008, Beygelzimer, Dasgupta, and Langford, 2009, Castro and Nowak, 2007, Cohn,

Atlas, and Ladner, 1994a, Dasgupta, 2005, Dasgupta, Hsu, and Monteleoni, 2007b, Hanneke,

2007a, Seung, Opper, and Sompolinsky, 1992, Tong and Koller., 2001].

In this work, we bring this well-studied model in learning tothe domain oftesting. In par-

ticular, we assume that as in active learning, our algorithmcan make a polynomial number of

draws ofunlabeled examplesfrom the underlying distributionD (these unlabeled examples are

viewed as cheap), and then can make a small number of label queries butonlyover the unlabeled

examples drawn (these label queries are viewed as expensive). The question we ask is whether

testing in this setting is sufficient to still yield significant benefit in terms of label requests over

the number of labeled examples needed for learning.

What we show is that for a number of interesting properties relevant to learning, this capa-

bility indeed allows for a substantial reduction in the number of labels required. This includes

testing unions of intervals, testing linear separators, and testing various assumptions about the
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separation of data used in semi-supervised learning. For example, we show that testing unions

of d intervals can be done withO(1) label requests in our setting, whereas it is known to require

Ω(
√
d) labeled examples for passive testing (where the algorithm must pay for labels onevery

example drawn fromD) andΩ(d) for learning. In the case of testing linear separators inRn,

we show that both active and passive testing can be done withO(
√
n) queries, substantially less

than theΩ(n) needed for learning and also yielding a new upper bound for the passive testing

model as well. These results use a generalization of ArconesTheorem on the concentration of

U-statistics. For the case of unions of intervals, our results even improve on prior work in the

membership query and passive models of testing [Kearns and Ron, 2000], and are based on a

characterization of this class in terms of noise sensitivity that may be of independent interest.

We also show that any disjoint union of testable properties remains testable in the active testing

model, allowing one to build testable properties out of simpler components; this is a feature that

does not hold for passive testing.

In addition to the above results, we also develop a general notion of thetesting dimensionof a

given property with respect to a given distribution. We showthis dimension characterizes (up to

constant factors) the intrinsic number of label requests needed to test that property; we do this for

both passive and active testing models. We then make use of this notion of dimension to prove

a number of lower bounds. For instance, one interesting casewhere we show active testing does

not help is for dictator functions, a classic property where membership queries can allow testing

with O(1) label requests, but where we show active testing requiresΩ(log n) labels, matching

the bounds for learning.

Our results show that a number of important properties for learning can be tested with a

small number of label requests in a realistic model, and furthermore that active testing exhibits

an interesting and rich structure. We further point out thatunlike the case of passive learning,

there are no known strong Structural Risk Minimization bounds for active learning, which makes

the use of testing in this setting even more compelling.2 Our techniques are quite different from

2In passive learning, if one has a collection of algorithms orhypothesis classes to try, there is little advantage
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those used in the active learning literature.

2.1.1 The Active Property Testing Model

Before discussing our results in more detail, let us first introduce the model of active testing. A

propertyP of boolean functions is simply a subset of all boolean functions. We will also refer

to properties asclassesof functions. Thedistanceof a functionf to the propertyP over a distri-

butionD on the domain of the function isdistD(f,P) := ming∈P Prx∼D[f(x) 6= g(x)]. A tester

for P is a randomized algorithm that must distinguish (with high probability) between functions

in P and functions that are far fromP. In the standard property testing model introduced by

Rubinfeld and Sudan [Rubinfeld and Sudan, 1996], a tester is allowed to query the value of the

function on any input in order to make this decision. We consider instead a model in which we

add restrictions to the possible queries:

Definition 2.1 (Property tester). Ans-sample,q-queryǫ-testerfor P over the distributionD is a

randomized algorithmA that drawss samples fromD, sequentially queries for the value off on

q of those samples, and then

1. Accepts w.p. at least2
3

whenf ∈ P, and

2. Rejects w.p. at least2
3

whendistD(f,P) ≥ ǫ.

We will use the terms “label request” and “query” interchangeably. Definition 2.1 coincides

with the standard definition of property testing when the number of samples is unlimited and the

distribution’s support covers the entire domain. In the other extreme case where we fixq = s, our

definition then corresponds to thepassive testingmodel, where the inputs queried by the tester

are sampled from the distribution. Finally, by settings to be polynomial in some appropriate

measure of the input domain, we obtain theactive testingmodel that is the focus of this paper:

asymptotically to being told which of these is best in advance, since one can simply apply all of them and use an

appropriate union bound. In contrast, this is much less clear for active learning algorithms that each might ask for

labels on different examples.
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Definition 2.2 (Active tester). A randomized algorithm is aq-query activeǫ-testerfor P ⊆

{0, 1}n → {0, 1} overD if it is a poly(n)-sample,q-queryǫ-tester forP overD.

Remark 2.1. We emphasize that the nameactive testeris chosen to reflect the connection with

active learning. It isnotmeant to imply that this model of testing is somehow “more active” than

the standard property testing model.

In some cases, the domain of our functions is not{0, 1}n. In those cases, we requires to be

polynomial in some other appropriate measure of complexitythat we specify explicitly.

Note that in Definition 2.1, since we do not have direct membership query access (at arbitrary

points), our tester must accept w.p. at least2
3

whenf is such thatdistD(f,P) = 0, even iff does

not satisfyP over the entire input space. This, in fact, is one crucial difference between our

model and thedistribution-freetesting model introduced by Halevy and Kushilevitz [Halevyand

Kushilevitz, 2007] and further studied in [Dolev and Ron, 2010, Glasner and Servedio, 2009,

Halevy and Kushilevitz, 2004, 2005]. In the distribution-free model, the tester can sample inputs

from some unknown distribution and can query the target function onany input of its choosing.

It must then distinguish between the case wheref ∈ P from the case wheref is far from the

property over the distribution. Most testers in this model strongly rely on the ability to query any

input3 and, therefore, these algorithms are not valid active testers.

In fact, the case of dictator functions, functionsf : {0, 1}n → {0, 1} such thatf(x) = xi

for somei ∈ [n], helps to illustrate the distinction between active testing and the standard

(membership query) testing model. The dictatorship property is testable withO(1) member-

ship queries [Bellare, Goldreich, and Sudan, 1998, Parnas, Ron, and Samorodnitsky, 2003]. In

contrast, with active testing, the query complexity is the same as needed for learning:

Theorem 2.3. Active testing of dictatorships under the uniform distribution requiresΩ(log n)

queries. This holds even for distinguishing dictators fromrandom functions.

3Indeed, Halevy and Kushilevitz’s original motivation for introducing the model was to better model PAC learn-

ing in themembership querymodel [Halevy and Kushilevitz, 2007].
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This result, which we prove in Section 2.5.1 as an application of the active testing dimension

defined in Section 2.5, points out that the constraints imposed by active testing present real

challenges. Nonetheless, we show that for a number of interesting properties we can indeed

perform active testing with substantially fewer queries than needed for learning or passive testing.

In some cases, we will even provide improved bounds for passive testing in the process as well.

2.1.2 Our Results

We have two types of results. Our first results, on the testability of unions of intervals and linear

threshold functions, show that it is indeed possible to testproperties of interest to the learning

community efficiently in the active model. Our next results,concerning the testing of disjoint

unions of properties and a new notion of testing dimension, examine the active testing model

from a more abstract point of view. We describe these resultsand some of their applications

below.

Testing Unions of Intervals. The functionf : [0, 1] → {0, 1} is aunion ofd intervalsif there

are at mostd non-overlapping intervals(ℓ1, u1), . . . , (ℓd, ud) such thatf(x) = 1 iff ℓi ≤ x ≤ ui

for somei ∈ [d]. The VC dimension of this class is2d, so learning a union ofd intervals requires

at leastΩ(d) queries. By contrast, we show that testing unions ofd intervals can be done with a

number of label requests that isindependentof d, for any distributionD:

Theorem 2.4. Testing unions ofd intervals in the active testing model can be done using only

O(1/ǫ3) queries. In the case of the uniform distribution, we further need onlyO(
√
d/ǫ5) unla-

beled examples.

We note that Theorem 2.4 not only gives the first result for testing unions of intervals in the

active testing model, but it also improves on the previous best results for testing this class in the

membership query and passive models. Previous testers usedO(1) queries in the membership

query model andO(
√
d) samples in the passive model, but applied only to a relaxed setting

in which only functions that wereǫ far from unions ofd′ = d/ǫ intervals had to be rejected
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with high probability [Kearns and Ron, 2000]. Our tester immediately yields the same query

bound as a function ofd (active testing withO(
√
d) unlabeled examples directly implies passive

testing withO(
√
d) labeled examples) but rejects any function that isǫ-far from unions ofd′ = d

intervals. Note also that Kearns and Ron [Kearns and Ron, 2000]show thatΩ(
√
d) samples are

required to test unions ofd intervals in the passive model, and so our bound on the numberof

unlabeled examples in Theorem 2.4 is optimal in terms ofd.

The proof of Theorem 2.4 relies on a newnoise sensitivitycharacterization of the class of

unions ofd intervals. That is, we show that all unions ofd intervals have low noise sensitivity

while all functions that are far from this class have noticeably larger noise sensitivity and intro-

duce a tester that estimates the noise sensitivity of the input function. We describe these results

in Section 2.2.

Testing Linear Threshold Functions. We next study the problem of testing linear threshold

functions (or LTFs), namely the class of boolean functionsf : Rn → {0, 1} of the formf(x) =

sgn(w1x1 + · · ·+wnxn − θ) wherew1, . . . , wn, θ ∈ R. LTFs can be tested withO(1) queries in

the membership query model [Matulef, O’Donnell, Rubinfeld,and Servedio, 2009]. While we

show this is not possible in the active testing model, we nonetheless show we can substantially

improve over the number of label requests needed forlearning. In particular, learning LTFs

requiresΘ(n) labeled examples, even over the Gaussian distribution [Long, 1995]. We show

that the query and sample complexity fortestingLTFs is significantly better:

Theorem 2.5.We can efficiently test LTFs under the Gaussian distributionwith Õ(
√
n) labeled

examples in both active and passive testing models. Furthermore, we have lower bounds of

Ω̃(n1/3) andΩ̃(
√
n) on the number of labels needed for active and passive testingrespectively.

The proof of the upper bound in the theorem relies on a recent characterization of LTFs by the

Hermite weight distribution of the function [Matulef, O’Donnell, Rubinfeld, and Servedio, 2009]

as well as a new concentration of measure result for U-statistics. The proof of the lower bound

involves analyzing the distance between the label distribution of an LTF formed by a Gaussian
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weight vector and the label distribution of a random noise function. See Section 2.3 for details.

Testing Disjoint Unions of Testable Properties.Given a collection of propertiesPi, a natural

way to combine them is via their disjoint union. E.g., perhaps our data falls intoN well-separated

regions, and while we suspect our data overall may not be linearly separable, we believe it may

be linearly separable (by a different separator) in each region. We show that if each individual

propertyPi is testable (in this case,Pi is the LTF property) then their disjoint unionP is testable

as well, with only a very small increase in the total number ofqueries. It is worth noting that this

property doesnothold for passive testing. We present this result in Section 2.4, and use it inside

our testers for semi-supervised learning properties discussed below.

Testing Semi-Supervised Learning Assumptions.Two common assumptions considered in

semi-supervised learning [Chapelle, Schlkopf, and Zien, 2006] and active learning [Dasgupta,

2011] are (a) if data happens to cluster then points in the same cluster should have the same label,

and (b) there should be some large marginγ of separation between the positive and negative

region (but without assuming the target is necessarily a linear threshold function). Here, we

show that for both properties, active testing can be done with O(1) label requests, even though

these classes contain functions of high complexity so learning (even semi-supervised or active)

requires substantially more labeled examples. Our resultsfor the margin assumption use the

cluster tester as a subroutine, along with analysis of an appropriate weighted graph defined over

the data. We present our results in Section 2.4 but for space reasons, defer analysis to Appendix

2.11.

General Testing Dimensions.We develop a general notion of thetesting dimensionof a given

property with respect to a given distribution. We do this forboth passive and active testing

models. We show these dimensions characterize (up to constant factors) the intrinsic number of

label requests needed to test the given property with respect to the given distribution in the corre-

sponding model. For the case of active testing we also provide a simpler notion that characterizes
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whether testing withO(1) label requests is possible. We present the dimension definitions and

analysis in Section 2.5.

The lower bounds in this paper are given by proving lower bounds on these dimension quan-

tities. In Section 2.5.1, we prove (as mentioned above) thatfor the class of dictator functions,

active testing cannot be done with fewer queries than the number of examples needed for learn-

ing, even for the problem of distinguishing dictator functions from truly random functions. This

result additionally implies that any class that contains dictator functions (and is not so large as

to contain almost all functions) requiresΩ(log n) queries to test in the active model, including

decision trees, functions of low Fourier degree, juntas, DNFs, etc. In Section 2.5.2, we complete

the proofs of the lower bounds in Theorem 2.5 on the number of queries required to test linear

threshold functions.

2.2 Testing Unions of Intervals

In this section, we prove Theorem 2.4 that we can test unions of d intervals in the active testing

model using onlyO(1/ǫ3) label requests, and furthermore, over the uniform distribution, using

only O(
√
d/ǫ5) unlabeled samples. We begin with the case that the underlying distribution is

uniform over[0, 1], and afterwards show how to generalize to arbitrary distributions. Our tester

exploits the fact that unions of intervals have anoise sensitivitycharacterization.

Definition 2.6. Fix δ > 0. The local δ-noise sensitivityof the functionf : [0, 1] → {0, 1} at

x ∈ [0, 1] is NSδ(f, x) = Pry∼δx[f(x) 6= f(y)], wherey ∼δ x represents a draw ofy uniform in

(x− δ, x+ δ) ∩ [0, 1]. Thenoise sensitivityof f is

NSδ(f) = Pr
x,y∼δx

[f(x) 6= f(y)]

or, equivalently,NSδ(f) = ExNSδ(f, x).

A simple argument shows that unions ofd intervals have (relatively) low noise sensitivity:
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Proposition 2.7. Fix δ > 0 and letf : [0, 1]→ {0, 1} be a union ofd intervals. ThenNSδ(f) ≤

dδ.

Proof sketch.Drawx ∈ [0, 1] uniformly at random andy ∼δ x. The inequalityf(x) 6= f(y) can

only hold when a boundaryb ∈ [0, 1] of one of thed intervals inf lies in betweenx andy. For

any pointb ∈ [0, 1], the probability thatx < b < y or y < b < x is at mostδ
2
, and there are at

most2d boundaries of intervals inf , so the proposition follows from the union bound.

Interestingly, the converse of the proposition statement is approximately true: forδ small

enough, every function that has noise sensitivity not much larger thandδ is close to being a

union ofd intervals. (Full proof in Appendix 2.7).

Lemma 2.8. Fix δ = ǫ2

32d
. Letf : [0, 1]→ {0, 1} be a function with noise sensitivity bounded by

NSδ(f) ≤ dδ(1 + ǫ
4
). Thenf is ǫ-close to a union ofd intervals.

Proof outline. The proof proceeds in two steps. First, we construct a functiong : [0, 1]→ {0, 1}

that is ǫ
2
-close tof and is a union of at mostd(1 + ǫ

4
) intervals. We then show thatg – and every

other function that is a union of at mostd(1 + ǫ
4
) intervals – isǫ

2
-close to a union ofd intervals.

To construct the functiong, we consider the “smoothed” functionfδ : [0, 1]→ [0, 1] obtained

by taking the convolution off and a uniform kernel of width2δ. We defineτ to be some

appropriately small parameter. Whenfδ(x) ≤ τ , then this means that nearly all the points in the

δ-neighborhood ofx have the value0 in f , so we setg(x) = 0. Similarly, whenfδ(x) ≥ 1− τ ,

then we setg(x) = 1. (This procedure removes any “local noise” that might be present inf .)

This leaves all the pointsx whereτ < fδ(x) < 1 − τ . Let us call these pointsundefined. For

each such pointx we take the largest valuey ≤ x that is defined and setg(x) = g(y).

The key technical part of the proof involves showing that theconstruction described above

yields a functiong that isǫ-close tof and that is a union ofd(1 + ǫ
4
) intervals. This is done with

standard tools from function analysis and probability theory. Due to space constraints, we defer

the details to Appendix 2.7.
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The noise sensitivity characterization of unions of intervals obtained by Proposition 2.7 and

Lemma 2.8 suggest a natural approach for building a tester: design an algorithm that estimates

the noise sensitivity of the input function and accepts iff this noise sensitivity is small enough.

This is indeed what we do:

UNION OF INTERVALS TESTER( f , d, ǫ )

Parameters:δ = ǫ2

32d
, r = O(ǫ−3).

1. For roundsi = 1, . . . , r,

1.1 Drawx ∈ [0, 1] uniformly at random.

1.2 Draw samples until we obtainy ∈ (x− δ, x+ δ).

1.3 SetZi = 1[f(x) 6= f(y)].

2. Accept iff 1
r

∑

Zi ≤ dδ(1 + ǫ
8
).

The algorithm makes2r = O(ǫ−3) queries to the function. Since a draw in Step 1.2 is in the

desired range with probability2δ, the number of samples drawn by the algorithm is a random

variable with very tight concentration aroundr(1 + 1
2δ
) = O(d/ǫ5). The draw in Step 1.2 also

corresponds to choosingy ∼δ x. As a result, the probability thatf(x) 6= f(y) in a given round is

exactlyNSδ(f), and the average1
r

∑

Zi is an unbiased estimate of the noise sensitivity off . By

Proposition 2.7, Lemma 2.8, and Chernoff bounds, the algorithm therefore errs with probability

less than1
3

provided thatr > c · 1/dδǫ = c · 32/ǫ3 for some suitably large constantc.

Improved unlabeled sample complexity: Notice that by changing Steps 1.1-1.2 slightly to

pick the first pair(x, y) such that|x − y| < δ, we immediately improve the unlabeled sample

complexity toO(
√
d/ǫ5) without affecting the analysis. In particular, this procedure is equivalent

to pickingx ∈ [0, 1] theny ∼δ x.4 As a result, up topoly(1/ǫ) terms, we also improve over

the passive testingbounds of Kearns and Ron [Kearns and Ron, 2000] which are able only to

distinguish the case thatf is a union ofd intervals from the case thatf is ǫ-far from being a

4Except for events ofO(δ) probability mass at the boundary.
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union ofd/ǫ intervals. (Their results useO(
√
d/ǫ1.5) examples.) Kearns and Ron [Kearns and

Ron, 2000] show thatΩ(
√
d) examples are necessary for passive testing, so in terms ofd this is

optimal.

Active Tester Over Arbitrary Distributions: We can reduce the problem of testing over general

distributions to that of testing over the uniform distribution on [0, 1] by using the CDF of the

distributionD. In particular, given pointx, definepx = Pry∼D[y ≤ x]. So, forx drawn fromD,

px is uniform in [0, 1].5 As a result we can just replace Step 1.2 in the tester with sampling until

we obtainy such thatpy ∈ (px − δ, px + δ). The only issue is that we do not know thepx and

py values exactly. However, VC-dimension bounds for initial intervals on the line imply that if

we sampleO(ǫ−6δ−2) unlabeled examples, with high probability the estimatesp̂x computed with

respect to the sample (the fraction of points in thesamplethat are≤ x) will be within O(ǫ3δ) of

the correctpx values for all pointsx. This in turn implies that the noise-sensitivity estimatesare

sufficiently accurate that the procedure works as before.

Putting these results together, we have Theorem 2.4.

2.3 Testing Linear Threshold Functions

In the last section, we saw how unions of intervals are characterized by a statistic of the function

– namely, its noise sensitivity – that can be estimated with few queries and used this to build

our tester. In this section, we follow the same high-level approach for testing linear threshold

functions. In this case, however, the statistic we will estimate is not noise sensitivity but rather

the sum of squares of the degree-1 Hermite coefficients of thefunction.

Definition 2.9. TheHermite polynomialsare a set of polynomialsh0(x) = 1, h1(x) = x, h2(x) =

1√
2
(x2− 1), . . . that form a complete orthogonal basis for (square-integrable) functionsf : R→

R over the inner product space defined by the inner product〈f, g〉 = Ex[f(x)g(x)], where

5We are assuming here thatD is continuous and has a pdf. IfD has point masses, then instead definepLx =

Pry[y < x] andpUx = Pry[y ≤ x] and selectpx uniformly in [pLx , p
U
x ].
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the expectation is over the standard Gaussian distributionN (0, 1). For anyS ∈ N
n, define

HS =
∏n

i=1 hSi
(xi). TheHermite coefficientof f : Rn → R corresponding toS is f̂(S) =

〈f,HS〉 = Ex[f(x)HS(x)] and theHermite decompositionof f is f(x) =
∑

S∈Nn f̂(S)HS(x).

Thedegreeof the coefficient̂f(S) is |S| :=∑n
i=1 Si.

The connection between linear threshold functions and the Hermite decomposition of func-

tions is revealed by the following key lemma of Matulef et al.[Matulef, O’Donnell, Rubinfeld,

and Servedio, 2009].

Lemma 2.10(Matulef et al. [Matulef, O’Donnell, Rubinfeld, and Servedio, 2009]). There is an

explicit continuous functionW : R → R with bounded derivative‖W ′‖∞ ≤ 1 and peak value

W (0) = 2
π

such that every linear threshold functionf : Rn → {−1, 1} satisfies
∑n

i=1 f̂(ei)
2 =

W (Exf). Moreover, every functiong : Rn → {−1, 1} that satisfies|∑n
i=1 ĝ(ei)

2 −W (Exg)| ≤

4ǫ3, is ǫ-close to being a linear threshold function.

In other words, Lemma 2.10 shows that
∑

i f̂(ei)
2 characterizes linear threshold functions.

To test LTFs, it suffices to estimate this value (and the expected value of the function) with

enough accuracy. Matulef et al. [Matulef, O’Donnell, Rubinfeld, and Servedio, 2009] showed

that
∑

i f̂(ei)
2 can be estimated with a number of queries that is independentof n by queryingf

on pairsx, y ∈ R
n where the marginal distributions onx andy are both the standard Gaussian

distribution and where〈x, y〉 = η for some small (but constant)η > 0. Unfortunately, the

same approach does not work in the active testing model sincewith high probability, all pairs

of samples that we can query have inner product|〈x, y〉| ≤ O( 1√
n
). Instead, we rely on the

following result.

Lemma 2.11. For any functionf : Rn → R, we have
∑n

i=1 f̂(ei)
2 = Ex,y[f(x)f(y) 〈x, y〉]

where〈x, y〉 =∑n
i=1 xiyi is the standard vector dot product.

Proof. Applying the Hermite decomposition off and linearity of expectation,

Ex,y[f(x)f(y) 〈x, y〉] =
n
∑

i=1

∑

S,T∈Nn

f̂(S)f̂(T )Ex[HS(x)xi]Ey[HT (y)yi].
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By definition,xi = h1(xi) = Hei(x). The orthonormality of the Hermite polynomials therefore

guarantees thatEx[HS(x)Hei(x)] = 1[S=ei]. Similarly,Ey[HT (y)yi] = 1[T =ei].

A natural idea for completing our LTF tester is to simply sample pairsx, y ∈ R
n indepen-

dently at random and evaluatingf(x)f(y) 〈x, y〉 on each pair. While this approach does give

an unbiased estimate ofEx,y[f(x)f(y) 〈x, y〉], it has poor query efficiency: To get enough accu-

racy, we need to repeat this sampling strategyΩ(n) times. (That is, the query complexity of this

sampling approach is the same as that oflearningLTFs.)

We can improve the query complexity of the sampling strategyby instead usingU-statistics.

The U-statistic (of order 2) with symmetric kernel functiong : Rn × R
n → R is

Um
g (x1, . . . , xm) :=

(

m

2

)−1
∑

1≤i<j≤m

g(xi, xj).

Tight concentration bounds are known for U-statistics withwell-behaved kernel functions. In

particular, by settingg(x, y) = f(x)f(y) 〈x, y〉1[|〈x, y〉| < τ ] to be an appropriately truncated

kernel for estimatingE[f(x)f(y) 〈x, y〉], we can apply a Bernstein-type inequality due to Ar-

cones [Arcones, 1995] to show thatO(
√
n) samples are sufficient to estimate

∑

i f̂(ei)
2 with

sufficient accuracy. As a result, the following algorithm isa valid tester for LTFs.

LTF TESTER( f , ǫ )

Parameters:τ =
√

4n log(4n/ǫ3),m = 800τ/ǫ3 + 32/ǫ6.

1. Drawx1, x2, . . . , xm independently at random fromRn.

2. Queryf(x1), f(x2), . . . , f(xm).

3. Setµ̃ = 1
m

∑m
i=1 f(x

i).

4. Setν̃ =
(

m
2

)−1∑

i 6=j f(x
i)f(xj) 〈xi, xj〉 · 1[|〈xi, xj〉| ≤ τ ].

5. Accept iff |ν̃ −W (µ̃)| ≤ 2ǫ3.

The algorithm queries the function only on inputs that are all independently drawn at random

from then-dimensional Gaussian distribution. As a result, this tester works in both the active
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and passive testing models. For the complete proof of the correctness of the algorithm, see

Appendix 2.8.

2.4 Testing Disjoint Unions of Testable Properties

We now show that active testing has the feature that a disjoint union of testable properties is

testable, with a number of queries that is independent of thesize of the union; this feature does

not hold for passive testing. In addition to providing insight into the distinction between the

two models, this fact will be useful in our analysis of semi-supervised learning-based properties

mentioned below and discussed more fully in Appendix 2.11.

Specifically, given propertiesP1, . . . ,PN over domainsX1, . . . , XN , define their disjoint

unionP over domainX = {(i, x) : i ∈ [N ], x ∈ Xi} to be the set of functionsf such that

f(i, x) = fi(x) for somefi ∈ Pi. In addition, for any distributionD overX, defineDi to be the

conditional distribution overXi when the first component isi. If eachPi is testable overDi then

P is testable overD with only small overhead in the number of queries:

Theorem 2.12.Given propertiesP1, . . . ,PN , if eachPi is testable overDi with q(ǫ) queries and

U(ǫ) unlabeled samples, then their disjoint unionP is testable over the combined distributionD

withO(q(ǫ/2) · (log3 1
ǫ
)) queries andO(U(ǫ/2) · (N

ǫ
log3 1

ǫ
)) unlabeled samples.

Proof. See Appendix 2.9.

As a simple example, considerPi to contain just the constant functions1 and0. In this case,

P is equivalent to what is often called the “cluster assumption,” used in semi-supervised and

active learning [Chapelle, Schlkopf, and Zien, 2006, Dasgupta, 2011], that if data lies in some

number of clearly identifiable clusters, then all points in the same cluster should have the same

label. Here, eachPi individually is easily testable (even passively) withO(1/ǫ) labeled samples,

so Theorem 2.12 implies the cluster assumption is testable with poly(1/ǫ) queries.6 However, it

6Since thePi are so simple in this case, one can actually test with onlyO(1/ǫ) queries.
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is not hard to see that passive testing withpoly(1/ǫ) samples is not possible and in fact requires

Ω(
√
N/ǫ) labeled examples.7

We build on this to produce testers for other properties often used in semi-supervised learning.

In particular, we prove the following result about testing the margin property (See Appendix 2.11

for definitions and analysis).

Theorem 2.13.For anyγ, γ′ = γ(1− 1/c) for constantc > 1, for data in the unit ball inRd for

constantd, we can distinguish the case thatDf has marginγ from the case thatDf is ǫ-far from

marginγ′ using Active Testing withO(1/(γ2dǫ2)) unlabeled examples andO(1/ǫ) label requests.

2.5 General Testing Dimensions

The previous sections have discussed upper and lower boundsfor a variety of classes. Here,

we define notions oftesting dimensionfor passive and active testing that characterize (up to

constant factors) the number of labels needed for testing tosucceed, in the corresponding testing

protocols. These will be distribution-specific notions (like SQ dimension in learning), so let us

fix some distributionD over the instance spaceX, and furthermore fix some valueǫ defining our

goal. I.e., our goal is to distinguish the case thatdistD(f,P) = 0 from the casedistD(f,P) ≥ ǫ.

For a given setS of unlabeled points, and a distributionπ over boolean functions, defineπS

to be the distribution over labelings ofS induced byπ. That is, fory ∈ {0, 1}|S| let πS(y) =

Prf∼π[f(S) = y]. We now use this to define a distance between distributions. Specifically, given

a set of unlabeled pointsS and two distributionsπ andπ′ over boolean functions, define

DS(π, π
′) = (1/2)

∑

y∈{0,1}|S|

|πS(y)− π′
S(y)|,

7Specifically, suppose region 1 has1− 2ǫ probability mass withf1 ∈ P1, and suppose the other regions equally

share the remaining2ǫ probability mass and either (a) are each pure but random (sof ∈ P) or (b) are each 50/50

(so f is ǫ-far fromP). Distinguishing these cases requires seeing at least two points with the same indexi 6= 1,

yielding theΩ(
√
N/ǫ) bound.
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to be the variation distance betweenπ andπ′ induced byS. Finally, letΠ0 be the set of all

distributionsπ over functions inP, and let setΠǫ be the set of all distributionsπ′ in which a

1− o(1) probability mass is over functions at leastǫ-far fromP. We are now ready to formulate

our notions of dimension.

Definition 2.14. Define the passive testing dimension,dpassive, as the largestq ∈ N such that,

sup
π∈Π0

sup
π′∈Πǫ

Pr
S∼Dq

(DS(π, π
′) > 1/4) ≤ 1/4.

That is, there exist distributionsπ andπ′ such that a random setS of dpassive examples has a

reasonable probability (at least3/4) of having the property that one cannot reliably distinguish

a random function fromπ versus a random function fromπ′ from just the labels ofS. From the

definition it is fairly immediate thatΩ(dpassive) examples arenecessaryfor passive testing; in

fact,O(dpassive) are sufficient as well.

Theorem 2.15.The sample complexity of passive testing isΘ(dpassive).

Proof. See Appendix 2.10.

For the case of active testing, there are two complications.First, the algorithms can examine

their entirepoly(n)-sized unlabeled sample before deciding which points to query, and secondly

they may in principle determine the next query based on the responses to the previous ones (even

though all our algorithmic results do not require this feature). If we merely want to distinguish

those properties that are actively testable withO(1) queries from those that are not, then the

second complication disappears and the first is simplified aswell, and the following coarse notion

of dimension suffices.

Definition 2.16. Define the coarse active testing dimension,dcoarse, as the largestq ∈ N such

that,

sup
π∈Π0

sup
π′∈Πǫ

Pr
S∼Dq

(DS(π, π
′) > 1/4) ≤ 1/nq.

Theorem 2.17. If dcoarse = O(1) the active testing ofP can be done withO(1) queries, and if

dcoarse = ω(1) then it cannot.
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Proof. See Appendix 2.10.

To achieve a more fine-grained characterization of active testing we consider a slightly more

involved quantity, as follows. First, recall that given an unlabeled sampleU and distributionπ

over functions, we defineπU as the induced distribution over labelings ofU . We can view this as

a distribution overunlabeledexamples in{0, 1}|U |. Now, given two distributions over functions

π, π′, defineFair(π, π′, U) to be the distribution overlabeledexamples(y, ℓ) defined as: with

probability1/2 choosey ∼ πU , ℓ = 1 and with probability1/2 choosey ∼ π′
U , ℓ = 0. Thus, for

a given unlabeled sampleU , the setsΠ0 andΠǫ define aclassof fair distributions over labeled

examples. The active testing dimension, roughly, asks how well this class can be approximated

by the class of low-depth decision trees. Specifically, letDTk denote the class of decision trees

of depth at mostk. The active testing dimension for a given numberu of allowed unlabeled

examples is as follows:

Definition 2.18. Given a numberu = poly(n) of allowed unlabeled examples, we define the

active testing dimension,dactive(u), as the largestq ∈ N such that

sup
π∈Π0

sup
π′∈Πǫ

Pr
U∼Du

(err∗(DTq,Fair(π, π
′, U)) < 1/4) ≤ 1/4,

whereerr∗(H,P ) is the error of the optimal function inH with respect to data drawn from

distributionP over labeled examples.

Theorem 2.19. Active testing with failure probability1
8

usingu unlabeled examples requires

Ω(dactive(u)) label queries, and furthermore can be done withO(u) unlabeled examples and

O(dactive(u)) label queries.

Proof. See Appendix 2.10.

We now use these notions of dimension to prove lower bounds for testing several properties.
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2.5.1 Application: Dictator functions

We now prove Theorem 2.3 that active testing of dictatorships over the uniform distribution re-

quiresΩ(log n) queries by proving aΩ(log n) lower bound ondactive(u) for anyu = poly(n); in

fact, this result holds even for the specific choice ofπ′ as random noise (the uniform distribution

over all functions).

Proof of Theorem 2.3.Defineπ andπ′ to be uniform distributions over the dictator functions and

over all boolean functions, respectively. In particular,π is the distribution obtained by choosing

i ∈ [n] uniformly at random and returning the functionf : {0, 1}n → {0, 1} defined byf(x) =

xi. Fix S to be a set ofq vectors in{0, 1}n. This set can be viewed as aq × n boolean-valued

matrix. We writec1(S), . . . , cn(S) to represent the columns of this matrix. For anyy ∈ {0, 1}q,

πS(y) =
|{i ∈ [n] : ci(S) = y}|

n
and π′

S(y) = 2−q.

By Lemma 2.21, to prove thatdactive ≥ 1
2
log n, it suffices to show that whenq < 1

2
log n

andU is a set ofnc vectors chosen uniformly and independently at random from{0, 1}n, then

with probability at least3
4
, every setS ⊆ U of size |S| = q and everyy ∈ {0, 1}q satisfy

πS(y) ≤ 6
5
2−q. (This is like a stronger version ofdcoarse whereDS(π, π

′) is replaced with anL∞

distance.)

Consider a setS of q vectors chosen uniformly and independently at random from{0, 1}n.

For any vectory ∈ {0, 1}q, the expected number of columns ofS that are equal toy is n2−q.

Since the columns are drawn independently at random, Chernoff bounds imply that

Pr
[

πS(y) >
6
5
2−q
]

≤ e−( 1
5
)2n2−q/3 < e−

1
75

n2−q

.

By the union bound, the probability that there exists a vectory ∈ {0, 1}q such that more than

6
5
n2−q columns ofS are equal toy is at most2qe−

1
75

n2−q
. Furthermore, whenU is defined as

above, we can apply the union bound once again over all subsetsS ⊆ U of size|S| = q to obtain

Pr[∃S, y : πS(y) >
6
5
2−q] < ncq · 2q · e− 1

75
n2−q

. Whenq ≤ 1
2
log n, this probability is bounded
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above bye
c
2
log2 n+ 1

2
logn− 1

75

√
n, which is less than1

4
whenn is large enough, as we wanted to

show.

2.5.2 Application: LTFs

The testing dimension also lets us prove the lower bounds in Theorem 2.5 regarding the query

complexity for testing linear threshold functions. Specifically, those bounds follow directly from

the following result.

Theorem 2.20.For linear threshold functions under the standardn-dimensional Gaussian dis-

tribution, dpassive = Ω(
√

n/ log(n)) anddactive = Ω((n/ log(n))1/3).

Let us give a brief overview of the strategies used to obtain thedpassive anddactive bounds.

The complete proofs for both results, as well as a simpler proof thatdcoarse = Ω((n/ log n)1/3),

can be found in Appendix 2.10.4.

For both results, we setπ to be a distribution over LTFs obtained by choosingw ∼ N (0, In×n)

and outputtingf(x) = sgn(w · x). Setπ′ to be the uniform distribution over all functions—i.e.,

for anyx ∈ R
n, the value off(x) is uniformly drawn from{0, 1} and is independent of the value

of f on other inputs.

To bounddpassive, we bound the total variation distance between the distribution ofXw/
√
n

givenX, and the standard normalN (0, In×n). If this distance is small, then so must be the

distance between the distribution ofsgn(Xw) and the uniform distribution over label sequences.

Our strategy for boundingdactive is very similar to the one we used to prove the lower bound

on the query complexity for testing dictator functions in the last section. Again, we want to

apply Lemma 2.21. Specifically, we want to show that whenq ≤ o((n/ log(n))1/3) andU is a

set ofnc vectors drawn independently from then-dimensional standard Gaussian distribution,

then with probability at least3
4
, every setS ⊆ U of size|S| = q and almost allx ∈ R

q, we have

πS(x) ≤ 6
5
2−q. The difference between this case and the lower bound for dictator functions is

that we now rely on strong concentration bounds on the spectrum of random matrices [Vershynin,
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2012] to obtain the desired inequality.

2.6 Proof of a Property Testing Lemma

The following lemma is a generalization of a lemma that is widely used for proving lower bounds

in property testing [Fischer, 2001, Lem. 8.3]. We use this lemma to prove the lower bounds on

the query complexity for testing dictator functions and testing linear threshold functions.

Lemma 2.21. Let π andπ′ be two distributions on functionsX → R. Fix U ⊆ X to be a set

of allowable queries. Suppose that for anyS ⊆ U , |S| = q, there is a setES ⊆ R
q (possibly

empty) satisfyingπS(ES) ≤ 1
5
2−q such that

πS(y) <
6
5
π′
S(y) for everyy ∈ R

q \ ES.

Thenerr∗(DTq,Fair(π, π
′, U)) > 1/4.

Proof. Consider any decision treeA of depthq. Each internal node of the tree consists of a

queryy ∈ U and a subsetT ⊆ R such that its children are labeled byT andR \ T , respectively.

The leaves of the tree are labeled with either “accept” or “reject”, and letL be the set of leaves

labeled as accept. Each leafℓ ∈ L corresponds to a setSℓ ⊆ U q of queries and a subsetTℓ ⊆ R
ℓ,

wheref : X → R leads to the leafℓ iff f(Sℓ) ∈ Tℓ. The probability thatA (correctly) accepts

an input drawn fromπ is

a1 =
∑

ℓ∈L

∫

Tℓ

πSℓ
(y)dy.

Similarly, the probability thatA (incorrectly) accepts an input drawn fromπ′ is

a2 =
∑

ℓ∈L

∫

Tℓ

π′
Sℓ
(y)dy.

The difference between the two rejection probabilities is bounded above by

a1 − a2 ≤
∑

ℓ∈L

∫

Tℓ\ESℓ

πSℓ
(y)− π′

Sℓ
(y)dy +

∑

ℓ∈L

∫

Tℓ∩ESℓ

πSℓ
(y)dy.
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The conditions in the statement of the lemma then imply that

a1 − a2 <
∑

ℓ∈L

∫

Tℓ

1
6
πSℓ

(y)dy + 5
6

∑

ℓ

∫

ESℓ

πSℓ
(y)dy ≤ 1

3
.

To complete the proof, we note thatA errs on an input drawn fromFair(π, π′, U) with probability

1
2
(1− a1) + 1

2
a2 =

1
2
− 1

2
(a1 − a2) > 1

3
.

2.7 Proofs for Testing Unions of Intervals

In this section we complete the proofs of the technical results in Section 2.2.

Proposition 2.7(Restated). Fix δ > 0 and letf : [0, 1]→ {0, 1} be a union ofd intervals. Then

NSδ(f) ≤ dδ.

Proof. For any fixedb ∈ [0, 1], the probability thatx < b < y whenx ∼ U(0, 1) andy ∼

U(x− δ, x+ δ) is

Pr
x,y

[x < b < y] =

∫ δ

0

Pr
y∼U(b−t−δ,b−t+δ)

[y ≥ b]dt =

∫ δ

0

δ − t
2δ

dt =
δ

4
.

Similarly,Prx,y[y < b < x] = δ
4
. So the probability thatb lies betweenx andy is at mostδ

2
.

When f is the union ofd intervals,f(x) 6= f(y) only if at least one of the boundaries

b1, . . . , b2d of the intervals off lies in betweenx andy. So by the union bound,Pr[f(x) 6=

f(y)] ≤ 2d(δ/2) = dδ. Note that ifb is within distanceδ of 0 or 1, the probability is only

lower.

Lemma 2.8(Restated). Fix δ = ǫ2

32d
. Letf : [0, 1]→ {0, 1} be any function with noise sensitivity

NSδ(f) ≤ dδ(1 + ǫ
4
). Thenf is ǫ-close to a union ofd intervals.

Proof. The proof proceeds in two steps: We first show thatf is ǫ
2
-close to a union ofd(1 + ǫ

2
)

intervals, then we show that every union ofd(1+ ǫ
2
) intervals isǫ

2
-close to a union ofd intervals.
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Consider the “smoothed” functionfδ : [0, 1]→ [0, 1] defined by

fδ(x) = Ey∼δxf(y) =
1

2δ

∫ x+δ

x−δ

f(y)dy.

The functionfδ is the convolution off and the uniform kernelφ : R → [0, 1] defined by

φ(x) = 1
2δ
1[|x| ≤ δ].

Fix τ = 4
ǫ
NSδ(f). We introduce the functiong∗ : [0, 1]→ {0, 1, ∗} by setting

g∗(x) =































1 whenfδ(x) ≥ 1− τ ,

0 whenfδ(x) ≤ τ , and

∗ otherwise

for all x ∈ [0, 1]. Finally, we defineg : [0, 1] → {0, 1} by settingg(x) = g∗(y) wherey ≤ x is

the largest value for whichg(y) 6= ∗. (If no suchy exists, we fixg(x) = 0.)

We first claim thatdist(f, g) ≤ ǫ
2
. To see this, note that

dist(f, g) = Pr
x
[f(x) 6= g(x)]

≤ Pr
x
[g∗(x) = ∗] + Pr

x
[f(x) = 0 ∧ g∗(x) = 1] + Pr

x
[f(x) = 1 ∧ g∗(x) = 0]

= Pr
x
[τ < fδ(x) < 1− τ ] + Pr

x
[f(x) = 0 ∧ fδ(x) ≥ 1− τ ] + Pr

x
[f(x) = 1 ∧ fδ(x) ≤ τ ].

We bound the three terms on the RHS individually. For the first term, we observe thatNSδ(f, x) =

min{fδ(x), 1− fδ(x)} and thatExNSδ(f, x) = NSδ(f). From these identities and Markov’s in-

equality, we have that

Pr
x
[τ < fδ(x) < 1− τ ] = Pr

x
[NSδ(f, x) > τ ] <

NSδ(f)

τ
=
ǫ

4
.

For the second term, letS ⊆ [0, 1] denote the set of pointsx wheref(x) = 0 andfδ(x) ≥ 1− τ .

Let Γ ⊆ S represent aδ-net ofS. Clearly, |Γ| ≤ 1
δ
. Forx ∈ Γ, letBx = (x − δ, x + δ) be a

ball of radiusδ aroundx. Sincefδ(x) ≥ 1 − τ , the intersection ofS andBx has mass at most

|S ∩ Bx| ≤ τδ. Therefore, the total mass ofS is at most|S| ≤ |Γ|τδ = τ . By the bounds on the
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noise sensitivity off in the lemma’s statement, we therefore have

Pr
x
[f(x) = 0 ∧ fδ(x) ≥ 1− τ ] ≤ τ ≤ ǫ

8
.

Similarly, we obtain the same bound on the third term. As a result, dist(f, g) ≤ ǫ
4
+ ǫ

8
+ ǫ

8
= ǫ

2
,

as we wanted to show.

We now want to show thatg is a union ofm ≤ dδ(1 + ǫ
2
) intervals. Each left boundary of an

interval ing occurs at a pointx ∈ [0, 1] whereg∗(x) = ∗, where the maximumy ≤ x such that

g∗(y) 6= ∗ takes the valueg∗(y) = 0, and where the minimumz ≥ x such thatg∗(z) 6= ∗ has

the valueg∗(z) = 1. In other words, for each left boundary of an interval ing, there exists an

interval(y, z) such thatfδ(y) ≤ τ , fδ(z) ≥ 1 − τ , and for eachy < x < z, fδ(x) ∈ (τ, 1 − τ).

Fix any interval(y, z). Sincefδ is the convolution off with a uniform kernel of width2δ, it

is Lipschitz continuous (with Lipschitz constant1
2δ

). So there existsx ∈ (y, z) such that the

conditionsfδ(x) = 1
2
, x− y ≥ 2δ(1

2
− τ), andz − x ≥ 2δ(1

2
− τ) all hold. As a result,

∫ z

y

NSδ(f, t) dt =

∫ x

y

NSδ(f, t) dt+

∫ z

x

NSδ(f, t) dt ≥ 2δ(1
2
− τ)2.

Similarly, for each right boundary of an interval ing, we have an interval(y, z) such that

∫ z

y

NSδ(f, t) dt ≥ 2δ(1
2
− τ)2.

The intervals(y, z) for the left and right boundaries are all disjoints, so

NSδ(f) ≥
2m
∑

i=1

∫ zi

yi
NSδ(f, t) dt ≥ 2m

δ

2
(1− 2τ)2.

This means that

m ≤ dδ(1 + ǫ/4)

δ(1− 2τ)2
≤ d(1 + ǫ

2
)

andg is a union of at mostd(1 + ǫ
2
) intervals, as we wanted to show.

Finally, we want to show that any function that is the union ofm ≤ d(1 + ǫ
2
) intervals isǫ

2
-

close to a union ofd intervals. Letℓ1, . . . , ℓm represent the lengths of the intervals ing. Clearly,
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ℓ1 + · · ·+ ℓm ≤ 1, so there must be a setS of m− d ≤ dǫ/2 intervals inf with total length

∑

i∈S
ℓi ≤

m− d
m

≤ dǫ/2

d(1 + ǫ
2
)
<
ǫ

2
.

Consider the functionh : [0, 1] → {0, 1} obtained by removing the intervals inS from g (i.e.,

by settingh(x) = 0 for the valuesx ∈ [b2i−1, b2i] for somei ∈ S). The functionh is a union

of d intervals anddist(g, h) ≤ ǫ
2
. This completes the proof, sincedist(f, h) ≤ dist(f, g) +

dist(g, h) ≤ ǫ.

2.8 Proofs for Testing LTFs

We complete the proof that LTFs can be tested withO(
√
n) samples in this section.

For a fixed functionf : Rn → R, defineg : Rn × R
n → R to beg(x, y) = f(x)f(y) 〈x, y〉.

Let g∗ : Rn × R
n → R be the truncation ofg defined by setting

g∗(x, y) =















f(x)f(y) 〈x, y〉 if | 〈x, y〉 | ≤
√

4n log(4n/ǫ3)

0 otherwise.

Our goal is to estimateEg. The following lemma shows thatEg∗ provides a good estimate of

this value.

Lemma 2.22.Letg, g∗ : Rn × R
n → R be defined as above. Then|Eg − Eg∗| ≤ 1

2
ǫ3.

Proof. For notational clarity, fixτ =
√

4n log(4n/ǫ3). By the definition ofg andg∗ and with

the trivial bound|f(x)f(y) 〈x, y〉 | ≤ n we have

|Eg−Eg∗| =
∣

∣

∣

∣

Pr
x,y

[

|〈x, y〉| > τ
]

· Ex,y

[

f(x)f(y) 〈x, y〉
∣

∣ |〈x, y〉| > τ
]

∣

∣

∣

∣

≤ n ·Pr
x,y

[

|〈x, y〉| > τ
]

.

The right-most term can be bounded with a standard Chernoff argument. By Markov’s inequality

and the independence of the variablesx1, . . . , xn, y1, . . . , yn,

Pr
x,y

[

〈x, y〉 > τ
]

= Pr
[

et〈x,y〉 > etτ
]

≤ Eet〈x,y〉

etτ
=

∏n
i=1 Ee

txiyi

etτ
.
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The moment generating function of a standard normal random variable isEety = et
2/2, so

Exi,yi

[

etxiyi
]

= Exi

[

Eyie
txiyi
]

= Exi
e(t

2/2)x 2
i .

Whenx ∼ N (0, 1), the random variablex2 has aχ2 distribution with 1 degree of freedom. The

moment generating function of this variable isEetx
2
=
√

1
1−2t

=
√

1 + 2t
1−2t

for any t < 1
2
.

Hence,

Exi
e(t

2/2)x 2
i ≤

√

1 +
t2

1− t2 ≤ e
t2

2(1−t2)

for anyt < 1. Combining the above results and settingt = τ
2n

yields

Pr
x,y

[

〈x, y〉 > τ
]

≤ e
nt2

2(1−t2)
−tτ ≤ e−

τ2

4n = ǫ3

4n
.

The same argument shows thatPr[〈x, y〉 < −τ ] ≤ ǫ3

4n
as well.

The reason we consider the truncationg∗ is that its smallerℓ∞ norm will enable us to apply

a strong Bernstein-type inequality on the concentration of measure of the U-statistic estimate of

Eg∗.

Lemma 2.23(Arcones [Arcones, 1995]). For a symmetric functionh : Rn × R
n → R, letΣ2 =

Ex[Ey[h(x, y)]
2] − Ex,y[h(x, y)]

2, let b = ‖h − Eh‖∞, and letUm(h) be a random variable ob-

tained by drawingx1, . . . , xm independently at random and settingUm(h) =
(

m
2

)−1∑

i<j h(x
i, xj).

Then for everyt > 0,

Pr[|Um(h)− Eh| > t] ≤ 4 exp

(

mt2

8Σ2 + 100bt

)

.

We are now ready to complete the proof of the upper bound of Theorem 2.5.

Theorem 2.24(Upper bound in Theorem 2.5, restated). Linear threshold functions can be tested

over the standardn-dimensional Gaussian distribution withO(
√
n log n) queries in both the

active and passive testing models.

Proof. Consider the LTF-TESTERalgorithm. When the estimates̃µ andν̃ satisfy

|µ̃− Ef | ≤ ǫ3 and |ν̃ − E[f(x)f(y) 〈x, y〉]| ≤ ǫ3,
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Lemmas 2.10 and 2.11 guarantee that the algorithm correctlydistinguishes LTFs from functions

that are far from LTFs. To complete the proof, we must therefore show that the estimates are

within the specified error bounds with probability at least2/3.

The valuesf(x1), . . . , f(xm) are independent{−1, 1}-valued random variables. By Hoeffd-

ing’s inequality,

Pr[|µ̃− Ef | ≤ ǫ3] ≥ 1− 2e−ǫ6m/2 = 1− 2e−O(
√
n).

The estimatẽν is a U-statistic with kernelg∗ as defined above. This kernel satisfies

‖g∗ − Eg∗‖∞ ≤ 2‖g∗‖∞ = 2
√

4n log(4n/ǫ3)

and

Σ2 ≤ Ey

[

Ex[g
∗(x, y)]2

]

= Ey

[

Ex[f(x)f(y) 〈x, y〉1[|〈x, y〉| ≤ τ ]]2
]

.

For any two functionsφ, ψ : R
n → R, whenψ is {0, 1}-valued the Cauchy-Schwarz in-

equality implies thatEx[φ(x)ψ(x)]
2 ≤ Ex[φ(x)]Ex[φ(x)ψ(x)

2] = Ex[φ(x)]Ex[φ(x)ψ(x)] and

soEx[φ(x)ψ(x)]
2 ≤ Ex[φ(x)]. Applying this inequality to the expression forΣ2 gives

Σ2 ≤ Ey

[

Ex[f(x)f(y) 〈x, y〉]2
]

= Ey

[(

n
∑

i=1

f(y)yiEx[f(x)xi]
)2]

=
∑

i,j

f̂(ei)f̂(ej)Ey[yiyj] =
n
∑

i=1

f̂(ei)
2.

By Parseval’s identity, we have
∑

i f̂(ei)
2 ≤ ‖f̂‖22 = ‖f‖22 = 1. Lemmas 2.22 and 2.23 imply

that

Pr[|ν̃ − Eg| ≤ ǫ3] = Pr[|ν̃ − Eg∗| ≤ 1
2
ǫ3] ≥ 1− 4e

− mt2

8+200
√

n log(4n/ǫ3)t ≥ 11
12
.

The union bound completes the proof of correctness.

2.9 Proofs for Testing Disjoint Unions

Theorem 2.12(Restated). Given propertiesP1, . . . ,PN , if eachPi is testable overDi with q(ǫ)

queries andU(ǫ) unlabeled samples, then their disjoint unionP is testable over the combined

distributionD withO(q(ǫ/2) · (log3 1
ǫ
)) queries andO(U(ǫ/2) · (N

ǫ
log3 1

ǫ
)) unlabeled samples.
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Proof. Let p = (p1, . . . , pN) denote the mixing weights for distributionD; that is, a random

draw fromD can be viewed as selectingi from distributionp and then selectingx fromDi. We

are given that eachPi is testable with failure probability1/3 using usingq(ǫ) queries andU(ǫ)

unlabeled samples. By repetition, this implies that each is testable with failure probabilityδ using

qδ(ǫ) = O(q(ǫ) log(1/δ)) queries andUδ(ǫ) = O(U(ǫ) log(1/δ)) unlabeled samples, where we

will set δ = ǫ2. We now test propertyP as follows:

For ǫ′ = 1/2, 1/4, 1/8, . . . , ǫ/2 do:

RepeatO( ǫ
′

ǫ
log(1/ǫ)) times:

1. Choose a random(i, x) fromD.

2. Sample until eitherUδ(ǫ
′) samples have been drawn fromDi or (8N/ǫ)Uδ(ǫ

′)

samples total have been drawn fromD, whichever comes first.

3. In the former case, run the tester for propertyPi with parameterǫ′, making

qδ(ǫ
′) queries. If the tester rejects, then reject.

If all runs have accepted, then accept.

First to analyze the total number of queries and samples, since we can assumeq(ǫ) ≥ 1/ǫ and

U(ǫ) ≥ 1/ǫ, we haveqδ(ǫ′)ǫ′/ǫ = O(qδ(ǫ/2)) andUδ(ǫ
′)ǫ′/ǫ = O(Uδ(ǫ/2)) for ǫ′ ≥ ǫ/2. Thus,

the total number of queries made is at most

∑

ǫ′

qδ(ǫ/2) log(1/ǫ) = O

(

q(ǫ/2) · log3 1
ǫ

)

and the total number of unlabeled samples is at most

∑

ǫ′

8N

ǫ
Uδ(ǫ/2) log(1/ǫ) = O

(

U(ǫ/2)
N

ǫ
log3

1

ǫ

)

.

Next, to analyze correctness, if indeedf ∈ P then each call to a tester rejects with probability

at mostδ so the overall failure probability is at most(δ/ǫ) log2(1/ǫ) < 1/3; thus it suffices to

analyze the case thatdistD(f,P) ≥ ǫ.
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If distD(f,P) ≥ ǫ then
∑

i:pi≥ǫ/(4N) pi · distDi
(fi,Pi) ≥ 3ǫ/4. Moreover, for indicesi such that

pi ≥ ǫ/(4N), with high probability Step 2 drawsUδ(ǫ
′) samples, so we may assume for such

indices the tester forPi is indeed run in Step 3. LetI = {i : pi ≥ ǫ/(4N) anddistDi
(fi,Pi) ≥

ǫ/2}. Thus, we have
∑

i∈I
pi · distDi

(fi,Pi) ≥ ǫ/4.

Let Iǫ′ = {i ∈ I : distDi
(fi,Pi) ∈ [ǫ′, 2ǫ′]}. Bucketing the above summation by valuesǫ′ in this

way implies that for some valueǫ′ ∈ {ǫ/2, ǫ, 2ǫ, . . . , 1/2}, we have:

∑

i∈Iǫ′
pi ≥ ǫ/(8ǫ′ log(1/ǫ)).

This in turn implies that with probability at least2/3, the run of the algorithm for this value ofǫ′

will find such ani and reject, as desired.

2.10 Proofs for Testing Dimensions

2.10.1 Passive Testing Dimension (proof of Theorem 2.15)

Lower bound: By design,dpassive is a lower bound on the number of examples needed for

passive testing. In particular, ifDS(π, π
′) ≤ 1/4, and if the target is with probability1/2 chosen

fromπ and with probability1/2 chosen fromπ′, even the Bayes optimal tester will fail to identify

the correct distribution with probability1
2

∑

y∈{0,1}|S| min(πS(y), π
′
S(y)) =

1
2
(1 − DS(π, π

′)) ≥

3/8. The definition ofdpassive implies that there existπ ∈ Π0, π′ ∈ Πǫ such thatPrS(DS(π, π
′) ≤

1/4) ≥ 3/4. Sinceπ′ has a1 − o(1) probability mass on functions that areǫ-far fromP, this

implies that over random draws ofS andf , the overall failure probability of any tester is at least

(1− o(1))(3/8)(3/4) > 1/4. Thus, at leastdpassive + 1 random labeled examples are required if

we wish to guarantee error at most1/4. This in turn impliesΩ(dpassive) examples are needed to

guarantee error at most1/3.
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Upper bound: We now argue thatO(dpassive) examples aresufficientfor testing as well. Toward

this end, consider the following natural testing game. The adversary chooses a functionf such

that eitherf ∈ P or distD(f,P) ≥ ǫ. The tester picks a functionA that maps labeled samples

of sizek to accept/reject. That is,A is a deterministic passive testing algorithm. The payoff to

the tester is the probability thatA is correct whenS is chosen iid fromD and labeled byf .

If k > dpassive then (by definition ofdpassive) we know that for any distributionπ overf ∈ P

and any distributionπ′ overf that areǫ-far fromP, we havePrS∼Dk(DS(π, π
′) > 1/4) > 1/4.

We now need to translate this into a statement about the valueof the game. The key fact we can

use is that if the adversary uses distributionαπ + (1 − α)π′ (i.e., with probabilityα it chooses

from π and with probability1−α it chooses fromπ′), then the Bayes optimal predictor has error

exactly

∑

y

min(απS(y), (1− α)π′
S(y)) ≤ max(α, 1− α)

∑

y

min(πS(y), π
′
S(y)),

while

∑

y

min(πS(y), π
′
S(y)) = 1− (1/2)

∑

y

|πS(y)− π′
S(y)| = 1−DS(π, π

′),

so that the Bayes risk is at mostmax(α, 1− α)(1−DS(π, π
′)). Thus, for anyα ∈ [7/16, 9/16],

if DS(π, π
′) > 1/4, the Bayes risk is less than(9/16)(3/4) = 27/64. Furthermore, anyα /∈

[7/16, 9/16] has Bayes risk at most7/16. Thus, sinceDS(π, π
′) > 1/4 with probability> 1/4

(and if DS(π, π
′) ≤ 1/4 then the error probability of the Bayes optimal predictor is at most

1/2), for any mixed strategy of the adversary, the Bayes optimal predictor has risk less than

(1/4)(7/16) + (3/4)(1/2) = 31/64.

Now, applying the minimax theorem we get that fork = dpassive + 1, there exists a mixed

strategyA for the tester such that for any function chosen by the adversary, the probability the

tester is correct is at least1/2 + γ for a constantγ > 0 (namely,1/64). We can now boost the

correctness probability using a constant-factor larger sample. Specifically, letm = c·(dpassive+1)

for some constantc, and consider a sampleS of sizem. The tester simply partitions the sample
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S into c pieces, runsA separatately on each piece, and then takes majority vote. This gives us

thatO(dpassive) examples are sufficient for testing with any desired constant success probability

in (1/2, 1).

2.10.2 Coarse Active Testing Dimension (proof of Theorem 2.17)

Lower bound: First, we claim that any nonadaptive active testing algorithm that uses≤ dcoarse/c

label requests must use more thannc unlabeled examples (and thus no algorithm can succeed

usingo(dcoarse) labels). To see this, suppose algorithmA drawsnc unlabeled examples. The

number of subsets of sizedcoarse/c is at mostndcoarse/6 (for dcoarse/c ≥ 3). So, by definition of

dcoarse and the union bound, with probability at least5/6, all such subsetsS satisfy the property

thatDS(π, π
′) < 1/4. Therefore, for any sequence of such label requests, the labels observed will

not be sufficient to reliably distinguishπ from π′. Adaptive active testers can potentially choose

their next point to query based on labels observed so far, butthe above immediately implies that

even adaptive active testers cannot use ano(log(dcoarse)) queries.

Upper bound: For the upper bound, we modify the argument from the passive testing dimension

analysis as follows. We are given that for any distributionπ overf ∈ P and any distributionπ′

overf that areǫ-far fromP, for k = dcoarse+1, we havePrS∼Dk(DS(π, π
′) > 1/4) > n−k. Thus,

we can sampleU ∼ Dm withm = Θ(k ·nk), and partitionU into subsamplesS1, S2, . . . , Scnk of

sizek each. With high probability, at least one of these subsamplesSi will haveDS(π, π
′) > 1/4.

We can thus simply examine each subsample, identify one suchthatDS(π, π
′) > 1/4, and query

the points in that sample. As in the proof for the passive bound, this implies that for any strategy

for the adversary in the associated testing game, the best response has probability at least1/2+γ

of success for some constantγ > 0. By the minimax theorem, this implies a testing strategy with

success probability1/2+γ which can then be boosted to2/3. The total number of label requests

used in the process is onlyO(dcoarse).

Note, however, that this strategy uses a number of unlabeledexamplesΩ(ndcoarse+1). Thus,
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this only implies an active tester fordcoarse = O(1). Nonetheless, combining the upper and lower

bounds yields Theorem 2.17.

2.10.3 Active Testing Dimension (proof of Theorem 2.19)

Lower bound: for a given sampleU , we can think of an adaptive active tester as a decision

tree, defined based on which example it would request the label of next given that the previous

requests have been answered in any given way. A tester makingk queries would yield a decision

tree of depthk. By definition ofdactive(u), with probability at least3/4 (over choice ofU ), any

such tester has error probability at least(1/4)(1 − o(1)) over the choice off . Thus, the overall

failure probability is at least(3/4)(1/4)(1− o(1) > 1/8.

Upper bound: We again consider the natural testing game. We are given thatfor any mixed

strategy of the adversary with equal probability mass on functions inP and functionsǫ-far from

P, the best response of the tester has expected payoff at least(1/4)(3/4) + (3/4)(1/2) = 9/16.

This in turn implies that for any mixed strategy at all, the best response of the tester has expected

payoff at least33/64 (if the adversary puts more than17/32 probability mass on either type

of function, the tester can just guess that type with expected payoff at least17/32, else it gets

payoff at least(1 − 1/16)(9/16) > 33/64). By the minimax theorem, this implies existence of

a randomized strategy for the tester with at least this payoff. We then boost correctness using

c · u samples andc · dactive(u) queries, running the testerc times on disjoint samples and taking

majority vote.

2.10.4 Lower Bounds for Testing LTFs (proof of Theorem 2.20)

We complete the proofs for the lower bounds on the query complexity for testing linear threshold

functions in the active and passive models. This proof has three parts. First, in Section 2.10.4, we

introduce some preliminary (technical) results that will be used to prove the lower bounds on the

passive and coarse dimensions of testing LTFs. In Section 2.10.4, we introduce some more pre-
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liminary results regarding random matrices that we will useto bound the active dimension of the

class. Finally, in Section 2.10.4, we put it all together andcomplete the proof of Theorem 2.20.

Preliminaries for dpassive and dcoarse

Fix anyK. Let the datasetX = {x1, x2, · · · , xK} be sampled iid according to the uniform

distribution on{−1,+1}n and letX ∈ RK×n be the corresponding data matrix.

Supposew ∼ N(0, In×n). We let

z = Xw,

and note that the conditional distribution ofz givenX is normal with mean0 and (X-dependent)

covariance matrix, which we denote byΣ. Further applying threshold function toz givesy as

the predicted label vector of an LTF.

Lemma 2.25. For any matrixB, log(det(B)) = Tr(log(B)), wherelog(B) is the matrix expo-

nential ofB.

Proof. From [Higham, 2008], we know since every eigenvalue ofA corresponds to the eigen-

value ofexp(A), thus

det(exp(A)) = exp(Tr(A)) (2.1)

whereexp(A) is the matrix exponential ofA. Taking logarithm of both sides of (2.1), we get

log(det(exp(A))) = Tr(A) (2.2)

LetB = exp(A) (thusA = log(B)). Then (2.2) can rewritten aslog(det(B)) = Tr(logB).

Lemma 2.26. For sufficiently largen, and a valueK = Ω(
√

n/ log(K/δ)), with probability at

least1− δ (overX),

‖P(z/
√
n)|X −N(0, I)‖ ≤ 1/4.
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Proof. Let l be the feature index. For a pairxi andxj,

P(
∣

∣

∣
|{l : xil = xjl}| −

n

2

∣

∣

∣
>

√

n log 2
δ

2
) ≤ δ

By Hoeffding Inequality, with probability1− δ,

xT
i xj = |{l : xil = xjl}| − |{l : xil 6= xjl}|

= 2|{l : xil = xjl}| − n ∈



−2

√

n log 2
δ

2
, 2

√

n log 2
δ

2





By union bound,

P

(

∃i, j, such thatxT
i xj 6∈

[

−
√

2n log
2K2

δ
,

√

2n log
2K2

δ

])

≤ K2 δ

K2
= δ (2.3)

For the remainder of the proof we suppose the (probability1− δ) event

∀i, j,xT
i xj ∈

[

−
√

2n log(2K2/δ),
√

2n log(2K2/δ)
]

occurs.

Cov(zi/
√
n, zj/

√
n|X) =

E[zizj|X]

n

=
1

n
E

[

(
n
∑

l=1

wl · xil)(
n
∑

l=1

wl · xjl)|X
]

=
1

n
E

[

n,n
∑

l,m=1,1

wlwmxilxjm|X
]

=
1

n
E

[

∑

l

w2
l xilxjl|X

]

=
1

n
E

[

∑

l

xilxjl|X
]

=
1

n

∑

l

xilxjl =
1

n
xT
i xj ∈

[

−
√

2 log(2K2/δ)

n
,

√

2 log(2K2/δ)

n

]

becauseE[wlwm] = 0 (for l 6= m) andE[w2
l ] = 1. Let β =

√

2 log(2K2/δ)
n

. ThusΣ is aK ×K

matrix, withΣii = 1 for i = 1, · · · , K andΣij ∈ [−β, β] for all i 6= j.

Let P1 = N(0,ΣK×K) andP2 = N(0, IK×K). As the density

p1(z) =
1

√

(2π)Kdet(Σ)
exp(−1

2
zTΣ−1z)
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and the density

p2(z) =
1

√

(2π)K
exp(−1

2
zTz)

ThenL1 distance between the two distributionsP1 andP2

|dP2 − dP1| ≤ 2
√

K(P1, P2) = 2
√

(1/2) log det(Σ),

where this last equality is by [Davis and Dhillon, 2006]. By Lemma 2.25,log(det(Σ)) =

Tr(log(Σ)). WriteA = Σ− I. By the Taylor series

log(I + A) = −
∞
∑

i=1

1

i
(I − (I + A))i = −

∞
∑

i=1

1

i
(−A)i

Thus Tr(log(I + A)) =
∞
∑

i=1

1

i
T r((−A)i). (2.4)

Every entry inAi can be expressed as a sum of at mostKi−1 terms, each of which can

be expressed as a product of exactlyi entries fromA. Thus, every entry inAi is in the range

[−Ki−1βi, Ki−1βi]. This meansTr(Ai) ≤ Kiβi. Therefore, ifKβ < 1/2, sinceTr(A) = 0,

the expansion ofTr(log(I + A)) ≤∑∞
i=2K

iβi = O
(

K2 log(K/δ)
n

)

.

In particular, for someK = Ω(
√

n/ log(K/δ)), Tr(log(I +A)) is bounded by the appropri-

ate constant to obtain the stated result.

Preliminaries for dactive

Given ann×mmatrixA with real entries{ai,j}i∈[n],j∈[m], theadjoint (or transpose– the two are

equivalent sinceA contains only real values) ofA is them × n matrixA∗ whose(i, j)-th entry

equalsaj,i. Let us writeλ1 ≥ λ2 ≥ · · · ≥ λm to denote the eigenvalues of
√
A∗A. These values

are thesingular valuesof A. The matrixA∗A is positive semidefinite, so the singular values of

A are all non-negative. We writeλmax(A) = λ1 andλmin(A) = λm to represent its largest and

smallest singular values. Finally, theinduced norm(or operator norm) of A is

‖A‖ = max
x∈Rm\{0}

‖Ax‖2
‖x‖2

= max
x∈Rm:‖x‖22=1

‖Ax‖2.
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For more details on these definitions, see any standard linear algebra text (e.g., [Shilov, 1977]).

We will also use the following strong concentration bounds on the singular values of random

matrices.

Lemma 2.27(See [Vershynin, 2012, Cor. 5.35]). LetA be ann × m matrix whose entries are

independent standard normal random variables. Then for anyt > 0, the singular values ofA

satisfy
√
n−√m− t ≤ λmin(A) ≤ λmax(A) ≤

√
n+
√
m+ t (2.5)

with probability at least1− 2e−t2/2.

The proof of this lemma follows from Talagrand’s inequalityand Gordon’s Theorem for

Gaussian matrices. See [Vershynin, 2012] for the details. The lemma implies the following

corollary which we will use in the proof of our theorem.

Corollary 2.28. Let A be ann × m matrix whose entries are independent standard normal

random variables. For any0 < t <
√
n−√m, them×mmatrix 1

n
A∗A satisfies both inequalities

∥

∥

1
n
A∗A− I

∥

∥ ≤ 3

√
m+ t√
n

and det
(

1
n
A∗A

)

≥ e
−m

(

(
√
m+t)2

n
+2

√
m+t√
n

)

(2.6)

with probability at least1− 2e−t2/2.

Proof. When there exists0 < z < 1 such that1 − z ≤ 1√
n
λmax(A) ≤ 1 + z, the identity

1√
n
λmax(A) = ‖ 1√

n
A‖ = max‖x‖22=1 ‖ 1√

n
Ax‖2 implies that

1− 2z ≤ (1− z)2 ≤ max
‖x‖22=1

∥

∥

∥

1√
n
Ax
∥

∥

∥

2

2
≤ (1 + z)2 ≤ 1 + 3z.

These inequalities and the identity‖ 1
n
A∗A − I‖ = max‖x‖22=1 ‖ 1√

n
Ax‖22 − 1 imply that−2z ≤

‖ 1
n
A∗A− I‖ ≤ 3z. Fixing z =

√
m+t√
n

and applying Lemma 2.27 completes the proof of the first

inequality.

Recall thatλ1 ≤ · · · ≤ λm are the eigenvalues of
√
A∗A. Then

det( 1
n
A∗A) =

det(
√
A∗A)2

n
=

(λ1 · · ·λm)2
n

≥
(

λ 2
1

n

)m

=

(

λmin(A)
2

n

)m

.
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Lemma 2.27 and the elementary inequality1+x ≤ ex complete the proof of the second inequal-

ity.

Proof of Theorem 2.20

Theorem 2.20 (Restated). For linear threshold functions under the uniform distribution on

{−1, 1}n, dpassive = Ω(
√

n/ log(n)) anddactive = Ω((n/ log(n))1/3).

Proof. Let K be as in Lemma 2.26 forδ = 1/4. Let D = {(x1, y1), . . . , (xK , yK)} denote

the sequence of labeled data points under the random LTF based onw. Furthermore, letD′ =

{(x1, y′1), . . . , (xK , y′K)} denote the sequence of labeled data points under a target function that

assigns an independent random label to each data point. Alsolet zi = (1/
√
n)wTxi, and let

z′ ∼ N(0, IK×K). LetE = {(x1, z1), . . . , (xK , zK)} andE ′ = {(x1, z′1), . . . , (xK , z′K)}. Note

that we can think ofyi andy′i as being functions ofzi andz′i, respectively. Thus, lettingX =

{x1, . . . , xK}, by Lemma 2.26, with probability at least3/4,

‖PD|X − PD′|X‖ ≤ ‖PE|X − PE′|X‖ ≤ 1/4.

This suffices for the claim thatdpassive = Ω(K) = Ω(
√

n/ log(n)).

Next we turn to the lower bound ondactive. Let us now introduce two distributionsDyes

andDno over linear threshold functions and functions that (with high probability) are far from

linear threshold functions, respectively. We draw a function f from Dyes by first drawing a

vectorw ∼ N (0, In×n) from then-dimensional standard normal distribution. We then define

f : x 7→ sgn( 1√
n
x · w). To draw a functiong fromDno, we defineg(x) = sgn(yx) where each

yx variable is drawn independently from the standard normal distributionN (0, 1).

Let X ∈ R
n×q be a random matrix obtained by drawingq vectors from then-dimensional

normal distributionN (0, In×n) and setting these vectors to be the columns ofX. Equivalently,X

is the random matrix whose entries are independent standardnormal variables. When we viewX

as a set ofq queries to a functionf ∼ Dyes or a functiong ∼ Dno, we getf(X) = sgn( 1√
n
Xw)
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and g(X) = sgn(yX). Note that 1√
n
Xw ∼ N (0, 1

n
X∗X) andyX ∼ N (0, Iq×q). To apply

Lemma 2.21 it suffices to show that the ratio of the pdfs for both these random variables is

bounded by6
5

for all but 1
5

of the probability mass.

The pdfp : Rq → R of a q-dimensional random vector from the distributionNq×q(0,Σ) is

p(x) = (2π)−
q
2 det(Σ)−

1
2 e−

1
2
xTΣ−1x.

Therefore, the ratio functionr : Rq → R between the pdfs of1√
n
Xw and ofyX is

r(x) = det( 1
n
X∗X)−

1
2 e

1
2
xT (( 1

n
X

∗
X)−1−I)x.

Note that

xT (( 1
n
X∗X)−1 − I)x ≤ ‖( 1

n
X∗X)−1 − I‖‖x‖22 = ‖ 1nX∗X− I‖‖x‖22,

so by Lemma 2.27 with probability at least1− 2e−t2/2 we have

r(x) ≤ e
q
2

(

(
√
q+t)2

n
+2

√
q+t√
n

)

+3
√

q+t√
n

‖x‖22
.

By a union bound, forU ∼ N (0, In×n)
u, u ∈ N with u ≥ q, the above inequality forr(x) is true

for all subsets ofU of sizeq, with probability at least1 − uq2e−t2/2. Fix q = n
1
3/(50(ln(u))

1
3 )

andt = 2
√

q ln(u). Thenuq2e−t2/2 ≤ 2u−q, which is< 1/4 for any sufficiently largen. When

‖x‖22 ≤ 3q then for largen, r(x) ≤ e74/625 < 6
5
. To complete the proof, it suffices to show that

whenx ∼ N (0, Iq×q), the probability that‖x‖22 > 3q is at most1
5
2−q. The random variable‖x‖22

has aχ2 distribution withq degrees of freedom and expected valueE‖x‖22 =
∑q

i=1 Ex
2
i = q.

Standard concentration bounds forχ2 variables imply that

Pr
x∼N (0,Iq×q)

[‖x‖22 > 3q] ≤ e−
4
3
q < 1

5
2−q,

as we wanted to show. Thus, Lemma 2.21 implieserr∗(DTq,Fair(π, π
′, U)) > 1/4 holds when-

ever thisr(x) inequality is satisfied for all subsets ofU of sizeq; we have shown this happens

with probabiliity greater than3/4, so we must havedactive ≥ q.
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If we are only interested in boundingdcoarse, the proof can be somewhat simplified. Specifi-

cally, takingδ = n−K in Lemma 2.26 implies that with probability at least1− n−K ,

‖PD|X − PD′|X‖ ≤ ‖PE|X − PE′|X‖ ≤ 1/4,

which suffices for the claim thatdcoarse = Ω(K), whereK = Ω(
√

n/K log(n)): in particular,

dcoarse = Ω((n/ log(n))1/3).

2.11 Testing Semi-Supervised Learning Assumptions

We now consider testing of common assumptions made in semi-supervised learning [Chapelle,

Schlkopf, and Zien, 2006], where unlabeled data, together with assumptions about how the target

function and data distribution relate, are used to constrain the search space. As mentioned in

Section 2.4, one such assumption we can test using our generic disjoint-unions tester is the

cluster assumption, that if data lies inN identifiable clusters, then points in the same cluster

should have the same label. We can in fact achieve the following tighter bounds:

Theorem 2.29.We can test the cluster assumption with active testing usingO(N/ǫ) unlabeled

examples andO(1/ǫ) queries.

Proof. Let pi1 andpi0 denote the probability mass on positive examples and negative examples

respectively in clusteri, sopi1 + pi0 is the total probabilty mass of clusteri. Thendist(f,P) =
∑

i min(pi1, pi0). Thus, a simple tester is to draw a random examplex, draw a random example

y from x’s cluster, and check iff(x) = f(y). Notice that with probabilityexactlydist(f,P),

pointx is in the minority class of its own cluster, and conditioned on this event, with probability

at least1/2, point y will have a different label. It thus suffices to repeat this processO(1/ǫ)

times. One complication is that as stated, this process might require a largeunlabeledsample,

especially ifx belongs to a clusteri such thatpi0+ pi1 is small, so that many draws are needed to

find a pointy in x’s cluster. To achieve the givenunlabeledsample bound, we initially draw an

unlabeled sample of sizeO(N/ǫ) and simply perform the above test on the uniform distribution
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U over that sample, with distance parameterǫ/2. Standard sample complexity bounds [Vapnik,

1998] imply thatO(N/ǫ) unlabeled points are sufficient so that ifdistD(f,P) ≥ ǫ then with

high probability,distU(f,P) ≥ ǫ/2.

We now consider the property of a function having a large margin with respect to the un-

derlying distribution: that is, the distributionD and targetf are such that any point in the

support ofD|f=1 is at distanceγ or more from any point in the support ofD|f=0. This is a

common property assumed in graph-based and nearest-neighbor-style semi-supervised learning

algorithms [Chapelle, Schlkopf, and Zien, 2006]. Note that we are not additionally requiring

the target to be a linear separator or have any special functional form. For scaling, we assume

that points lie in the unit ball inRd, where we viewd as constant and1/γ as our asymptotic

parameter.8 Since we are not assuming any specific functional form for thetarget, the number

of labeled examples needed forlearningcould be as large asΩ(1/γd) by having a distribution

with support overΩ(1/γd) points that are all at distanceγ from each other (and therefore can

be labeled arbitrarily). Furthermore, passive testing would requireΩ(1/γd/2) samples as this

specific case encodes the cluster-assumption setting withN = Ω(1/γd) clusters. We will be able

to perform active testing using onlyO(1/ǫ) label requests.

First, one distinction between this and other properties wehave been discussing is that it

is a property of therelation between the target functionf and the distributionD; i.e., of the

combined distributionDf = (D, f) over labeled examples. As a result, the natural notion of

distanceto this property is in terms of the variation distance ofDf to the closestD∗ satisfying

the property.9 Second, we will have to also allow some amount of slack on theγ parameter as

8Alternatively points could lie in ad-dimensional manifold in some higher-dimensional ambientspace, where the

property is defined with respect to the manifold, and we have sufficient unlabeled data to “unroll” the manifold using

existing methods [Chapelle, Schlkopf, and Zien, 2006, Roweis and Saul, 2000, Tenenbaum, Silva, and Langford,

2000].
9As a simple example illustrating the issue, considerX = [0, 1], a targetf that is negative on[0, 1/2) and

positive on[1/2, 1], and a distributionD that is uniform but where the region[1/2, 1/2 + γ] is downweighted to
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well. Specifically, our tester will distinguish the case that Df indeed has marginγ from the case

that theDf is ǫ-far from having marginγ′ whereγ′ = γ(1− 1/c) for some constantc > 1; e.g.,

think of γ′ = γ/2. This slack can also be seen to be necessary (see discussion following the

proof of Theorem 2.13). In particular, we have the following.

Theorem 2.13(Restated). For anyγ, γ′ = γ(1 − 1/c) for constantc > 1, for data in the unit

ball inRd for constantd, we can distinguish the case thatDf has marginγ from the case thatDf

is ǫ-far from marginγ′ using Active Testing withO(1/(γ2dǫ2)) unlabeled examples andO(1/ǫ)

label requests.

Proof. First, partition the input spaceX (the unit ball inRd) into regionsR1, R2, . . . , RN of

diameter at mostγ/(2c). By a standard volume argument, this can be done usingN = O(1/γd)

regions (absorbing “c” into theO()). Next, we run the cluster-property tester on theseN regions,

with distance parameterǫ/4. Clearly, if the cluster-tester rejects, then we can reject as well.

Thus, we may assume below that the total impurity within individual regions is at mostǫ/4.

Now, consider the following weighted graphGγ. We haveN vertices, one for each of theN

regions. We have an edge(i, j) between regionsRi andRj if diam(Ri ∪ Rj) < γ. We define

theweightw(i, j) of this edge to bemin(D[Ri], D[Rj ]) whereD[R] is the probability mass in

R under distributionD. Notice that if there is no edge between regionRi andRj, then by the

triangle inequality every point inRi must be at distance at leastγ′ from every point inRj. Also,

note that each vertex has degreeO(cd) = O(1), so the total weight over all edges isO(1). Finally,

note that while algorithmically we do not know the edge weights precisely, we can estimate all

edge weights to±ǫ/(4M), whereM = O(N) is the total number of edges, using the unlabeled

sample size bounds given in the Theorem statement. Letw̃(i, j) denote the estimated weight of

edge(i, j).

Let Ewitness be the set of edges(i, j) such that one endpoint is majority positive and one is

have total probability mass only1/2n. Such aDf is 1/2n-close to the property under variation distance, but would

be nearly1/2-far from the property if the only operation allowed were to change the functionf .
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majority negative. Note that ifDf satisfies theγ-margin property, then every edge inEwitness

has weight 0. On the other hand, ifDf is ǫ-far from theγ′-margin property, then the total weight

of edges inEwitness is at least3ǫ/4. The reason is that otherwise one could convertDf to D′
f

satisfying the margin condition by zeroing out the probability mass in the lightest endpoint of

every edge(i, j) ∈ Ewitness, and then for each vertex, zeroing out the probability mass of points

in the minority label of that vertex. (Then, renormalize to have total probability 1.) The first step

moves distance at most3ǫ/4 and the second step moves distance at mostǫ/4 by our assumption

of success of the cluster-tester. Finally, if the true totalweight of edges inEwitness is at least3ǫ/4

then the sum of their estimated weightsw̃(i, j) is at leastǫ/2. This implies we can perform our

test as follows. ForO(1/ǫ) steps, do:

1. Choose an edge(i, j) with probability proportional tõw(i, j).

2. Request the label for a randomx ∈ Ri andy ∈ Rj. If the two labels disagree, then reject.

If Df is ǫ-far from theγ′-margin property, then each step has probabilityw̃(Ewitness)/w̃(E) =

O(ǫ) of choosing a witness edge, and conditioned on choosing a witness edge has probability at

least1/2 of detecting a violation. Thus, overall, we can test usingO(1/ǫ) labeled examples and

O(1/(γ2dǫ2)) unlabeled examples.

On the necessity of slack in testing the margin assumption:Consider an instance spaceX =

[0, 1]2 and two distributions over labeled examplesD1 andD2. DistributionD1 has probability

mass1/2n+1 on positive examples at location(0, i/2n) and negative examples at(γ′, i/2n) for

eachi = 1, 2, . . . , 2n, for γ′ = γ(1 − 1/22n). Notice thatD1 is 1/2-far from theγ-margin

property because there is a matching between points in the support ofD1|f=1 and points in the

support ofD1|f=0 where the matched points have distance less thanγ. On the other hand, for

eachi = 1, 2, . . . , 2n, distributionD2 has probability mass1/2n at either a positive point(0, i/2n)

or a negative point(γ′, i/2n), chosen at random, but zero probability mass at the other location.

DistributionD2 satisfies theγ-margin property, and yetD1 andD2 cannot be distinguished using
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a polynomial number of unlabeled examples.
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Chapter 3

Testing Piecewise Real-Valued Functions

Abstract

This chapter extends the model of the previous chapter to thesetting of testing properties of real-

valued functions. Specifically, it establishes a techniquefor testingd-piecewise constantness of

a real-valued function.

3.1 Piecewise Constant

For this section, letNSδ = NS
1
δ =

∫ 1

0
NS

1
δ(x)dx, whereNS1

δ(x) =
1
2δ

∫ x+δ

x−δ
I[f(x) 6= f(y)]dy.

Proposition 3.1. Fix δ > 0 and letf : [0, 1] → R be ad-piecewise constant function. Then

NSδ(f) ≤ (d− 1) δ
2
.

Proof. For any fixedb ∈ [0, 1], the probability thatx < b < y whenx ∼ U(0, 1) andy ∼

U(x− δ, x+ δ) is

Pr
x,y

[x < b < y] =

∫ δ

0

Pr
y∼U(b−t−δ,b−t+δ)

[y ≥ b]dt =

∫ δ

0

δ − t
2δ

dt =
δ

4
.

Similarly,Prx,y[y < b < x] = δ
4
. So the probability thatb lies betweenx andy is at mostδ

2
.

Whenf is ad-piecewise constant function,f(x) 6= f(y) only if at least one of the boundaries

b1, . . . , bd−1 of the regions off lie in betweenx and y. So by the union bound,Pr[f(x) 6=
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f(y)] ≤ (d − 1)(δ/2). Note that if b is within distanceδ of 0 or 1, the probability is only

lower.

Lemma 3.2. Fix δ = ǫ2

32d
. Let f : [0, 1] → R be any function with noise sensitivityNSδ(f) ≤

(d− 1) δ
2
(1 + ǫ

4
). Thenf is ǫ-close to ad-piecewise constant function.

Proof. The proof proceeds in two steps: We first show thatf is ǫ
2
-close to a(1+(d−1)(1+ ǫ

2
))-

piecewise constant function, and then we show that every(1+(d−1)(1+ ǫ
2
))-piecewise constant

function is ǫ
2
-close to ad-piecewise constant function.

For eacyy ∈ R, consider the functionf y
δ : [0, 1]→ [0, 1] defined by

f y
δ (x) =

1

2δ

∫ x+δ

x−δ

I[f(t) = y]dt.

The functionf y
δ is the convolution off y = I[f = y] and the uniform kernelφ : R → [0, 1]

defined byφ(x) = 1
2δ
1[|x| ≤ δ].

Note that for anyx, there is at most one valuey ∈ R for which f y
δ (x) > 1/2. Fix τ =

4
ǫ
NSδ(f). We introduce the functiong∗ : [0, 1]→ R ∪ {∗} by setting

g∗(x) =















argmaxy∈R f
y
δ (x) whensupy∈R f

y
δ (x) ≥ 1− τ ,

∗ otherwise

for all x ∈ [0, 1]. Finally, we defineg : [0, 1] → {0, 1} by settingg(x) = g∗(z) wherez ≤ x is

the largest value for whichg∗(z) 6= ∗. (If no suchz exists, we letg(x) = g∗(z) for the smallest

value z ≥ x with g∗(z) 6= ∗; if that does not exist, then for completeness defineg(x) = 0

everywhere, though this case will not come up).

We first claim thatdist(f, g) ≤ ǫ
4
. To see this, note that

dist(f, g) = Pr
x
[f(x) 6= g(x)]

≤ Pr
x
[g∗(x) = ∗] + Pr

x
[∗ 6= g∗(x) 6= f(x)]

= Pr
x
[sup
y∈R

f y
δ (x) < 1− τ ] + Pr

x
[ sup
y∈R\{f(x)}

f y
δ (x) ≥ 1− τ ].
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Becauseτ < 1/2, at most oney can havef y
δ (x) ≥ 1 − τ , so that bothsupy∈R f

y
δ (x) < 1 − τ

andsupy∈R\{f(x)} f
y
δ (x) ≥ 1 − τ imply f f(x)

δ (s) < 1 − τ ; thus, since these events are disjoint,

the above sum of probabilities is at most

Pr
x
[f

f(x)
δ (x) < 1− τ ].

Now observe thatNSδ(f, x) = 1 − f
f(x)
δ (x) and thatExNSδ(f, x) = NSδ(f). From these

identities and Markov’s inequality, we have that

Pr
x
[f

f(x)
δ (x) < 1− τ ] = Pr

x
[1− f f(x)

δ (x) > τ ] = Pr
x
[NSδ(f, x) > τ ] <

NSδ(f)

τ
=
ǫ

4
.

We now want to show thatg ism-piecewise constant, for somem ≤ d(1+ ǫ
2
). Since eachf y

δ

is the convolution ofI[f = y] with a uniform kernel of width2δ, it is Lipschitz continuous (with

Lipschitz constant1
2δ

). Also recall thatτ < 1/2, and at most one valuey can havef y
δ (x) ≥ 1− τ

for any givenx. Thus, if we consider any two pointsx, z ∈ [0, 1] with ∗ 6= g∗(x) 6= g∗(z) 6= ∗

andx < z, it must be that|x − z| ≥ 2δ2(1
2
− τ), and that there is at least one pointt ∈ (x, z)

with supy∈R f
y
δ (t) = 1/2. Since eachf y

δ is 1
2δ

-Lipschitz, so issupy∈R f
y
δ , so that we have

∫ t+2δ( 1
2
−τ)

t−2δ( 1
2
−τ)

f
f(s)
δ (s)ds ≤

∫ t+2δ( 1
2
−τ)

t−2δ( 1
2
−τ)

sup
y∈R

f y
δ (s)ds

≤ 2

∫ 2δ( 1
2
−τ)

0

(
1

2
+

s

2δ
)ds = 2δ(

1

2
− τ)(3

2
− τ).

Therefore,

∫ z

x

NSδ(f, s)ds =

∫ z

x

(1− f f(s)
δ (s))ds ≥ (z − x)− 2δ(

1

2
− τ)(3

2
− τ)

≥ 2δ2(
1

2
− τ)− 2δ(

1

2
− τ)(3

2
− τ) = 2δ(

1

2
− τ)(1

2
+ τ)) = 2δ(

1

4
− τ 2).

Since anyx with g∗(x) 6= ∗ hasg(x) = g∗(x), and sinceg is defined to be continuous from

the right on[0, 1], for every transition pointx > 0 for g (i.e., a pointx for which there exist

arbitrarily close pointsz havingg(z) 6= g(x)), there is a pointz < x such that everyt ∈ (z, x)
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hasg(t) = g∗(z) 6= g∗(x) = g(x); combined with the above, we have that
∫ x

z
NSδ(f, s)ds ≥

2δ(1
4
− τ 2). Altogether, ifg hasm such transition points, then

NSδ(f) =

∫ 1

0

NSδ(f, s)ds ≥ m2δ(
1

4
− τ 2).

By assumption,NSδ(f) ≤ (d− 1) δ
2
(1 + ǫ

4
). Therefore, we must have

m ≤ (d− 1)δ(1 + ǫ
4
)

4δ(1
4
− τ 2) ≤ (d− 1)

1 + ǫ
4

1− 4τ 2
≤ (d− 1)

1 + ǫ
4

(1− 2τ)2
≤ (d− 1)(1 +

ǫ

2
).

In particular, this meansg is (m+ 1)-piecewise constant, for anm ≤ (d− 1)(1 + ǫ
2
).

Finally, we want to show that any(m+1)-piecewise constant function, form ≤ (d−1)(1+ ǫ
2
),

is ǫ
2
-close to ad-piecewise constant function. Letℓ1, . . . , ℓm+1 represent the lengths of them

regions ing. Clearly,ℓ1 + · · ·+ ℓm+1 = 1, so there must be a setS of (m+1)− d ≤ (d− 1)ǫ/2

regions ing with total length

∑

i∈S
ℓi ≤

(m+ 1)− d
(m+ 1)

≤ (d− 1)ǫ/2

1 + (d− 1)(1 + ǫ
2
)
<
ǫ

2
.

Consider the functionh : [0, 1] → {0, 1} obtained by removing the regions inS from g (i.e.,

for eachx in a region indexed byi ∈ S, settingh(x) = h(z) for z a point in the nearest region

to x that is not indexed by somej ∈ S). The functionh is thend-piecewise constant, and

dist(g, h) ≤ ǫ
2
. This completes the proof, sincedist(f, h) ≤ dist(f, g) + dist(g, h) ≤ ǫ.

With these results, applying the same technique as used in the unions of intervals method in

the previous chapter yields a tester ford-piecewise constant functions.
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Chapter 4

Learnability of DNF with

Representation-Specific Queries

Abstract

1We study the problem of PAC learning the space of DNF functions with a type of query specific

to the representation of the target DNF. Specifically, givena pair of positive examples from a

polynomial-sized sample, our query asks whether the two examples satisfy a term in common in

the target DNF. We show that a number of interesting special types of DNF targets are efficiently

properly learnable with this type of query, though the general problem of learning an arbitrary

DNF target under an arbitrary distribution is no easier thanin the traditional PAC model. Specif-

ically, we find that 2-term DNF are efficiently properly learnable under arbitrary distributions, as

are disjoint DNF. We further study the special case of learning under the uniform distribution,

and find that several other general families of DNF functionsare efficiently properly learnable

with these queries, including functions withO(log(n)) relevant variables, and monotone DNF

functions for which each variable appears in at mostO(log(n)) terms.

We also study a variety of generalizations of this type of query. For instance, consider in-

1Joint work with Avrim Blum and Jaime Carbonell.
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stead the ability to ask how many terms a pair of examples satisfy in common, where the exam-

ples are again taken from a polynomial-sized sample. In thiscase, we can efficiently properly

learn several more general classes of DNF, including DNF havingO(log(n)) terms, DNF having

O(log(n)) relevant variables, DNF for which each example can satisfy at mostO(1) terms, all

under arbitrary distributions. Other possible generalizations of the query include allowing the

algorithm to ask the query for an arbitrary number of examples from the sample at once (rather

than just two), or allowing the algorithm to ask the query forexamples of its own construction;

we show that both of these generalizations allow for efficient proper learnability of arbitrary DNF

functions under arbitrary distributions.

4.1 Introduction

Consider a bank aiming to use machine learning to identify instances of financial fraud. To

do so, the bank would have experts label past transactions asfraudulent or not, and then run a

learning algorithm on the resulting labeled data. However,this learning problem might be quite

difficult because of the existence of multiple intrinsic types of fraud, with each positive example

perhaps involving multiple types. That is, the target mightbe a DNF formula, a class for which

no efficient algorithms are known.

Yet in such a case, perhaps the experts performing the labeling could be called on to provide a

bit more information. In particular, suppose that given twopositive examples of fraud, the experts

could indicate whether or not the two examples aresimilar in the sense of having at least one

intrinsic type of fraud (at least one term) in common. Or perhaps the experts could indicatehow

similar the examples are (how many terms in common they satisfy). This is certainly substantially

more information. Can it be used to learn DNF formulas and their natural subclasses efficiently?

In our work, we study the problem of learning DNF formulas andother function classes

using such pairwise, representation-dependent queries. Specifically, we consider queries of the

form, “Do these two positive examples satisfy at least one term in common in the target DNF
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formula?” (we call theseboolean similarity queries) and “How many terms in common do these

two positive examples satisfy?” (we call thesenumerical similarity queries).

4.1.1 Our Results

We begin with a somewhat surprising negative result, that learning general DNF formulas under

arbitrary distributions from boolean similarity queries is as hard as PAC-learning DNF formulas

without them. This result uses the equivalence between group learning, weak learning, and

strong learning. In contrast, learning disjoint DNF (a class that contains decision trees) with

such queries is quite easy. We in addition show that it helps in a number of other important

cases, including properly learning “parsimonious” DNF formulas (formulas for which no term

can be deleted without appreciably changing the function) as well as any 2-term DNF, a class

known to be NP-Hard to properly learn from labeled data alone.

Under the uniform distribution, we can properly learn any DNF formula for which each vari-

able appears inO(log(n)) terms, as well as any DNF formula withO(log(n)) relevant variables.

If we are allowed to ask numerical similarity queries, then we show we can properly learn

any DNF formula havingO(log(n)) terms, under arbitrary distributions, or any DNF formula

havingO(log(n)) relevant variables, again under arbitrary distributions.If we are allowed to ask

“Do thesek examples satisfy any term in common?” for arbitrary (poly-sized)k, we can even

properly learn arbitrary DNF formulas under arbitrary distributions.

This topic of learning with representation-specific queries is interesting, even beyond the

DNF case, and we have explored a variety of other learning problems of this type as well.

4.2 Learning DNF with General Queries: Hardness Results

Theorem 4.1.Learning DNF from random data under arbitrary distributionswith boolean sim-

ilarity queries is as hard as learning DNF from random data under arbitrary distributions with
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only the labels (no queries).

Proof. [Kearns, 1989] and [Kearns, Li, and Valiant, 1994] proved that “group learning” is equiv-

alent to “weak learning”.

In group learning, at each round we are givenpoly(n) examples that are either all iid from

D+ or all iid from D− (i.e. all positive or all negative) and our goal is to figure out which

case it is. Later, of course, Schapire [Schapire, 1990] proved that weak-learning is equivalent to

strong-learning. So, if DNF is hard to PAC-learn, then DNF is also hard to group-learn.

Now, consider the following reduction from group-learningDNF in the standard model to

learning DNF in the extended queries model. In particular, given an algorithmÅ for learning

from a polynomial number of examples in the extended queriesmodel, we show how to use̊A to

group-learn as follows:

Given a setS of m = poly(n) examplesx1, x2, ...,xm (we will usem = tn wheret is the

number of terms in the target), construct a new example by just concatenating them together. So

overall we now havenm variables. We present this concatenated example toÅ with label equal

to the label ofS. If Å makes a similarity query between two positive examples[x1, x2, ..., xm]

and[x′1, x
′
2, ..., x

′
m], we simply outputyes(i.e., that they do indeed share a term in common).

We now argue that with high probability, the labels and our responses to̊A are all fully

consistent with some DNF formula of sizemt. In particular, we claim they will be consistent

with a target function that is just the AND ofm copies of the original target function.

First of all, note that the AND ofm copies of the original target function will produce the

correct labels since by assumption either allxi ∈ S are positive or allxi ∈ S are negative.

Next, we claim that whp, any two of these concatenated positive examples will share a term

in common. Specifically, if the original DNF formula hast terms, then for two random positive

examples fromD+ there is probability at least1/t that they share a common term. So, the chance

of failure for two concatenated examples is at most(1− 1/t)m. (Because the only way that two

of these big concatenated examples[x1, x2, ..., xm] and[x′1, x
′
2, ..., x

′
m] can fail to share a term in
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common is ifx1 andx′1 fail, x2 andx′2 fail, etc.). Settingm = tn, the probability of failure for

any given query is at most1/en. Applying the union bound over all polynomially-many pairsof

positive examples in̊A’s sample yields that with high probability all our responses are consistent.

Therefore, by assumption,̊A will produce a low-error hypothesis under the distributionover

concatenated examples, which yields a low-error hypothesis for the group-learning problem.

We can extend the above result to “approximate numerical” queries that give the correct

answer up to1± τ for some constantτ > 0 (or evenτ ≥ 1/poly(n)).

Theorem 4.2.Learning DNF from random data under arbitrary distributionswith approximate-

numerical-valued queries is as hard as learning DNF from random data under arbitrary distri-

butions with only the labels (no queries).

Proof. Assume we have an algorithmA that learns to errorǫ/2 given a similarity oracle that tells

us how many terms two examples have in common, up to a multiplicative factorτ . Specifically, if

C is the number of terms in common, the oracle returns a value inthe range[(1−τ)C, (1+τ)C].

Now we do the reduction from group learning as before, forming higher-dimensional ex-

amples by concatenating groupsx1, · · · , xm, all of the same class, but this time withm =

2n(t4)(1 + τ/2)2/τ 2. Suppose, for now, that we know for the original DNF formula,the ex-

pected number of termsα that two that two random positive examples would have in common

(we discharge this assumption later). In that case, when queried byÅ for the similarity between

two positive examplesx, x′, we simply answer with the closest integer toαm. As before, we

argue that with high probability, our answers are consistent with a DNF formulag consisting of

justm shifted copies of the original DNF.

Note that for a random pair of the concatenatedl examples composed of positive sub-examples,

the expected number of terms in common ing ismα. Furthermore, the number of terms in com-

mon is a sum ofm independent samples of the original random variable (the one with meanα),

each of which is bounded in the range[0, t]. So Hoeffding’s inequality implies that with probabil-

ity 1− 2e−2m2α2(τ/2)2/(m(t2)(1+τ/2)2) = 1− 2e−n (sinceα ≥ 1/t), the numberC of terms in com-
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mon satisfies|C−mα| ≤ mα(τ/2)/(1+τ/2), which implies(1−τ/2)C ≤ mα ≤ (1+τ/2)C.

Thus, for apoly(n)-sized sample of data points, with high probability, all of the pairs of

positive concatenated examples have the nearest integer tomα within these factors of their true

number of terms in common. It therefore suffices to respond toA’s similarity queries with the

nearest integer tomα.

Now the only trouble is that we do not knowα. So we just try all positive integersi from

1 to mt and then use a validation set to select among the hypotheses produced. That is, we

run A on the constructed data set and respond to all similarity queries with a single valuei,

getting back a classifier for these concatenated examples, and then repeat for eachi. Then we

takeO((1/ǫ) log(mt/δ)) additional higher-dimensional samples (with labels) and choose the

classifier among thesemt returned classifiers, having the smallest number of mistakes there-on.

At least one of thesemt values ofi is the closest integer tomα, so at least one of thesemt

classifiers isǫ/2-good, and our validation set will identify one whose error is at mostǫ. So we

can use this classifier to identify whether a randomm-sized group of examples is composed of

all positives or all negatives, with error rate epsilon: i.e., we can do group learning.

If the algorithm A only has a “high probability” guarantee onsuccess, we can repeat this sev-

eral times with independent data sets, to boost the confidence that there will be a good classifier

among those we choose from at the end, and slightly increase the size of the validation set to

compensate for this larger number of classifiers.

4.3 Learning DNF with General Queries : Positive

4.3.1 Methods

The Neighborhood Method

We refer to the following simple procedure as the “neighborhood method”. Takem = poly(n, 1/ǫ, log(1/δ))

samples. First, among the positive examples, query all pairs (with the binary-valued query) to
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construct a graph, in which examples are adjacent if they satisfy a term in common. For each

positive example, construct a minimal conjunction consistent with that example and all of its

neighbors (i.e., the consistent conjunction having largest number of literals in it). Next, discard

any of these conjunctions that make mistakes on any negativeexamples. Then sequentially re-

move any conjunctionc1 such that some other remaining conjunctionc2 subsumes it (contains a

subset of the variables). Form a DNF from the remaining conjunctions. Produce this resultant

DNF as the output hypothesis.

Lemma 4.3. Suppose the target DNF hast = poly(n) terms. For an appropriate (t-dependent)

polynomial sample sizem, the neighborhood method will, with probability at least1 − delta,

produce anǫ-accurate DNF if, for each termTi in the target DNF having a probability of satis-

faction at leastǫ/2t, there is at least ap = 1/poly(n, 1/ǫ) probability that a random example

satisfies termTi and no other term (we call such an example a “nice seed” forTi).

Proof. Under these conditions,m = O((1/p) log(t/δ) + (t/ǫ) log(1/ǫδ)) samples suffice to

guarantee eachTi with probability of satisfaction at leastǫ/2t has at least one nice seed, with

probability at least1− δ/2.

In the second phase, we remove any conjunction inconsistentwith the negative examples. The

conjunctions guarnateed by the above argument survive thispruning due to their minimality, and

the fact that they are learned from a set of examples that actually are consistent with some term

in the target DNF (due to the nice seed). The final pruning step, which removes any redundancies

in the set of conjunctions, leaves at mostt conjunctions.

The terms that do not have nice seeds compose at mostǫ/2 total probability mass, andm is

large enough so that with probability at least1− δ/4, at most anǫ/4-fraction of the data satisfy

these terms. Thus, since the result of the neighborhood method is a DNF formula with at most

t terms, which correctly labels a1 − ǫ/2 fraction of them examples, the standard PAC bounds

imply that with probability at least1 − δ/4, the resulting DNF has error rate at mostǫ. A union

bound over the above events implies this holds with probability at least1− δ.
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The Common Profile Approach

In the case of numerical queries, we have some additional flexibility in designing a method. In

this context, we refer to the following procedure as the “common profiles approach”.

Consider a sample ofm = poly(n, 1/ǫ, log(1/δ)) random labeled examples, and for each

pair of positive examplesx, y, we request the numberK(x, y) of terms they satisfy in common;

we additionally requestK(x, x) for each positive examplex. For each positive examplex, we

identify the setS of examplesy such that the numerical value ofK(x, y) is equalK(x, x). So

these points satisfy at least all the termsx satisfies. For each such setS, we learn a minimal

conjunction consistent with these examples. Then for each of these conjunctions, if it is a spe-

cialization of some other one of the conjunctions, we discard it. Then we form our hypothesis

DNF with the remaining conjunctions as the terms.

For any examplex, relative to a particular target DNF, we refer to the “profile” of x as the set

of termsTi in the target DNF satisfied byx.

Lemma 4.4. If the target DNF has at mostp = poly(n) possibel profiles, then the common

profile approach, with an appropriate (p-dependent) sample sizem, will with probability at least

1− δ, produce a DNF having error rate at mostǫ.

Proof. Note that this procedure produces a DNF that correctly labels the entire data set, since

K(x, y) = K(x, x) impliesx andy have the same profiles, so that in particular the setS has some

term in common to all the examples. If there are only apoly(n) number of possible profiles,

then the above will only produce at most as many distinct terms in its hypothesis DNF, so that a

sufficiently largepoly(n)-sized data set will be sufficient to guarantee good generalization error.

Specifically,m = O((pn/ǫ) log(1/ǫδ)) examples are enough to guarantee with probability at

least1− δ, any DNF consistent with the data having at mostp terms will have error rate at most

ǫ, so this is sufficient for the common profile approach.

65



4.3.2 Positive Results

Theorem 4.5.With numerical-valued queries, we can properly learn any DNF havingO(log(n))

relevant variables, under arbitrary distributions.

Proof. These targets havepoly(n) possible profiles, so the common profiles approach will be

successful.

Theorem 4.6. If the target DNF has onlyO(log(n)) terms, then we can efficiently properly learn

from random data under any distribution using numerical-valued queries.

Proof. There are onlypoly(n) number of possible profiles, so the “common profiles” approach

will work.

The above result is interesting particularly because proper learning (even for 2-term DNF) is

known to be hard from labeled data alone.

Theorem 4.7. If the target DNF hast = poly(n) terms, and is such that any example can satisfy

at mostO(1) terms, then we can efficiently properly learn from random datausing numerical-

valued queries.

Proof. There are at mostpoly(t) = poly(n) possible profiles, so the “common profiles” ap-

proach will work.

Corollary 4.8. We can properly learn anyk-term DNF with numerical-valued queries, wherek

is constant.

Proof. This follows from either Theorem 4.6 or Theorem 4.7.

Corollary 4.9. If the DNF is such that any example can satisfy at most1 term (a so-called

“disjoint” DNF), then we can efficiently properly learn from random data using binary-valued

queries.

Proof. A numerical query whose value can be at most1 is just a binary query anyway.
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In particular, Decision Trees can be thought of as a DNF whereeach example satisfies at

most1 term.

Lemma 4.10. If it happens that the target DNF is parsimonious (no redundant terms) for some

randomΩ((tn/ǫ) log(1/ǫ) + (1/ǫ) log(1/δ))-sized data set (for any distribution), then we can

efficiently produce a DNF consistent with it having at mostt terms using binary-valued queries.

Proof. (Sketch) Parsimonious, in this case, means that we cannot remove any terms without

changing some labels. But this means that every term has some example that satisfies only that

term (i.e., a nice seed). So as described in the proof of Lemma4.3 above, the “neighborhood

method,” produces a DNF with terms for the neighborhoods of each of these nice seeds, which

in the parsimonious case, covers all of the positive examples.

Theorem 4.11.We can properly learn 2-term DNF with binary queries.

Proof. TakeO((n/ǫ) log(1/ǫ) + (1/ǫ) log(1/δ)) random labeled examples and make the binary

query for all pairs of positive examples. First, find a minimal conjunction consistent with all

of the positive examples; if this conjunction does not misclassify any negative examples, return

it. By classic PAC bounds, a conjunction consistent with thismany random labeled examples

will, with probabiliy at least1 − δ, have error rate at mostǫ. Otherwise, if this conjunction

misclassifies some negatives, then we are assured the targetDNF is parsimonious for this data

set, and thus Lemma 4.10 guarantees we can efficiently identify a 2-term DNF consistent with it

using the binary-valued queries. Again, the classic PAC bounds imply the sample size is large

enough to, with probability at least1 − δ, guarantee that any consistent2-term DNF has error

rate at mostǫ.

Theorem 4.11 gives a concrete result where using this type ofquery overturns a known hard-

ness result for supervised learning.

Open problem Can this idea be extended to learning 3-term DNF or higher, still using only

the binary-valued queries? Or is there a hardness result forproperly learning 3-term DNF with

67



these binary-valued pairwise queries?

4.4 Learning DNF under the Uniform Distribution

In this section, we investigate the problem of learning DNF under a uniform distribution on

{0, 1}n, using the binary-valued queries.

Definition 4.12. Fix a constantc ∈ (0,∞). We say a termt in the target DNF is “relatively

distinct” if it contains a variablev which occurs in at mostc log(n) other terms. We sayv is a

witness tot being relatively distinct.

Definition 4.13. For a termt in the target DNF, and a variablev in t, we sayv is “sometimes

nonredundant” fort if, given a random example that satisfiest, there is at least anǫ probability

that every term in the target DNF that the example satisfies also containsv.

Theorem 4.14.Suppose no term in the target DNF is logically entailed from any other term

in the target DNF, every termt is relatively distinct, and that some variablev that is a witness

to t being relatively distinct is sometimes nonredundant fort. Then we can properly learn any

monotone DNF of this type under a uniform distribution on{0, 1}n with binary pairwise queries.

Proof. By Lemma 4.3, it suffices to show that every term having at leastǫ/(2T ) probability of

being satisfied will, with high probability, have some example satisfying only that term, given a

polynomial-sized data set.

Consider a given termt in the target DNF, and choose thev that witnesses relative distinctness

which is sometimes nonredundant. Note that every other termin the target DNF contains some

variable not present int, and in particular this is true for the (at most)c log(n) terms containing

v. So under the conditional distribution given thatt is satisfied and thatv is nonredundant, with

probability at least2−c log(n) = n−c, none of these other terms containingv are satisfied, so thatt

is the only term satisfied. Thus, sincet has probability at leastǫ/(2T ) of being satisfied, andv has

probability at leastǫ of being nonredundant given thatt is satisfied, we have that with probability
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at least(ǫ2/T )n−c, a random example satisfiest and no other terms in the target DNF.

Since this is the case for all terms in the target, a sample of sizeO((T/ǫ2)nc log(T/δ)) guar-

antees every term has some example satisfying only that term, with probability at least1−δ.

We can also consider the class of DNF function having only a small number of relevant

variables. In this context, it is interesting to observe that if the ith variable is irrelevant, then

P (K(x, y) = 1 andxi 6= yi) = P (K(x, y) = 1 andxi = yi), wherex andy are independent

uniformly-distributed samples, andK(x, y) = 1 iff x andy are positive examples that satisfy at

least one term in common. However, as the following lemma shows, this is not true for relevant

variables.

Lemma 4.15.For x andy independent uniformly-distributed samples, if the targetfunction has

r relevant variables, and theith variable is relevant in the target function, thenP (K(x, y) =

1 andxi = yi)− P (K(x, y) = 1 andxi 6= yi) ≥ (1/4)r.

Proof. For each pair(x, y) with xi 6= yi, there is a unique corresponding pair(x′, y) with x′j = xj

for j 6= i, andx′i = yi. LetMi be the number ofx, y pairs withxi 6= yi andK(x, y) = 1. Then

note that for everyx, y pair with xi 6= yi andK(x, y) = 1, we also haveK(x′, y) = 1, since

whatever termx and y satisfy in common cannot contain variablei anyway, so flipping that

feature inx does not change whetherx andy share a term or not. In particular, this implies

the number ofx, y pairs withxi = yi andK(x, y) = 1 is at leastMi. However, we can also

argue it is strictly larger, as follows. By definition of “relevant”, each of the2r settings of the

relevant variables corresponds to an equivalence class of feature vectors, all of which have the

same label, and if that label is positive, then all of which have the same profile. Since variablei

is relevant, at least one of the2r settings of the relevant variables yields an equivalence class of

positive examples whose profile contains only terms with variable i in them (these are positive

examples such that flipping variablei makes them negative). The probability that bothx andy

(chosen at random) are in this equivalence class is(1/4)r. Note that for the(x, y) pairs of this

type, we haveK(x, y) = 1; however, if we flip featurexi, thenx would become negative, and
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henceK(x, y) would no longer be1; this means this(x, y) pair is not included among thoseMi

pairs constructed above by flippingxi starting from some(x, y) with xi 6= yi andK(x, y) = 1.

SoP (K(x, y) = 1 andxi = yi)−P (K(x, y) = 1 andxi 6= yi) = (Mi/4
n+(1/4)r)−Mi/4

n =

(1/4)r.

Theorem 4.16.Under the uniform distribution, with binary pairwise queries, we can properly

learn any DNF havingO(log(n)) relevant variables.

Proof. We can use the property in Lemma 4.15 to design an algorithm asfollows. For eachi,

sampleΩ(8r log(n/δ)) random pairs(x, y), and evaluateK(x, y) for each pair. Then calculate

the difference of empirical probabilities (fraction of pairs (x, y) for which K(x, y) = 1 and

xi = yi minus fraction of pairs(x, y) for whichK(x, y) = 1 andxi 6= yi). If this difference

is > (1/2)(1/4)r, decide variablei is relevant, and otherwise decide variablei is irrelevant.

By Hoeffding and union bounds, with probability1 − δ/2, this will find exactly ther relevant

variables. Now enumerate all2r = poly(n) possible conjunctions that can be formed from

using all of theser relevant variables. Considering this as a2r-dimensional feature space, take

Ω((2r/ǫ)log(1/δ)) random labeled data points and learn a disjunction over this2r-dimensional

feature space; since the VC dimension of this set of disjunctions is2r, the usual PAC analysis

implies this will learn anǫ-good disjunction with probability1 − δ/2. A union bound implies

both stages (finding variables and learning the disjunction) will succeed with probability at least

1− δ.

An alternative approach to the second stage in the proof would be to takeΩ(2r log(2r/δ))

random samples, so that with probability at least1−δ/2, we have at least one data point satisfying

each of the2r possible conjunctions on the relevant variables; then for each of the conjunctions,

we check the label of the example that satisfies it, and if thatlabel is positive, we include that

conjunction as a term in our DNF, and otherwise we do not include it. This has the property that,

altogether, with probability1− δ, we construct a DNF that has error ratezero.
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Another family of DNF studied in the literature are those with a sublinear number of terms.

Specifically, [Servedio, 2004] proved that the class of2O(
√
logn)-termmonotoneDNF are learn-

able under the uniform distribution from labeled data alone. As the following theorem states,

we can extend this result to include general2O(
√
logn)-term DNF (including non-monotone) given

access to our binary pairwise queries.

Theorem 4.17.Under the uniform distribution, with binary pairwise queries, we can learn any

2O(
√
log n)-term DNF (supposingǫ to be a constant).

First, we review some known results from [Servedio, 2004]. For any functiong : {0, 1}n →

{−1,+1}, define thegi,1 andgi,0 functions by the property that anyx with xi = 1 hasgi,1(x) =

g(x), andgi,0(x) = g(y), whereyj = xj for j 6= i andyi = 0. Then define the influence

functionIi(g) = P (gi,0(x) 6= gi,1(x)). [Servedio, 2004] developed a procedure,FindVariable,

which uses apoly(n, 1/γ, log(1/η)) number of random labeled samples, labeled according to

any monotone DNFg having at mostt terms, and with probability1 − η, returns a setS of

variables (indices in{1, . . . , n}) such that everyi /∈ S hasIi(g) ≤ γ and everyi ∈ S has

Ii(g) ≥ γ/2 and theith variable is contained in some term ing with at mostlog 32tn
γ

variables in

it.

Furthermore, [Servedio, 2004] showed that, for anyt-term DNFf , if we are provided with

a setSf ⊆ {1, . . . , n} such that everyi /∈ Sf hasIi(f) ≤ ǫ/4n, then we can learnf in time

polynomial inn, |Sf |O(log t
ǫ
log 1

ǫ
), and log(1/δ). In particular, for|Sf | = O(t log tn

ǫ
) and t =

2O(
√
log n), this is polynomial inn (though not necessarily inǫ). Given the setSf , the learning

procedure simply estimates the Fourier coefficients for small subsets ofSf .

Proof of Theorem 4.17.To prove Theorem 4.17, we consider the following procedure.First

samplem labeled examplesx(1), . . . , x(m) at random. Then, for eachj ≤ m, defineKj(·) =

K(x(j), ·). Now note that, if we defineϕj(y) = (ϕj1(y), . . . , ϕjn(y)) by ϕji(y) = 2I[yi =

x
(j)
i ]−1, then we can representKj(·) = (K ′

j(ϕj(·))+1)/2, whereK ′
j is a monotone DNF (map-

ping into{−1,+1}); specifically, the terms inK ′
j correspond to the terms in the target satisfied
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by x(j), except none of the literals are negated. We then runFindVariable for each of theseK ′
j,

with γ = ǫ/m andη = δ/2m. LetSf denote the union (overj ≤ m) of the returned sets of vari-

ables. It remains only to show thisSf satisfies the requirements for the procedure of [Servedio,

2004], including the size requirement.

Takingm = Ω( ct
ǫ
log t

δ
), with probability at least1 − δ/4, every term in the target having

probability at leastǫ/2ct will have at least one of them examples satisfying it. Suppose this

event happens. In particular, this meanserror(maxj Kj) < ǫ/2c. Note that

Ii(f) = P (fi,0(x) 6= fi,1(x)) ≤ 2P (max
j
Kj(x) 6= f(x)) + P ((max

j
Kj)i,0(x) 6= (max

j
Kj)i,1(x))

< ǫ/c+
∑

j

P ((K ′
j)i,0(x) 6= (K ′

j)i,1(x)) = ǫ/c+
∑

j

Ij(K
′
j).

Thus, by a union bound, with probability1 − δ/2, any variablei /∈ Sf hasIi(f) < ǫ/c +mγ,

and any variablei ∈ Sf appears in a term in someK ′
j of size at mostlog 32tn

γ
, and therefore

also appear in a corresponding term of this size inf . Suppose this happens. Lettingc = 8n and

γ = ǫ/8nm, we have that anyi /∈ Sf hasIi(f) < ǫ/4n, while anyi ∈ Sf appears in a term of

size at mostlog 256tn2m
ǫ

= O(log tn log(1/δ)
ǫ

). In particular, this implies|Sf | = O(t log tn log(1/δ)
ǫ

),

andSf satisfies the requirements of the method of [Servedio, 2004].

Thus, running the procedure from [Servedio, 2004] with confidence parameterδ/4, a union

bound implies the total probability of successfully producing anǫ-good classifier is at least1−δ.

The above process of constructingSf is clearly polynomial-time. Then, ift = 2O(
√
logn), the

procedure of [Servedio, 2004] runs in time polynomial inn, log(1/δ), and|Sf |O(log(t/ǫ) log(1/ǫ)),

which is polynomial inn andlog(1/δ) (though not necessarily inǫ).

4.5 More Powerful Queries

Theorem 4.18. If we can construct our own feature vectors in addition to getting random data,

then under any distribution we can efficiently properly learnDNF using binary-valued queries.
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Proof. Suppose we can adaptively construct our own examples. Suppose the target DNF has

T = poly(n) terms. Oracle(x, x′) gives the number of terms thatx andx′ have in common. For

anyx, letx−i be x but with the ith bit flipped. Let̄x be the negative ofx.

Below is an algorithm.Move(x, x′) movesx′ away fromx by one bit, while trying to main-

tain at least one common term.LearnTerm(x) returns a term in the target function.

0. Move(x, x′)

1. x′′ ← x̄

2. For i = 1, 2, ..., n s.t.xi = x′i

3. If (Oracle(x, x′′) ≤ Oracle(x, x′−i))

4. x′′ ← x′−i

5. Returnx′′

0. LearnTerm (x)

1. Replicate x to getx′

2. While (Oracle(x, Move(x, x′)) ! = ∅)

3. x′ ← Move(x, x′)

4. LetI ← {i : Oracle(x, x′−i) = ∅}

5. ReturnxI (i.e. a conjunction with the literals indexed byI, either positive or negative so

thatx satisfies it)

0. LearnDNF

1. Initialize all-negative DNF̂h

2. TakeM = poly(n)≫ nT random examplesS
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3. For eachx ∈ S

4. If Oracle(x,x) > 0 (positive example) and̂h(x) = negative

5. Add term LearnTerm(x) to ĥ

6. Return̂h (a DNF with at mostT terms, consistent with all M examples)

When we reachx′ such that we can’t flip any more bits (not already flipped) without making

it so they don’t satisfy any terms in common anymore, then thebits these two have in common

must form a term in the target DNF, so LearnTerm(x) should still find a term in the target DNF.

If we can ask about k-tuples of examples (do they all jointly satisfy a term in common?), we

have the following result:

Theorem 4.19. If we can use query sets of arbitrary sizes (instead of just 2 points), then under

any distribution we can efficiently properly learn DNF using binary-valued queries from random

data.

Proof. We take any set of examples and ask the oracle the number of terms all examples in the

set have in common. Let S be the query set. The idea is to greedily add the examples to S while

keeping some terms in common.

Algorithm :

0. Input : datasetD

1. InitializeS to be an empty set

2. Do{

3. Do{

4. rmax ← 0

5. For each examplex in the datasetD

6. addx to the setS
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7. query the combined setS, and letr = Oracle(S), rmax ← max{rmax, r}

8. If r = 0, removex from S, and otherwise leave it inS and removex fromD

9. } Until (rmax = 0)

10. Learn a “most-specific” conjunction fromS and add that term to the hypothesis DNF

11. ResetS to empty set

12. }Until (|D| = 0)

Each time we add a term to the DNF, the examples inS satisfy some term in the target DNF,

because we only add each example if by adding itS still has at least one term in common. So the

”most-specific” conjunction consistent withS (i.e., the one with most literals in it, still labeling

all of S positive) will not misclassify any negative point as positive. Since whenever we add a

new term, there were no additional examples inD that could have satisfied a term in common

with the examples inS, after adding the term we have removed fromD all examples that satisfy

the termS has in common. Therefore, the number of terms in our learnt DNF is at most the

number of termsT in the true DNF. If the total number of examples is≫ nT (and sayT is

poly(n)), it will get us a DNF that has at most T terms and correctly labels apoly(n) ≫ nT

sized dataset. Since the training dataset size is much larger than the size of the classifier, by the

Occam bound, the learnt DNF will have small generalization error.

4.6 Learning DNF with General Queries: Open Questions

• Is it possible to efficiently learn an arbitrary DNF from random data under arbitrary distri-

butions with numerical-valued queries?

• Is it possible to efficiently learn a DNF withO(1) terms from random data under arbitrary

distributions with binary-valued queries?
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• Is it possible to efficiently learn a monotone DNF from randomdata under a uniform

distribution with numerical-valued queries? If so, what about binary-valued queries?

4.7 Generalizations

4.7.1 Learning Unions of Halfspaces

Several of the above results generalize nicely to the more general problem of learning unions of

halfspaces. Specifically, the queries are of the type “do these two examples satisfy a halfspace in

common?” or “how many halfspaces do these two examples satisfy in common?” The general-

ized forms of Theorem 4.19 and Lemma 4.10 follow by the exact same arguments. In each case,

the algorithm finds sets of examples that satisfy some halfspace, such that none of the remaining

examples satisfy that halfspace, so for each such set we simply find a linear separator to separate

those examples from the rest, and take their union to form ourfinal classifier. A sufficiently

large (poly(n,1/ǫ)-sized) set suffices to guarantee this works. It is not so clear how to generalize

Theorem 4.7, since it is not clear how to use the sets of examples with the common profiles to

learn the halfspaces. The generalized version of Theorem 4.6 actually follows from the result

below on learning Voronoi diagrams. The generalized version of Theorem 4.18 is simple, since

it is even known that labeled data plus membership queries are sufficient.

4.7.2 Learning Voronoi with General Queries

Consider the space of Voronoi diagrams (vector quantizers);specifically, the target function is

constant within each cell of the Voronoi diagram, and there are poly(n) such cells for a given

target function. We define a “same cell” query as asking, for apair of examplesx andy, whether

x andy occur in the same cell of the target function. With this type of query, we can efficiently

properly learn Voronoi partitions from random data, under arbitrary distributions. To prove this,

we simply group the examples in a sufficiently large sample into equivalence classes based on
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these same-cell queries. For each pair of such equivalence classes, we find a linear separator that

separates them. For each test point, we evaluate these linear separators, which thereby associates

the test point with one of the equivalence classes from the training data, and we predict as a label

for that point the label associated with that equivalence class. If we have a sufficiently large

training set, then there is only a small probability the testpoint gets placed into a different set of

points from those in its own cell.
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Chapter 5

Bayesian Active Learning with Arbitrary

Binary Valued Queries

Abstract

1We investigate the minimum expected number of bits sufficient to encode a random variable X

while still being able to recover an approximation of X with expected distance from X at most

D: that is, the optimal rate at distortion D, in a one-shot coding setting. We find this quantity is

related to the entropy of a Voronoi partition of the values ofX based on a maximal D-packing.

5.1 Introduction

In this work, we study the fundamental complexity of lossy coding. We are particularly interested

in identifying a key quantity that characterizes the expected number of bits (called therate)

required to encode a random variable so that we may recover anapproximation within expected

distanceD (called thedistortion). This topic is a generalization of the well-known analysisof

exact coding by Shannon [Shannon, 1948], where it is known that the optimal expected number

1Joint work with Jaime Carbonell and Steve Hanneke.
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of bits is precisely characterized by the entropy. There aremany problems in which exact coding

is not practical or not possible, so that lossy coding becomes necessary: particularly for random

variables taking values in uncountably infinite spaces. Thetopic of code lengths for lossy coding

is interesting, both for its direct applications to compression, and also as a general setting in

which to derive lower bounds for specializations of the setting.

There is much existing work on lossy binary codes. In the present work, we are interested

in a “one-shot” analysis of lossy coding [Kieffer, 1993], inwhich we wish to encode a single

random variable, in contrast to the analysis of “asymptotic” source coding [Cover and Thomas,

2006], in which one wishes to simultaneously encode a sequence of random variables. Of par-

ticular relevance to the one-shot coding problem is the analysis of quantizationmethods that

balancedistortion with entropy[Gersho, 1979, Kieffer, 1993, Zador, 1982]. In particular,it is

now well-known that this approach can yield codes that respect a distortion contraint while nearly

minimizing the rate, so that there are near-optimal codes ofthis type [Kieffer, 1993]. Thus, we

have an alternative way to think of the optimal rate, in termsof the rate of the best distortion-

constrained quantization method. While this is interesting, in that it allows us to restrict our focus

in the design of effective coding techniques, it is not as directly helpful if we wish to understand

the behavior of the optimal rate itself. That is, since we do not have an explicit description of the

optimal quantizer, it may often be difficult to study the behavior of its rate under various interest-

ing conditions. There exist classic results lower boundingthe achievable rates, most notably the

famous Shannon lower bound [Shannon, 1959], which under certain restrictions on the source

and the distortion metric, is known to be fairly tight in theasymptoticanalysis of source coding

[Linder and Zamir, 1994]. However, there are few general results explicitly and tightly charac-

terizing the (non-asymptotic) optimal rates for one-shot coding. In particular, to our knowledge,

only a few special-case calculations of the exact value of this optimal rate have been explicitly

carried out, such as vectors of independent Bernoulli or Gaussian random variables [Cover and

Thomas, 2006].
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Below, we discuss a particular distortion-constrained quantizer, based on a Voronoi partition

induced by a maximal packing. We are interested in theentropyof this quantizer, as a quantity

used to characterize the optimal rate for codes of a given distortion. While it is clear that this

entropy upper bounds the optimal rate, as this is the case foranydistortion-constrained quantizer

[Kieffer, 1993], the novelty of our analysis lies in noting the remarkable fact that the entropy

of any quantizer constructed in this way alsolower boundsthe optimal rate. In particular, this

provides a method for approximately calculating the optimal rate without the need to optimize

over all possible quantizers. Our result is general, in thatit applies to an arbitrary distribution

and an arbitrary distortion measure from a general class of finite-dimensional pseudo-metrics.

This generality is noteworthy, as it leads to interesting applications in statistical learning theory,

which we describe below.

Our analysis is closely related to various notions that arise in the study ofǫ-entropy [Posner

and Rodemich, 1971, Posner, Rodemich, and Rumsey, Jr., 1967], in that we are concerned with

the entropy of a Voronoi partition induced by anǫ-cover. The notion ofǫ-entropy has been

related to the optimal rates for a given distortion (under a slightly different model than studied

here) [Posner and Rodemich, 1971, Posner, Rodemich, and Rumsey, Jr., 1967]. However, there

are some important distinctions, perhaps the most significant of which is that calculating the

ǫ-entropy requires a prohibitive optimization of the entropy over all ǫ-covers; in contrast, the

entropy term in our analysis can be calculated based onany maximal ǫ-packing (which is a

particular type ofǫ-cover). Maximalǫ-packings are easy to construct by greedily adding arbitrary

new elements to the packing that areǫ-far from all elements already added; thus, there is always

a straightforward algorithmic approach to applying our results.
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5.2 Definitions

We supposeX ∗ is an arbitrary (nonempty) set, equipped with a separable pseudo-metricρ :

X ∗×X ∗ → [0,∞). 2 We supposeX ∗ is accompanied by its Borelσ-algebra induced byρ. There

is additionally a (nonempty, measurable) setX ⊆ X ∗, and we denote bȳρ = sup
h1,h2∈X

ρ(h1, h2).

Finally, there is a probability measureπ with π(X ) = 1, and anX -valued random variableX

with distributionπ, referred to here as the “target.” As the distribution is essentially arbitrary, the

results below will hold foranyπ.

A codeis a pair of (measurable) functions(φ, ψ). Theencoder, φ, maps any elementx ∈ X

to a binary sequenceφ(x) ∈ ⋃∞
q=0{0, 1}q (the codeword). Thedecoder, ψ, maps any element

c ∈ ⋃∞
q=0{0, 1}q to an elementψ(c) ∈ X ∗. For anyq ∈ {0, 1, . . .} andc ∈ {0, 1}q, let |c| = q

denote thelength of c. A prefix-freecode is any code(φ, ψ) such that nox1, x2 ∈ X have

c(1) = φ(x1) andc(2) = φ(x2) with c(1) 6= c(2) but∀i ≤ |c(1)|, c(2)i = c
(1)
i : that is, no codeword is

a prefix of another (longer) codeword. LetPF denote the set of all prefix-free binary codes.

Here, we consider a setting where the code(φ, ψ) may belossy, in the sense that for some

values ofx ∈ X , ρ(ψ(φ(x)), x) > 0. Our objective is to design the code to have small expected

loss (in theρ sense), while maintaining as small of an expected codeword length as possible.

Formally, we have the following definition, which essentially describes a notion of optimality

for a lossy code.

Definition 5.1. For anyD > 0, define the optimalrateat distortionD

R(D) = inf
{

E

[

|φ(X)|
]

: (φ, ψ) ∈ PF with

E

[

ρ
(

ψ(φ(X)), X
)]

≤ D
}

,

where the random variable in both expectations isX ∼ π.

For our analysis, we will require a notion of dimensionalityfor the pseudo-metricρ. For this,

2The setX ∗ will not play any significant role in the analysis, except to allow for improper learning scenarios to

be a special case of our setting.
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we adopt the well-knowndoubling dimension[Gupta, Krauthgamer, and Lee, 2003].

Definition 5.2. Define thedoubling dimensiond as the smallest valued such that, for anyx ∈ X ,

and anyǫ > 0, the size of the minimalǫ/2-cover of theǫ-radius ball aroundx is at most2d.

That is, for anyx ∈ X andǫ > 0, there exists a set{xi}2di=1 of 2d elements ofX such that

{x′ ∈ X : ρ(x′, x) ≤ ǫ} ⊆
2d
⋃

i=1

{x′ ∈ X : ρ(x′, xi) ≤ ǫ/2}.

Note that, as defined here,d is a constant (i.e., has no dependence on thex or ǫ in its defini-

tion). In the analysis below, we will always assumed < ∞. The doubling dimension has been

studied for a variety of spaces, originally by Gupta, Krauthgamer, & Lee [Gupta, Krauthgamer,

and Lee, 2003], and subsequently by many others. In particular, Bshouty, Li, & Long [Bshouty,

Li, and Long, 2009] discuss the doubling dimension of spacesX of binary classifiers, in the

context of statistical learning theory.

5.2.1 Definition of Packing Entropy

Our main result concerns the relation between the optimal rate at a given distortion with the

entropy of a certain quantizer. We now turn to defining this latter quantity.

Definition 5.3. For any D > 0, defineY(D) ⊆ X as a maximalD-packing ofX . That is,

∀x1, x2 ∈ Y(D), ρ(x1, x2) ≥ D, and∀x ∈ X \ Y(D), minx′∈Y(D) ρ(x, x
′) < D.

For our purposes, if multiple maximalD-packings are possible, we can choose to define

Y(D) arbitrarily from among these; the results below hold for anysuch choice. Recall that any

maximalD-packing ofX is also aD-cover ofX , since otherwise we would be able to add to

Y(D) thex ∈ X that escapes the cover. That is,∀x ∈ X , ∃y ∈ Y(D) s.t.ρ(x, y) < D.

Next we define a complexity measure, a type of entropy, which serves as our primary quantity

of interest in the analysis ofR(D). It is specified in terms of a partition induced byY(D), defined

as follows.
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Definition 5.4. For anyD > 0, define

Q(D) =
{{

x ∈ X : z = argmin
y∈Y(D)

ρ(x, y)

}

: z ∈ Y(D)
}

,

where we break ties in theargmin arbitrarily but consistently (e.g., based on a predefined pref-

erence ordering ofY(D)).

Definition 5.5. For any finite (or countable) partitionS ofX into measurable regions (subsets),

define theentropyof S

H(S) = −
∑

S∈S
π(S) log2 π(S).

In particular, we will be interested in the quantityH(Q(D)) in the analysis below.

5.3 Main Result

Our main result can be summarized as follows. Note that, since we took the distributionπ to be

arbitrary in the above definitions, this result holds foranygivenπ.

Theorem 5.6. If d <∞ and ρ̄ <∞, then there is a constantc = O(d) such that∀D ∈ (0, ρ̄/2),

H (Q (D log2(ρ̄/D)))− c ≤ R(D) ≤ H (Q (D)) + 1.

It should not be surprising that entropy terms play a key rolein this result, as the entropy is

essential to the analysis of exact coding [Shannon, 1948]. Furthermore,R(D) is tightly charac-

terized by the minimum achievable entropy among all quantizers of distortion at mostD [Kieffer,

1993]. The interesting aspect of Theorem 5.6 is that we can explicitly describe a particular quan-

tizer with near-optimal rate, and its entropy can be explicitly calculated for a variety of scenarios

(X , ρ, π). As for the behavior ofR(D) within the range between the upper and lower bounds

of Theorem 5.6, we should expect the upper bound to be tight when high-probability subsets of

the regions inQ(D) are point-wise well-separated, whileR(D) may be much smaller (perhaps

closer to the lower bound) when this is violated to a large degree, for reasons described in the

proof below.
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Figure 5.1: Plots ofH(Q(D)) as a function of1/D, for various distributionsπ onX = R.

Although this result is stated for bounded psuedo-metricsρ, it also has implications for un-

boundedρ. In particular, the proof of the upper bound holds as-is for unboundedρ. Furthermore,

we can always use this lower bound to construct a lower bound for unboundedρ, simply restrict-

ing to a bounded subset ofX with constant probability and calculating the lower bound for that

region. For instance, to get a lower bound forπ as a Gaussian distribution onR, we might note

thatπ([−1/2, 1/2]) times the expected loss under theconditionalπ(·|[−1/2, 1/2]) lower bounds

the total expected loss. Thus, calculating the lower bound of Theorem 5.6 under the conditional

π(·|[−1/2, 1/2]) while replacingD with D/π([−1/2, 1/2]) provides a lower bound onR(D).

To get a feel for the behavior ofH (Q (D)), we have plotted it as a function of1/D for several

distributions, in Figure 5.1.

5.4 Proof of Theorem 5.6

We first state a lemma, due to Gupta, Krauthgamer, & Lee [Gupta, Krauthgamer, and Lee, 2003],

which will be useful in the proof of Theorem 5.6.

Lemma 5.7. [Gupta, Krauthgamer, and Lee, 2003] For anyγ ∈ (0,∞), δ ∈ [γ,∞), andx ∈ X ,

|{x′ ∈ Y(γ) : ρ(x′, x) ≤ δ}| ≤
(

4δ

γ

)d

.

In particular, note that this lemma implies that the minimumof ρ(x, y) over y ∈ Y(D) is

alwaysachievedin Definition 5.4, so thatQ(D) is well-defined.
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We are now ready for the proof of Theorem 5.6.

Proof of Theorem 5.6.Throughout the proof, we will consider a set-valued random quantity

QD(X) with value equal to the set inQ(D) containingX, and a correspondingX -valued random

quantityYD(X) with value equal the sole point inQD(X) ∩ Y(D): that is, the target’s nearest

representative in theD-packing. Note that, by Lemma 5.7,|Y(D)| < ∞ for all D ∈ (0, 1). We

will also adopt the usual notation for entropy (e.g.,H(QD(X))) and conditional entropy (e.g.,

H(QD(X)|Z)) [Cover and Thomas, 2006], both in base 2.

To establish the upper bound, we simply takeφ as the Huffman code for the random quantity

QD(X) [Cover and Thomas, 2006, Huffman, 1952]. It is well-known that the expected length

of a Huffman code forQD(X) is at mostH(QD(X)) + 1 (in fact, is equalH(QD(X)) when

the probabilities are powers of2) [Cover and Thomas, 2006, Huffman, 1952], and each possible

value ofQD(X) is assigned a unique codeword so that we can perfectly recoverQD(X) (and thus

alsoYD(X)) based onφ(X). In particular, defineψ(φ(X)) = YD(X). Finally, recall that any

maximalD-packing is also aD-cover. Thus, since every element of the setQD(X) hasYD(X) as

its closest representative inY(D), we must haveρ(X,ψ(φ(X))) = ρ(X, YD(X)) < D. In fact,

as this proof never relies on̄ρ <∞, this establishes the upper bound even in the caseρ̄ =∞.

The proof of the lower bound is somewhat more involved, though the overall idea is simple

enough. Essentially, the lower bound would be straightforward if the regions ofQ(D log2(ρ̄/D))

were separated by some distance, since we could make an argument based on Fano’s inequality

to say that since anŷX = ψ(φ(X)) is “close” to at most one region, the expected distance

from X is at least as large as half this inter-region distance timesa quantity proportional to the

conditional entropyH(QD(X)|φ(X)), so thatH(φ(X)) can be related toH(QD(X)).

However, the general case is not always so simple, as the regions can generally be quite close

to each other (even adjacent), so that it is possible forX̂ to be close to multiple regions. Thus, the

proof will first “color” the regions ofQ(D log2(ρ̄/D)) in a way that guarantees no two regions of

the same color are within distanceD log2(ρ̄/D) of each other. Then we apply the above simple
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argument for each color separately (i.e., lower bounding the expected distance fromX under the

conditional given the color ofQD log2(ρ̄/D)(X) by a function of the conditional entropy under the

conditional), and average over the colors to get a global lower bound. The details follow.

Fix anyD ∈ (0, ρ̄/2), and for brevity letα = D log2(ρ̄/D). We suppose(φ, ψ) is some

prefix-free binary code.

Define a functionK : Q(α)→ N such that∀Q1, Q2 ∈ Q(α),

K(Q1) = K(Q2) =⇒ inf
x1∈Q1,x2∈Q2

ρ(x1, x2) ≥ α, (5.1)

and supposeK has minimumH(K(Qα(X))) subject to (5.1). We will refer toK(Q) as thecolor

of Q.

Now we are ready to bound the expected distance fromX. Let X̂ = ψ(φ(X)), and let

Qα(X̂;K) denote the setQ ∈ Q(α) havingK(Q) = K with smallestinfx∈Q ρ(x, X̂) (breaking

ties arbitrarily). We know

E[ρ(X̂,X)] = E

[

E[ρ(X̂,X)|K(Qα(X))]
]

. (5.2)

Furthermore, by (5.1) and a triangle inequality, we know noX̂ can be closer thanα/2 to more

than oneQ ∈ Q(α) of a given color. Therefore,

E[ρ(X̂,X)|K(Qα(X))]

≥ α

2
P(Qα(X̂;K(Qα(X))) 6= Qα(X)|K(Qα(X))). (5.3)

By Fano’s inequality, we have

E

[

P(Qα(X̂;K(Qα(X))) 6= Qα(X)|K(Qα(X)))
]

≥ H(Qα(X)|φ(X),K(Qα(X)))− 1

log2 |Y(α)|
. (5.4)

It is generally true that, for a prefix-free binary codeφ(X), φ(X) is a lossless prefix-free

binary code for itself (i.e., with the identity decoder), sothat the classic entropy lower bound on

average code length [Cover and Thomas, 2006, Shannon, 1948] impliesH(φ(X)) ≤ E[|φ(X)|].
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Also, recalling thatY(α) is maximal, and therefore also anα-cover, we have that anyQ1, Q2 ∈

Q(α) with inf
x1∈Q1,x2∈Q2

ρ(x1, x2) ≤ α haveρ(Yα(x1), Yα(x2)) ≤ 3α (by a triangle inequality).

Therefore, Lemma 5.7 implies that, for any givenQ1 ∈ Q(α), there are at most12d setsQ2 ∈

Q(α) with inf
x1∈Q1,x2∈Q2

ρ(x1, x2) ≤ α. We therefore know there exists a functionK′ : Q(α)→ N

satisfying (5.1) such thatmax
Q∈Q(α)

K′(Q) ≤ 12d (i.e., we need at most12d colors to satisfy (5.1)).

That is, if we consider coloring the setsQ ∈ Q(α) sequentially, for any givenQ1 not yet colored,

there are< 12d setsQ2 ∈ Q(α) \ {Q1} within α of it, so there must exist a color among

{1, . . . , 12d} not used by any of them, and we can choose that forK′(Q1). In particular, by our

choice ofK to minimizeH(K(Qα(X))) subject to (5.1), this implies

H(K(Qα(X))) ≤ H(K′(Qα(X))) ≤ log2(12
d) ≤ 4d.

Thus,

H(Qα(X)|φ(X),K(Qα(X)))

= H(Qα(X), φ(X),K(Qα(X)))

−H(φ(X))−H(K(Qα(X))|φ(X))

≥ H(Qα(X))−H(φ(X))−H(K(Qα(X)))

≥ H(Qα(X))− E [|φ(X)|]− 4d

= H(Q(α))− E [|φ(X)|]− 4d. (5.5)

Thus, combining (5.2), (5.3), (5.4), and (5.5), we have

E[ρ(X̂,X)] ≥ α

2

H(Q(α))− E [|φ(X)|]− 4d− 1

log2 |Y(α)|

≥ α

2

H(Q(α))− E [|φ(X)|]− 4d− 1

d log2(4ρ̄/α)
,

where the last inequality follows from Lemma 5.7.

Thus, for any code with

E [|φ(X)|] < H(Q(α))− 4d− 1− 2d
log2(4ρ̄/D)

log2(ρ̄/D)
,
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we haveE[ρ(X̂,X)] > D, which implies

R(D) ≥ H(Q(α))− 4d− 1− 2d
log2(4ρ̄/D)

log2(ρ̄/D)
.

Sincelog2(4ρ̄/D)/ log2(ρ̄/D) ≤ 3, we have

R(D) ≥ H(Q(α))−O(d).

5.5 Application to Bayesian Active Learning

As an example, in the special case of the problem of learning abinary classifier, as studied by

[Haussler, Kearns, and Schapire, 1994a] and [Freund, Seung, Shamir, and Tishby, 1997],X ∗ is

the set of all measurable classifiersh : Z → {−1,+1}, X is called the “concept space,”X is

called the “target function,” andρ(X1, X2) = P(X1(Z) 6= X2(Z)), whereZ is someZ-valued

random variable. In particular,ρ(X1, X) is called the “error rate” ofX1.

We may then discuss alearning protocolbased on binary-valued queries. That is, we sup-

pose some learning machine is able to pose yes/no questions to an oracle, and based on the

responses it proposes ahypothesisX̂. We may ask how many such yes/no questions must the

learning machine pose (in expectation) before being able toproduce a hypothesiŝX ∈ X ∗ with

E[ρ(X̂,X)] ≤ ǫ, known as thequery complexity.

If the learning machine is allowed to posearbitrary binary-valued queries, then this setting is

precisely a special case of the general lossy coding problemstudied above. That is, any learning

machine that asks a sequence of yes/no questions before terminating and returning somêX ∈ X ∗

can be thought of as a binary decision tree (no = left, yes = right), with the returnX̂ values stored

in the leaf nodes. Transforming each root-to-leaf path in the decision tree into a codeword (left

= 0, right = 1), we see that the algorithm corresponds to a prefix-free binary code. Conversely,

given any prefix-free binary code, we can construct an algorithm based on sequentially asking
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queries of the form “what is the first bit in the codewordφ(X) forX?”, “what is the second bit in

the codewordφ(X) forX?”, etc., until we obtain a complete codeword, at which pointwe return

the value that codeword decodes to. From this perspective, the query complexity is precisely

R(ǫ).

This general problem of learning with arbitrary binary-valued queries was studied previously

by Kulkarni, Mitter, & Tsitsiklis [Kulkarni, Mitter, and Tsitsiklis, 1993], in aminimaxanalysis

(studying the worst-case value ofX). In particular, they find that for a given distribution for

Z, the worst-case query complexity is essentially characterized by log |Y(ǫ)|. The techniques

employed are actually far more general than the classifier-learning problem, and actually apply

to any pseudo-metric space. Thus, we can abstractly think oftheir work as a minimax analysis

of lossy coding.

In addition to being quite interesting in their own right, the results of Kulkarni, Mitter, &

Tsitsiklis [Kulkarni, Mitter, and Tsitsiklis, 1993] have played a significant role in the recent

developments in active learning withlabel requestqueries for binary classification [Dasgupta,

2005, Hanneke, 2007a,b], in which the learning machine may only ask questions of the form,

“What is the valueX(z)?” for certain valuesz ∈ Z. Since label requests can be viewed as

a type of binary-valued query, the number of label requests necessary for learning is naturally

lower bounded by the number ofarbitrary binary-valued queries necessary for learning. We

therefore always expect to see some term relating tolog |Y(ǫ)| in any minimax query complexity

results for active learning with label requests (though this factor is typically represented by its

upper bound:∝ V · log(1/ǫ), whereV is the VC dimension).

Similarly to how the work of Kulkarni, Mitter, & Tsitsiklis [Kulkarni, Mitter, and Tsitsiklis,

1993] can be used to argue thatlog |Y(ǫ)| is a lower bound on the minimax query complexity of

active learning with label requests, Theorem 5.6 can be usedto argue thatH(Q(ǫ log2(1/ǫ))) −

O(d) is a lower bound on the query complexity of learning relativeto a given distribution for

X (called aprior, in the language of Bayesian statistics), rather than the worst-case value ofX.
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Furthermore, as with [Kulkarni, Mitter, and Tsitsiklis, 1993], this lower bound remains valid for

learning with label requests, since label requests are a type of binary-valued query. Thus, we

should expect a term related toH(Q(ǫ)) orH(Q(ǫ log2(1/ǫ))) to appear in any tight analysis of

the query complexity of Bayesian learning with label requests.

5.6 Open Problems

In our present context, there are several interesting questions, such as whether thelog(ρ̄/D) factor

in the entropy argument of the lower bound can be removed, whether the additive constant in the

lower bound might be improved, and in particular whether a similar result might be obtained

without assumingd < ∞ (e.g., in the statistical learning special case, by making aVC class

assumption instead).
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Chapter 6

The Sample Complexity of Self-Verifying

Bayesian Active Learning

Abstract

1We prove that access to a prior distribution over target functions can dramatically improve the

sample complexity of self-terminating active learning algorithms, so that it is always better than

the known results for prior-dependent passive learning. Inparticular, this is in stark contrast to

the analysis of prior-independent algorithms, where thereare simple known learning problems

for which no self-terminating algorithm can provide this guarantee for all priors.

6.1 Introduction and Background

Active learningis a powerful form of supervised machine learning characterized by interaction

between the learning algorithm and supervisor during the learning process. In this work, we

consider a variant known aspool-basedactive learning, in which a learning algorithm is given

access to a (typically very large) collection of unlabeled examples, and is able to select any of

1Joint work with Jaime Carbonell and Steve Hanneke.
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those examples, request the supervisor to label it (in agreement with the target concept), then after

receiving the label, selects another example from the pool,etc. This sequential label-requesting

process continues until some halting criterion is reached,at which point the algorithm outputs

a function, and the objective is for this function to closelyapproximate the (unknown) target

concept in the future. The primary motivation behind pool-based active learning is that, often,

unlabeled examples are inexpensive and available in abundance, while annotating those examples

can be costly or time-consuming; as such, we often wish to select only the informative examples

to be labeled, thus reducing information-redundancy to some extent, compared to the baseline of

selecting the examples to be labeled uniformly at random from the pool (passive learning).

There has recently been an explosion of fascinating theoretical results on the advantages of

this type of active learning, compared to passive learning,in terms of the number of labels re-

quired to obtain a prescribed accuracy (called thesample complexity): e.g., [Balcan, Broder, and

Zhang, 2007a, Balcan, Beygelzimer, and Langford, 2009, Balcan, Hanneke, and Vaughan, 2010,

Beygelzimer, Dasgupta, and Langford, 2009, Castro and Nowak,2008, Dasgupta, 2004, 2005,

Dasgupta, Hsu, and Monteleoni, 2007b, Dasgupta, Kalai, andMonteleoni, 2009, Freund, Seung,

Shamir, and Tishby, 1997, Friedman, 2009, Hanneke, 2007a,b, 2009, 2011, K̈aäriäinen, 2006,

Koltchinskii, 2010, Nowak, 2008, Wang, 2009]. In particular, [Balcan, Hanneke, and Vaughan,

2010] show that in noise-free binary classifier learning, for any passive learning algorithm for a

concept space of finite VC dimension, there exists an active learning algorithm with asymptoti-

cally much smaller sample complexity for any nontrivial target concept. In later work, [Hanneke,

2009] strengthens this result by removing a certain strong dependence on the distribution of the

data in the learning algorithm. Thus, it appears there are profound advantages to active learning

compared to passive learning.

However, the ability to rapidly converge to a good classifierusing only a small number of

labels is only one desirable quality of a machine learning method, and there are other qualities

that may also be important in certain scenarios. In particular, the ability toverify the performance
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of a learning method is often a crucial part of machine learning applications, as (among other

things) it helps us determine whether we have enough data to achieve a desired level of accuracy

with the given method. In passive learning, one common practice for this verification is to hold

out a random sample of labeled examples as avalidation sampleto evaluate the trained classifier

(e.g., to determine when training is complete). It turns outthis technique is not feasible in active

learning, since in order to be really useful as an indicator of whether we have seen enough la-

bels to guarantee the desired accuracy, the number of labeled examples in the random validation

sample would need to be much larger than the number of labels requested by the active learning

algorithm itself, thus (to some extent) canceling the savings obtained by performing active rather

than passive learning. Another common practice in passive learning is to examine the training er-

ror rate of the returned classifier, which can serve as a reasonable indicator of performance (after

adjusting for model complexity). However, again this measure of performance is not necessarily

reasonable for active learning, since the set of examples the algorithm requests the labels of is

typically distributed very differently from the test examples the classifier will be applied to after

training.

This reasoning indicates that performance verification is (at best) a far more subtle issue in

active learning than in passive learning. Indeed, [Balcan, Hanneke, and Vaughan, 2010] note that

although the number of labels required to achieve good accuracy is significantly smaller than

passive learning, it is often the case that the number of labels required toverify that the accuracy

is good is not significantly improved. In particular, this phenomenon can dramatically increase

the sample complexity of active learning algorithms that adaptively determine how many labels

to request before terminating. In short, if we require the algorithm both tolearn an accurate

concept and toknow that its concept is accurate, then the number of labels required by active

learning is often not significantly smaller than the number required by passive learning.

We should note, however, that the above results were proven for a learning scenario in which

the target concept is considered a constant, and no information about the process that generates
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this concept is known a priori. Alternatively, we can consider a modification of this problem, so

that the target concept can be thought of as a random variable, a sample from a known distribution

(called aprior) over the space of possible concepts. Such a setting has beenstudied in detail

in the context of passive learning for noise-free binary classification. In particular, [Haussler,

Kearns, and Schapire, 1994a] found that for any concept space of finite VC dimensiond, for

any prior and distribution over data points,O(d/ε) random labeled examples are sufficient for

the expected error rate of the Bayes classifier produced underthe posterior distribution to be at

mostε. Furthermore, it is easy to construct learning problems forwhich there is anΩ(1/ε) lower

bound on the number of random labeled examples required to achieve expected error rate at most

ε, by any passive learning algorithm; for instance, the problem of learning threshold classifiers

on [0, 1] under a uniform data distribution and uniform prior is one such scenario.

In the context of active learning (again, with access to the prior), [Freund, Seung, Shamir, and

Tishby, 1997] analyze theQuery by Committeealgorithm, and find that if a certain information

gain quantity for the points requested by the algorithm is lower-bounded by a valueg, then the

algorithm requires onlyO((d/g) log(1/ε)) labels to achieve expected error rate at mostε. In par-

ticular, they show that this is satisfied forconstantg for linear separators under a near-uniform

prior, and a near-uniform data distribution over the unit sphere. This represents a marked im-

provement over the results of [Haussler, Kearns, and Schapire, 1994a] for passive learning, and

since the Query by Committee algorithm is self-verifying, this result is highly relevant to the

present discussion. However, the condition that the information gains be lower-bounded by a

constant is quite restrictive, and many interesting learning problems are precluded by this re-

quirement. Furthermore, there exist learning problems (with finite VC dimension) for which the

Query by Committee algorithm makes an expected number of label requests exceedingΩ(1/ε).

To date, there has not been a general analysis of how the valueof g can behave as a function of

ε, though such an analysis would likely be quite interesting.

In the present paper, we take a more general approach to the question of active learning with
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access to the prior. We are interested in the broad question of whether access to the prior bridges

the gap between the sample complexity oflearningand the sample complexity of learningwith

verification. Specifically, we ask the following question.

Can a prior-dependent self-terminating active learning algorithm for a concept class of finite

VC dimension always achieve expected error rate at mostε usingo(1/ε) label requests?

After some basic definitions in Section 6.2, we begin in Section 6.4 with a concrete example,

namely interval classifiers under a uniform data density butarbitrary prior, to illustrate the general

idea, and convey some of the intuition as to why one might expect a positive answer to this

question. In Section 6.5, we present a general proof that theanswer isalways“yes.” As the

known results for the sample complexity of passive learningwith access to the prior are typically

∝ 1/ε [Haussler, Kearns, and Schapire, 1994a], and this is sometimes tight, this represents

an improvement over passive learning. The proof is simple and accessible, yet represents an

important step in understanding the problem of self-termination in active learning algorithms, and

the general issue of the complexity of verification. Also, asthis is a result that doesnotgenerally

hold for prior-independent algorithms (even for their “average-case” behavior induced by the

prior) for certain concept spaces, this also represents a significant step toward understanding the

inherent value of having access to the prior.

6.2 Definitions and Preliminaries

First, we introduce some notation and formal definitions. Wedenote byX the instance space,

representing the range of the unlabeled data points, and we suppose a distributionD on X ,

which we will refer to as thedata distribution. We also suppose the existence of a sequence

X1, X2, . . . of i.i.d. random variables, each with distributionD, referred to as the unlabeled

data sequence. Though one could potentially analyze the achievable performance as a function

of the number of unlabeled points made available to the learning algorithm (cf. [Dasgupta,

2005]), for simplicity in the present work, we will suppose this unlabeled sequence is essentially
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inexhaustible, corresponding to the practical fact that unlabeled data are typically available in

abundance as they are often relatively inexpensive to obtain. Additionally, there is a setC of

measurable classifiersh : X → {−1,+1}, referred to as theconcept space. We denote byd

the VC dimension ofC, and in our present context we will restrict ourselves to spacesC with

d < ∞, referred to as aVC class. We also have a probability distributionπ, called theprior,

overC, and a random variableh∗ ∼ π, called thetarget function; we supposeh∗ is independent

from the data sequenceX1, X2, . . .. We adopt the usual notation for conditional expectations

and probabilities [Ash and Doléans-Dade, 2000]; for instance,E[A|B] can be thought of as an

expectation of the valueA, under the conditional distribution ofA given the value ofB (which

itself is random), and thus the value ofE[A|B] is essentially determined by the value ofB. For

any measurableh : X → {−1,+1}, define theerror rate er(h) = D({x : h(x) 6= h∗(x)}).

So far, this setup is essentially identical to that of [Freund, Seung, Shamir, and Tishby, 1997,

Haussler, Kearns, and Schapire, 1994a].

The protocol in active learning is the following. An active learning algorithmA is given as

input the priorπ, the data distributionD (though see Section 6.6), and a valueε ∈ (0, 1]. It

also (implicitly) depends on the data sequenceX1, X2, . . ., and has an indirect dependence on

the target functionh∗ via the following type of interaction. The algorithm may inspect the values

Xi for any initial segment of the data sequence, select an indexi ∈ N to “request” the label of;

after selecting such an index, the algorithm receives the value h∗(Xi). The algorithm may then

select another index, request the label, receive the value of h∗ on that point, etc. This happens

for a number of rounds,N(A, h∗, ε,D, π), before eventually the algorithm halts and returns a

classifierĥ. An algorithm is said to becorrect if E

[

er
(

ĥ
)]

≤ ε for every(ε,D, π); that is,

given direct access to the prior and the data distribution, and given a specified valueε, a correct

algorithm must be guaranteed to have expected error rate at mostε. Define theexpected sample

complexityof A for (X ,C,D, π) to be the functionSC(ε,D, π) = E[N(A, h∗, ε,D, π)]: the

expected number of label requests the algorithm makes.
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6.3 Prior-Independent Learning Algorithms

One may initially wonder whether we could achieve thiso(1/ε) result merely by calculating

the expected sample complexity of some prior-independent method, thus precluding the need

for novel algorithms. Formally, we say an algorithmA is prior-independent if the conditional

distribution of the queries and return value ofA(ε,D, π) given{(X1, X(X1)), (X2, X(X2)), . . .}

is functionally independent ofπ. Indeed, for someC andD, it is known that thereare prior-

independent active learning algorithmsA that haveE[N(A, X, ε,D, π)|X] = o(1/ε) (always);

for instance, threshold classifiers have this property under anyD, homogeneous linear separators

have this property under a uniformD on the unit sphere ink dimensions, and intervals with

positive width onX = [0, 1] have this property underD = Uniform([0, 1]) (see e.g., [Dasgupta,

2005]). It is straightforward to show that any suchA will also haveSC(A, ε,D, π) = o(1/ε)

for everyπ. In particular, the law of total expectation and the dominated convergence theorem

imply

lim
ε→0

εSC(A, ε,D, π) = lim
ε→0

εE[E[N(A, X, ε,D, π)|X]]

= E

[

lim
ε→0

εE[N(A, X, ε,D, π)|X]
]

= 0.

In these cases, we can think ofSC as a kind ofaverage-caseanalysis of these algorithms. How-

ever, as we discuss next, there are also manyC andD for which there isno prior-independent

algorithm achievingo(1/ε) sample complexity forall priors. Thus, any general result ono(1/ε)

expected sample complexity forπ-dependent algorithms would indicate that there is a real ad-

vantage to having access to the prior, beyond the apparentsmoothingeffects of an average-case

analysis.

As an example of a problem where no prior-independent self-verifying algorithm can achieve

o(1/ε) sample complexity, considerX = [0, 1],D = Uniform([0, 1]), andC as the concept space

of interval classifiers: C = {I±(a,b) : 0 ≤ a ≤ b ≤ 1}, whereI±(a,b)(x) = +1 if x ∈ (a, b) and

−1 otherwise. Note that because we allowa = b, there is a classifierh− ∈ C labeling all ofX
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negative. For0 ≤ a ≤ b ≤ 1, let π(a,b) denote the prior withπ(a,b)({I±(a,b)}) = 1. We now show

any correct prior-independent algorithm hasΩ(1/ε) sample complexity forπ(0,0), following a

technique of [Balcan, Hanneke, and Vaughan, 2010]. Consider any ε ∈ (0, 1/144) and any

prior-independent active learning algorithmA with SC(A, ε,D, π(0,0)) < s = 1
144ε

. Then define

Hε =
{

(12iε, 12(i+ 1)ε) : i ∈
{

0, 1, . . . ,
⌊

1−12ε
12ε

⌋}}

. Let ĥ(a,b) denote the classifier returned

by A(ε,D, ·) when queries are answered withX = I
±
(a,b), for 0 ≤ a ≤ b ≤ 1, and letR(a,b)

denote the set of examples(x, y) for whichA(ε,D, ·) requests labels (including theiry = X(x)

labels). The point of this construction is that, with such a small number of queries, for many

of the (a, b) ∈ Hε, the algorithm must behave identically forX = I
±
(a,b) as forX = I

±
(0,0) (i.e.,

R(a,b) = R(0,0), and hencêh(a,b) = ĥ(0,0)). Theseπ(a,b) priors will then witness the fact thatA is

not a correct self-verifying algorithm. Formally,

max
(a,b)∈Hε

E

[

D(x : ĥ(a,b)(x) 6= I
±
(a,b)(x))

]

≥ 1

|Hε|
∑

(a,b)∈Hε

E

[

D(x : ĥ(a,b)(x) 6= I
±
(a,b)(x))

]

≥ 1

|Hε|
E





∑

(a,b)∈Hε:R(a,b)=R(0,0)

D(x : ĥ(a,b)(x) 6= I
±
(a,b)(x))





≥ 1

|Hε|
E





∑

(a,b)∈Hε:R(a,b)=R(0,0)

(

12ε−min{D(x : ĥ(a,b)(x) 6= −1), 12ε}
)



 . (6.1)

Since the summation in (6.1) is restricted to(a, b) with R(a,b) = R(0,0), these(a, b) must also

haveĥ(a,b) = ĥ(0,0), so that (6.1) equals

1

|Hε|
E





∑

(a,b)∈Hε:R(a,b)=R(0,0)

(

12ε−min{D(x : ĥ(0,0)(x) 6= −1), 12ε}
)



 . (6.2)

Furthermore, for a givenX1, X2, . . . sequence, the only(a, b) ∈ Hε with R(a,b) 6= R(0,0) are

those for which some(x,−1) ∈ R(0,0) hasx ∈ (a, b); since the(a, b) ∈ Hε are disjoint, the
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above summation has at least|Hε| − |R(0,0)| elements in it. Thus, (6.2) is at least

E

[( |Hε| −min{|R(0,0)|, |Hε|}
|Hε|

)

(

12ε−min{D(x : ĥ(0,0)(x) 6= −1), 12ε}
)

]

≥ E

[

I
[

|R(0,0)| ≤ 3s
]

I

[

D(x : ĥ(0,0)(x) 6= −1) ≤ 6ε
]

( |Hε| − 3s

|Hε|

)

(12ε− 6ε)

]

≥ 3εP
(

|R(0,0)| ≤ 3s,D(x : ĥ(0,0)(x) 6= −1) ≤ 6ε
)

. (6.3)

By Markov’s inequality,

P
(

|R(0,0)| > 3s
)

≤ E[|R(0,0)|]/(3s) = SC(A, ε,D, π(0,0))/(3s) < 1/3,

andP
(

D(x : ĥ(0,0)(x) 6= −1) > 6ε
)

≤ E

[

D(x : ĥ(0,0)(x) 6= −1)
]

/(6ε), and ifA is a correct

self-verifying algorithm, thenE
[

D(x : ĥ(0,0)(x) 6= −1)
]

/(6ε) ≤ 1/6. Thus, by a union bound,

(6.3) is at least3ε(1− 1/3− 1/6) = (3/2)ε > ε. Therefore,A cannot be a correct self-verifying

learning algorithm.

6.4 Prior-Dependent Learning: An Example

We begin our exploration ofπ-dependent active learning with a concrete example, namelyinter-

val classifiers under a uniform data density but arbitrary prior, to illustrate how access to the prior

can make a difference in the sample complexity. Specifically, considerX = [0, 1], D uniform

on [0, 1], and the concept spaceC of interval classifiers specified in the previous section. For

each classifierh ∈ C, definew(h) = D(x : h(x) = +1) (the width of the intervalh). Note that

because we allowa = b in the definition ofC, there is a classifierh− ∈ C with w(h−) = 0.

For simplicity, in this example (only) we will suppose the algorithm may request the label

of any point in X , not just those in the sequence{Xi}; the same ideas can easily be adapted

to the setting where queries are restricted to{Xi}. Consider an active learning algorithm that

sequentially requests the labelsX(x) for pointsx at 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16,

3/16, etc., until (case 1) it encounters an examplex with X(x) = +1 or until (case 2) the set of
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classifiersV ⊆ C consistent with all observed labels so far satisfiesE[w(X)|V ] ≤ ε (which ever

comes first). In case 2, the algorithm simply halts and returns the constant classifier that always

predicts−1: call it h−; note thater(h−) = w(X). In case 1, the algorithm enters a second phase,

in which it performs a binary search (repeatedly querying the midpoint between the closest two

−1 and+1 points, taking0 and1 as known negative points) to the left and right of the observed

positive point, halting afterlog2(4/ε) label requests on each side; this results in estimates of the

target’s endpoints up to±ε/4, so that returning any classifier among the setV ⊆ C consistent

with these labels results in error rate at mostε; in particular, if h̃ is the classifier inV returned,

thenE[er(h̃)|V ] ≤ ε.

Denoting this algorithm byA[], andĥ the classifier it returns, we have

E

[

er
(

ĥ
)]

= E

[

E

[

er
(

ĥ
) ∣

∣

∣
V
]]

≤ ε,

so that the algorithm is definitely correct.

Note that case 2 will definitely be satisfied after at most2
ε

label requests, and ifw(X) > ε,

then case 1 will definitely be satisfied after at most2
w(X)

label requests, so that the algorithm never

makes more than 2
max{w(X),ε} label requests before satisfying one of the two cases. Abbreviating

N(X) = N(A[], X, ε,D, π), we have

E [N(X)]

= E

[

N(X)
∣

∣

∣w(X) = 0
]

P (w(X) = 0)

+ E

[

N(X)
∣

∣

∣
0 < w(X) ≤ √ε

]

P
(

0 < w(X) ≤ √ε
)

+ E

[

N(X)
∣

∣

∣w(X) >
√
ε
]

P
(

w(X) >
√
ε
)

≤ E

[

N(X)
∣

∣

∣w(X) = 0
]

P (w(X) = 0) +
2

ε
P
(

0 < w(X) ≤ √ε
)

+
2√
ε
+ 2 log2

4

ε
. (6.4)

The third and fourth terms in (6.4) areo(1/ε). SinceP(0 < w(X) ≤ √ε) → 0 asε → 0, the

second term in (6.4) iso(1/ε) as well. IfP(w(X) = 0) = 0, this completes the proof. We focus

the rest of the proof on the first term in (6.4), in the case thatP(w(X) = 0) > 0: i.e., there is
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nonzero probability that the targetX labels the space all negative. LettingV denote the subset

of C consistent with all requested labels, note that on the eventw(X) = 0, aftern label requests

(for n + 1 a power of2) we havemaxh∈V w(h) ≤ 1/n. Thus, for any valueγ ∈ (0, 1), after at

most 2
γ

label requests, on the event thatw(X) = 0,

E

[

w(X)
∣

∣

∣V
]

≤ E [w(X)I [w(X) ≤ γ]]

π(V )
≤ E [w(X)I [w(X) ≤ γ]]

P(w(X) = 0)
. (6.5)

Now note that, by the dominated convergence theorem,

lim
γ→0

E

[

w(X)I [w(X) ≤ γ]

γ

]

= E

[

lim
γ→0

w(X)I [w(X) ≤ γ]

γ

]

= 0.

Therefore,E [w(X)I [w(X) ≤ γ]] = o(γ). If we defineγε as the largest value ofγ for which

E [w(X)I [w(X) ≤ γ]] ≤ εP(w(X) = 0) (or, say, half the supremum if the maximum is not

achieved), then we haveγε ≫ ε. Combined with (6.5), this implies

E

[

N(X)
∣

∣

∣
w(X) = 0

]

≤ 2

γε
= o(1/ε).

Thus, all of the terms in (6.4) areo(1/ε), so that in totalE[N(X)] = o(1/ε).

In conclusion, for this concept spaceC and data distributionD, we have a correct active

learning algorithmA achieving a sample complexitySC(A, ε,D, π) = o(1/ε) for all priorsπ

onC.

6.5 A General Result for Self-Verifying Bayesian Active Learn-

ing

In this section, we present our main result for improvementsachievable by prior-dependent

self-verifying active learning: a general result stating that o(1/ε) expected sample complexity

is always achievable for some appropriate prior-dependentactive learning algorithm, forany

(X ,C,D, π) for whichC has finite VC dimension. Since the known results for the sample com-

plexity of passive learning with access to the prior are typically Θ(1/ε) [Haussler, Kearns, and
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Schapire, 1994a], and since there are known learning problems(X ,C,D, π) for which every pas-

sive learning algorithm requiresΩ(1/ε) samples, thiso(1/ε) result for active learning represents

an improvement over passive learning.

The proof is simple and accessible, yet represents an important step in understanding the

problem of self-termination in active learning algorithms, and the general issue of the complexity

of verification. Also, since there are problems(X ,C,D) whereC has finite VC dimension but

for which no prior-independent correct active learning algorithm (of the self-terminating type

studied here) can achieveo(1/ε) expected sample complexity for everyπ, this also represents a

significant step toward understanding the inherent value ofhaving access to the prior in active

learning.

First, we have a small lemma.

Lemma 6.1.For any sequence of functionsφn : C→ [0,∞) such that,∀f ∈ C, φn(f) = o(1/n)

and∀n ∈ N, φn(f) ≤ c/n (for an f -independent constantc ∈ (0,∞)), there exists a sequence

φ̄n in [0,∞) such that

φ̄n = o(1/n) and lim
n→∞

P
(

φn(X) > φ̄n

)

= 0.

Proof. For any constantγ ∈ (0,∞), we have (by Markov’s inequality and the dominated con-

vergence theorem)

lim
n→∞

P (nφn(X) > γ) ≤ 1

γ
lim
n→∞

E [nφn(X)]

=
1

γ
E

[

lim
n→∞

nφn(X)
]

= 0.

Therefore (by induction), there exists a diverging sequenceni in N such that

lim
i→∞

sup
n≥ni

P
(

nφn(X) > 2−i
)

= 0.

Inverting this, letin = max{i ∈ N : ni ≤ n}, and definēφn(X) = (1/n) ·2−in . By construction,

P
(

φn(X) > φ̄n

)

→ 0. Furthermore,ni →∞ =⇒ in →∞, so that we have

lim
n→∞

nφ̄n = lim
n→∞

2−in = 0,
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implying φ̄n = o(1/n).

Theorem 6.2.For any VC classC, there is a correct active learning algorithmAa that, for every

data distributionD and priorπ, achieves expected sample complexity

SC(Aa, ε,D, π) = o(1/ε).

Our approach to proving Theorem 6.2 is via a reduction to established results about (prior-

independent) active learning algorithms that arenot self-verifying. Specifically, consider a

slightly different type of active learning algorithm than that defined above: namely, an algo-

rithm Ab that takes as input abudgetn ∈ N on the number of label requests it is allowed to

make, and that after making at mostn label requests returns as output a classifierĥn. Let us refer

to any such algorithm as abudget-basedactive learning algorithm. Note that budget-based active

learning algorithms are prior-independent (have no directaccess to the prior). The following re-

sult was proven by [Hanneke, 2009] (see also the related earlier work of [Balcan, Hanneke, and

Vaughan, 2010]).

Lemma 6.3. [Hanneke, 2009] For any VC classC, there exists a constantc ∈ (0,∞), a function

E(n; f,D), and a budget-based active learning algorithmAb such that

∀D, ∀f ∈ C, E(n; f,D) ≤ c/n andE(n; f,D) = o(1/n),

andE
[

er (Ab(n))
∣

∣

∣X
]

≤ E(n;X,D) (always).2

That is, equivalently, for any fixed value for the target function, the expected error rate is

o(1/n), where the random variable in the expectation is only the data sequenceX1, X2, . . .. Our

task in the proof of Theorem 6.2 is to convert such a budget-based algorithm into one that is

correct, self-terminating, and prior-dependent, takingε as input.

Theorem 6.2.ConsiderAb, E , andc as in Lemma 6.3, let̂hn denote the classifier returned by

Ab(n), and define

nπ,ε = min
{

n ∈ N : E
[

er
(

ĥn

)]

≤ ε
}

.

2Furthermore, it is not difficult to see that we can take thisE to be measurable in theX argument.
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This value is accessible based purely on access toπ andD. Furthermore, we clearly have (by

construction)E
[

er
(

ĥnπ,ε

)]

≤ ε. Thus, lettingAa denote the active learning algorithm taking

(D, π, ε) as input, which runsAb(nπ,ε) and then returnŝhnπ,ε , we have thatAa is a correct

learning algorithm (i.e., its expected error rate is at mostε).

As for the expected sample complexitySC(Aa, ε,D, π) achieved byAa, we haveSC(Aa, ε,D, π) ≤

nπ,ε, so that it remains only to boundnπ,ε. By Lemma 6.1, there is aπ-dependent function

E(n; π,D) such that

π ({f ∈ C : E(n; f,D) > E(n; π,D)})→ 0

andE(n; π,D) = o(1/n).

Therefore, by the law of total expectation,

E

[

er
(

ĥn

)]

= E

[

E

[

er
(

ĥn

) ∣

∣

∣X
]]

≤ E [E(n;X,D)]

≤ c

n
π ({f ∈ C : E(n; f,D) > E(n; π,D)}) + E(n; π,D)

= o(1/n).

If nπ,ε = O(1), then clearlynπ,ε = o(1/ε) as needed. Otherwise, sincenπ,ε is monotonic inε,

we must havenπ,ε ↑ ∞ asε ↓ 0. In particular, in this latter case we have

lim
ε→0

ε · nπ,ε

≤ lim
ε→0

ε ·
(

1 + max
{

n ≥ nπ,ε − 1 : E
[

er
(

ĥn

)]

> ε
})

= lim
ε→0

ε · max
n≥nπ,ε−1

nI
[

E

[

er
(

ĥn

)]

/ε > 1
]

≤ lim
ε→0

ε · max
n≥nπ,ε−1

nE
[

er
(

ĥn

)]

/ε

= lim
ε→0

max
n≥nπ,ε−1

nE
[

er
(

ĥn

)]

= lim sup
n→∞

nE
[

er
(

ĥn

)]

= 0,

so thatnπ,ε = o(1/ε), as required.

Theorem 6.2 implies that, if we havedirectaccess to the prior distribution ofX, regardless of

what that prior distributionπ is, we can always construct aself-verifyingactive learning algorithm
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Aa that has a guarantee ofE [er (Aa(ε,D, π))] ≤ ε and its expected number of label requests

is o(1/ε). This guarantee isnot possible for prior-independent self-verifying active learning

algorithms.

6.6 Dependence onD in the Learning Algorithm

The dependence onD in the algorithm described in the proof of Theorem 6.2 is fairly weak, and

we can eliminate any direct dependence onD by replacinger
(

ĥn

)

by a1−ε/2 confidence upper

bound based onMε = Ω
(

1
ε2
log 1

ε

)

i.i.d. unlabeled examplesX ′
1, X

′
2, . . . , X

′
Mε

independent from

the examples used by the algorithm (e.g., set aside in a pre-processing step, where the bound is

calculated via Hoeffding’s inequality and a union bound over the values ofn that we check,

of which there are at mostO(1/ε)). Then we simply increase the value ofn (starting at some

constant, such as1) until

1

Mε

Mε
∑

i=1

π
({

f ∈ C : f (X ′
i) 6= ĥn (X

′
i)
})

≤ ε/2.

The expected value of the smallest value ofn for which this occurs iso(1/ε). Note that this

only requires access to the priorπ, not the data distributionD (the budget-based algorithmAb

of [Hanneke, 2009] has no direct dependence onD); if desired for computational efficiency, this

dependence may also be estimated by a1 − ε/4 confidence upper bound based onΩ
(

1
ε2
log 1

ε

)

independent samples ofX values with distributionπ, where for each sample we simulate the

execution ofAb(n) for that (simulated) target function in order to obtain the returned classifier.

In particular, note that no actual label requests to the oracle are required during this process of

estimating the appropriate label budgetnπ,ε, as all executions ofAb aresimulated.
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6.7 Inherent Dependence onπ in the Sample Complexity

We have shown that for every priorπ, the sample complexity is bounded by ao(1/ε) function.

One might wonder whether it is possible that the asymptotic dependence onε in the sample

complexity can be prior-independent, while still beingo(1/ε). That is, we can ask whether

there exists a (π-independent) functions(ε) = o(1/ε) such that, for everyπ, there is a correct

π-dependent algorithmA achieving a sample complexitySC(A, ε,D, π) = O(s(ε)), possibly

involving π-dependent constants. Certainly in some cases, such as threshold classifiers, this is

true. However, it seems this is not generally the case, and inparticular it fails to hold for the

space of interval classifiers.

For instance, consider a priorπ on the spaceC of interval classifiers, constructed as follows.

We are given an arbitrary monotonicg(ε) = o(1/ε); sinceg(ε) = o(1/ε), there must exist

(nonzero) functionsq1(i) andq2(i) such thatlimi→∞ q1(i) = 0, limi→∞ q2(i) = 0, and∀i ∈

N, g(q1(i)/2
i+1) ≤ q2(i) · 2i; furthermore, lettingq(i) = max{q1(i), q2(i)}, by monotonicity of

g we also have∀i ∈ N, g(q(i)/2i+1) ≤ q(i) · 2i, andlimi→∞ q(i) = 0. Then define a function

p(i) with
∑

i∈N p(i) = 1 such thatp(i) ≥ q(i) for infinitely manyi ∈ N; for instance, this can

be done inductively as follows. Letα0 = 1/2; for eachi ∈ N, if q(i) > αi−1, setp(i) = 0

andαi = αi−1; otherwise, setp(i) = αi−1 andαi = αi−1/2. Finally, for eachi ∈ N, and each

j ∈ {0, 1, . . . , 2i − 1}, defineπ
({

I
±
(j·2−i,(j+1)·2−i)

})

= p(i)/2i.

We letD be uniform onX = [0, 1]. Then for eachi ∈ N s.t. p(i) ≥ q(i), there is a

p(i) probability the target interval has width2−i, and given this any algorithm requires∝ 2i

expected number of requests to determine which of these2i intervals is the target, failing which

the error rate is at least2−i. In particular, lettingεi = p(i)/2i+1, any correct algorithm has sample

complexity at least∝ p(i) · 2i for ε = εi. Notingp(i) · 2i ≥ q(i) · 2i ≥ g(q(i)/2i+1) ≥ g(εi), this

implies there exist arbitrarily small values ofε > 0 for which the optimal sample complexity is

at least∝ g(ε), so that the sample complexity isnot o(g(ε)).

For anys(ε) = o(1/ε), there exists a monotonicg(ε) = o(1/ε) such thats(ε) = o(g(ε)).
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Thus, constructingπ as above for thisg, we have that the sample complexity is noto(g(ε)),

and therefore notO(s(ε)). So at least for the space of interval classifiers, the specific o(1/ε)

asymptotic dependence onε is inherentlyπ-dependent. This argument also illustrates that the

o(1/ε) result in Theorem 6.2 is essentially the strongest possibleat this level of generality (i.e.,

without saying more aboutC,D, orπ).
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Chapter 7

Prior Estimation for Transfer Learning

Abstract

1We explore a transfer learning setting, in which a finite sequence of target concepts are sampled

independently with an unknown distribution from a known family. We study the total number of

labeled examples required to learn all targets to an arbitrary specified expected accuracy, focusing

on the asymptotics in the number of tasks and the desired accuracy. Our primary interest is

formally understanding the fundamental benefits of transfer learning, compared to learning each

target independently from the others. Our approach to the transfer problem is general, in the

sense that it can be used with a variety of learning protocols.

7.1 Introduction

Transfer learning reuses knowledge from past related tasksto ease the process of learning to

perform a new task. The goal of transfer learning is to leverage previous learning and experience

to more efficiently learn novel, but related, concepts, compared to what would be possible with-

out this prior experience. The utility of transfer learningis typically measured by a reduction in

1Joint work with Jaime Carbonell and Steve Hanneke
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the number of training examples required to achieve a targetperformance on a sequence of re-

lated learning problems, compared to the number required for unrelated problems: i.e., reduced

sample complexity. In many real-life scenarios, just a few training examples of a new concept

or process is often sufficient for a human learner to grasp thenew concept given knowledge of

related ones. For example, learning to drive a van becomes much easier a task if we have already

learned how to drive a car. Learning French is somewhat easier if we have already learned En-

glish (vs Chinese), and learning Spanish is easier if we know Portuguese (vs German). We are

therefore interested in understanding the conditions thatenable a learning machine to leverage

abstract knowledge obtained as a by-product of learning past concepts, to improve its perfor-

mance on future learning problems. Furthermore, we are interested in how the magnitude of

these improvements grows as the learning system gains more experience from learning multiple

related concepts.

The ability to transfer knowledge gained from previous tasks to make it easier to learn a new

task can potentially benefit a wide range of real-world applications, including computer vision,

natural language processing, cognitive science (e.g., fMRIbrain state classification), and speech

recognition, to name a few. As an example, consider traininga speech recognizer. After training

on a number of individuals, a learning system can identify common patterns of speech, such as

accents or dialects, each of which requires a slightly different speech recognizer; then, given a

new person to train a recognizer for, it can quickly determine the particular dialect from only a

few well-chosen examples, and use the previously-learned recognizer for that particular dialect.

In this case, we can think of the transferred knowledge as consisting of the common aspects of

each recognizer variant and more generally thedistribution of speech patterns existing in the

population these subjects are from. This same type of distribution-related knowledge transfer

can be helpful in a host of applications, including all thosementioned above.

Supposing these target concepts (e.g., speech patterns) are sampled independently from a

fixed population, having knowledge of the distribution of concepts in the population may often
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be quite valuable. More generally, we may consider a generalscenario in which the target con-

cepts are sampled i.i.d. according to a fixed distribution. As we show below, the number of

labeled examples required to learn a target concept sampledaccording to this distribution may

be dramatically reduced if we have direct knowledge of the distribution. However, since in many

real-world learning scenarios, we do not have direct accessto this distribution, it is desirable to be

able to somehowlearn the distribution, based on observations from a sequence of learning prob-

lems with target concepts sampled according to that distribution. The hope is that an estimate

of the distribution so-obtained might be almost as useful asdirect access to the true distribution

in reducing the number of labeled examples required to learnsubsequent target concepts. The

focus of this paper is an approach to transfer learning basedon estimating the distribution of

the target concepts. Whereas we acknowledge that there are other important challenges in trans-

fer learning, such as exploring improvements obtainable from transfer under various alternative

notions of task relatedness [Ben-David and Schuller, 2003, Evgeniou and Pontil, 2004], or alter-

native reuses of knowledge obtained from previous tasks [Thrun, 1996], we believe that learning

the distribution of target concepts is a central and crucialcomponent in many transfer learning

scenarios, and can reduce the total sample complexity across tasks.

Note that it is not immediately obvious that the distribution of targets can even be learned

in this context, since we do not have direct access to the target concepts sampled according to

it, but rather have only indirect access via a finite number oflabeled examples for each task; a

significant part of the present work focuses on establishingthat as long as these finite labeled

samples are larger than a certain size, they hold sufficient information about the distribution over

concepts for estimation to be possible. In particular, in contrast to standard results on consistent

density estimation, our estimators are not directly based on the target concepts, but rather are

only indirectly dependent on these via the labels of a finite number of data points from each

task. One desideratum we pay particular attention to is minimizing the number ofextra labeled

examples needed for each task, beyond what is needed for learning that particular target, so that
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the benefits of transfer learning are obtained almost as aby-productof learning the targets. Our

technique is general, in that it applies to any concept spacewith finite VC dimension; also, the

process of learning the target concepts is (in some sense) decoupled from the mechanism of

learning the concept distribution, so that we may apply our technique to a variety of learning

protocols, including passive supervised learning, activesupervised learning, semi-supervised

learning, and learning with certain general data-dependent forms of interaction [Hanneke, 2009].

For simplicity, we choose to formulate our transfer learning algorithms in the language of active

learning; as we show, this problem can benefit significantly from transfer. Formulations for other

learning protocols would follow along similar lines, with analogous theorems; these results are

particularly interested when composed with the results on prior-dependent active learning from

the previous chapter.

Transfer learning is related at least in spirit to much earlier work on case-based and analog-

ical learning [Carbonell, 1983, 1986, Kolodner (Ed), 1993, Thrun, 1996, Veloso and Carbonell,

1993], although that body of work predated modern machine learning, and focused on symbolic

reuse of past problem solving solutions rather than on current machine learning problems such as

classification, regression or structured learning. More recently, transfer learning (and the closely

related problem ofmultitasklearning) has been studied in specific cases with interesting (though

sometimes heuristic) approaches [Baxter, 1997, Ben-David and Schuller, 2003, Caruana, 1997,

Micchelli and Pontil, 2004, Silver, 2000]. This paper considers a general theoretical framework

for transfer learning, based on an Empirical Bayes perspective, and derives rigorous theoretical

results on the benefits of transfer. We discuss the relation of this analysis to existing theoretical

work on transfer learning below.

7.1.1 Outline of the paper

The remainder of the paper is organized as follows. In Section 7.2 we introduce basic notation

used throughout, and survey some related work from the existing literature. In Section 7.3, we
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describe and analyze our proposed method for estimating thedistribution of target concepts, the

key ingredient in our approach to transfer learning, which we then present in Section 7.4.

7.2 Definitions and Related Work

First, we state a few basic notational conventions. We denote N = {1, 2, . . .} andN0 = N ∪

{0}. For any random variableX, we generally denote byPX the distribution ofX (the induced

probability measure on the range ofX), and byPX|Y the regular conditional distribution ofX

givenY . For any pair of probability measuresµ1, µ2 on a measurable space(Ω,F), we define

‖µ1 − µ2‖ = sup
A∈F
|µ1(A)− µ2(A)|.

Next we define the particular objects of interest to our present discussion. LetΘ be an

arbitrary set (called theparameter space), (X ,BX ) be a Borel space [Schervish, 1995] (where

X is called theinstance space), andD be a fixed distribution onX (called thedata distribution).

For instance,Θ could beRn andX could beRm, for somen,m ∈ N, though more general

scenarios are certainly possible as well, including infinite-dimensional parameter spaces. LetC

be a set of measurable classifiersh : X → {−1,+1} (called theconcept space), and suppose

C has VC dimensiond < ∞ [Vapnik, 1982] (such a space is called aVC class). C is equipped

with its Borelσ-algebraB, induced by the pseudo-metricρ(h, g) = D({x ∈ X : h(x) 6= g(x)}).

Though all of our results can be formulated for generalD in slightly more complex terms, for

simplicity throughout the discussion below we supposeρ is actually ametric, in that anyh, g ∈ C

with h 6= g haveρ(h, g) > 0; this amounts to a topological assumption onC relative toD.

For eachθ ∈ Θ, πθ is a distribution onC (called aprior). Our only (rather mild) assumption

on this family of prior distributions is that{πθ : θ ∈ Θ} be totally bounded, in the sense that

∀ε > 0, ∃ finiteΘε ⊆ Θ s.t. ∀θ ∈ Θ, ∃θε ∈ Θε with ‖πθ − πθε‖ < ε. See [Devroye and Lugosi,

2001] for examples of categories of classes that satisfy this.

The general setup for the learning problem is that we have atrueparameter valueθ⋆ ∈ Θ, and

112



a collection ofC-valued random variables{h∗tθ}t∈N,θ∈Θ, where for a fixedθ ∈ Θ the{h∗tθ}t∈N
variables are i.i.d. with distributionπθ.

The learning problem is the following. For eachθ ∈ Θ, there is a sequence

Zt(θ) = {(Xt1, Yt1(θ)), (Xt2, Yt2(θ)), . . .},

where{Xti}t,i∈N are i.i.d.D, and for eacht, i ∈ N, Yti(θ) = h∗tθ(Xti). Fork ∈ N we denote by

Ztk(θ) = {(Xt1, Yt1(θ)), . . . , (Xtk, Ytk(θ))}. Since theYti(θ) are the actualh∗tθ(Xti) values, we

are studying the non-noisy, orrealizable-case, setting.

The algorithm receives valuesε andT as input, and for eacht ∈ {1, 2, . . . , T} in increas-

ing order, it observes the sequenceXt1, Xt2, . . ., and may then select an indexi1, receive label

Yti1(θ⋆), select another indexi2, receive labelYti2(θ⋆), etc. The algorithm proceeds in this fash-

ion, sequentially requesting labels, until eventually it produces a classifier̂ht. It then increments

t and repeats this process until it produces a sequenceĥ1, ĥ2, . . . , ĥT , at which time it halts. To be

calledcorrect, the algorithm must have a guarantee that∀θ⋆ ∈ Θ, ∀t ≤ T,E
[

ρ
(

ĥt, h
∗
tθ⋆

)]

≤ ε,

for any values ofT ∈ N andε > 0 given as input. We will be interested in the expected number

of label requests necessary for a correct learning algorithm, averaged over theT tasks, and in

particular in how shared information between tasks can helpto reduce this quantity when direct

access toθ⋆ is not available to the algorithm.

7.2.1 Relation to Existing Theoretical Work on Transfer Learning

Although we know of no existing work on the theoretical advantages of transfer learning for

active learning, the existing literature contains severalanalyses of the advantages of transfer

learning for passive learning. In his classic work, Baxter ([Baxter, 1997] section 4) explores a

similar setup for a general form of passive learning, exceptin a full Bayesian setting (in contrast

to our setting, often referred to as “empirical Bayes,” whichincludes a constant parameterθ⋆ to be

estimated from data). Essentially, [Baxter, 1997] sets up a hierarchical Bayesian model, in which

(in our notation)θ⋆ is a random variable with known distribution (hyper-prior), but otherwise the
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specialization of Baxter’s setting to the pattern recognition problem is essentially identical to our

setup above. This hyper-prior does make the problem slightly easier, but generally the results

of [Baxter, 1997] are of a different nature than our objectives here. Specifically, Baxter’s results

on learning from labeled examples can be interpreted as indicating that transfer learning can

improve certainconstant factorsin the asymptotic rate of convergence of the average of expected

error rates across the learning problems. That is, certain constant complexity terms (for instance,

related to the concept space) can be reduced to (potentiallymuch smaller) values related toπθ⋆ by

transfer learning. Baxter argues that, as the number of tasksgrows large, this effectively achieves

close to the known results on the sample complexity of passive learning with direct access toθ⋆.

A similar claim is discussed by Ando and Zhang [Ando and Zhang, 2004] (though in less detail)

for a setting closer to that studied here, whereθ⋆ is an unknown parameter to be estimated.

There are also several results on transfer learning of a slightly different variety, in which,

rather than having a prior distribution for the target concept, the learner initially has several

potential concept spaces to choose from, and the role of transfer is to help the learner select from

among these concept spaces [Ando and Zhang, 2005, Baxter, 2000]. In this case, the idea is

that one of these concept spaces has the best average minimumachievable error rate per learning

problem, and the objective of transfer learning is to perform nearly as well as if we knew which

of the spaces has this property. In particular, if we assume the target functions for each task all

reside in one of the concept spaces, then the objective of transfer learning is to perform nearly

as well as if we knew which of the spaces contains the targets.Thus, transfer learning results

in a sample complexity related to the number of learning problems, a complexity term for this

best concept space, and a complexity term related to the diversity of concept spaces we have to

choose from. In particular, as with [Baxter, 1997], these results can typically be interpreted as

giving constant factor improvements from transfer in a passive learning context, at best reducing

the complexity constants, from those for the union over the given concept spaces, down to the

complexity constants of the single best concept space.
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In addition to the above works, there are several analyses oftransfer learning and multitask

learning of an entirely different nature than our present discussion, in that the objectives of the

analysis are somewhat different. Specifically, there is a branch of the literature concerned with

task relatedness, not in terms of the underlying process that generates the target concepts, but

rather directly in terms of relations between the target concepts themselves. In this sense, several

tasks with related target concepts should be much easier to learn than tasks with unrelated target

concepts. This is studied in the context of kernel methods by[Evgeniou and Pontil, 2004, Evge-

niou, Micchelli, and Pontil, 2005, Micchelli and Pontil, 2004], and in a more general theoretical

framework by [Ben-David and Schuller, 2003]. As mentioned, our approach to transfer learning

is based on the idea of estimating the distribution of targetconcepts. As such, though interesting

and important, these notions of direct relatedness of target concepts are not as relevant to our

present discussion.

As with [Baxter, 1997], the present work is interested in showing that as the number of

tasks grows large, we can effectively achieve a sample complexity close to that achievable with

direct access toθ⋆. However, in contrast, we are interested in a general approach to transfer

learning and the analysis thereof, leading to concrete results for a variety of learning protocols

such as active learning and semi-supervised learning. In particular, our analysis of active learning

reveals the interesting phenomenon that transfer learningcan sometimes improve the asymptotic

dependence onε, rather than merely the constant factors as in the analysis of [Baxter, 1997].

Our work contrasts with [Baxter, 1997] in another important respect, which significantly

changes the way we approach the problem. Specifically, in Baxter’s analysis, the results (e.g.,

[Baxter, 1997] Theorems 4, 6) regard the average loss over thetasks, and are stated as a function

of the number of samples per task. This number of samples plays a dual role in Baxter’s analysis,

since these samples are used both by the individual learningalgorithm for each task, and also for

the global transfer learning process that provides the learners with information aboutθ⋆. Baxter

is then naturally interested in the rates at which these losses shrink as the sample sizes grow
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large, and therefore formulates the results in terms of the asymptotic behavior as the per-task

sample sizes grow large. In particular, the results of [Baxter, 1997] involve residual terms which

become negligible for large sample sizes, but may be more significant for smaller sample sizes.

In our work, we are interested in decoupling these two roles for the sample sizes; in partic-

ular, our results regard only the number of tasks as an asymptotic variable, while the number of

samples per task remains bounded. First, we note a very practical motivation for this: namely,

non-altruistic learners. In many settings where transfer learning may be useful, it is desirable

that the number of labeled examples we need to collect from each particular learning problem

never be significantly larger than the number of such examples required to solve that particular

problem (i.e., to learn that target concept to the desired accuracy). For instance, this is the case

when the learning problems are not all solved by the same individual (or company, etc.), but

rather a coalition of cooperating individuals (e.g., hospitals sharing data on clinical trials); each

individual may be willing to share the data they used to learntheir particular concept, in the

interest of making others’ learning problems easier; however, they may not be willing to collect

significantlymoredata than they themselves need for their own learning problem. We should

therefore be particularly interested in studying transferas aby-productof the usual learning pro-

cess; failing this, we are interested in the minimum possible number ofextra labeled examples

per task to gain the benefits of transfer learning.

The issue of non-altruistic learners also presents a further technical problem in that the in-

dividuals solving each task may be unwilling to alter theirmethodof gathering data to be more

informative for the transfer learning process. That is, we expect the learning process for each

task is designed with the sole intention of estimating the target concept, without regard for the

global transfer learning problem. To account for this, we model the transfer learning problem in

a reduction-style framework, in which we suppose there is some black-box learning algorithm to

be run for each task, which takes a prior as input and has a theoretical guarantee of good perfor-

mance provided the prior is correct. We place almost no restrictions whatsoever on this learning
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algorithm, including the manner in which it accesses the data. This allows remarkable generality,

since this procedure could be passive, active, semi-supervised, or some other kind of query-based

strategy. However, because of this generality, we have no guarantee on the information aboutθ⋆

reflected in the data used by this algorithm (especially if itis an active learning algorithm). As

such, we choose not to use the label information gathered by the learning algorithm for each

task when estimating theθ⋆, but instead take a small number ofadditional random labeled ex-

amples from each task with which to estimateθ⋆. Again, we want to minimize this number of

additional samples per task; indeed, in this work we are ableto make due with a mereconstant

number of additional samples per task. To our knowledge, no result of this type (estimatingθ⋆

using a bounded sample size per learning problem) has previously been established at the level

of generality studied here.

7.3 Estimating the Prior

The advantage of transfer learning in this setting is that each learning problem provides some

information aboutθ⋆, so that after solving several of the learning problems, we might hope to be

able toestimateθ⋆. Then, with this estimate in hand, we can use the corresponding estimated

prior distribution in the learning algorithm for subsequent learning problems, to help inform

the learning process similarly to how direct knowledge ofθ⋆ might be helpful. However, the

difficulty in approaching this is how to define such an estimator. Since we do not have direct

access to theh∗t values, but rather only indirect observations via a finite number of example

labels, the standard results for density estimation from i.i.d. samples cannot be applied.

The idea we pursue below is to consider the distributions onZtk(θ⋆). These variablesaredi-

rectly observable, by requesting the labels of those examples. Thus, for any finitek ∈ N, this dis-

tribution is estimable from observable data. That is, using the i.i.d. valuesZ1k(θ⋆), . . . ,Ztk(θ⋆),

we can apply standard techniques for density estimation to arrive at an estimator ofPZtk(θ⋆). Then

the question is whether the distributionPZtk(θ⋆) uniquely characterizes the prior distributionπθ⋆ :
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that is, whetherπθ⋆ is identifiablefrom PZtk(θ⋆).

As an example, consider the space ofhalf-open intervalclassifiers on[0, 1]: C = {1±
[a,b) :

0 ≤ a ≤ b ≤ 1}, where1±
[a,b)(x) = +1 if a ≤ x < b and−1 otherwise. In this case,πθ⋆ is

notnecessarily identifiable fromPZt1(θ⋆); for instance, the distributionsπθ1 andπθ2 characterized

by πθ1({1±
[0,1)}) = πθ1({1±

[0,0)}) = 1/2 andπθ2({1±
[0,1/2)}) = πθ2({1±

[1/2,1)}) = 1/2 are not dis-

tinguished by these one-dimensional distributions. However, it turns out that for this half-open

intervals problem,πθ⋆ is uniquely identifiable fromPZt2(θ⋆); for instance, in theθ1 vs θ2 sce-

nario, the conditional probabilityP(Yt1(θi),Yt2(θi))|(Xt1,Xt2)((+1,+1)|(1/4, 3/4)) will distinguish

πθ1 from πθ2, and this can be calculated fromPZt2(θi). The crucial element of the analysis below

is determining the appropriate value ofk to uniquely identifyπθ⋆ fromPZtk(θ⋆) in general. As we

will see,k = d (the VC dimension) isalwayssufficient, a key insight for the results that follow.

We will also see this isnot the case for anyk < d.

To be specific, in order to transfer knowledge from one task tothe next, we use a few labeled

data points from each task to gain information aboutθ⋆. For this, for each taskt, we simply take

the firstd data points in theZt(θ⋆) sequence. That is, we request the labels

Yt1(θ⋆), Yt2(θ⋆), . . . , Ytd(θ⋆)

and use the pointsZtd(θ⋆) to update an estimate ofθ⋆.

The following result shows that this technique does providea consistent estimator ofπθ⋆ .

Again, note that this result is not a straightforward application of the standard approach to con-

sistent estimation, since the observations here are not theh∗tθ⋆ variables themselves, but rather a

number of theYti(θ⋆) values. The key insight in this result is thatπθ⋆ is uniquely identifiedby the

joint distributionPZtd(θ⋆) over the firstd labeled examples; later, we prove this isnot necessarily

true forPZtk(θ⋆) for valuesk < d. This identifiability result is stated below in Corollary 7.6;

as we discuss in Section 7.3.1, there is a fairly simple direct proof of this result. However,

for our purposes, we will actually require the stronger condition that anyθ ∈ Θ with small

‖PZtk(θ)−PZtk(θ⋆)‖ also has small‖πθ− πθ⋆‖. This stronger requirement adds to the complexity
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of the proofs. The results in this section are purely concerned with relating distances in the space

of PZtd(θ) distributions to the corresponding distances in the space of πθ distributions; as such,

they are not specific to active learning or other learning protocols, and hence are of independent

interest.

Theorem 7.1. There exists an estimator̂θTθ⋆ = θ̂T (Z1d(θ⋆), . . . ,ZTd(θ⋆)), and functionsR :

N0 × (0, 1] → [0,∞) and δ : N0 × (0, 1] → [0, 1], such that for anyα > 0, lim
T→∞

R(T, α) =

lim
T→∞

δ(T, α) = 0 and for anyT ∈ N0 andθ⋆ ∈ Θ,

P

(

‖πθ̂Tθ⋆
− πθ⋆‖ > R(T, α)

)

≤ δ(T, α) ≤ α.

One important detail to note, for our purposes, is thatR(T, α) is independent fromθ⋆, so

that the value ofR(T, α) can be calculated and used within a learning algorithm. The proof of

Theorem 7.1 will be established via the following sequence of lemmas. Lemma 7.2 relates dis-

tances in the space of priors to distances in the space of distributions on the full data sets. In turn,

Lemma 7.3 relates these distances to distances in the space of distributions on a finite number of

examples from the data sets. Lemma 7.4 then relates the distances between distributions on any

finite number of examples to distances between distributions ond examples. Finally, Lemma 7.5

presents a standard result on the existence of a converging estimator, in this case for the distri-

bution ond examples, for totally bounded families of distributions. Tracing these relations back,

they relate convergence of the estimator for the distribution ofd examples to convergence of the

corresponding estimator for the prior itself.

Lemma 7.2. For anyθ, θ′ ∈ Θ andt ∈ N,

‖πθ − πθ′‖ = ‖PZt(θ) − PZt(θ′)‖.

Proof. Fix θ, θ′ ∈ Θ, t ∈ N. Let X = {Xt1, Xt2, . . .}, Y(θ) = {Yt1(θ), Yt2(θ), . . .}, and for

k ∈ N let Xk = {Xt1, . . . , Xtk}. andYk(θ) = {Yt1(θ), . . . , Ytk(θ)}. For h ∈ C, let cX(h) =

{(Xt1, h(Xt1)), (Xt2, h(Xt2)), . . .}.

For h, g ∈ C, defineρX(h, g) = lim
m→∞

1
m

∑m
i=1 1[h(Xti) 6= g(Xti)] (if the limit exists), and

ρXk
(h, g) = 1

k

∑k
i=1 1[h(Xti) 6= g(Xti)]. Note that sinceC has finite VC dimension, so does
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the collection of sets{{x : h(x) 6= g(x)} : h, g ∈ C}, so that the uniform strong law of

large numbers implies that with probability one,∀h, g ∈ C, ρX(h, g) exists and hasρX(h, g) =

ρ(h, g) [Vapnik, 1982].

Consider anyθ, θ′ ∈ Θ, and anyA ∈ B. Then sinceB is the Borelσ-algebra induced byρ,

anyh /∈ A has∀g ∈ A, ρ(h, g) > 0. Thus, ifρX(h, g) = ρ(h, g) for all h, g ∈ C, then∀h /∈ A,

∀g ∈ A, ρX(h, g) = ρ(h, g) > 0 =⇒ ∀g ∈ A, cX(h) 6= cX(g) =⇒ cX(h) /∈ cX(A).

This impliesc−1
X
(cX(A)) = A. Under these conditions,

PZt(θ)|X(cX(A)) = πθ(c
−1
X
(cX(A))) = πθ(A),

and similarly forθ′.

Any measurable setC for the range ofZt(θ) can be expressed asC = {cx̄(h) : (h, x̄) ∈ C ′}

for some appropriateC ′ ∈ B ⊗ B∞
X . LettingC ′

x̄ = {h : (h, x̄) ∈ C ′}, we have

PZt(θ)(C) =

∫

πθ(c
−1
x̄ (cx̄(C

′
x̄)))PX(dx̄) =

∫

πθ(C
′
x̄)PX(dx̄) = P(h∗

tθ,X)
(C ′).

Likewise, this reasoning holds forθ′. Then

‖PZt(θ) − PZt(θ′)‖ = ‖P(h∗
tθ,X)
− P(h∗

tθ′ ,X)
‖

= sup
C′∈B⊗B∞

X

∣

∣

∣

∣

∫

(πθ(C
′
x̄)− πθ′(C ′

x̄))PX(dx̄)

∣

∣

∣

∣

≤
∫

sup
A∈B
|πθ(A)− πθ′(A)|PX(dx̄) = ‖πθ − πθ′‖.

Sinceh∗tθ andX are independent, forA ∈ B, πθ(A) = Ph∗
tθ
(A) = Ph∗

tθ
(A)PX(X∞) = P(h∗

tθ,X)
(A×

X∞). Analogous reasoning holds forh∗tθ′. Thus, we have

‖πθ − πθ′‖ = ‖P(h∗
tθ,X)

(· × X∞)− P(h∗
tθ′ ,X)

(· × X∞)‖

≤ ‖P(h∗
tθ,X)
− P(h∗

tθ′ ,X)
‖ = ‖PZt(θ) − PZt(θ′)‖.

Combining the above, we have‖PZt(θ) − PZt(θ′)‖ = ‖πθ − πθ′‖.
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Lemma 7.3. There exists a sequencerk = o(1) such that∀t, k ∈ N, ∀θ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖πθ − πθ′‖ ≤ ‖PZtk(θ) − PZtk(θ′)‖+ rk.

Proof. The left inequality follows from Lemma 7.2 and the basic definition of ‖ · ‖, since

PZtk(θ)(·) = PZt(θ)(· × (X × {−1,+1})∞), so that

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖PZt(θ) − PZt(θ′)‖ = ‖πθ − πθ′‖.

The remainder of this proof focuses on the right inequality.Fix θ, θ′ ∈ Θ, let γ > 0, and let

B ⊆ (X × {−1,+1})∞ be a measurable set such that

‖πθ − πθ′‖ = ‖PZt(θ) − PZt(θ′)‖ < PZt(θ)(B)− PZt(θ′)(B) + γ.

LetA be the collection of all measurable subsets of(X ×{−1,+1})∞ representable in the form

A′ × (X × {−1,+1})∞, for some measurableA′ ⊆ (X × {−1,+1})k and somek ∈ N. In

particular, sinceA is an algebra that generates the productσ-algebra, Carath́eodory’s extension

theorem [Schervish, 1995] implies that there exist disjoint sets{Ai}i∈N in A such thatB ⊆
⋃

i∈NAi and

PZt(θ)(B)− PZt(θ′)(B) <
∑

i∈N
PZt(θ)(Ai)−

∑

i∈N
PZt(θ′)(Ai) + γ.

Additionally, as these sums are bounded, there must existn ∈ N such that

∑

i∈N
PZt(θ)(Ai) < γ +

n
∑

i=1

PZt(θ)(Ai),

so that

∑

i∈N
PZt(θ)(Ai)−

∑

i∈N
PZt(θ′)(Ai) < γ +

n
∑

i=1

PZt(θ)(Ai)−
n
∑

i=1

PZt(θ′)(Ai)

= γ + PZt(θ)

(

n
⋃

i=1

Ai

)

− PZt(θ′)

(

n
⋃

i=1

Ai

)

.
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As
⋃n

i=1Ai ∈ A, there existsk′ ∈ N and measurableA′ ⊆ (X×{−1,+1})k′ such that
⋃n

i=1Ai =

A′ × (X × {−1,+1})∞, and therefore

PZt(θ)

(

n
⋃

i=1

Ai

)

− PZt(θ′)

(

n
⋃

i=1

Ai

)

= PZtk′ (θ)(A
′)− PZtk′ (θ

′)(A
′)

≤ ‖PZtk′ (θ) − PZtk′ (θ
′)‖ ≤ lim

k→∞
‖PZtk(θ) − PZtk(θ′)‖.

In summary, we have‖πθ − πθ′‖ ≤ limk→∞ ‖PZtk(θ) − PZtk(θ′)‖ + 3γ. Since this is true for an

arbitraryγ > 0, taking the limit asγ → 0 implies

‖πθ − πθ′‖ ≤ lim
k→∞
‖PZtk(θ) − PZtk(θ′)‖.

In particular, this implies there exists a sequencerk(θ, θ
′) = o(1) such that

∀k ∈ N, ‖πθ − πθ′‖ ≤ ‖PZtk(θ) − PZtk(θ′)‖+ rk(θ, θ
′).

This would suffice to establish the upper bound if we were allowing rk to depend on the par-

ticular θ andθ′. However, to guarantee the same rates of convergence for allpairs of parameters

requires an additional argument. Specifically, letγ > 0 and letΘγ denote a minimal subset ofΘ

such that,∀θ ∈ Θ, ∃θγ ∈ Θγ s.t. ‖πθ − πθγ‖ < γ: that is, a minimalγ-cover. Since|Θγ| < ∞

by assumption, definingrk(γ) = maxθ,θ′∈Θγ rk(θ, θ
′), we haverk(γ) = o(1). Furthermore, for

anyθ, θ′ ∈ Θ, lettingθγ = argminθ′′∈Θγ
‖πθ−πθ′′‖ andθ′γ = argminθ′′∈Θγ

‖πθ′ −πθ′′‖, we have

(by triangle inequalities)

‖πθ − πθ′‖ ≤ ‖πθ − πθγ‖+ ‖πθγ − πθ′γ‖+ ‖πθ′γ − πθ′‖

< 2γ + rk(γ) + ‖PZtk(θγ) − PZtk(θ′γ)‖.

By triangle inequalities and the left inequality from the lemma statement (established above), we
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also have

‖PZtk(θγ) − PZtk(θ′γ)‖

≤ ‖PZtk(θγ) − PZtk(θ)‖+ ‖PZtk(θ) − PZtk(θ′)‖+ ‖PZtk(θ′) − PZtk(θ′γ)‖

≤ ‖πθγ − πθ‖+ ‖PZtk(θ) − PZtk(θ′)‖+ ‖πθ′ − πθ′γ‖

< 2γ + ‖PZtk(θ) − PZtk(θ′)‖.

Defining rk = infγ>0 (4γ + rk(γ)), we have the right inequality of the lemma statement, and

sincerk(γ) = o(1) for eachγ > 0, we haverk = o(1).

Lemma 7.4. ∀t, k ∈ N, ∀θ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖ ≤ 4 · 22k+dkd
√

‖PZtd(θ) − PZtd(θ′)‖.

Proof. Fix any t ∈ N, and letX = {Xt1, Xt2, . . .} andY(θ) = {Yt1(θ), Yt2(θ), . . .}, and for

k ∈ N letXk = {Xt1, . . . , Xtk} andYk(θ) = {Yt1(θ), . . . , Ytk(θ)}.

If k ≤ d, thenPZtk(θ)(·) = PZtd(θ)(· × (X × {−1,+1})d−k), so that

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖PZtd(θ) − PZtd(θ′)‖,

and therefore the result trivially holds.

Now supposek > d. For a sequencēz andI ⊆ N, we will use the notation̄zI = {z̄i : i ∈ I}.

Note that, for anyk > d and x̄k ∈ X k, there is a sequencēy(x̄k) ∈ {−1,+1}k such that no

h ∈ C hash(x̄k) = ȳ(x̄k) (i.e.,∀h ∈ C, ∃i ≤ k s.t. h(x̄ki ) 6= ȳi(x̄
k)). Now supposek > d and

take as an inductive hypothesis that there is a measurable set A∗ ⊆ X∞ of probability one with

the property that∀x̄ ∈ A∗, for every finiteI ⊂ N with |I| > d, for everyȳ ∈ {−1,+1}∞ with

‖ȳI − ȳ(x̄I)‖1/2 ≤ k − 1,

∣

∣PYI(θ)|XI
(ȳI |x̄I)− PYI(θ′)|XI

(ȳI |x̄I)
∣

∣

≤ 2k−1 · max
ỹd∈{−1,+1}d,D∈Id

∣

∣PYd(θ)|Xd
(ỹd|x̄D)− PYd(θ′)|Xd

(ỹd|x̄D)
∣

∣ .
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This clearly holds for‖ȳI − ȳ(x̄I)‖1/2 = 0, sincePYI(θ)|XI
(ȳI |x̄I) = 0 in this case, so this

will serve as our base case in the inductive proof. Next we inductively extend this to the value

k > 0. Specifically, letA∗
k−1 be theA∗ guaranteed to exist by the inductive hypothesis, and fix

anyx̄ ∈ A∗, ȳ ∈ {−1,+1}∞, and finiteI ⊂ N with |I| > d and‖ȳI − ȳ(x̄I)‖1/2 = k. Let i ∈ I

be such that̄yi 6= ȳi(x̄I), and letȳ′ ∈ {−1,+1} haveȳ′j = ȳj for everyj 6= i, andȳ′i = −ȳi.

Then

PYI(θ)|XI
(ȳI |x̄I) = PYI\{i}(θ)|XI\{i}(ȳI\{i}|x̄I\{i})− PYI(θ)|XI

(ȳ′I |x̄I), (7.1)

and similarly forθ′. By the inductive hypothesis, this means

∣

∣PYI(θ)|XI
(ȳI |x̄I)− PYI(θ′)|XI

(ȳI |x̄I)
∣

∣

≤
∣

∣

∣
PYI\{i}(θ)|XI\{i}(ȳI\{i}|x̄I\{i})− PYI\{i}(θ′)|XI\{i}(ȳI\{i}|x̄I\{i})

∣

∣

∣

+
∣

∣PYI(θ)|XI
(ȳ′I |x̄I)− PYI(θ′)|XI

(ȳ′I |x̄I)
∣

∣

≤ 2k · max
ỹd∈{−1,+1}d,D∈Id

∣

∣PYd(θ)|Xd
(ỹd|x̄D)− PYd(θ′)|Xd

(ỹd|x̄D)
∣

∣ .

Therefore, by the principle of induction, this inequality holds for allk > d, for everyx̄ ∈ A∗,

ȳ ∈ {−1,+1}∞, and finiteI ⊂ N, whereA∗ hasD∞-probability one.

In particular, we have that forθ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖

≤ 2kE

[

max
ȳk∈{−1,+1}k

∣

∣PYk(θ)|Xk
(ȳk|Xk)− PYk(θ′)|Xk

(ȳk|Xk)
∣

∣

]

≤ 22kE

[

max
ỹd∈{−1,+1}d,D∈{1,...,k}d

∣

∣PYd(θ)|Xd
(ỹd|XD)− PYd(θ′)|Xd

(ỹd|XD)
∣

∣

]

≤ 22k
∑

ỹd∈{−1,+1}d

∑

D∈{1,...,k}d
E
[∣

∣PYd(θ)|Xd
(ỹd|XD)− PYd(θ′)|Xd

(ỹd|XD)
∣

∣

]

.

Exchangeability implies this is at most

22k
∑

ỹd∈{−1,+1}d

∑

D∈{1,...,k}d
E
[∣

∣PYd(θ)|Xd
(ỹd|Xd)− PYd(θ′)|Xd

(ỹd|Xd)
∣

∣

]

≤ 22k+dkd max
ỹd∈{−1,+1}d

E
[∣

∣PYd(θ)|Xd
(ỹd|Xd)− PYd(θ′)|Xd

(ỹd|Xd)
∣

∣

]

.
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To complete the proof, we need only bound this value by an appropriate function of‖PZtd(θ) −

PZtd(θ′)‖. Toward this end, suppose

E
[∣

∣PYd(θ)|Xd
(ỹd|Xd)− PYd(θ′)|Xd

(ỹd|Xd)
∣

∣

]

≥ ε,

for someỹd. Then either

P
(

PYd(θ)|Xd
(ỹd|Xd)− PYd(θ′)|Xd

(ỹd|Xd) ≥ ε/4
)

≥ ε/4,

or

P
(

PYd(θ′)|Xd
(ỹd|Xd)− PYd(θ)|Xd

(ỹd|Xd) ≥ ε/4
)

≥ ε/4.

For which ever is the case, letAε denote the corresponding measurable subset ofX d, of proba-

bility at leastε/4. Then

‖PZtd(θ) − PZtd(θ′)‖ ≥
∣

∣PZtd(θ)(Aε × {ỹd})− PZtd(θ′)(Aε × {ỹd})
∣

∣

≥ (ε/4)PXd
(Aε) ≥ ε2/16.

Therefore,

E
[∣

∣PYd(θ)|Xd
(ỹd|Xd)− PYd(θ′)|Xd

(ỹd|Xd)
∣

∣

]

≤ 4
√

‖PZtd(θ) − PZtd(θ′)‖,

which means

22k+dkd max
ỹd∈{−1,+1}d

E
[∣

∣PYd(θ)|Xd
(ỹd|Xd)− PYd(θ′)|Xd

(ỹd|Xd)
∣

∣

]

≤ 4 · 22k+dkd
√

‖PZtd(θ) − PZtd(θ′)‖.

The following lemma is a standard result on the existence of converging density estima-

tors for totally bounded families of distributions. For ourpurposes, the details of the estimator

achieving this guarantee are not particularly important, as we will apply the result as stated. For

completeness, we describe a particular estimator that doesachieve the guarantee after the lemma.
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Lemma 7.5. [Devroye and Lugosi, 2001, Yatracos, 1985] LetP = {pθ : θ ∈ Θ} be a totally

bounded family of probability measures on a measurable space (Ω,F), and let{Wt(θ)}t∈N,θ∈Θ
beΩ-valued random variables such that{Wt(θ)}t∈N are i.i.d. pθ for eachθ ∈ Θ. Then there

exists an estimator̂θTθ⋆ = θ̂T (W1(θ⋆), . . . ,WT (θ⋆)) and functionsRP : N0 × (0, 1] → [0,∞)

andδP : N0× (0, 1]→ [0, 1] such that∀α > 0, limT→∞RP(T, α) = limT→∞ δP(T, α) = 0, and

∀θ⋆ ∈ Θ andT ∈ N0,

P

(

‖pθ̂Tθ⋆
− pθ⋆‖ > RP(T, α)

)

≤ δP(T, α) ≤ α.

In many contexts (though certainly not all), even a simple maximum likelihood estimator

suffices to supply this guarantee. However, to derive results under the more general condi-

tions we consider here, we require a more involved method: specifically, the minimum dis-

tance skeleton estimate explored by [Devroye and Lugosi, 2001, Yatracos, 1985], specified as

follows. LetΘε ⊆ Θ be a minimal-cardinalityε-cover ofΘ: that is, a minimal-cardinality sub-

set ofΘ such that∀θ ∈ Θ, ∃θε ∈ Θε with ‖pθε − pθ‖ < ε. For eachθ, θ′ ∈ Θε, let Aθ,θ′

be a set inF maximizingpθ(Aθ,θ′) − pθ′(Aθ,θ′), and letAε = {Aθ,θ′ : θ, θ′ ∈ Θε}, known

as aYatracos class. Finally, for A ∈ F , let p̂T (A) = T−1
∑T

t=1 1A(Wt(θ⋆)). The mini-

mum distance skeleton estimate isθ̂Tθ⋆ = argminθ∈Θε
supA∈Aε

|pθ(A)− p̂T (A)|. The reader

is referred to [Devroye and Lugosi, 2001, Yatracos, 1985] for a proof that this method satis-

fies the guarantee of Lemma 7.5. In particular, ifεT is a sequence decreasing to0 at a rate

such thatT−1 log(|ΘεT |) → 0, andδT is a sequence bounded byα and decreasing to0 with

δT = ω(εT +
√

T−1 log(|ΘεT |)), then the result of [Devroye and Lugosi, 2001, Yatracos, 1985],

combined with Markov’s inequality, implies that to satisfythe condition of Lemma 7.5, it suffices

to takeRP(T, α) = δ−1
T

(

3εT +
√

8T−1 log(2|ΘεT |2 ∨ 8)
)

andδP(T, α) = δT . For instance,

εT = 2 inf
{

ε > 0 : log(|Θε|) ≤
√
T
}

andδT = α ∧ (
√
εT + T−1/8) suffice.

We are now ready for the proof of Theorem 7.1

Theorem 7.1.For ε > 0, let Θε ⊆ Θ be a finite subset such that∀θ ∈ Θ, ∃θε ∈ Θε with

‖πθε − πθ‖ < ε; this exists by the assumption that{πθ : θ ∈ Θ} is totally bounded. Then
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Lemma 7.3 implies that∀θ ∈ Θ, ∃θε ∈ Θε with ‖PZtd(θε) − PZtd(θ)‖ ≤ ‖πθε − πθ‖ < ε,

so that{PZtd(θε) : θε ∈ Θε} is a finite ε-cover of{PZtd(θ) : θ ∈ Θ}. Therefore,{PZtd(θ) :

θ ∈ Θ} is totally bounded. Lemma 7.5 then implies that there existsan estimator̂θTθ⋆ =

θ̂T (Z1d(θ⋆), . . . ,ZTd(θ⋆)) and functionsRd : N0 × (0, 1]→ [0,∞) andδd : N0 × (0, 1]→ [0, 1]

such that∀α > 0, limT→∞Rd(T, α) = limT→∞ δd(T, α) = 0, and∀θ⋆ ∈ Θ andT ∈ N0,

P

(

‖PZ(T+1)d(θ̂Tθ⋆ )|θ̂Tθ⋆
− PZ(T+1)d(θ⋆)‖ > Rd(T, α)

)

≤ δd(T, α) ≤ α. (7.2)

Defining

R(T, α) = min
k∈N

(

rk + 4 · 22k+dkd
√

Rd(T, α)
)

,

andδ(T, α) = δd(T, α), and combining (7.2) with Lemmas 7.4 and 7.3, we have

P

(

‖πθ̂Tθ⋆
− πθ⋆‖ > R(T, α)

)

≤ δ(T, α) ≤ α.

Finally, note thatlim
k→∞

rk = 0 and lim
T→∞

Rd(T, α) = 0 imply that lim
T→∞

R(T, α) = 0.

7.3.1 Identifiability from d Points

Inspection of the above proof reveals that the assumption that the family of priors is totally

bounded is required only to establish the estimability and bounded minimax rate guarantees. In

particular, the implied identifiability condition is, in fact, alwayssatisfied, as stated formally in

the following corollary.

Corollary 7.6. For any priorsπ1, π2 onC, if h∗i ∼ πi,X1, . . . , Xd are i.i.d.D independent from

h∗i , andZd(i) = {(X1, h
∗
i (X1)), . . . , (Xd, h

∗
i (Xd))} for i ∈ {1, 2}, thenPZd(1) = PZd(2) =⇒

π1 = π2.

Proof. The described scenario is a special case of our general setting, withΘ = {1, 2}, in which

casePZd(i) = PZ1d(i). Thus, ifPZd(1) = PZd(2), then Lemma 7.4 and Lemma 7.3 combine to

imply that‖π1 − π2‖ ≤ infk∈N rk = 0.
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Since Corollary 7.6 is interesting in itself, it is worth noting that there is a simple direct proof

of this result. Specifically, by an inductive argument basedon the observation (7.1) from the

proof of Lemma 7.4, we quickly find that for anyk ∈ N, PZtk(θ⋆) is identifiable fromPZtd(θ⋆).

Then we merely recall thatPZt(θ⋆) is always identifiable from{PZtk(θ⋆) : k ∈ N} [Kallenberg,

2002], and the argument from the proof of Lemma 7.2 showsπθ⋆ is identifiable fromPZt(θ⋆).

It is natural to wonder whether identifiability ofπθ⋆ from PZtk(θ⋆) remains true for some

smaller number of pointsk < d, so that we might hope to create an estimator forπθ⋆ based on

an estimator forPZtk(θ⋆). However, one can show thatd is actually theminimumpossible value

for which this remains true for allD and all families of priors. Formally, we have the following

result, holding for every VC classC.

Theorem 7.7. There exists a data distributionD and priorsπ1, π2 onC such that, for any pos-

itive integerk < d, if h∗i ∼ πi, X1, . . . , Xk are i.i.d. D independent fromh∗i , andZk(i) =

{(X1, h
∗
i (X1)), . . . , (Xk, h

∗
i (Xk))} for i ∈ {1, 2}, thenPZk(1) = PZk(2) butπ1 6= π2.

Proof. Note that it suffices to show this is the case fork = d − 1, since any smallerk is a

marginal of this case. Consider a shatterable set of pointsSd = {x1, x2, . . . , xd} ⊆ X , and let

D be uniform onSd. LetC[Sd] be any2d classifiers inC that shatterSd. Let π1 be the uniform

distribution onC[S]. Now letSd−1 = {x1, . . . , xd−1} andC[Sd−1] ⊆ C[Sd] shatterSd−1 with

the property that∀h ∈ C[Sd−1], h(xd) =
∏d−1

j=1 h(xj). Let π2 be uniform onC[Sd−1]. Now

for anyk < d and distinct indicest1, . . . , tk ∈ {1, . . . , d}, {h∗i (xt1), . . . , h∗i (xtk)} is distributed

uniformly in{−1,+1}k for bothi ∈ {1, 2}. This impliesPZd−1(1)|X1,...,Xd−1
= PZd−1(2)|X1,...,Xd−1

,

which impliesPZd−1(1) = PZd−1(2). However,π1 is clearly different fromπ2, since even the sizes

of the supports are different.
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7.4 Transfer Learning

In this section, we look at an application of the techniques from the previous section to transfer

learning. Like the previous section, the results in this section are general, in that they are ap-

plicable to a variety of learning protocols, including passive supervised learning, passive semi-

supervised learning, active learning, and learning with certain general types of data-dependent

interaction (see [Hanneke, 2009]). For simplicity, we restrict our discussion to the active learning

formulation; the analogous results for these other learning protocols follow by similar reasoning.

The result of the previous section implies that an estimatorfor θ⋆ based ond-dimensional joint

distributions is consistent with a bounded rate of convergenceR. Therefore, for certain prior-

dependent learning algorithms, their behavior should be similar underπθ̂Tθ⋆
to their behavior

underπθ⋆ .

To make this concrete, we formalize this in the active learning protocol as follows. Aprior-

dependentactive learning algorithmA takes as inputsε > 0, D, and a distributionπ on C. It

initially has access toX1, X2, . . . i.i.d. D; it then selects an indexi1 to request the label for,

receivesYi1 = h∗(Xi1), then selects another indexi2, etc., until it eventually terminates and

returns a classifier. Denote byZ = {(X1, h
∗(X1)), (X2, h

∗(X2)), . . .}. To becorrect, A must

guarantee that forh∗ ∼ π, ∀ε > 0, E [ρ(A(ε,D, π), h∗)] ≤ ε. We define the random variable

N(A, f, ε,D, π) as the number of label requestsA makes before terminating, when givenε, D,

andπ as inputs, and whenh∗ = f is the value of the target function; we make the particular

data sequenceZ the algorithm is run with implicit in this notation. We will be interested in the

expected sample complexitySC(A, ε,D, π) = E [N(A, h∗, ε,D, π)].

We propose the following algorithmAτ for transfer learning, defined in terms of a given

correct prior-dependent active learning algorithmAa. We discuss interesting specifications for

Aa in the next section, but for now the only assumption we require is that for anyε > 0 and

D, there is a valuesε < ∞ such that for everyπ andf ∈ C, N(Aa, f, ε,D, π) ≤ sε; this

is a very mild requirement, and any active learning algorithm can be converted into one that
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satisfies this without significantly increasing its sample complexities for the priors it is already

good for [Balcan, Hanneke, and Vaughan, 2010]. We additionally denote bymε = 16d
ε
ln
(

24
ε

)

,

andB(θ, γ) = {θ′ ∈ Θ : ‖πθ − πθ′‖ ≤ γ}.

Algorithm 1 Aτ (T, ε): an algorithm for transfer learning, specified in terms of a generic subrou-

tineAa.
for t = 1, 2, . . . , T do

Request labelsYt1(θ⋆), . . . , Ytd(θ⋆)

if R(t− 1, ε/2) > ε/8 then

Request labelsYt(d+1)(θ⋆), . . . , Ytmε(θ⋆)

Takeĥt as anyh ∈ C s.t.∀i ≤ mε, h(Xti) = Yti(θ⋆)

else

Let θ̌tθ⋆ ∈ B
(

θ̂(t−1)θ⋆ , R(t− 1, ε/2)
)

be such that

SC(Aa, ε/4,D, πθ̌tθ⋆ ) ≤ min
θ∈B(θ̂(t−1)θ⋆ ,R(t−1,ε/2))

SC(Aa, ε/4,D, πθ) + 1/t

RunAa(ε/4,D, πθ̌tθ⋆ ) with data sequenceZt(θ⋆) and letĥt be the classifier it returns

end if

end for

Recall thatθ̂(t−1)θ⋆ , which is defined by Theorem 7.1, is a function of the labels requested

on previous rounds of the algorithm;R(t − 1, ε/2) is also defined by Theorem 7.1, and has no

dependence on the data (or onθ⋆). The other quantities referred to in Algorithm 1 are defined

just prior to Algorithm 1. We suppose the algorithm has access to the valueSC(Aa, ε/4,D, πθ)

for everyθ ∈ Θ. This can sometimes be calculated analytically as a function of θ, or else can

typically be approximated via Monte Carlo simulations. In fact, the result below holds even if

SC is merely an accessibleupper boundon the expected sample complexity.

Theorem 7.8. The algorithmAτ is correct. Furthermore, ifST (ε) is the total number of label

requests made byAτ (T, ε), thenlim sup
T→∞

E[ST (ε)]
T
≤ SC(Aa, ε/4,D, πθ⋆) + d.

The implication of Theorem 7.8 is that, via transfer learning, it is possible to achieve al-
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most thesamelong-run average sample complexity as would be achievable if the target’s prior

distribution wereknownto the learner. We will see in the next section that this is sometimes

significantly better than the single-task sample complexity. As mentioned, results of this type for

transfer learning have previously appeared whenAa is a passive learning method [Baxter, 1997];

however, to our knowledge, this is the first such result wherethe asymptotics concern only the

number of learning tasks, not the number of samples per task;this is also the first result we know

of that is immediately applicable to more sophisticated learning protocols such as active learning.

The algorithmAτ is stated in a simple way here, but Theorem 7.8 can be improvedwith

some obvious modifications toAτ . The extra “+d” in Theorem 7.8 is not actually necessary,

since we could stop updating the estimatorθ̌tθ⋆ (and the correspondingR value) after someo(T )

number of rounds (e.g.,
√
T ), in which case we would not need to requestYt1(θ⋆), . . . , Ytd(θ⋆)

for t larger than this, and the extrad · o(T ) number of labeled examples vanishes in the average

asT →∞. Additionally, theε/4 term can easily be improved to any value arbitrarily close toε

(even(1 − o(1))ε) by runningAa with argumentε − 2R(t − 1, ε/2) − δ(t − 1, ε/2) instead of

ε/4, and using this value in theSC calculations in the definition of̌θtθ⋆ as well. In fact, for many

algorithmsAa (e.g., withSC(Aa, ε,D, πθ⋆) continuous inε), combining the above two tricks

yields lim sup
T→∞

E[ST (ε)]
T
≤ SC(Aa, ε,D, πθ⋆).

Returning to our motivational remarks from Subsection 7.2.1, we can ask how manyextrala-

beled examples are required from each learning problem to gain the benefits of transfer learning.

This question essentially concerns the initial step of requesting the labelsYt1(θ⋆), . . . , Ytd(θ⋆).

Clearly this indicates that from each learning problem, we need at mostd extra labeled examples

to gain the benefits of transfer. Whether thesed label requests are indeedextradepends on the

particular learning algorithmAa; that is, in some cases (e.g., certain passive learning algorithms),

Aa may itself use these initiald labels for learning, so that in these cases the benefits of trans-

fer learning are essentially gained as aby-productof the learning processes, and essentially no

additional labeling effort need be expended to gain these benefits. On the other hand, for some
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active learning algorithms, we may expect that at least someof these initiald labels would not

be requested by the algorithm, so that some extra labeling effort is expended to gain the benefits

of transfer in these cases.

One drawback of our approach is that we require the data distribution D to remain fixed

across tasks (this contrasts with [Baxter, 1997]). However,it should be possible to relax this

requirement in the active learning setting in many cases. For instance, ifX = R
k, then as long

as we are guaranteed that the distributionDt for each learning task has a strictly positive density

function, it should be possible to use rejection sampling for each task to guarantee thed queried

examples from each task have approximately the same distribution across tasks. This is all we

require for our consistency results onθ̂Tθ⋆ (i.e., it was not important that thed samples came

from the true distributionD, only that they came from a distribution under whichρ is a metric).

We leave the details of such an adaptive method for future consideration.

7.4.1 Proof of Theorem 7.8

Recall that, to establish correctness, we must show that∀t ≤ T , E
[

ρ
(

ĥt, h
∗
tθ⋆

)]

≤ ε, regardless

of the value ofθ⋆ ∈ Θ. Fix any θ⋆ ∈ Θ and t ≤ T . If R(t − 1, ε/2) > ε/8, then classic

results from passive learning indicate thatE

[

ρ
(

ĥt, h
∗
tθ⋆

)]

≤ ε [Vapnik, 1982]. Otherwise, by

Theorem 7.1, with probability at least1−ε/2, we have‖πθ⋆−πθ̂(t−1)θ⋆
‖ ≤ R(t−1, ε/2). On this

event, ifR(t−1, ε/2) ≤ ε/8, then by a triangle inequality‖πθ̌tθ⋆−πθ⋆‖ ≤ 2R(t−1, ε/2) ≤ ε/4.

Thus,

E

[

ρ
(

ĥt, h
∗
tθ⋆

)]

≤ E

[

E

[

ρ
(

ĥt, h
∗
tθ⋆

) ∣

∣

∣θ̌tθ⋆

]

1

[

‖πθ̌tθ⋆ − πθ⋆‖ ≤ ε/4
]]

+ ε/2. (7.3)

For θ ∈ Θ, let ĥtθ denote the classifier that would be returned byAa(ε/4,D, πθ̌tθ⋆ ) when

run with data sequence{(Xt1, h
∗
tθ(Xt1)), (Xt2, h

∗
tθ(Xt2)), . . .}. Note that for anyθ ∈ Θ, any

measurable functionF : C→ [0, 1] has

E
[

F (h∗tθ⋆)
]

≤ E [F (h∗tθ)] + ‖πθ − πθ⋆‖. (7.4)
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In particular, supposing‖πθ̌tθ⋆ − πθ⋆‖ ≤ ε/4, we have

E

[

ρ
(

ĥt, h
∗
tθ⋆

) ∣

∣

∣θ̌tθ⋆

]

= E

[

ρ
(

ĥtθ⋆ , h
∗
tθ⋆

) ∣

∣

∣θ̌tθ⋆

]

≤ E

[

ρ
(

ĥtθ̌tθ⋆ , h
∗
tθ̌tθ⋆

) ∣

∣

∣
θ̌tθ⋆

]

+ ‖πθ̌tθ⋆ − πθ⋆‖ ≤ ε/4 + ε/4 = ε/2.

Combined with (7.3), this impliesE
[

ρ
(

ĥt, h
∗
tθ⋆

)]

≤ ε.

We establish the sample complexity claim as follows. First note that convergence ofR(t −

1, ε/2) implies thatlimT→∞
∑T

t=1 1 [R(t, ε/2) > ε/8] /T = 0, and that the number of labels

used for a value oft with R(t−1, ε/2) > ε/8 is bounded by a finite functionmε of ε. Therefore,

lim sup
T→∞

E[ST (ε)]

T

≤ d+ lim sup
T→∞

T
∑

t=1

E

[

N(Aa, h
∗
tθ⋆ , ε/4,D, πθ̌tθ⋆ )

]

1[R(t− 1, ε/2) ≤ ε/8]/T

≤ d+ lim sup
T→∞

T
∑

t=1

E

[

N(Aa, h
∗
tθ⋆ , ε/4,D, πθ̌tθ⋆ )

]

/T. (7.5)

By the definition ofR, δ from Theorem 7.1, we have

lim
T→∞

1

T

T
∑

t=1

E

[

N(Aa, h
∗
tθ⋆ , ε/4,D, πθ̌tθ⋆ )1

[

‖πθ̂(t−1)θ⋆
− πθ⋆‖ > R(t− 1, ε/2)

]]

≤ lim
T→∞

1

T

T
∑

t=1

sε/4P
(

‖πθ̂(t−1)θ⋆
− πθ⋆‖ > R(t− 1, ε/2)

)

≤ sε/4 lim
T→∞

1

T

T
∑

t=1

δ(t− 1, ε/2) = 0.

Combined with (7.5), this implies

lim sup
T→∞

E[ST (ε)]

T
≤ d+

lim sup
T→∞

1

T

T
∑

t=1

E

[

N(Aa, h
∗
tθ⋆ , ε/4,D, πθ̌tθ⋆ )1

[

‖πθ̂(t−1)θ⋆
− πθ⋆‖ ≤ R(t− 1, ε/2)

]]

.

For anyt ≤ T , on the event‖πθ̂(t−1)θ⋆
− πθ⋆‖ ≤ R(t − 1, ε/2), we have (by the property (7.4)
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and a triangle inequality)

E

[

N(Aa, h
∗
tθ⋆ ,ε/4,D, πθ̌tθ⋆ )

∣

∣

∣θ̌tθ⋆

]

≤ E

[

N(Aa, h
∗
tθ̌tθ⋆

, ε/4,D, πθ̌tθ⋆ )
∣

∣

∣
θ̌tθ⋆

]

+ 2R(t− 1, ε/2)

= SC
(

Aa, ε/4,D, πθ̌tθ⋆
)

+ 2R(t− 1, ε/2)

≤ SC (Aa, ε/4,D, πθ⋆) + 1/t+ 2R(t− 1, ε/2),

where the last inequality follows by definition ofθ̌tθ⋆ . Therefore,

lim sup
T→∞

E[ST (ε)]

T

≤ d+ lim sup
T→∞

1

T

T
∑

t=1

SC (Aa, ε/4,D, πθ⋆) + 1/t+ 2R(t− 1, ε/2)

= d+ SC (Aa, ε/4,D, πθ⋆) .

7.5 Conclusions

We have shown that when learning a sequence of i.i.d. target concepts from a known VC class,

with an unknown distribution from a known totally bounded family, transfer learning can lead

to amortized average sample complexity close to that achievable by an algorithm with direct

knowledge of the the targets’ distribution.
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Chapter 8

Prior Estimation

Abstract

1We study the optimal rates of convergence for estimating a prior distribution over a VC class

from a sequence of independent data sets respectively labeled by independent target functions

sampled from the prior. We specifically derive upper and lower bounds on the optimal rates

under a smoothness condition on the correct prior, with the number of samples per data set equal

the VC dimension. These results have implications for the improvements achievable via transfer

learning.

8.1 Introduction

In the transfer learningsetting, we are presented with a sequence of learning problems, each

with some respective target concept we are tasked with learning. The key question in transfer

learning is how to leverage our access to past learning problems in order to improve performance

on learning problems we will be presented with in the future.

Among the several proposed models for transfer learning, one particularly appealing model

1Joint work with Jaime Carbonell and Steve Hanneke
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supposes the learning problems are independent and identically distributed, with unknown distri-

bution, and the advantage of transfer learning then comes from the ability to estimate this shared

distribution based on the data from past learning problems [Baxter, 1997, Yang, Hanneke, and

Carbonell, 2011]. For instance, when customizing a speech recognition system to a particu-

lar speaker’s voice, we might expect the first few people would need to speak many words or

phrases in order for the system to accurately identify the nuances. However, after performing

this for many different people, if the software has access tothose past training sessions when

customizing itself to a new user, it should have identified important properties of the speech

patterns, such as the common patterns within each of the major dialects or accents, and other

such information about thedistributionof speech patterns within the user population. It should

then be able to leverage this information to reduce the number of words or phrases the next user

needs to speak in order to train the system, for instance by first trying to identify the individual’s

dialect, then presenting phrases that differentiate common subpatterns within that dialect, and so

forth.

In analyzing the benefits of transfer learning in such a setting, one important question to ask

is how quickly we can estimate the distribution from which the learning problems are sampled.

In recent work, Yang, Hanneke, and Carbonell [2011] have shown that under mild conditions on

the family of possible distributions, if the target concepts reside in a known VC class, then it is

possible to estimate this distribtion using only a bounded number of training samples per task:

specifically, a number of samples equal the VC dimension. However, we left open the question

of quantifying therateof convergence. This rate of convergence can have a direct impact on how

much benefit we gain from transfer learning when we are faced with only a finite sequence of

learning problems. As such, it is certainly desirable to derive tight characterizations of this rate

of convergence.

The present work continues that of Yang, Hanneke, and Carbonell [2011], bounding the rate

of convergence for estimating this distribution, under a smoothness condition on the distribution.
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We derive a generic upper bound, which holds regardless of the VC class the target concepts

reside in. The proof of this result builds on our earlier work, but requires several interesting

innovations to make the rate of convergence explicit, and todramatically improve the upper

bound implicit in the proofs of those earlier results. We further derive a nontrivial lower bound

that holds for certain constructed scenarios, which illustrates a lower limit on how good of a

general upper bound we might hope for in results expressed only in terms of the number of tasks,

the smoothness conditions, and the VC dimension.

8.2 The Setting

Let (X ,BX ) be a Borel space [Schervish, 1995] (whereX is called theinstance space), and

let D be a distribution onX (called thedata distribution). Let C be a VC class of measurable

classifiersh : X → {−1,+1} (called theconcept space), and denote byd the VC dimension of

C [Vapnik, 1982]. We supposeC is equipped with its Borelσ-algebraB induced by the pseudo-

metricρ(h, g) = D({x ∈ X : h(x) 6= g(x)}). Though our results can be formulated for general

D (with somewhat more complicated theorem statements), to simplify the statement of results

we supposeρ is actually ametric, which would follow from appropriate topological conditions

onC relative toD. For any two probability measuresµ1, µ2 on a measurable space(Ω,F), define

the total variation distance

‖µ1 − µ2‖ = sup
A∈F

µ1(A)− µ2(A).

Let ΠΘ = {πθ : θ ∈ Θ} be a family of probability measures onC (calledpriors), whereΘ

is an arbitrary index set (called theparameter space). We additionally suppose there exists a

probability measureπ0 onC (called thereference measure) such that everyπθ is absolutely con-

tinuous with respect toπ0, and therefore has a density functionfθ given by the Radon-Nikodym

derivativedπθ

dπ0
[Schervish, 1995].

We consider the following type of estimation problem. Thereis a collection ofC-valued ran-
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dom variables{h∗tθ : t ∈ N, θ ∈ Θ}, where for any fixedθ ∈ Θ the{h∗tθ}∞t=1 variables are i.i.d.

with distributionπθ. For eachθ ∈ Θ, there is a sequenceZt(θ) = {(Xt1, Yt1(θ)), (Xt2, Yt2(θ)), . . .},

where{Xti}t,i∈N are i.i.d.D, and for eacht, i ∈ N, Yti(θ) = h∗tθ(Xti). We additionally denote

by Ztk = {(Xt1, Yt1(θ)), . . . , (Xtk, Ytk(θ))} the firstk elements ofZt(θ), for anyk ∈ N, and

similarly Xtk = {Xt1, . . . , Xtk} andYtk(θ) = {Yt1(θ), . . . , Ytk(θ)}. Following the terminol-

ogy used in the transfer learning literature, we refer to thecollection of variables associated

with eacht collectively as thetth task. We will be concerned with sequences of estimators

θ̂Tθ = θ̂T (Z1k(θ), . . . ,ZTk(θ)), for T ∈ N, which are based on only a bounded numberk of

samples per task, among the firstT tasks. Our main results specifically study the case ofk = d.

For any such estimator, we measure therisk asE
[

‖πθ̂Tθ⋆
− πθ⋆‖

]

, and will be particularly inter-

ested in upper-bounding the worst-case risksupθ⋆∈Θ E

[

‖πθ̂Tθ⋆
− πθ⋆‖

]

as a function ofT , and

lower-bounding the minimum possible value of this worst-case risk over all possiblêθT estima-

tors (called theminimax risk).

In previous work, Yang, Hanneke, and Carbonell [2011] we showed that, ifΠΘ is a totally

bounded family, then even with onlyd number of samples per task, the minimax risk (as a func-

tion of the number of tasksT ) converges to zero. In fact, we also proved this is not necessarily

the case in general for any number of samples less thand. However, the actual rates of con-

vergence were not explicitly derived in that work, and indeed the upper bounds on the rates of

convergence implicit in that analysis may often have fairlycomplicated dependences onC, ΠΘ,

andD, and furthermore often provide only very slow rates of convergence.

To derive explicit bounds on the rates of convergence, in thepresent work we specifically

focus on families ofsmoothdensities. The motivation for involving a notion of smoothness in

characterizing rates of convergence is clear if we considerthe extreme case in whichΠΘ contains

two priorsπ1 andπ2, with π1({h}) = π2({g}) = 1, whereρ(h, g) is a very small but nonzero

value; in this case, if we have only a small number of samples per task, we would require many

tasks (on the order of1/ρ(h, g)) to observe any data points carrying any information that would
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distinguish between these two priors (namely, pointsx with h(x) 6= g(x)); yet ‖π1 − π2‖ = 1,

so that we have a slow rate of convergence (at least initially). A total boundedness condition

onΠΘ would limit the number of such pairs present inΠΘ, so that for instance we cannot have

arbitrarily closeh andg, but less extreme variants of this can lead to slow asymptotic rates of

convergence as well.

Specifically, in the present work we consider the following notion of smoothness. ForL ∈

(0,∞) andα ∈ (0, 1], a functionf : C→ R is (L, α)-Hölder smooth if

∀h, g ∈ C, |f(h)− f(g)| ≤ Lρ(h, g)α.

8.3 An Upper Bound

We now have the following theorem, holding for an arbitrary VC classC and data distribution

D; it is the main result of this work.

Theorem 8.1.For ΠΘ any class of priors onC having(L, α)-Hölder smooth densities{fθ : θ ∈

Θ}, for anyT ∈ N, there exists an estimator̂θTθ = θ̂T (Z1d(θ), . . . ,ZTd(θ)) such that

sup
θ⋆∈Θ

E‖πθ̂T − πθ⋆‖ = Õ

(

LT− α2

2(d+2α)(α+2(d+1))

)

.

Proof. By the standard PAC analysis [Blumer, Ehrenfeucht, Haussler,and Warmuth, 1989, Vap-

nik, 1982], for anyγ > 0, with probability greater than1−γ, a sample ofk = O((d/γ) log(1/γ))

random points will partitionC into regions of width less thanγ. For brevity, we omit thet sub-

script on quantities such asZtk(θ) throughout the following analysis, since the claims hold for

any arbitrary value oft.

For anyθ ∈ Θ, let π′
θ denote a (conditional onX1, . . . , Xk) distribution defined as follows.

Let f ′
θ denote the (conditional onX1, . . . , Xk) density function ofπ′

θ with respect toπ0, and for

anyg ∈ C, letf ′
θ(g) =

πθ({h∈C:∀i≤k,h(Xi)=g(Xi)})
π0({h∈C:∀i≤k,h(Xi)=g(Xi)}) (or 0 if π0({h ∈ C : ∀i ≤ k, h(Xi) = g(Xi)}) =

0). In other words,π′
θ has the same probability mass asπθ for each of the equivalence classes

induced byX1, . . . , Xk, but conditioned on the equivalence class, simply has a constant-density
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distribution over that equivalence class. Note that, by thesmoothness condition, with probability

greater than1− γ, we haveeverywhere

|fθ(h)− f ′
θ(h)| < Lγα.

So for anyθ, θ′ ∈ Θ, with probability greater than1− γ,

‖πθ − πθ′‖ = (1/2)

∫

|fθ − fθ′ |dπ0 < Lγα + (1/2)

∫

|f ′
θ − f ′

θ′ |dπ0.

Furthermore, since the regions that definef ′
θ andf ′

θ′ are the same (namely, the partition induced

byX1, . . . , Xk), we have

(1/2)

∫

|f ′
θ − f ′

θ′ |dπ0

= (1/2)
∑

y1,...,yk∈{−1,+1}
|πθ({h ∈ C : ∀i ≤ k, h(Xi) = yi})− πθ′({h ∈ C : ∀i ≤ k, h(Xi) = yi})|

= ‖PYk(θ)|Xk
− PYk(θ′)|Xk

‖.

Thus, we have that with probability at least1− γ,

‖πθ − πθ′‖ < Lγα + ‖PYk(θ)|Xk
− PYk(θ′)|Xk

‖.

Following analogous to the inductive argument of Yang, Hanneke, and Carbonell [2011],

supposeI ⊆ {1, . . . , k}, fix x̄I ∈ X |I| and ȳI ∈ {−1,+1}|I|. Then theỹI ∈ {−1,+1}|I| for

which noh ∈ C hash(x̄I) = ỹI for which ‖ȳI − ỹI‖1 is minimal, has‖ȳI − ỹI‖1 ≤ d + 1, and

for anyi ∈ I with ȳi 6= ỹi, letting ȳ′j = ȳj for j ∈ I \ {i} andȳ′i = ỹi, we have

PYI(θ)|XI
(ȳI |x̄I) = PYI\{i}(θ)|XI\{i}(ȳI\{i}|x̄I\{i})− PYI(θ)|XI

(ȳ′I |x̄I),

and similarly forθ′, so that

|PYI(θ)|XI
(ȳI |x̄I)− PYI(θ′)|XI

(ȳI |x̄I)|

≤ |PYI\{i}(θ)|XI\{i}(ȳI\{i}|x̄I\{i})− PYI\{i}(θ′)|XI\{i}(ȳI\{i}|x̄I\{i})|

+ |PYI(θ)|XI
(ȳ′I |x̄I)− PYI(θ′)|XI

(ȳ′I |x̄I)|.
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Now consider that these two terms inductively define a binarytree. Every time the tree branches

left once, it arrives at a difference of probabilities for a set I of one less element than that of its

parent. Every time the tree branches right once, it arrives at a difference of probabilities for a

ȳI one closer to an unrealized̃yI than that of its parent. Say we stop branching the tree upon

reaching a setI and aȳI such that either̄yI is an unrealized labeling, or|I| = d. Thus, we

can bound the original (root node) difference of probabilities by the sum of the differences of

probabilities for the leaf nodes with|I| = d. Any path in the tree can branch left at mostk − d

times (total) before reaching a setI with only d elements, and can branch right at mostd + 1

times in a row before reaching āyI such that both probabilities are zero, so that the difference is

zero. So the depth of any leaf node with|I| = d is at most(k − d)d. Furthermore, at any level

of the tree, from left to right the nodes have strictly decreasing |I| values, so that the maximum

width of the tree is at mostk − d. So the total number of leaf nodes with|I| = d is at most

(k − d)2d. Thus, for anȳy ∈ {1, . . . , k} andx̄ ∈ X k,

|PYk(θ)|Xk
(ȳ|x̄)− PYk(θ′)|Xk

(ȳ|x̄)|

≤ (k − d)2d · max
ȳd∈{−1,+1}d

max
D∈{1,...,k}d

|PYd(θ)|Xd
(ȳd|x̄D)− PYd(θ′)|Xd

(ȳd|x̄D)|.

Since

‖PYk(θ)|Xk
− PYk(θ′)|Xk

‖ = (1/2)
∑

ȳk∈{−1,+1}k
|PYk(θ)|Xk

(ȳk)− PYk(θ′)|Xk
(ȳk)|,

and by Sauer’s Lemma this is at most

(ek)d max
ȳk∈{−1,+1}k

|PYk(θ)|Xk
(ȳk)− PYk(θ′)|Xk

(ȳk)|,

we have that

‖PYk(θ)|Xk
− PYk(θ′)|Xk

‖ ≤ (ek)dk2d max
ȳd∈{−1,+1}d

max
D∈{1,...,k}d

|PYd(θ)|XD
(ȳd)− PYd(θ′)|XD

(ȳd)|.
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Thus, we have that

‖πθ − πθ′‖ = E‖πθ − πθ′‖

< γ + Lγα + (ek)dk2dE

[

max
ȳd∈{−1,+1}d

max
D∈{1,...,k}d

|PYd(θ)|XD
(ȳd)− PYd(θ′)|XD

(ȳd)|
]

.

Note that

E

[

max
ȳd∈{−1,+1}d

max
D∈{1,...,k}d

|PYd(θ)|XD
(ȳd)− PYd(θ′)|XD

(ȳd)|
]

≤
∑

ȳd∈{−1,+1}d

∑

D∈{1,...,k}d
E
[

|PYd(θ)|XD
(ȳd)− PYd(θ′)|XD

(ȳd)|
]

≤ (2k)d max
ȳd∈{−1,+1}d

max
D∈{1,...,k}d

E
[

|PYd(θ)|XD
(ȳd)− PYd(θ′)|XD

(ȳd)|
]

,

and by exchangeability, this last line equals

(2k)d max
ȳd∈{−1,+1}d

E
[

|PYd(θ)|Xd
(ȳd)− PYd(θ′)|Xd

(ȳd)|
]

.

Yang, Hanneke, and Carbonell [2011] showed that

E
[

|PYd(θ)|Xd
(ȳd)− PYd(θ′)|Xd

(ȳd)|
]

≤ 4
√

‖PZd(θ) − PZd(θ′)‖,

so that in total we have

‖πθ − πθ′‖ < (L+ 1)γα + 4(2ek)2d+2
√

‖PZd(θ) − PZd(θ′)‖.

Plugging in the value ofk = c(d/γ) log(1/γ), this is

(L+ 1)γα + 4

(

2ec
d

γ
log

(

1

γ

))2d+2√

‖PZd(θ) − PZd(θ′)‖.

So the only remaining question is the rate of convergence of our estimate ofPZd(θ⋆). If N(ε)

is theε-covering number of{PZd(θ) : θ ∈ Θ}, then takingθ̂Tθ⋆ as the minimum distance skele-

ton estimate of Devroye and Lugosi [2001], Yatracos [1985] achieves expected total variation

distanceε from πθ⋆ , for someT = O((1/ε2) logN(ε/4)). We can partitionC intoO((L/ε)d/α)

cells of diameterO((ε/L)1/α), and set a constant density value within each cell, on anO(ε)-grid
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of density values, and every prior with(L, α)-Hölder smooth density will have density within

ε of some density so-constructed; there are then at most(1/ε)O((L/ε)d/α) such densities, so this

bounds the covering numbers ofΠΘ. Furthermore, the covering number ofΠΘ upper bounds

N(ε) [Yang, Hanneke, and Carbonell, 2011], so thatN(ε) ≤ (1/ε)O((L/ε)d/α).

SolvingT = O(ε−2(L/ε)d/α log(1/ε)) for ε, we haveε = O

(

L
(

log(TL)
T

) α
d+2α

)

. So this

bounds the rate of convergence forE‖PZd(θ̂T ) − PZd(θ⋆)‖, for θ̂T the minimum distance skeleton

estimate. Plugging this rate into the bound on the priors, combined with Jensen’s inequality, we

have

E‖πθ̂T − πθ⋆‖ < (L+ 1)γα + 4

(

2ec
d

γ
log

(

1

γ

))2d+2

O

(

L

(

log(TL)

T

) α
2d+4α

)

.

This holds for anyγ > 0, so minimizing this expression overγ > 0 yields a bound on the rate.

For instance, withγ = Õ
(

T− α
2(d+2α)(α+2(d+1))

)

, we have

E‖πθ̂T − πθ⋆‖ = Õ

(

LT− α2

2(d+2α)(α+2(d+1))

)

.

8.4 A Minimax Lower Bound

One natural quesiton is whether Theorem 8.1 can generally beimproved. While we expect this to

be true for some fixed VC classes (e.g., those of finite size), and in any case we expect that some

of the constant factors in the exponent may be improvable, itis not at this time clear whether

the general form ofT−Θ(α2/(d+α)2) is sometimes optimal. One way to investigate this question is

to construct specific spacesC and distributionsD for which a lower bound can be obtained. In

particular, we are generally interested in exhibiting lower bounds that are worse than those that

apply to the usual problem of density estimation based on direct access to theh∗tθ⋆ values (see

Theorem 8.3 below).

Here we present a lower bound that is interesting for this reason. However, although larger

than the optimal rate for methods wtih direct access to the target concepts, it is still far from
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matching the upper bound above, so that the question of tightness remains open. Specifically, we

have the following result.

Theorem 8.2.For any integerd ≥ 1, anyL > 0, α ∈ (0, 1], there is a valueC(d, L, α) ∈ (0,∞)

such that, for anyT ∈ N, there exists an instance spaceX , a concept spaceC of VC dimension

d, a distributionD overX , and a distributionπ0 overC such that, forΠΘ a set of distributions

over C with (L, α)-Hölder smooth density functions with respect toπ0, any estimator̂θT =

θ̂T (Z1d(θ⋆), . . . ,ZTd(θ⋆)) (T = 1, 2, . . .), has

sup
θ⋆∈Θ

E
[

‖πθ̂T − πθ⋆‖
]

≥ C(d, L, α)T− α
2(d+α) .

Proof. (Sketch) We proceed by a reduction from the task of determining the bias of a coin from

among two given possibilities. Specifically, fix anyγ ∈ (0, 1/2), n ∈ N, and letB1(p), . . . , Bn(p)

be i.i.dBernoulli(p) random variables, for eachp ∈ [0, 1]; then it is known that, for any (possibly

nondeterministic) decision rulêpn : {0, 1}n → {(1 + γ)/2, (1− γ)/2},

1

2

∑

p∈{(1+γ)/2,(1−γ)/2}
P(p̂n(B1(p), . . . , Bn(p)) 6= p) ≥ (1/32) · exp

{

−128γ2n/3
}

. (8.1)

This easily follows from the results of Bar-Yossef [2003], Wald [1945], combined with a result

of Poland and Hutter [2006] bounding the KL divergence.

To use this result, we construct a learning problem as follows. Fix somem ∈ N with m ≥ d,

let X = {1, . . . ,m}, and letC be the space of all classifiersh : X → {−1,+1} such that

|{x ∈ X : h(x) = +1}| ≤ d. Clearly the VC dimension ofC is d. Define the distributionD

as uniform overX . Finally, we specify a family of(L, α)-Hölder smooth priors, parameterized

by Θ = {−1,+1}(md), as follows. Letγm = (L/2)(1/m)α. First, enumerate the
(

m
d

)

distinct

d-sized subsets of{1, . . . ,m} asX1,X2, . . . ,X(md). Define the reference distributionπ0 by the

property that, for anyh ∈ C, letting q = |{x : h(x) = +1}|, π0({h}) = (1
2
)d
(

m−q
d−q

)

/
(

m
d

)

.

For anyb = (b1, . . . , b(md)
) ∈ {−1, 1}(md), define the priorπb as the distribution of a random

variablehb specified by the following generative model. Leti∗ ∼ Uniform({1, . . . ,
(

m
d

)

}), let

Cb(i
∗) ∼ Bernoulli((1 + γmbi∗)/2); finally, hb ∼ Uniform({h ∈ C : {x : h(x) = +1} ⊆
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Xi∗ ,Parity(|{x : h(x) = +1}|) = Cb(i
∗)}), whereParity(n) is 1 if n is odd, or0 if n is even.

We will refer to the variables in this generative model below. For anyh ∈ C, letting H =

{x : h(x) = +1} andq = |H|, we can equivalently expressπb({h}) = (1
2
)d
(

m
d

)−1∑(md)
i=1 1[H ⊆

Xi](1+γmbi)
Parity(q)(1−γmbi)1−Parity(q). From this explicit representation, it is clear that, letting

fb = dπb

dπ0
, we havefb(h) ∈ [1 − γm, 1 + γm] for all h ∈ C. The fact thatfb is Hölder

smooth follows from this, since every distincth, g ∈ C haveD({x : h(x) 6= g(x)}) ≥ 1/m =

(2γm/L)
1/α.

Next we set up the reduction as follows. For any estimatorπ̂T = π̂T (Z1d(θ⋆), . . . ,ZTd(θ⋆)),

and eachi ∈ {1, . . . ,
(

m
d

)

}, let hi be the classifier with{x : hi(x) = +1} = Xi; also, if

π̂T ({hi}) > (1
2
)d/
(

m
d

)

, let b̂i = 2Parity(d) − 1, and otherwisêbi = 1 − 2Parity(d). We

use thesêbi values to estimate the originalbi values. Specifically, let̂pi = (1 + γmb̂i)/2 and

pi = (1 + γmbi)/2, whereb = θ⋆. Then

‖π̂T − πθ⋆‖ ≥ (1/2)

(md)
∑

i=1

|π̂T ({hi})− πθ⋆({hi})|

≥ (1/2)

(md)
∑

i=1

γm

2d
(

m
d

) |b̂i − bi|/2 = (1/2)

(md)
∑

i=1

1

2d
(

m
d

) |p̂i − pi|.

Thus, we have reduced from the problem of deciding the biasesof these
(

m
d

)

independent

Bernoulli random variables. To complete the proof, it suffices to lower bound the expectation

of the right side for anarbitrary estimator.

Toward this end, we in fact study an even easier problem. Specifically, consider an estimator

q̂i = q̂i(Z1d(θ⋆), . . . ,ZTd(θ⋆), i
∗
1, . . . , i

∗
T ), wherei∗t is the i∗ random variable in the generative

model that definesh∗tθ⋆ ; that is,i∗t ∼ Uniform({1, . . . ,
(

m
d

)

}), Ct ∼ Bernoulli((1 + γmbi∗t )/2),

andh∗tθ⋆ ∼ Uniform({h ∈ C : {x : h(x) = +1} ⊆ Xi∗t ,Parity(|{x : h(x) = +1}|) =

Ct}), where thei∗t are independent acrosst, as are theCt andh∗tθ⋆. Clearly thep̂i from above

can be viewed as an estimator of this type, which simply ignores the knowledge ofi∗t . The

knowledge of thesei∗t variables simplifies the analysis, since given{i∗t : t ≤ T}, the data

can be partitioned into
(

m
d

)

disjoint sets,{{Ztd(θ⋆) : i∗t = i} : i = 1, . . . ,
(

m
d

)

}, and we can
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use only the set{Ztd(θ⋆) : i∗t = i} to estimatepi. Furthermore, we can use only the subset

of these for whichXtd = Xi, since otherwise we have zero information about the value of

Parity(|{x : h∗tθ⋆(x) = +1}|). That is, giveni∗t = i, anyZtd(θ⋆) is conditionally independent

from everybj for j 6= i, and is even conditionally independent frombi whenXtd is not completely

contained inXi; specifically, in this case, regardless ofbi, the conditional distribution ofYtd(θ⋆)

giveni∗t = i and givenXtd is a product distribution, which deterministically assigns label−1 to

thoseYtk(θ⋆) withXtk /∈ Xi, and gives uniform random values to the subset ofYtd(θ⋆) with their

respectiveXtk ∈ Xi. Finally, lettingrt = Parity(|{k ≤ d : Ytk(θ⋆) = +1}|), we note that given

i∗t = i, Xtd = Xi, and the valuert, bi is conditionally independent fromZtd(θ⋆). Thus, the set of

valuesCiT (θ⋆) = {rt : i∗t = i,Xtd = Xi} is a sufficient statistic forbi (hence forpi). Recall that,

wheni∗t = i andXtd = Xi, the value ofrt is equal toCt, aBernoulli(pi) random variable. Thus,

we neither lose nor gain anything (in terms of risk) by restricting ourselves to estimatorŝqi of

the typeq̂i = q̂i(Z1d(θ⋆), . . . ,ZTd(θ⋆), i
∗
1, . . . , i

∗
T ) = q̂′i(CiT (θ⋆)), for someq̂′i [Schervish, 1995]:

that is, estimators that are a function of theNiT (θ⋆) = |CiT (θ⋆)| Bernoulli(pi) random variables,

which we should note are conditionally i.i.d. givenNiT (θ⋆).

Thus, by (8.1), for anyn ≤ T ,

1

2

∑

bi∈{−1,+1}
E

[

|q̂i − pi|
∣

∣

∣
NiT (θ⋆) = n

]

=
1

2

∑

bi∈{−1,+1}
γmP

(

q̂i 6= pi

∣

∣

∣
NiT (θ⋆) = n

)

≥ (γm/32) · exp
{

−128γ2mNi/3
}

.

Also note that, for eachi, E[Ni] =
d!(1/m)d

(md)
T ≤ (d/m)2dT = d2d(2γm/L)

2d/αT , so that Jensen’s

inequality, linearity of expectation, and the law of total expectation imply

1

2

∑

bi∈{−1,+1}
E [|q̂i − pi|] ≥ (γm/32) · exp

{

−43(2/L)2d/αd2dγ2+2d/α
m T

}

.
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Thus, by linearity of the expectation,

(

1

2

)(md) ∑

b∈{−1,+1}(
m
d)

E







(md)
∑

i=1

1

2d
(

m
d

) |q̂i − pi|






=

(md)
∑

i=1

1

2d
(

m
d

)

1

2

∑

bi∈{−1,+1}
E [|q̂i − pi|]

≥ (γm/(32 · 2d)) · exp
{

−43(2/L)2d/αd2dγ2+2d/α
m T

}

.

In particular, taking

m =

⌈

(L/2)1/α
(

T

43(2/L)2d/αd2d

) 1
2(d+α)

⌉

,

we have

γm = Θ

(

(

43(2/L)2d/αd2d

T

)

α
2(d+α)

)

,

so that

(

1

2

)(md) ∑

b∈{−1,+1}(
m
d)

E







(md)
∑

i=1

1

2d
(

m
d

) |q̂i − pi|






= Ω

(

2−d

(

43(2/L)2d/αd2d

T

)

α
2(d+α)

)

.

In particular, this implies there exists someb for which

E







(md)
∑

i=1

1

2d
(

m
d

) |q̂i − pi|






= Ω

(

2−d

(

43(2/L)2d/αd2d

T

)

α
2(d+α)

)

.

Applying this lower bound to the estimatorp̂i defined above yields the result.

In the extreme case of allowing arbitrary dependence on the data samples, we merely recover

the known results lower bounding the risk of density estimation from i.i.d. samples from a

smooth density, as indicated by the following result.

Theorem 8.3. For any integerd ≥ 1, there exists an instance spaceX , a concept spaceC of

VC dimensiond, a distributionD overX , and a distributionπ0 overC such that, forΠΘ the

set of distributions overC with (L, α)-Hölder smooth density functions with respect toπ0, any

sequence of estimators,θ̂T = θ̂T (Z1(θ⋆), . . . ,ZT (θ⋆)) (T = 1, 2, . . .), has

sup
θ⋆∈Θ

E
[

‖πθ̂T − πθ⋆‖
]

= Ω
(

T− α
d+2α

)

.
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The proof is a simple reduction from the problem of estimating πθ⋆ based on direct access to

h∗1θ⋆ , . . . , h
∗
Tθ⋆

, which is essentially equivalent to the standard model of density estimation, and

indeed the lower bound in Theorem 8.3 is a well-known result for density estimation fromT i.i.d.

samples from a Ḧolder smooth density in ad-dimensional space [see e.g., Devroye and Lugosi,

2001].

8.5 Future Directions

There are several interesting questions that remain open atthis time. Can either the lower bound

or upper bound be improved in general? If, instead ofd samples per task, we instead usem ≥ d

samples, how does the minimax risk vary withm? Related to this, what is the optimal value of

m to optimize the rate of convergence as a function ofmT , the total number of samples? More

generally, if an estimator is permitted to useN total samples, taken from however many tasks it

wishes, what is the optimal rate of convergence as a functionof N?
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Chapter 9

Estimation of Priors with Applications to

Preference Elicitation

Abstract

1We extend the work of [Yang, Hanneke, and Carbonell, 2013] on estimating prior distributions

over VC classes to the case of real-valued functions in a VC subgraph class. We then apply this

technique to the problem of maximizing customer satisfaction using a minimal number of value

queries in an online preference elicitation scenario.

9.1 Introduction

Consider an online travel agency, where customers go to the site with some idea of what type of

travel they are interested in; the site then poses a series ofquestions to each customer, and iden-

tifies a travel package that best suits their desires, budget, and dates. There are many options of

travel packages, with options on location, site-seeing tours, hotel and room quality, etc. Because

of this, serving the needs of anarbitrary customer might be a lengthy process, requiring many

1This chapter is based on joint work with Steve Hanneke
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detailed questions. Fortunately, the stream of customers is typically not a worst-case sequence,

and in particular obeys many statistical regularities: in particular, it is not too far from reality

to think of the customers as being independent and identically distributed samples. With this

assumption in mind, it becomes desirable to identify some ofthese statistical regularities so that

we can pose the questions that are typically most relevant, and thereby more quickly identify

the travel package that best suits the needs of the typical customer. One straightforward way

to do this is to directlyestimatethe distribution of customer value functions, and optimizethe

questioning system to minimize the expected number of questions needed to find a suitable travel

package.

One can model this problem in the style of Bayesian combinatorial auctions, in which each

customer has a value function for each possible bundle of items. However, it is slightly differ-

ent, in that we do not assume the distribution of customers isknown, but rather are interested in

estimating this distribution; the obtained estimate can then be used in combination with methods

based on Bayesian decision theory. In contrast to the literature on Bayesian auctions (and subjec-

tivist Bayesian decision theory in general), this techniqueis able to maintain general guarantees

on performance that hold under an objective interpretationof the problem, rather than merely

guarantees holding under an arbitrary assumed prior belief. This general idea is sometimes re-

ferred to asEmpirical Bayesiandecision theory in the machine learning and statistics literatures.

The ideal result for an Empirical Bayesian algorithm is to be competitive with the corresponding

Bayesian methods based on theactual distribution of the data (assuming the data are random,

with an unknown distribution); that is, although the Empirical Bayesian methods only operate

with a data-based estimate of the distribution, the aim is toperform nearly as well as methods

based on the true (unobservable) distribution. In this work, we present results of this type, in the

context of an abstraction of the aforementioned online travel agency problem, where the measure

of performance is the expected number of questions to find a suitable package.

The technique we use here is rooted in the work of [Yang, Hanneke, and Carbonell, 2013] on
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transfer learningwith a VC class. The component of that work of interest here isthe estimation

of prior distributions over VC classes. Essentially, thereis a given class of functions, from which

a sequence of functions is sampled i.i.d. according to an unknown distribution. We observe

a number of values of each of these functions, evaluated at points chosen at random, and are

then tasked with estimating the distribution of these functions. This is more challenging than

the traditional problem of nonparametric density estimation, since we are not permitted direct

access to these functions, but rather only a limited number of evaluations of the function (i.e.,

a number of(x, f(x)) pairs). The work of [Yang, Hanneke, and Carbonell, 2013] develops a

technique for estimating the distribution of these functions, given that the functions are binary-

valued, the class of functions has finite VC dimension, and the class of distributions is totally

bounded. In this work, we extend this technique to classes ofreal-valued functions having finite

pseudo-dimension, a natural generalization of VC dimension for real-valued functions [Haussler,

1992].

The specific application we are interested in here may be expressed abstractly as a kind of

combinatorial auction with preference elicitation. Specifically, we suppose there is a collection

of items on a menu, and each possible bundle of items has an associated fixed price. There is

a stream of customers, each with a valuation function that provides a value for each possible

bundle of items. The objective is to serve each customer a bundle of items that nearly-maximizes

his or her surplus value (value minus price). However, we arenot permitted direct observation

of the customer valuation functions; rather, we may query for the value of any given bundle of

items; this is referred to as avalue queryin the literature on preference elicitation in combinato-

rial auctions (see Chapter 14 of [Cramton, Shoham, and Steinberg, 2006], [Zinkevich, Blum, and

Sandholm, 2003]). The objective is to achieve this near-maximal surplus guarantee, while mak-

ing only a small number of queries per customer. We suppose the customer valuation function

are sampled i.i.d. according to an unknown distribution over a known (but arbitrary) class of real-

valued functions having finite pseudo-dimension. Reasoningthat knowledge of this distribution
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should allow one to make a smaller number of value queries percustomer, we are interested in

estimating this unknown distribution, so that as we serve more and more customers, the number

of queries per customer required to identify a near-optimalbundle should decrease. In this con-

text, we in fact prove that in the limit, the expected number of queries per customer converges

to the number required of a method having direct knowledge ofthe true distribution of valuation

functions.

9.2 Notation

Let B denote aσ-algebra onX × R, let BX denote theσ-algebra onX . Also let ρ(h, g) =
∫

|h− g|dPX , wherePX is a marginal distribution overX . LetF be a class of functionsX → R

with Borelσ-algebraBF induced byρ. LetΘ be a set of parameters, and for eachθ ∈ Θ, let πθ

denote a probability measure on(F ,BF). We suppose{πθ : θ ∈ Θ} is totally bounded in total

variation distance, and thatF is a uniformly bounded VC subgraph class with pseudodimension

d. We also supposeρ is ametricwhen restricted toF .

Let {Xti}t,i∈N be i.i.d.PX random variables. For eachθ ∈ Θ, let{h∗tθ}t∈N be i.i.d.πθ random

variables, independent from{Xti}t,i∈N. For eacht ∈ N andθ ∈ Θ, let Yti(θ) = h∗tθ(Xti) for

i ∈ N, and letZt(θ) = {(Xt1, Yt1(θ)), (Xt2, Yt2(θ)), . . .}, Xt = {Xt1, Xt2, . . .}, andYt(θ) =

{Yt1(θ), Yt2(θ), . . .}; for eachk ∈ N, defineZtk(θ) = {(Xt1, Yt1(θ)), . . . , (Xtk, Ytk(θ))}, Xtk =

{Xt1, . . . , Xtk}, andYtk(θ) = {Yt1(θ), . . . , Ytk(θ)}.

For any probability measuresµ, µ′, we denote the total variation distance by

‖µ− µ′‖ = sup
A
µ(A)− µ′(A),

whereA ranges over measurable sets.

Lemma 9.1. For anyθ, θ′ ∈ Θ andt ∈ N,

‖πθ − πθ′‖ = ‖PZt(θ) − PZt(θ′)‖.
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Proof. Fix θ, θ′ ∈ Θ, t ∈ N. Let X = {Xt1, Xt2, . . .}, Y(θ) = {Yt1(θ), Yt2(θ), . . .}, and for

k ∈ N let Xk = {Xt1, . . . , Xtk}. andYk(θ) = {Yt1(θ), . . . , Ytk(θ)}. For h ∈ F , let cX(h) =

{(Xt1, h(Xt1)), (Xt2, h(Xt2)), . . .}.

For h, g ∈ F , defineρX(h, g) = lim
m→∞

1
m

∑m
i=1 |h(Xti) − g(Xti)| (if the limit exists), and

ρXk
(h, g) = 1

k

∑k
i=1 |h(Xti) − g(Xti)|. Note that sinceF is a uniformly bounded VC subgraph

class, so is the collection of functions{|h − g| : h, g ∈ F}, so that the uniform strong law of

large numbers implies that with probability one,∀h, g ∈ F , ρX(h, g) exists and hasρX(h, g) =

ρ(h, g) [Vapnik, 1982].

Consider anyθ, θ′ ∈ Θ, and anyA ∈ BF . Then anyh /∈ A has∀g ∈ A, ρ(h, g) > 0 (by the

metric assumption). Thus, ifρX(h, g) = ρ(h, g) for all h, g ∈ F , then∀h /∈ A,

∀g ∈ A, ρX(h, g) = ρ(h, g) > 0 =⇒ ∀g ∈ A, cX(h) 6= cX(g) =⇒ cX(h) /∈ cX(A).

This impliesc−1
X
(cX(A)) = A. Under these conditions,

PZt(θ)|X(cX(A)) = πθ(c
−1
X
(cX(A))) = πθ(A),

and similarly forθ′.

Any measurable setC for the range ofZt(θ) can be expressed asC = {cx̄(h) : (h, x̄) ∈ C ′}

for some appropriateC ′ ∈ BF ⊗ B∞
X . LettingC ′

x̄ = {h : (h, x̄) ∈ C ′}, we have

PZt(θ)(C) =

∫

πθ(c
−1
x̄ (cx̄(C

′
x̄)))PX(dx̄) =

∫

πθ(C
′
x̄)PX(dx̄) = P(h∗

tθ,X)
(C ′).

Likewise, this reasoning holds forθ′. Then

‖PZt(θ) − PZt(θ′)‖ = ‖P(h∗
tθ,X)
− P(h∗

tθ′ ,X)
‖

= sup
C′∈BF⊗B∞

X

∣

∣

∣

∣

∫

(πθ(C
′
x̄)− πθ′(C ′

x̄))PX(dx̄)

∣

∣

∣

∣

≤
∫

sup
A∈BF

|πθ(A)− πθ′(A)|PX(dx̄) = ‖πθ − πθ′‖.

Sinceh∗tθ and X are independent, forA ∈ BF , πθ(A) = Ph∗
tθ
(A) = Ph∗

tθ
(A)PX(X∞) =
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P(h∗
tθ,X)

(A×X∞). Analogous reasoning holds forh∗tθ′. Thus, we have

‖πθ − πθ′‖ = ‖P(h∗
tθ,X)

(· × X∞)− P(h∗
tθ′ ,X)

(· × X∞)‖

≤ ‖P(h∗
tθ,X)
− P(h∗

tθ′ ,X)
‖ = ‖PZt(θ) − PZt(θ′)‖.

Combining the above, we have‖PZt(θ) − PZt(θ′)‖ = ‖πθ − πθ′‖.

Lemma 9.2. There exists a sequencerk = o(1) such that,∀t, k ∈ N, ∀θ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖πθ − πθ′‖ ≤ ‖PZtk(θ) − PZtk(θ′)‖+ rk.

Proof. This proof follows identically to a proof of [Yang, Hanneke,and Carbonell, 2013], but is

included here for completeness. SincePZtk(θ)(A) = PZt(θ)(A × (X × R)∞) for all measurable

A ⊆ (X × R)k, and similarly forθ′, we have

‖PZtk(θ) − PZtk(θ′)‖ = sup
A∈Bk

PZtk(θ)(A)− PZtk(θ′)(A)

= sup
A∈Bk

PZt(θ)(A× (X × R)∞)− PZt(θ′)(A× (X × R)∞)

≤ sup
A∈B∞

PZt(θ)(A)− PZt(θ′)(A) = ‖PZt(θ) − PZt(θ′)‖,

which implies the left inequality when combined with Lemma 9.1.

Next, we focus on the right inequality. Fixθ, θ′ ∈ Θ andγ > 0, and letB ∈ B∞ be such that

‖πθ − πθ′‖ = ‖PZt(θ) − PZt(θ′)‖ < PZt(θ)(B)− PZt(θ′)(B) + γ.

Let A = {A × (X × R)∞ : A ∈ Bk, k ∈ N}. Note thatA is an algebra that generatesB∞.

Thus, Carath́eodory’s extension theorem [Schervish, 1995] implies thatthere exist disjoint sets

{Ai}i∈N in A such thatB ⊆ ⋃i∈NAi and

PZt(θ)(B)− PZt(θ′)(B) <
∑

i∈N
PZt(θ)(Ai)−

∑

i∈N
PZt(θ′)(Ai) + γ.

Since theseAi sets are disjoint, each of these sums is bounded by a probability value, which

implies that there exists somen ∈ N such that

∑

i∈N
PZt(θ)(Ai) < γ +

n
∑

i=1

PZt(θ)(Ai),
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which implies

∑

i∈N
PZt(θ)(Ai)−

∑

i∈N
PZt(θ′)(Ai) < γ +

n
∑

i=1

PZt(θ)(Ai)−
n
∑

i=1

PZt(θ′)(Ai)

= γ + PZt(θ)

(

n
⋃

i=1

Ai

)

− PZt(θ′)

(

n
⋃

i=1

Ai

)

.

As
⋃n

i=1Ai ∈ A, there existsm ∈ N and measurableBm ∈ Bm such that
⋃n

i=1Ai = Bm× (X ×

R)∞, and therefore

PZt(θ)

(

n
⋃

i=1

Ai

)

− PZt(θ′)

(

n
⋃

i=1

Ai

)

= PZtm(θ)(Bm)− PZtm(θ′)(Bm)

≤ ‖PZtm(θ) − PZtm(θ′)‖ ≤ lim
k→∞
‖PZtk(θ) − PZtk(θ′)‖.

Combining the above, we have‖πθ − πθ′‖ ≤ limk→∞ ‖PZtk(θ) − PZtk(θ′)‖ + 3γ. By letting γ

approach0, we have

‖πθ − πθ′‖ ≤ lim
k→∞
‖PZtk(θ) − PZtk(θ′)‖.

So there exists a sequencerk(θ, θ′) = o(1) such that

∀k ∈ N, ‖πθ − πθ′‖ ≤ ‖PZtk(θ) − PZtk(θ′)‖+ rk(θ, θ
′).

Now letγ > 0 and letΘγ be a minimalγ-cover ofΘ. Define the quantityrk(γ) = maxθ,θ′∈Θγ rk(θ, θ
′).

Then for anyθ, θ′ ∈ Θ, let θγ = argminθ′′∈Θγ
‖πθ − πθ′′‖ andθ′γ = argminθ′′∈Θγ

‖πθ′ − πθ′′‖.

Then a triangle inequality implies that∀k ∈ N,

‖πθ − πθ′‖ ≤ ‖πθ − πθγ‖+ ‖πθγ − πθ′γ‖+ ‖πθ′γ − πθ′‖

< 2γ + rk(θγ , θ
′
γ) + ‖PZtk(θγ) − PZtk(θ′γ)‖

≤ 2γ + rk(γ) + ‖PZtk(θγ) − PZtk(θ′γ)‖.

155



Triangle inequalities and the left inequality from the lemma statement (already established) imply

‖PZtk(θγ) − PZtk(θ′γ)‖

≤ ‖PZtk(θγ) − PZtk(θ)‖+ ‖PZtk(θ) − PZtk(θ′)‖+ ‖PZtk(θ′γ) − PZtk(θ′)‖

≤ ‖πθγ − πθ‖+ ‖PZtk(θ) − PZtk(θ′)‖+ ‖πθ′γ − πθ′‖

< 2γ + ‖PZtk(θ) − PZtk(θ′)‖.

So in total we have

‖πθ − πθ′‖ ≤ 4γ + rk(γ) + ‖PZtk(θ) − PZtk(θ′)‖.

Since this holds for allγ > 0, definingrk = infγ>0(4γ + rk(γ)), we have the right inequality

of the lemma statement. Furthermore, since eachrk(θ, θ
′) = o(1), and |Θγ| < ∞, we have

rk(γ) = o(1) for eachγ > 0, and thus we also haverk = o(1).

Lemma 9.3. ∀t, k ∈ N, there exists a monotone functionMk(x) = o(1) such that,∀θ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖ ≤Mk

(

‖PZtd(θ) − PZtd(θ′)‖
)

.

Proof. Fix any t ∈ N, and letX = {Xt1, Xt2, . . .} andY(θ) = {Yt1(θ), Yt2(θ), . . .}, and for

k ∈ N letXk = {Xt1, . . . , Xtk} andYk(θ) = {Yt1(θ), . . . , Ytk(θ)}.

If k ≤ d, thenPZtk(θ)(·) = PZtd(θ)(· × (X × {−1,+1})d−k), so that

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖PZtd(θ) − PZtd(θ′)‖,

and therefore the result trivially holds.

Now supposek > d. Fix anyγ > 0, and letBθ,θ′ ⊆ (X × R)k be a measurable set such that

PZtk(θ)(Bθ,θ′)− PZtk(θ′)(Bθ,θ′) ≤ ‖PZtk(θ) − PZtk(θ′)‖

≤ PZtk(θ)(Bθ,θ′)− PZtk(θ′)(Bθ,θ′) + γ.

By Carath́eodory’s extension theorem, there exists a disjoint sequence of sets{Bi}∞i=1 such that

PZtk(θ)(Bθ,θ′)− PZtk(θ′)(Bθ,θ′) < γ +
∞
∑

i=1

PZtk(θ)(Bi)−
∞
∑

i=1

PZtk(θ′)(Bi),
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and such that eachBi(θ, θ
′) is representable as follows; for someℓi(θ, θ′) ∈ N, and setsCij =

(Aij1 × (−∞, tij1]) × · · · × (Aijk × (−∞, tijk]), for j ≤ ℓi(θ, θ
′), where eachAijp ∈ BX ,

the setBi(θ, θ
′) is representable as

⋃

s∈Si

⋂ℓi(θ,θ
′)

j=1 Dijs, whereSi ⊆ {0, . . . , 2ℓi(θ,θ′) − 1}, each

Dijs ∈ {Cij, C
c
ij}, ands 6= s′ ⇒ ⋂ℓi(θ,θ

′)
j=1 Dijs ∩

⋂ℓi(θ,θ
′)

j=1 Dijs′ = ∅. Since theBi(θ, θ
′) are

disjoint, the above sums are bounded, so that there existsmk(θ, θ
′, γ) ∈ N such that every

m ≥ mk(θ, θ
′, γ) has

PZtk(θ)(Bθ,θ′)− PZtk(θ′)(Bθ,θ′)

< 2γ +
m
∑

i=1

PZtk(θ)(Bi(θ, θ
′))−

m
∑

i=1

PZtk(θ′)(Bi(θ, θ
′)),

Now defineM̃k(γ) = maxθ,θ′∈Θγ mk(θ, θ
′, γ). Then for anyθ, θ′ ∈ Θ, let θγ , θ′γ ∈ Θγ be

such that‖πθ − πθγ‖ < γ and‖πθ′ − πθ′γ‖ < γ, which implies‖PZtk(θ) − PZtk(θγ)‖ < γ and

‖PZtk(θ′) − PZtk(θ′γ)‖ < γ by Lemma 9.2. Then

‖PZtk(θ) − PZtk(θ′)‖ < ‖PZtk(θγ) − PZtk(θ′γ)‖+ 2γ

≤ PZtk(θγ)(Bθγ ,θ′γ )− PZtk(θ′γ)(Bθγ ,θ′γ ) + 3γ

≤
M̃k(γ)
∑

i=1

PZtk(θγ)(Bi(θγ, θ
′
γ))− PZtk(θ′γ)(Bi(θγ, θ

′
γ)) + 5γ.

Again, since theBi(θγ, θ
′
γ) are disjoint, this equals

5γ + PZtk(θγ)





M̃k(γ)
⋃

i=1

Bi(θγ, θ
′
γ)



− PZtk(θ′γ)





M̃k(γ)
⋃

i=1

Bi(θγ , θ
′
γ)





≤ 7γ + PZtk(θ)





M̃k(γ)
⋃

i=1

Bi(θγ , θ
′
γ)



− PZtk(θ′)





M̃k(γ)
⋃

i=1

Bi(θγ, θ
′
γ)





= 7γ +

M̃k(γ)
∑

i=1

PZtk(θ)(Bi(θγ, θ
′
γ))− PZtk(θ′)(Bi(θγ , θ

′
γ))

≤ 7γ + M̃k(γ) max
i≤M̃k(γ)

∣

∣PZtk(θ)(Bi(θγ, θ
′
γ))− PZtk(θ′)(Bi(θγ, θ

′
γ))
∣

∣ .

Thus, if we can show that each
∣

∣PZtk(θ)(Bi(θγ, θ
′
γ))− PZtk(θ′)(Bi(θγ, θ

′
γ))
∣

∣ is bounded by ao(1)
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function of‖PZtd(θ)−PZtd(θ′)‖, then the result will follow by substituting this relaxation into the

above expression and definingMk by minimizing the resulting expression overγ > 0.

Toward this end, letCij be as above from the definition ofBi(θγ, θ
′
γ), and note thatIBi(θγ ,θ′γ)

is representable as a function of theICij
indicators, so that

∣

∣PZtk(θ)(Bi(θγ, θ
′
γ))− PZtk(θ′)(Bi(θγ, θ

′
γ))
∣

∣

= ‖PIBi(θγ,θ′γ )(Ztk(θ)) − PIBi(θγ,θ′γ )(Ztk(θ′))‖

≤ ‖P(ICi1
(Ztk(θ)),...,IC

iℓi(θγ,θ′γ )
(Ztk(θ))) − P(ICi1

(Ztk(θ′)),...,IC
iℓi(θγ,θ′γ )

(Ztk(θ′)))‖

≤ 2ℓi(θγ ,θ
′
γ) max

J⊆{1,...,ℓi(θγ ,θ′γ)}
E

[(

∏

j∈J
ICij

(Ztk(θ))

)

∏

j /∈J

(

1− ICij
(Ztk(θ))

)

−
(

∏

j∈J
ICij

(Ztk(θ
′))

)

∏

j /∈J

(

1− ICij
(Ztk(θ

′))

)]

≤ 2ℓi(θγ ,θ
′
γ)

∑

J⊆{1,...,2ℓi(θγ,θ′γ )}

∣

∣

∣

∣

∣

E

[

∏

j∈J
ICij

(Ztk(θ))−
∏

j∈J
ICij

(Ztk(θ
′))

]∣

∣

∣

∣

∣

≤ 4ℓi(θγ ,θ
′
γ) max

J⊆{1,...,2ℓi(θγ,θ′γ )}

∣

∣

∣

∣

∣

E

[

∏

j∈J
ICij

(Ztk(θ))−
∏

j∈J
ICij

(Ztk(θ
′))

]∣

∣

∣

∣

∣

= 4ℓi(θγ ,θ
′
γ) max

J⊆{1,...,2ℓi(θγ,θ′γ )}

∣

∣

∣

∣

∣

PZtk(θ)

(

⋂

j∈J
Cij

)

− PZtk(θ′)

(

⋂

j∈J
Cij

)∣

∣

∣

∣

∣

.

Note that
⋂

j∈J Cij can be expressed as some(A1 × (−∞, t1])× · · · × (Ak × (−∞, tk]), where

eachAp ∈ BX andtp ∈ R, so that, lettinĝℓ = maxθ,θ′∈Θγ maxi≤M̃k(γ)
ℓi(θ, θ

′) andCk = {(A1 ×

(−∞, t1])× · · · × (Ak × (−∞, tk]) : ∀j ≤ k,Aj ∈ BX , tk ∈ R}, this last expression is at most

4ℓ̂ sup
C∈Ck

∣

∣PZtk(θ)(C)− PZtk(θ′)(C)
∣

∣ .

Next note that for anyC = (A1 × (−∞, t1]) × · · · × (Ak × (−∞, tk]) ∈ Ck, letting C1 =

A1 × · · · × Ak andC2 = (−∞, t1]× · · · × (−∞, tk],

PZtk(θ)(C)− PZtk(θ′)(C) = E
[(

PYtk(θ)|Xtk
(C2)− PYtk(θ′)|Xtk

(C2)
)

IC1(Xtk)
]

≤ E
[∣

∣PYtk(θ)|Xtk
(C2)− PYtk(θ′)|Xtk

(C2)
∣

∣

]

.
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For p ∈ {1, . . . , k}, let C2p = (−∞, tp]. Then note that, by definition ofd, for any given

x = (x1, . . . , xk), the classHx = {xp 7→ IC2p(h(xp)) : h ∈ F} is a VC class over{x1, . . . , xk}

with VC dimension at mostd. Furthremore, we have

∣

∣PYtk(θ)|Xtk
(C2)− PYtk(θ′)|Xtk

(C2)
∣

∣

=
∣

∣

∣P(IC21
(h∗

tθ(Xt1)),...,IC2k
(h∗

tθ(Xtk)))|Xtk
({(1, . . . , 1)})

− P(IC21
(h∗

tθ′ (Xt1)),...,IC2k
(h∗

tθ′ (Xtk)))|Xtk
({(1, . . . , 1)})

∣

∣

∣
.

Therefore, the results of [Yang, Hanneke, and Carbonell, 2013] (in the proof of their Lemma 3)

imply that

∣

∣PYtk(θ)|Xtk
(C2)− PYtk(θ′)|Xtk

(C2)
∣

∣

≤ 2k max
y∈{0,1}d

max
D∈{1,...,k}d

∣

∣

∣
P{IC2j

(h∗
tθ(Xtj))}j∈D|{Xtj}j∈D

({y})

− P{IC2j
(h∗

tθ′ (Xtj))}j∈D|{Xtj}j∈D
({y})

∣

∣

∣
.

Thus, we have

E
[∣

∣PYtk(θ)|Xtk
(C2)− PYtk(θ′)|Xtk

(C2)
∣

∣

]

≤ 2kE

[

max
y∈{0,1}d

max
D∈{1,...,k}d

∣

∣

∣P{IC2j
(h∗

tθ(Xtj))}j∈D|{Xtj}j∈D
({y})

− P{IC2j
(h∗

tθ′ (Xtj))}j∈D|{Xtj}j∈D
({y})

∣

∣

∣

]

≤ 2k
∑

y∈{0,1}d

∑

D∈{1,...,k}d
E

[

∣

∣

∣P{IC2j
(h∗

tθ(Xtj))}j∈D|{Xtj}j∈D
({y})

− P{IC2j
(h∗

tθ′ (Xtj))}j∈D|{Xtj}j∈D
({y})

∣

∣

∣

]

≤ 2d+kkd max
y∈{0,1}d

max
D∈{1,...,k}d

E

[

∣

∣

∣P{IC2j
(h∗

tθ(Xtj))}j∈D|{Xtj}j∈D
({y})

− P{IC2j
(h∗

tθ′ (Xtj))}j∈D|{Xtj}j∈D
({y})

∣

∣

∣

]

.
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Exchangeability implies this is at most

2d+kkd max
y∈{0,1}d

sup
t1,...,td∈R

E

[

∣

∣

∣P{I(−∞,tj ]
(h∗

tθ(Xtj))}dj=1|Xtd
({y})

− P{I(−∞,tj ]
(h∗

tθ′ (Xtj))}dj=1|Xtd
({y})

∣

∣

∣

]

= 2d+kkd max
y∈{0,1}d

sup
t1,...,td∈R

E

[

∣

∣

∣P{I(−∞,tj ]
(Ytj(θ))}dj=1|Xtd

({y})

− P{I(−∞,tj ]
(Ytj(θ′))}dj=1|Xtd

({y})
∣

∣

∣

]

.

[Yang, Hanneke, and Carbonell, 2013] argue that for ally ∈ {0, 1}d andt1, . . . , td ∈ R,

E

[∣

∣

∣
P{I(−∞,tj ]

(Ytj(θ))}dj=1|Xtd
({y})− P{I(−∞,tj ]

(Ytj(θ′))}dj=1|Xtd
({y})

∣

∣

∣

]

≤ 4
√

‖P{I(−∞,tj ]
(Ytj(θ))}dj=1,Xtd

− P{I(−∞,tj ]
(Ytj(θ′))}dj=1,Xtd

‖.

Noting that

‖P{I(−∞,tj ]
(Ytj(θ))}dj=1,Xtd

− P{I(−∞,tj ]
(Ytj(θ′))}dj=1,Xtd

‖ ≤ ‖PZtd(θ) − PZtd(θ′)‖

completes the proof.

We can use the above lemmas to design an estimator ofπθ⋆ . Specifically, we have the follow-

ing result.

Theorem 9.4. There exists an estimator̂θTθ⋆ = θ̂T (Z1d(θ⋆), . . . ,ZTd(θ⋆)), and functionsR :

N0 × (0, 1] → [0,∞) and δ : N0 × (0, 1] → [0, 1] such that, for anyα > 0, lim
T→∞

R(T, α) =

lim
T→∞

δ(T, α) = 0 and for anyT ∈ N0 andθ⋆ ∈ Θ,

P

(

‖πθ̂Tθ⋆
− πθ⋆‖ > R(T, α)

)

≤ δ(T, α) ≤ α.

Proof. The estimator̂θTθ⋆ we will use is precisely the minimum-distance skeleton estimate of

PZtd(θ⋆) [Devroye and Lugosi, 2001, Yatracos, 1985]. [Yatracos, 1985] proved that ifN(ε) is
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the ε-covering number of{PZtd(θ⋆) : θ ∈ Θ}, then taking thiŝθTθ⋆ estimator, then for some

Tε = O((1/ε2) logN(ε/4)), anyT ≥ Tε has

E

[

‖PZtd(θ̂Tθ⋆ )
− PZtd(θ⋆)‖

]

< ε.

Thus, takingGT = inf{ε > 0 : T ≥ Tε}, we have

E

[

‖PZtd(θ̂Tθ⋆ )
− PZtd(θ⋆)‖

]

≤ GT = o(1).

LettingR′(T, α) be any positive sequence withGT ≪ R′(T, α)≪ 1 andR′(T, α) ≥ GT/α, and

letting δ(T, α) = GT/R
′(T, α) = o(1), Markov’s inequality implies

P

(

‖PZtd(θ̂Tθ⋆ )
− PZtd(θ⋆)‖ > R′(T, α)

)

≤ δ(T, α) ≤ α. (9.1)

LettingR(T, α) = mink (Mk (R
′(T, α)) + rk), sinceR′(T, α) = o(1) andrk = o(1), we have

R(T, α) = o(1). Furthermore, composing (9.1) with Lemmas 9.1, 9.2, and 9.3, we have

P

(

‖πθ̂Tθ⋆
− πθ⋆‖ > R(T, α)

)

≤ δ(T, α) ≤ α.

Remark: Although the above result makes use of the minimum-distanceskeleton estimator,

which is typically not computationally efficient, it is often possible to achieve this same result

(for certain families of distributions) using a simpler estimator, such as the maximum likelihood

estimator. All we require is that the risk of the estimator converges to0 at a known rate that

is independent ofθ⋆. For instance, see [van de Geer, 2000b] for conditions on thefamily of

distributions sufficient for this to be true of the maximum likelihood estimator.

9.3 Maximizing Customer Satisfaction in Combinatorial Auc-

tions

We can use Theorem 9.4 in the context of various applications. For instance, consider the fol-

lowing application to the problem of serving a sequence of customers so as to maximize their
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satisfaction.

Suppose there is a menu ofn items [n] = {1, . . . , n}, and each bundleB ⊆ [n] has an

associated pricep(B) ≥ 0. Suppose also there is a sequence of customers, each with a valuation

functionvt : 2[n] → R. We suppose thesevt functions are i.i.d. samples. We can then calculate

the satisfaction function for each customer asst(x), wherex ∈ {0, 1}n, andst(x) = vt(Bx) −

p(Bx), whereBx ⊆ [n] contains elementi ∈ [n] iff xi = 1.

Now suppose we are able to ask each customer a number of questions before serving up a

bundleBx̂t to that customer. More specifically, we are able to ask for thevaluest(x) for any

x ∈ {0, 1}n. This is referred to as avalue queryin the literature on preference elicitation in

combinatorial auctions (see Chapter 14 of [Cramton, Shoham, and Steinberg, 2006], [Zinkevich,

Blum, and Sandholm, 2003]). We are interested in asking as fewquestions as possible, while

satisfying the guarantee thatE[st(x̂t)−maxx st(x)] ≤ ε.

Now suppose, for everyπ andε, we have a methodA(π, ε) such that, given thatπ is the actual

distribution of thest functions,A(π, ε) guarantees that thêxt value it selects hasE[maxx st(x)−

st(x̂t)] ≤ ε; also letN̂t(π, ε) denote the actual (random) number of queries the methodA(π, ε)

would ask for thest function, and letQ(π, ε) = E[N̂t(π, ε)]. We suppose the method never

queries anyst(x) value twice for a givent, so that its number of queries for any givent is

bounded.

Also supposeF is a VC subgraph class of functions mappingX = {0, 1}n into [−1, 1] with

pseudodimensiond, and that{πθ : θ ∈ Θ} is a known totally bounded family of distributions

overF such that thest functions have distributionπθ⋆ for some unknownθ⋆ ∈ Θ. For anyθ ∈ Θ

andγ > 0, letB(θ, γ) = {θ′ ∈ Θ : ‖πθ − πθ′‖ ≤ γ}.

Suppose, in addition toA, we have another methodA′(ε) that is notπ-dependent, but still

provides theε-correctness guarantee, and makes a bounded number of queries (e.g., in the

worst case, we could consider querying all2n points, but in most cases there are more clever

π-independent methods that use far fewer queries, such asO(1/ε2)). Consider the following
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method; the quantitieŝθTθ⋆, R(T, α), andδ(T, α) from Theorem 9.4 are here considered with

respectPX taken as the uniform distribution on{0, 1}n.

Algorithm 2 An algorithm for sequentially maximizing expected customer satisfaction.
for t = 1, 2, . . . , T do

Pick pointsXt1, Xt2, . . . , Xtd uniformly at random from{0, 1}n

if R(t− 1, ε/2) > ε/8 then

RunA′(ε)

Takex̂t as the returned value

else

Let θ̌tθ⋆ ∈ B
(

θ̂(t−1)θ⋆ , R(t− 1, ε/2)
)

be such that

Q(πθ̌tθ⋆ , ε/4) ≤ min
θ∈B(θ̂(t−1)θ⋆ ,R(t−1,ε/2))

Q(πθ, ε/4) + 1/t

RunA(πθ̌tθ⋆ , ε/4) and letx̂t be its return value

end if

end for

The following theorem indicates that this method is correct, and furthermore that the long-

run average number of queries is not much worse than that of a method that has direct knowledge

of πθ⋆.

Theorem 9.5.For the above method,∀t ≤ T,E[maxx st(x)−st(x̂t)] ≤ ε. Furthermore, ifST (ε)

is the total number of queries made by the method, then

lim sup
T→∞

E[ST (ε)]

T
≤ Q(πθ⋆ , ε/4) + d.

Proof. By Theorem 9.4, for anyt ≤ T , if R(t − 1, ε/2) ≤ ε/8, then with probability at least

1− ε/2, ‖πθ⋆ − πθ̂(t−1)θ⋆
‖ ≤ R(t− 1, ε/2), so that a triangle inequality implies‖πθ⋆ − πθ̌tθ⋆‖ ≤

2R(t− 1, ε/2) ≤ ε/4. Thus,

E

[

max
x

st(x)− st(x̂t)
]

≤ E

[

E

[

max
x

st(x)− st(x̂t)
∣

∣

∣
θ̌tθ⋆

]

1

[

‖πθ̌tθ⋆ − πθ⋆‖ ≤ ε/2
]]

+ ε/2. (9.2)
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For θ ∈ Θ, let x̂tθ denote the pointx that would be returned byA(πθ̌tθ⋆ , ε/4) when queries are

answered by somestθ ∼ πθ instead ofst (and supposingst = stθ⋆). If ‖πθ̌tθ⋆ − πθ⋆‖ ≤ ε/4, then

E

[

max
x

st(x)− st(x̂t)
∣

∣

∣
θ̌tθ⋆

]

= E

[

max
x

stθ⋆(x)− stθ⋆(x̂t)
∣

∣

∣
θ̌tθ⋆

]

≤ E

[

max
x

stθ̌tθ⋆ (x)− stθ̌tθ⋆ (x̂tθ̌tθ⋆ )
∣

∣

∣θ̌tθ⋆

]

+ ‖πθ̌tθ⋆ − πθ⋆‖ ≤ ε/4 + ε/4 = ε/2.

Plugging into (9.2), we have

E

[

max
x

st(x)− st(x̂t)
]

≤ ε.

For the result onST (ε), first note thatR(t − 1, ε/2) > ε/8 only finitely many times (due

toR(t, α) = o(1)), so that we can ignore those values oft in the asymptotic calculation (as the

number of queries is always bounded), and rely on the correctness guarantee ofA′ for correct-

ness. For the remainingt values, letNt denote the number of queries made byA(πθ̌tθ⋆ , ε/4).

then

lim sup
T→∞

E[ST (ε)]

T
≤ d+ lim sup

T→∞

T
∑

t=1

E [Nt] /T.

Since

lim
T→∞

1

T

T
∑

t=1

E

[

Nt1[‖πθ̂(t−1)θ⋆
− πθ⋆‖ > R(t− 1, ε/2)]

]

≤ lim
T→∞

1

T

T
∑

t=1

2nP
(

‖πθ̂(t−1)θ⋆
− πθ⋆‖ > R(t− 1, ε/2)

)

≤ 2n lim
T→∞

1

T

T
∑

t=1

δ(t− 1, ε/2) = 0,

we have

lim sup
T→∞

T
∑

t=1

E [Nt] /T = lim sup
T→∞

1

T

T
∑

t=1

E

[

Nt1[‖πθ̂(t−1)θ⋆
− πθ⋆‖ ≤ R(t− 1, ε/2)]

]

.

For anyt ≤ T , letNt(θ̌tθ⋆) denote the number of queriesA(πθ̌tθ⋆ , ε/4) would make if queries

were answered withstθ̌tθ⋆ instead ofst. On the event‖πθ̂(t−1)θ⋆
− πθ⋆‖ ≤ R(t− 1, ε/2), we have

E

[

Nt

∣

∣

∣
θ̌tθ⋆

]

≤ E

[

Nt(θ̌tθ⋆)
∣

∣

∣
θ̌tθ⋆

]

+ 2R(t− 1, ε/2)

= Q(πθ̌tθ⋆ , ε/4) + 2R(t− 1, ε/2) ≤ Q(πθ⋆ , ε/4) + 2R(t− 1, ε/2) + 1/t.
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Therefore,

lim sup
T→∞

1

T

T
∑

t=1

E

[

Nt1[‖πθ̂(t−1)θ⋆
− πθ⋆‖ ≤ R(t− 1, ε/2)]

]

≤ Q(πθ⋆ , ε/4) + lim sup
T→∞

1

T

T
∑

t=1

2R(t− 1, ε/2) + 1/t = Q(πθ⋆ , ε/4).

Note that in many cases, this result will even continue to hold with an infinite number of

goods (n = ∞), since the general results of the previous section have no dependence on the

cardinality of the spaceX .
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Chapter 10

Active Learning with a Drifting

Distribution

Abstract

We study the problem of active learning in a stream-based setting, allowing the distribution of

the examples to change over time. We prove upper bounds on thenumber of prediction mistakes

and number of label requests for established disagreement-based active learning algorithms, both

in the realizable case and under Tsybakov noise. We further prove minimax lower bounds for

this problem.

10.1 Introduction

Most existing analyses of active learning are based on an i.i.d. assumption on the data. In this

work, we assume the data are independent, but we allow the distribution from which the data

are drawn to shift over time, while the target concept remains fixed. We consider this problem

in a stream-based selective sampling model, and are interested in two quantities: the number of

mistakes the algorithm makes on the firstT examples in the stream, and the number of label
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requests among the firstT examples in the stream.

In particular, we study scenarios in which the distributionmay drift within a fixed totally

bounded family of distributions. Unlike previous models ofdistribution drift [Bartlett, 1992,

Koby Crammer and Vaughan, 2010], the minimax number of mistakes (or excess number of

mistakes, in the noisy case) can besublinearin the number of samples.

We specifically study the classic CAL active learning strategy [Cohn, Atlas, and Ladner,

1994b] in this context, and bound the number of mistakes and label requests the algorithm makes

in the realizable case, under conditions on the concept space and the family of possible distribu-

tions. We also exhibit lower bounds on these quantities thatmatch our upper bounds in certain

cases. We further study a noise-robust variant of CAL, and analyze its number of mistakes and

number of label requests in noisy scenarios where the noise distribution remains fixed over time

but the marginal distribution onX may shift. In particular, we upper bound these quantities un-

der Tsybakov’s noise conditions [Mammen and Tsybakov, 1999]. We also prove minimax lower

bounds under these same conditions, though there is a gap between our upper and lower bounds.

10.2 Definition and Notations

As in the usual statistical learning problem, there is a standard Borel spaceX , called the instance

space, and a setC of measurable classifiersh : X → {−1,+1}, called the concept space. We

additionally have a spaceD of distributions onX , called the distribution space. Throughout, we

suppose that the VC dimension ofC, denotedd below, is finite.

For anyµ1, µ2 ∈ D, let ‖µ1 − µ2‖ = supA µ1(A)− µ2(A) denote the total variation pseudo-

distance betweenµ1 andµ2, where the setA in thesup ranges over all measurable subsets ofX .

For anyǫ > 0, letDǫ denote a minimalǫ-cover ofD, meaning thatDǫ ⊆ D and∀µ1 ∈ D, ∃µ2 ∈

Dǫ s.t. ‖µ1 − µ2‖ < ǫ, and thatDǫ has minimal possible size|Dǫ| among all subsets ofD with

this property.

In the learning problem, there is an unobservable sequence of distributionsD1,D2, . . ., with
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eachDt ∈ D, and an unobservable time-independent regular conditional distribution, which

we represent by a functionη : X → [0, 1]. Based on these quantities, we letZ = {(Xt, Yt)}∞t=1

denote an infinite sequence of independent random variables, such that∀t,Xt ∼ Dt, and the con-

ditional distribution ofYt givenXt satisfies∀x ∈ X ,P(Yt = +1|Xt = x) = η(x). Thus, the joint

distribution of(Xt, Yt) is specified by the pair(Dt, η), and the distribution ofZ is specified by

the collection{Dt}∞t=1 along withη. We also denote byZt = {(X1, Y1), (X2, Y2), . . . , (Xt, Yt)}

the firstt such labeled examples. Note that theη conditional distribution is time-independent,

since we are restricting ourselves to discussing drifting marginal distributions onX , rather than

drifting concepts. Concept drift is an important and interesting topic, but is beyond the scope of

our present discussion.

In the active learning protocol, at each timet, the algorithm is presented with the value

Xt, and is required to predict a labelŶt ∈ {−1,+1}; then after making this prediction, it may

optionally request to observe the true label valueYt; as a means of book-keeping, if the algorithm

requests a labelYt on roundt, we defineQt = 1, and otherwiseQt = 0.

We are primarily interested in two quantities. The first,M̂T =
∑T

t=1 I

[

Ŷt 6= Yt

]

, is the

cumulative number of mistakes up to timeT . The second quantity of interest,̂QT =
∑T

t=1Qt,

is the total number of labels requested up to timeT . In particular, we will study the expectations

of these quantities:M̄T = E

[

M̂T

]

andQ̄T = E

[

Q̂T

]

. We are particularly interested in the

asymptotic dependence ofQ̄T andM̄T−M̄∗
T onT , whereM̄∗

T = infh∈C E
[

∑T
t=1 I [h(Xt) 6= Yt]

]

.

We refer toQ̄T as the expected number of label requests, and toM̄T −M̄∗
T as the expected excess

number of mistakes. For any distributionP onX , we defineerP (h) = EX∼P [η(X)I[h(X) =

−1] + (1− η(X))I[h(X) = +1]], the probability ofh making a mistake forX ∼ P andY with

conditional probability of being+1 equalη(X). Note that, abbreviatingert(h) = erDt(h) =

P(h(Xt) 6= Yt), we haveM̄∗
T = infh∈C

∑T
t=1 ert(h).

Scenarios in which both̄MT −M̄∗
T andQ̄T areo(T ) (i.e., sublinear) are considered desirable,

as these represent cases in which we do “learn” the proper wayto predict labels, while asymp-
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totically using far fewer labels than passive learning. Once establishing conditions under which

this is possible, we may then further explore the trade-off between these two quantities.

We will additionally make use of the following notions. ForV ⊆ C, let diamt(V ) =

suph,g∈V Dt({x : h(x) 6= g(x)}). For h : X → {−1,+1}, ērs:t(h) = 1
t−s+1

∑t
u=s eru(h),

and for finiteS ⊆ X × {−1,+1}, êr(h;S) = 1
|S|
∑

(x,y)∈S I[h(x) 6= y]. Also letC[S] = {h ∈

C : êr(h;S) = 0}. Finally, for a distributionP onX andr > 0, defineBP (h, r) = {g ∈ C :

P (x : h(x) 6= g(x)) ≤ r}.

10.2.1 Assumptions

In addition to the assumption of independence of theXt variables and thatd < ∞, each result

below is stated under various additional assumptions. The weakest such assumption is thatD is

totally bounded, in the following sense. For eachǫ > 0, let Dǫ denote a minimal subset ofD

such that∀D ∈ D, ∃D′ ∈ Dǫ s.t. ‖D − D′‖ < ǫ: that is, a minimalǫ-cover ofD. We say thatD

is totally bounded if it satisfies the following assumption.

Assumption 10.1.∀ǫ > 0, |Dǫ| <∞.

In some of the results below, we will be interested in deriving specific rates of convergence.

Doing so requires us to make stronger assumptions aboutD than mere total boundedness. We

will specifically consider the following condition, in which c,m ∈ [0,∞) are constants.

Assumption 10.2.∀ǫ > 0, |Dǫ| < c · ǫ−m.

For an example of a classD satisfying the total boundedness assumption, considerX =

[0, 1]n, and letD be the collection of distributions that have uniformly continuous density func-

tion with respect to the Lebesgue measure onX , with modulus of continuity at most some value

ω(ǫ) for each value ofǫ > 0, whereω(ǫ) is a fixed real-valued function withlimǫ→0 ω(ǫ) = 0.

As a more concrete example, whenω(ǫ) = Lǫ for someL ∈ (0,∞), this corresponds to the

family of Lipschitz continuous density functions with Lipschitz constant at mostL. In this case,

we have|Dǫ| ≤ O (ǫ−n), satisfying Assumption 10.2.
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10.3 Related Work

We discuss active learning under distribution drift, with fixed target concept. There are several

branches of the literature that are highly relevant to this,including domain adaptation [Mansour,

Mohri, and Rostamizadeh, 2008, 2009], online learning [Littlestone, 1988], learning with con-

cept drift, and empirical processes for independent but notidentically distributed data [van de

Geer, 2000a].

Streamed-based Active Learning with a Fixed Distribution [Dasgupta, Kalai, and Mon-

teleoni, 2009] show that a certain modified perceptron-likeactive learning algorithm can achieve

a mistake boundO(d log(T )) and query bound̃O(d log(T )), when learning a linear separator

under a uniform distribution on the unit sphere, in the realizable case. [Dekel, Gentile, and Srid-

haram, 2010] also analyze the problem of learning linear separators under a uniform distribution,

but allowing Tsybakov noise. They find that with̄QT = Õ
(

d
2α
α+2T

2
α+2

)

queries, it is possible to

achieve an expected excess number of mistakesM̄T −M∗
T = Õ

(

d
α+1
α+2 · T 1

α+2

)

. At this time, we

know of no work studying the number of mistakes and queries achievable by active learning in a

stream-based setting where the distribution may change over time.

Stream-based Passive Learning with a Drifting Distribution There has been work on learn-

ing with a drifting distribution and fixed target, in the context of passive learning. [Bartlett, 1992,

Barve and Long, 1997] study the problem of learning a subset ofa domain from randomly cho-

sen examples when the probability distribution of the examples changes slowly but continually

throughout the learning process; they give upper and lower bounds on the best achievable prob-

ability of misclassification after a given number of examples. They consider learning problems

in which a changing environment is modeled by a slowly changing distribution on the product

space. The allowable drift is restricted by ensuring that consecutive probability distributions are

close in total variation distance. However, this assumption allows for certain malicious choices of

distribution sequences, which shift the probability mass into smaller and smaller regions where
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the algorithm is uncertain of the target’s behavior, so thatthe number of mistakes grows linearly

in the number of samples in the worst case. More recently, [Freund and Mansour, 1997] have

investigated learning when the distribution changes as a linear function of time. They present

algorithms that estimate the error of functions, using knowledge of this linear drift.

10.4 Active Learning in the Realizable Case

Throughout this section, supposeC is a fixed concept space andh∗ ∈ C is a fixed target function:

that is,ert(h∗) = 0. The family of scenarios in which this is true are often collectively referred

to as therealizable case. We begin our analysis by studying this realizable case because it

greatly simplifies the analysis, laying bare the core ideas in plain form. We will discuss more

general scenarios, in whichert(h∗) ≥ 0, in later sections, where we find that essentially the same

principles apply there as in this initial realizable-case analysis.

We will be particularly interested in the performance of thefollowing simple algorithm, due

to [Cohn, Atlas, and Ladner, 1994b], typically referred to asCAL after its discoverers. The

version presented here is specified in terms of a passive learning subroutineA (mapping any

sequence of labeled examples to a classifier). In it, we use the notationDIS(V ) = {x ∈ X :

∃h, g ∈ V s.t.h(x) 6= g(x)}, also used below.
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CAL

1. t← 0,Q0 ← ∅, and let̂h0 = A(∅)

2. Do

3. t← t+ 1

4. PredictŶt = ĥt−1(Xt)

5. If max
y∈{−1,+1}

min
h∈C

êr(h;Qt−1 ∪ {(Xt, y)}) = 0

6. RequestYt, letQt = Qt−1 ∪ {(Xt, Yt)}

7. Else letY ′
t = argmin

y∈{−1,+1}
min
h∈C

êr(h;Qt−1 ∪ {(Xt, y)}), and let

Qt ← Qt−1 ∪ {(Xt, Y
′
t )}

8. Let ĥt = A(Qt)

Below, we letA1IG denote the one-inclusion graph prediction strategy of [Haussler, Little-

stone, and Warmuth, 1994b]. Specifically, the passive learning algorithmA1IG is specified as

follows. For a sequence of data pointsU ∈ X t+1, the one-inclusion graph is a graph, where each

vertex represents a distinct labeling ofU that can be realized by some classifier inC, and two

vertices are adjacent if and only if their corresponding labelings forU differ by exactly one label.

We use the one-inclusion graph to define a classifier based ont training points as follows. Given

t labeled data pointsL = {(x1, y1), . . . , (xt, yt)}, and one test pointxt+1 we are asked to predict

a label for, we first construct the one-inclusion graph onU = {x1, . . . , xt+1}; we then orient the

graph (give each edge a unique direction) in a way that minimizes the maximum out-degree, and

breaks ties in a way that is invariant to permutations of the order of points inU ; after orienting

the graph in this way, we examine the subset of vertices whosecorresponding labeling ofU is

consistent withL; if there is only one such vertex, then we predict forxt+1 the corresponding

label from that vertex; otherwise, if there are two such vertices, then they are adjacent in the

one-inclusion graph, and we choose the one toward which the edge is directed and use the label

for xt+1 in the corresponding labeling ofU as our prediction for the label ofxt+1. See [Haussler,

Littlestone, and Warmuth, 1994b] and subsequent work for detailed studies of the one-inclusion

graph prediction strategy.
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10.4.1 Learning with a Fixed Distribution

We begin the discussion with the simplest case: namely, when|D| = 1.

Definition 10.3. [Hanneke, 2007a, 2011] Define the disagreement coefficient of h∗ under a dis-

tribution P as

θP (ǫ) = sup
r>ǫ

P (DIS(BP (h
∗, r))) /r.

Theorem 10.4. For any distributionP on X , if D = {P}, then running CAL withA =

A1IG achieves expected mistake boundM̄T = O (d log(T )) and expected query bound̄QT =

O
(

θP (ǫT )d log
2(T )

)

, for ǫT = d log(T )/T .

For completeness, the proof is included in the supplementalmaterials.

10.4.2 Learning with a Drifting Distribution

We now generalize the above results to any sequence of distributions from a totally bounded

spaceD. Throughout this section, letθD(ǫ) = supP∈D θP (ǫ).

First, we prove a basic result stating that CAL can achieve a sublinear number of mistakes,

and under conditions on the disagreement coefficient, also asublinear number of queries.

Theorem 10.5.If D is totally bounded (Assumption 10.1), then CAL (withA any empirical risk

minimization algorithm) achieves an expected mistake bound M̄T = o(T ), and ifθD(ǫ) = o(1/ǫ),

then CAL makes an expected number of queriesQ̄T = o(T ).

Proof. As mentioned, given thaterQt−1(h
∗) = 0, we have thatY ′

t in Step 7 must equalh∗(Xt),

so that the invarianterQt(h
∗) = 0 is maintained for allt by induction. In particular, this implies

Qt = Zt for all t.

Fix anyǫ > 0, and enumerate the elements ofDǫ so thatDǫ = {P1, P2, . . . , P|Dǫ|}. For each

t ∈ N, let k(t) = argmink≤|Dǫ| ‖Pk −Dt‖, breaking ties arbitrarily. Let

L(ǫ) =

⌈

8√
ǫ

(

d ln

(

24√
ǫ

)

+ ln

(

4√
ǫ

))⌉

.
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For eachi ≤ |Dǫ|, if k(t) = i for infinitely manyt ∈ N, then letTi denote the smallest value of

T such that|{t ≤ T : k(t) = i}| = L(ǫ). If k(t) = i only finitely many times, then letTi denote

the largest indext for whichk(t) = i, orTi = 1 if no such indext exists.

LetTǫ = maxi≤|Dǫ| Ti andVǫ = C[ZTǫ ]. We have that∀t > Tǫ, diamt(Vǫ) ≤ diamk(t)(Vǫ)+ǫ.

For eachi, letLi be a sequence ofL(ǫ) i.i.d. pairs(X, Y ) with X ∼ Pi andY = h∗(X), and let

Vi = C[Li]. Then∀t > Tǫ,

E
[

diamk(t)(Vǫ)
]

≤ E
[

diamk(t)(Vk(t))
]

+
∑

s≤Ti:k(s)=k(t)

‖Ds−Pk(s)‖ ≤ E
[

diamk(t)(Vk(t))
]

+L(ǫ)ǫ.

By classic results in the theory of PAC learning [Anthony and Bartlett, 1999, Vapnik, 1982] and

our choice ofL(ǫ), ∀t > Tǫ,E
[

diamk(t)(Vk(t))
]

≤ √ǫ.

Combining the above arguments,

E

[

T
∑

t=1

diamt(C[Zt−1])

]

≤ Tǫ +
T
∑

t=Tǫ+1

E [diamt(Vǫ)] ≤ Tǫ + ǫT +
T
∑

t=Tǫ+1

E
[

diamk(t)(Vǫ)
]

≤ Tǫ + ǫT + L(ǫ)ǫT +
T
∑

t=Tǫ+1

E
[

diamk(t)(Vk(t))
]

≤ Tǫ + ǫT + L(ǫ)ǫT +
√
ǫT.

Let ǫT be any nonincreasing sequence in(0, 1) such that1≪ TǫT ≪ T . Since|Dǫ| <∞ for

all ǫ > 0, we must haveǫT → 0. Thus, noting thatlimǫ→0 L(ǫ)ǫ = 0, we have

E

[

T
∑

t=1

diamt(C[Zt−1])

]

≤ TǫT + ǫTT + L(ǫT )ǫTT +
√
ǫTT ≪ T. (10.1)

The result onM̄T now follows by noting that for anŷht−1 ∈ C[Zt−1] hasert(ĥt−1) ≤

diamt(C[Zt−1]), so

M̄T = E

[

T
∑

t=1

ert

(

ĥt−1

)

]

≤ E

[

T
∑

t=1

diamt(C[Zt−1])

]

≪ T.

Similarly, for r > 0, we have

P(RequestYt) = E [P(Xt ∈ DIS(C[Zt−1])|Zt−1)] ≤ E [P(Xt ∈ DIS(C[Zt−1] ∪ BDt(h
∗, r)))]

≤ E [θD(r) ·max {diamt(C[Zt−1]), r}] ≤ θD(r) · r + θD(r) · E [diamt(C[Zt−1])] .
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Letting rT = T−1
E

[

∑T
t=1 diamt(C[Zt−1])

]

, we see thatrT → 0 by (10.1), and sinceθD(ǫ) =

o(1/ǫ), we also haveθD(rT )rT → 0, so thatθD(rT )rTT ≪ T . Therefore,Q̄T equals

T
∑

t=1

P(RequestYt) ≤ θD(rT )·rT ·T+θD(rT )·E
[

T
∑

t=1

diamt(C[Zt−1])

]

= 2θD(rT )·rT ·T ≪ T.

We can also state a more specific result in the case when we havesome more detailed infor-

mation on the sizes of the finite covers ofD.

Theorem 10.6.If Assumption 10.2 is satisfied, then CAL (withA any empirical risk minimization

algorithm) achieves an expected mistake boundM̄T and expected number of queriesQ̄T such that

M̄T = O
(

T
m

m+1d
1

m+1 log2 T
)

andQ̄T = O
(

θD (ǫT )T
m

m+1d
1

m+1 log2 T
)

, whereǫT = (d/T )
1

m+1 .

Proof. Fix ǫ > 0, enumerateDǫ = {P1, P2, . . . , P|Dǫ|}, and for eacht ∈ N, definek(t) =

argmin1≤k≤|Dǫ| ‖Dt−Pk‖. Let{X ′
t}∞t=1 be a sequence of independent samples, withX ′

t ∼ Pk(t),

and letZ ′
t = {(X ′

1, h
∗(X ′

1)), . . . , (X
′
t, h

∗(X ′
t)}. Then

E

[

T
∑

t=1

diamt(C[Zt−1])

]

≤ E

[

T
∑

t=1

diamt(C[Z ′
t−1])

]

+
T
∑

t=1

‖Dt − Pk(t)‖

≤ E

[

T
∑

t=1

diamt(C[Z ′
t−1])

]

+ ǫT ≤
T
∑

t=1

E

[

diamPk(t)
(C[Z ′

t−1])
]

+ 2ǫT.

The classic convergence rates results from PAC learning [Anthony and Bartlett, 1999, Vapnik,

1982] imply

T
∑

t=1

E

[

diamPk(t)
(C[Z ′

t−1])
]

=
T
∑

t=1

O
(

d log t
|{i≤t:k(i)=k(t)}|

)

≤ O(d log T ) ·
T
∑

t=1

1
|{i≤t:k(i)=k(t)}| ≤ O(d log T ) · |Dǫ| ·

⌈T/|Dǫ|⌉
∑

u=1

1
u
≤ O

(

d|Dǫ| log2(T )
)

.

Thus,
∑T

t=1 E [diamt(C[Zt−1])] ≤ O
(

d|Dǫ| log2(T ) + ǫT
)

≤ O
(

d · ǫ−m log2(T ) + ǫT
)

.

Takingǫ = (T/d)−
1

m+1 , this isO
(

d
1

m+1 · T m
m+1 log2(T )

)

. We therefore have

M̄T ≤ E

[

T
∑

t=1

sup
h∈C[Zt−1]

ert(h)

]

≤ E

[

T
∑

t=1

diamt(C[Zt−1])

]

≤ O
(

d
1

m+1 · T m
m+1 log2(T )

)

.
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Similarly, lettingǫT = (d/T )
1

m+1 , Q̄T is at most

E

[

T
∑

t=1

Dt(DIS(C[Zt−1]))

]

≤ E

[

T
∑

t=1

Dt (DIS (BDt (h
∗,max {diamt(C[Zt−1]), ǫT})))

]

≤ E

[

T
∑

t=1

θD (ǫT ) ·max {diamt(C[Zt−1]), ǫT}
]

≤ E

[

T
∑

t=1

θD (ǫT ) · diamt(C[Zt−1])

]

+ θD (ǫT )TǫT ≤ O
(

θD (ǫT ) · d
1

m+1 · T m
m+1 log2(T )

)

.

We can additionally construct a lower bound for this scenario, as follows. SupposeC contains

a full infinite binary tree for which all classifiers in the tree agree on some point. That is, there is

a set of points{xb : b ∈ {0, 1}k, k ∈ N} such that, forb1 = 0 and∀b2, b3, . . . ∈ {0, 1}, ∃h ∈ C

such thath(x(b1,...,bj−1)) = bj for j ≥ 2. For instance, this is the case for linear separators (and

most other natural “geometric” concept spaces).

Theorem 10.7. For any C as above, for any active learning algorithm,∃ a setD satsifying

Assumption 10.2, a target functionh∗ ∈ C, and a sequence of distributions{Dt}Tt=1 in D such

that the achievedM̄T and Q̄T satisfyM̄T = Ω
(

T
m

m+1

)

, andM̄T = O
(

T
m

m+1

)

=⇒ Q̄T =

Ω
(

T
m

m+1

)

.

The proof is analogous to that of Theorem 10.17 below, and is therefore omitted for brevity.

10.5 Learning with Noise

In this section, we extend the above analysis to allow for various types of noise conditions com-

monly studied in the literature. For this, we will need to study a noise-robust variant of CAL,

below referred to as Agnostic CAL (or ACAL). We prove upper bounds achieved by ACAL, as

well as (non-matching) minimax lower bounds.

176



10.5.1 Noise Conditions

The following assumption may be referred to as astrictly benign noisecondition, which es-

sentially says the model is specified correctly in thath∗ ∈ C, and though the labels may be

stochastic, they are not completely random, but rather eachis slightly biased toward theh∗ label.

Assumption 10.8.h∗ = sign(η − 1/2) ∈ C and∀x, η(x) 6= 1/2.

A particularly interesting special case of Assumption 10.8is given by Tsybakov’s noise con-

ditions, which essentially control how common it is to haveη values close to1/2. Formally:

Assumption 10.9.η satisfies Assumption 10.8 and for somec > 0 andα ≥ 0,

∀t > 0, P (|η(x)− 1/2| < t) < c · tα.

In the setting of shifting distributions, we will be interested in conditions for which the above

assumptions are satisifed simultaneously for all distributions in D. We formalize this in the

following.

Assumption 10.10.Assumption 10.9 is satisfied for allD ∈ D, with the samec andα values.

10.5.2 Agnostic CAL

The following algorithm is essentially taken from [Dasgupta, Hsu, and Monteleoni, 2007a, Han-

neke, 2011], adapted here for this stream-based setting. Itis based on a subroutine: LEARN(L,Q) =

argmin
h∈C:êr(h;L)=0

êr(h;Q) if min
h∈C

êr(h;L) = 0, and otherwise LEARN(L,Q) = ∅.
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ACAL

1. t← 0, Lt ← ∅,Qt ← ∅, let ĥt be any element ofC

2. Do

3. t← t+ 1

4. PredictŶt = ĥt−1(Xt)

5. For eachy ∈ {−1,+1}, leth(y) = LEARN(Lt−1,Qt−1)

6. If eithery hash(−y) = ∅ or

êr(h(−y);Lt−1 ∪ Qt−1)− êr(h(y);Lt−1 ∪ Qt−1) > Êt−1(Lt−1,Qt−1)

7. Lt ← Lt−1 ∪ {(Xt, y)},Qt ← Qt−1

8. Else RequestYt, and letLt ← Lt−1,Qt ← Qt−1 ∪ {(Xt, Yt)}

9. Let ĥt = LEARN(Lt,Qt)

10. If t is a power of2

11. Lt ← ∅,Qt ← ∅

The algorithm is expressed in terms of a functionÊt(L,Q), defined as follows. Letδi

be a nonincreasing sequence of values in(0, 1). Let ξ1, ξ2, . . . denote a sequence of inde-

pendentUniform({−1,+1}) random variables, also independent from the data. ForV ⊆

C, let R̂t(V ) = suph1,h2∈V
1

t−2⌊log2(t−1)⌋
∑t

m=2⌊log2(t−1)⌋+1 ξm · (h1(Xm) − h2(Xm)), D̂t(V ) =

suph1,h2∈V
1

t−2⌊log2(t−1)⌋
∑t

m=2⌊log2(t−1)⌋+1 |h1(Xm)−h2(Xm)|, Ût(V, δ) = 12R̂t(V )+34
√

D̂t(V ) ln(32t
2/δ)

t
+

752 ln(32t2/δ)
t

. Also, for any finite setsL,Q ⊆ X × Y, let C[L] = {h ∈ C : êr(h;L) =

0}, Ĉ(ǫ;L,Q) = {h ∈ C[L] : êr(h;L ∪ Q) − ming∈C[L] êr(g;L ∪ Q) ≤ ǫ}. Then define

Ût(ǫ, δ;L,Q) = Ût(Ĉt(ǫ;L,Q), δ), and (lettingZǫ = {j ∈ Z : 2j ≥ ǫ})

Êt(L,Q) = inf

{

ǫ > 0 : ∀j ∈ Zǫ,min
m∈N

Ût(ǫ, δ⌊log(t)⌋;L,Q) ≤ 2j−4

}

.
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10.5.3 Learning with a Fixed Distribution

The following results essentially follow from [Hanneke, 2011], adapted to this stream-based

setting.

Theorem 10.11.For any strictly benign(P, η), if 2−2i ≪ δi ≪ 2−i/i, ACAL achieves an ex-

pected excess number of mistakesM̄T −M∗
T = o(T ), and ifθP (ǫ) = o(1/ǫ), then ACAL makes

an expected number of queriesQ̄T = o(T ).

Theorem 10.12.For any(P, η) satisfying Assumption 10.9, ifD = {P}, ACAL achieves an ex-

pected excess number of mistakesM̄T −M∗
T = Õ

(

d
1

α+2 · T α+1
α+2 log

(

1
δ⌊log(T )⌋

)

+
∑⌊log(T )⌋

i=0 δi2
i
)

.

and an expected number of queriesQ̄T = Õ
(

θP (ǫT ) · d
2

α+2 · T α
α+2 log

(

1
δ⌊log(T )⌋

)

+
∑⌊log(T )⌋

i=0 δi2
i
)

.

whereǫT = T− α
α+2 .

Corollary 10.13. For any(P, η) satisfying Assumption 10.9, ifD = {P} andδi = 2−i in ACAL,

the algorithm achieves an expected number of mistakesM̄T and expected number of queriesQ̄T

such that, forǫT = T− α
α+2 , M̄T−M∗

T = Õ
(

d
1

α+2 · T α+1
α+2

)

, andQ̄T = Õ
(

θP (ǫT ) · d
2

α+2 · T α
α+2

)

.

10.5.4 Learning with a Drifting Distribution

We can now state our results concerning ACAL, which are analogous to Theorems 10.5 and 10.6

proved earlier for CAL in the realizable case.

Theorem 10.14.If D is totally bounded (Assumption 10.1) andη satisfies Assumption 10.8, then

ACAL with δi = 2−i achieves an excess expected mistake boundM̄T − M∗
T = o(T ), and if

additionallyθD(ǫ) = o(1/ǫ), then ACAL makes an expected number of queriesQ̄T = o(T ).

The proof of Theorem 10.14 essentially follows from a combination of the reasoning for

Theorem 10.5 and Theorem 10.15 below. Its proof is omitted.

Theorem 10.15.If Assumptions 10.2 and 10.10 are satisfied, then ACAL achieves an expected

excess number of mistakes̄MT − M∗
T = Õ

(

T
(α+2)m+1
(α+2)(m+1) log

(

1
δ⌊log(T )⌋

)

+
∑⌊log(T )⌋

i=0 δi2
i
)

, and

an expected number of queries̄QT = Õ
(

θD(ǫT )T
(α+2)(m+1)−α
(α+2)(m+1) log

(

1
δ⌊log(T )⌋

)

+
∑⌊log(T )⌋

i=0 δi2
i
)

,

whereǫT = T− α
(α+2)(m+1) .
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The proof of this result is in many ways similar to that given above for the realizable case,

and is included among the supplemental materials.

We immediately have the following corollary for a specificδi sequence.

Corollary 10.16. With δi = 2−i in ACAL, the algorithm achieves expected number of mistakes

M̄ and expected number of queriesQ̄T such that, forǫT = T− α
(α+2)(m+1) ,

M̄T −M∗
T = Õ

(

T
(α+2)m+1
(α+2)(m+1)

)

andQ̄T = Õ
(

θD(ǫT ) · T
(α+2)(m+1)−α
(α+2)(m+1)

)

.

Just as in the realizable case, we can also state a minimax lower bound for this noisy setting.

Theorem 10.17.For anyC as in Theorem 10.7, for any active learning algorithm,∃ a setD

satisfying Assumption 10.2, a conditional distributionη, such that Assumption 10.10 is satisfied,

and a sequence of distributions{Dt}Tt=1 in D such that theM̄T andQ̄T achieved by the learning

algorithm satisfyM̄T − M∗
T = Ω

(

T
1+mα

α+2+mα

)

and M̄T −M∗
T = O

(

T
1+mα

α+2+mα

)

=⇒ Q̄T =

Ω
(

T
2+mα

α+2+mα

)

.

The proof is included in the supplemental material.

10.6 Querying before Predicting

One interesting alternative to the above framework is to allow the learner to make a label request

beforemaking its label predictions. From a practical perspective, this may be more desirable

and in many cases quite realistic. From a theoretical perspective, analysis of this alternative

framework essentially separates out the mistakes due to over-confidence from the mistakes due

to recognized uncertainty. In some sense, this is related tothe KWIK model of learning of [Li,

Littman, and Walsh, 2008].

Analyzing the above procedures in this alternative model yields several interesting details.

Specifically, consider the following natural modificationsto the above procedures. We refer to

the algorithm LAC as the same sequence of steps as CAL, except with Step 4 removed, and
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an additional step added after Step 8 as follows. In the case that we requested the labelYt, we

predictYt, and otherwise we predictĥt(Xt). Similarly, we define the algorithm ALAC as having

the same sequence of steps as ACAL, except with Step 4 removed,and an additional step added

after Step 11 as follows. In the case that we requested the label Yt, we predictYt, and otherwise

we predict̂ht(Xt).

The analysis of the number of queries made by LAC in this setting remains essentially un-

changed. However, if we consider running LAC in the realizable case, then the total number of

mistakes in the entire sequence will bezero. As above, for any example for which LAC does

not request the label, every classifier in the version space agrees with the target function’s label,

and therefore the inferred label will be correct. For any example that LAC requests the label of,

in the setting where queries are madebeforepredictions, we simply use the label itself as our

prediction, so that LAC certainly does not make a mistake in this case.

On the other hand, the the analysis of ALAC in this alternative setting when we have noisy

labels can be far more subtle. In particular, because the version space is only guaranteed to

contain the best classifierwith high confidence, there is still a small probability of making a

prediction that disagrees with the best classifierh∗ on each round that we do not request a label.

So controlling the number of mistakes in this setting comes down to controlling the probability of

removingh∗ from the version space. However, this confidence parameter appears in the analysis

of the number of queries, so that we have a natural trade-off between the number of mistakes and

the number of label requests.

Formally, for any given nonincreasing sequenceδi in (0, 1), under Assumptions 10.2 and

10.10, ALAC achieves an expected excess number of mistakesM̄T −M∗
T ≤

∑⌊log(T )⌋
i=1 δi2

i, and

an expected number of queriesQ̄T = Õ
(

θD(ǫT ) · T
(α+2)(m+1)−α
(α+2)(m+1) log

(

1
δ⌊log(T )⌋

)

+
∑⌊log(T )⌋

i=0 δi2
i
)

,

whereǫT = T− α
(α+2)(m+1) . In particular, given any nondecreasing sequenceMT , we can set this

δi sequence to maintain̄MT −M∗
T ≤MT for all T .
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10.7 Discussion

What is not implied by the results above is any sort oftrade-off between the number of mis-

takes and the number of queries. Intuitively, such a trade-off should exist; however, as CAL

lacks any parameter to adjust the behavior with respect to this trade-off, it seems we need a

different approach to address that question. In the batch setting, the analogous question is the

trade-off between the number of label requests and the number of unlabeled examples needed.

In the realizable case, that trade-off is tightly characterized by Dasgupta’ssplitting indexanal-

ysis [Dasgupta, 2005]. It would be interesting to determinewhether the splitting index tightly

characterizes the mistakes-vs-queries trade-off in this stream-based setting as well.

In the batch setting, in which unlabeled examples are considered free, and performance is

only measured as a function of the number of label requests, [Balcan, Hanneke, and Vaughan,

2010] have found that there is an important distinction between theverifiable label complexity

and theunverifiablelabel complexity. In particular, while the former is sometimes no better than

passive learning, the latter can always provide improvements for VC classes. Is there such a thing

as unverifiable performance measures in the stream-based setting? To be concrete, we have the

following open problem. Is there a method for every VC class that achievesO(log(T )) mistakes

ando(T ) queries in the realizable case?

10.8 Proof of Theorem 10.4

Proof of Theorem 10.4.First note that, by the assumption that∀t, ert(h∗) = 0, with probability

1 we have that∀t,Qt = Zt. Thus, since the stated bound on̄MT for the one-inclusion graph

algorithm has been established when using the true sequenceof labeled examplesZT [Haussler,

Littlestone, and Warmuth, 1994b], it must hold here as well.

The remainder of the proof focuses on the bound onQ̄T . This proof is essentially based on a

related proof of [Hanneke, 2011], but reformulated for thisstream-based model.
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Let Vt denote the set of classifiersh ∈ C with êr(h;Qt) = 0 (with V0 = C). Classic results

from statistical learning theory [Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989, Vapnik,

1982] imply that fort > d, with probability at least1− δ,

diamt(Vt−1) ≤ cd
log(2e(t− 1)/d) + log(4/δ)

t− 1
, (10.2)

for some universal constantc ∈ (1,∞).

In particular, ford < t ≤ T , since the probability CAL requests the labelYt is P (Xt ∈

DIS(Vt−1)), (10.2) implies that this probability satisfies

P (Xt ∈ DIS(Vt−1)) ≤ P

(

Xt ∈ DIS

(

BP

(

h∗, cd
log(2e(t− 1)/d) + log(4/δ)

t− 1

)))

+ δ

≤ θP (d log(T )/T ) cd
log(2e(t− 1)/d) + log(4/δ)

t− 1
+ δ.

Takingδ = d/(t− 1), this implies

P (Xt ∈ DIS(Vt−1)) ≤ θP (d log(T )/T ) 2cd
log(8e(t− 1)/d)

t− 1
.

Thus, forT > d,

Q̄T =
T
∑

t=1

P (Xt ∈ DIS(Vt−1)) ≤ d+ 1 +
T−1
∑

t=d+1

θP (d log(T )/T ) 2cd
log(8et/d)

t

≤ d+ 1 + θP (d log(T )/T ) 2cd log(8eT/d)

∫ T

d

1

t
dt

= d+ 1 + θP (d log(T )/T ) 2cd log(8eT/d) log(T/d).

10.9 Proof of Theorem 10.15

The following lemma is similar to a result proven by [Hanneke, 2011], based on the work of

[Koltchinskii, 2006], except here we have adapted the result to the present setting with changing

distributions. The proof is essentially identical to the proof of the original result of [Hanneke,

2011], and is therefore omitted here.
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Lemma 10.18. [Hanneke, 2011] Supposeη satisfies Assumption 10.8. For everyi ∈ N, on an

eventEi with P(Ei) ≥ 1− δi, ∀t ∈ {2i + 1, . . . , 2i+1}, letting t(i) = t− 2i,

• êr(h∗;Lt−1) = 0,

• ∀h ∈ C s.t. êr(h;Lt−1) = 0 and êr(h;Lt−1 ∪ Qt−1)− êr(h∗;Lt−1 ∪ Qt−1) ≤ Êt−1(Lt−1,Qt−1),

we haveēr2i+1:t−1(h)− ēr2i+1:t−1(h
∗) ≤ 2Êt−1(Lt−1,Qt−1),

• if Assumption 10.10 is satisifed,Êt−1(Lt−1,Qt−1) ≤ K̃ ·
(

d log(t(i)/δi)

t(i)

)
α+1
α+2

,

for some(c, α)-dependent constant̃K ∈ (1,∞).

We can now prove Theorem 10.15.

Proof of Theorem 10.15.Fix any i ∈ N, and we will focus on bounding the expected excess

number of mistakes and expected number of queries for the valuest ∈ {2i + 1, . . . , 2i+1}. The

result will then follow from this simply by summing this overvalues ofi ≤ log(T ).

The predictions fort ∈ {2i + 1, . . . , 2i+1} are made bŷht−1. Lemma 10.18 implies that with

probability at least1 − δi, everyt ∈ {2i + 1, . . . , 2i+1} has∀h ∈ C[Lt−1] with êr(h;Lt−1 ∪

Qt−1)− êr(h∗;Lt−1 ∪ Qt−1) ≤ Êt−1(Lt−1,Qt−1) (and therefore in particular for̂ht−1)

t−1
∑

s=2i+1

ers(h)− ers(h
∗) ≤ K1 · (t− 2i) ·

(

d log((t− 2i)/δi)

t− 2i

)
α+1
α+2

≤ K1 · t
1

α+2 · (d log(t/δi))
α+1
α+2 . (10.3)

for some finite constantK1.

Fix some valueǫ > 0, and enumerate the elements ofDǫ = {P1, P2, . . . , P|Dǫ|}. Then let

Dǫ,k = {P ∈ D : k = argminj≤|Dǫ| ‖Pj − P‖}, breaking ties arbitrarily in theargmin. This

induces a (Voronoi) partition{Dǫ,k : k ≤ |Dǫ|} of D.

Rewriting (10.3) in terms of this partition, we have

|Dǫ|
∑

k=1

∑

s∈{2i+1,...,t−1}:
Ds∈Dǫ,k

ers(h)− ers(h
∗) ≤ K1 · (t)

1
α+2 · (d log(t/δi)) .
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This means that, for anyk ≤ |Dǫ|, we have

(erPk
(h)− erPk

(h∗)) ·
∣

∣

{

s ∈ {2i + 1, . . . , t− 1} : Ds ∈ Dǫ,k

}∣

∣

+
t−1
∑

s=2i+1

(ers(h)− ers(h
∗)) · ID\Dǫ,k

(Ds)

≤ K1 · (t)
1

α+2 · (d log(t/δi)) + 2ǫ
∣

∣

{

s ∈ {2i + 1, . . . , t− 1} : Ds ∈ Dǫ,k

}∣

∣ .

Abbreviating byk(s) the value ofk ≤ |Dǫ| with Ds ∈ Dǫ,k, we have that

ert(h)− ert(h
∗)

≤ 2ǫ+ erPk(t)
(h)− erPk(t)

(h∗)

≤ 2ǫ+
2ǫ |{s ∈ {2i + 1, . . . , t− 1} : k(s) = k(t)}|+K1 · (t)

1
α+2 · (d log(t/δi))

max {1, |{s ∈ {2i + 1, . . . , t− 1} : k(s) = k(t)}|}

≤ 4ǫ+
2K1 · (t)

1
α+2 · (d log(t/δi))

|{s ∈ {2i + 1, . . . , t} : k(s) = k(t)}| . (10.4)

Applying (10.4) simultaneously for allt ∈ {2i + 1, . . . , 2i+1} for h = ĥt−1, we have

M̄T −M∗
T ≤ 4ǫT +

⌊log(T )⌋
∑

i=0

2iδi+

2K1 · T
1

α+2 · log(T )
(

d log(T/δ⌊log(T )⌋)
)

⌊log(T )⌋
∑

i=0

|Dǫ|
∑

k=1

|{t∈{2i+1,...,2i+1}:k(t)=k}|
∑

u=1

1

u

≤ 4ǫT +

⌊log(T )⌋
∑

i=0

2iδi+

2K1 · T
1

α+2 · log(T )
(

d log(T/δ⌊log(T )⌋)
)

log2(2T )|Dǫ|.

= O



ǫT + ǫ−mT
1

α+2d log3(T ) log(1/δ⌊log(T )⌋) +

⌊log(T )⌋
∑

i=0

2iδi



 .

Takingǫ = T− α+1
(α+2)(m+1) , this shows that

M̄T −M∗
T = O



T
(α+2)m+1
(α+2)(m+1)d log3(T ) log(1/δ⌊log(T )⌋) +

⌊log(T )⌋
∑

i=0

δi2
i



 .
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We can boundQ̄T in a similar fashion as follows. Fix anyi ≤ log(T ). Lemma 10.18

implies that with probability at least1 − δi, for every t ∈ {2i + 1, . . . , 2i+1}, letting Ēt =

4ǫ+
2K1·t

1
α+2 d log(t/δ⌊log(t)⌋)

|{s∈{2i+1,...,t}:k(s)=k(t)}| , we have

P(requestYt|Lt−1,Qt−1)

≤ P

(

Xt ∈ DIS
(

{h ∈ C[Lt−1] : êr(h;Lt−1 ∪ Qt−1)− êr(h∗;Lt−1 ∪ Qt−1) ≤ Êt−1(Lt−1,Qt−1)}
) ∣

∣

∣Lt−1,Qt−1

)

≤ P
(

Xt ∈ DIS
(

{h ∈ C : ert(h)− ert(h
∗) ≤ Ēt}

))

≤ P

(

Xt ∈ DIS
({

h ∈ C : Pt(x : h(x) 6= h∗(x)) ≤ K2 · Ē
α

α+1

t

}))

≤ θD

(

Ē

α
α+1

t

)

·K3 · Ē
α

α+1

t ,

where the third inequality above is due to Assumption 10.10.

Applying this simultaneously to alli ≤ log(T ) and t ∈ {2i + 1, . . . , 2i+1}, we have, for

ǭT = ǫ+ T−α+1
α+2 ,

Q̄T ≤
⌊log(T )⌋
∑

i=0

δi2
i + θD

(

ǭ
α

α+1

T

)

K4d log(T/δ⌊log(T )⌋)

⌊log(T )⌋
∑

i=0

|Dǫ|
∑

k=1

|{t∈{2i+1,...,2i+1}:k(t)=k}|
∑

u=1

(

max

{

ǫ, T
1

α+2
1

u

}) α
α+1

≤
⌊log(T )⌋
∑

i=0

δi2
i + θD

(

ǭ
α

α+1

T

)

·K5 · d log(1/δ⌊log(T )⌋) log
2(T ) ·

(

ǫ
α

α+1T + |Dǫ|T
α

(α+2)(α+1)

(

T

|Dǫ|

) 1
α+1

)

= O





⌊log(T )⌋
∑

i=0

δi2
i + θD

(

ǭ
α

α+1

T

)

log(1/δ⌊log(T )⌋) log
2(T ) ·

(

ǫ
α

α+1T + ǫ−m α
α+1T

2
α+2

)



 .

Takingǫ = ǫ
α+1
α

T = T− α+1
(α+2)(m+1) , we have

Q̄T = O





⌊log(T )⌋
∑

i=0

δi2
i + θD (ǫT ) log(1/δ⌊log(T )⌋) log

2(T ) · T
(α+2)(m+1)−α
(α+2)(m+1)



 .

10.10 Proof of Theorem 10.17

Proof of Theorem 10.17.Fix anyT ∈ N, and any particular active learning algorithmA. We

construct a set of distributions tailored for these, as follows. Letκ = (α + 1)/α. Let ǫ =
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T− κ
2κ−1+m ,M = T

m
2κ+m−1 = ǫ−m/κ, andK = T

2κ−1
2κ+m−1 = T/M .

Inductively define a sequence{bk}∞k=1 as follows. Letb1 = 0, b2 = 1. For any integerk ≥ 3,

given that values ofb1, b2, . . . , bk−1, η3, . . . , ηk−1, D3, . . . Dk−1, andX1, X2, . . . , X(k−3)K have

already been defined, it is known [Hanneke, 2011] that for anyactive learning algorithm (possibly

randomized) there exists a valuebk such that, for the distributionDk with Dk({xb1,b2,...,bk−1
}) =

ǫ1/κ = 1−Dk({xb1}), there is a label distributionηk(x) = P (Y = 1|X = x) havingηk(xb1) = 1

and inducingh∗(xb1,b2,...,bk−1
) = bk, which also satisfies Tsybakov noise with parametersc andα

under distributionDk: namely,ηk(xb1,b2,...,bk−1
) = 1

2

(

1 + (2bk − 1)ǫ
κ−1
κ

)

. Furthermore, [Han-

neke, 2011] shows that thisbk can be chosen so that, for someN = Ω
(

ǫ
2
κ
−2
)

, after observing

any number fewer thanN random labeled observations(X, Y ) with X = xb1,b2,...,bk−1
, if ĥn is

the algorithm’s hypothesis, thenE[er(ĥn) − er(h∗)] > ǫ, where the error rate is evaluated under

ηk andDk. In particular, this means that if the unlabeled samples aredistributed according to

Dk, then with any fewer thanN label requests, the expected excess error rate will be greater

thanǫ. But this also means that with any fewer thanΩ(ǫ−1/κN) = Ω(ǫ
1
κ
−2) = Ω(K) unlabeled

examples sampled according toDk, the expected excess error rate will be greater thanǫ.

Thus, to define the valuebk given the already-defined valuesb1, b2, . . . , bk−1, we consider

X(k−3)K+1,X(k−3)K+2, . . .,X(k−2)K i.i.d. Dk, independent from the otherX1, . . . , X(k−3)K vari-

ables, and consider the values ofbk andηk mentioned above, but defined for the active learning

algorithm that feeds the streamX1, X2, . . . , X(k−3)K intoA before feeding in the samples from

Dk. Thus, in this perspective, theseX1, X2, . . . , X(k−3)K random variables, and their labels

(whichA may request), are consideredinternal random variables in this active learning algo-

rithm we have defined. This completes the inductive definition.

Now for the original learning problem we are interested in, we take as our fixed label distribu-

tion anη with η(xb1) = 1 and∀k ≥ 2, η(xb1,b2,...,bk−1
) = ηk(xb1,b2,...,bk−1

), and defined arbitrariliy

elsewhere. Thus, for anyDk, this satisfies Tsybakov noise with the givenc andα parameters.

We define the familyD of distributions as{D3, , D4, . . . , DM+2} for M = T
m

2κ+m−1 = ǫ−m/κ
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as above. Since theseDi are each separated by distance exactlyǫ1/κ, D satisfies the constraint on

its cover sizes.

The sequence of data points will be theX1, X2, . . . , XT sequence defined above, and the

corresponding sequence of distributions hasD1 = D2 = · · · = DK = D3, DK+1 = DK+2 =

· · · = D2K = D4, and so on, up toD(M−1)K+1 = D(M−1)K+2 = · · · DT = DM+2.

Now applying the stated result of [Hanneke, 2011] used in thedefinition of the sequence, for

any1 ≤ t ≤ min{ǫ−1/κN,K}, and anyk < M , denoting bŷhkK+t−1 the classifier produced by

A after processingkK+t−1 examples from this stream,E
[

erDkK+t
(ĥkK+t−1)

]

−erDkK+t
(h∗) >

ǫ = T− κ
2κ+m−1 .

Sincemin{ǫ−1/κN,K} = Ω(K), the expected excess number of mistakes is

M̂T −M∗
T =

M−1
∑

k=0

K
∑

t=1

E

[

erDkK+t
(ĥkK+t−1)

]

− erDkK+t
(h∗)

≥
M−1
∑

k=0

min{ǫ−1/κN,K}
∑

t=1

E

[

erDkK+t
(ĥkK+t−1)

]

− erDkK+t
(h∗) ≥

M−1
∑

k=0

min{ǫ−1/κN,K}
∑

t=1

ǫ

= Ω(M ·K · ǫ) = Ω
(

M · (T/M) · T− κ
2κ+m−1

)

= Ω
(

T
κ+m−1
2κ+m−1

)

.

Similarly, applying the stated result of [Hanneke, 2011] regarding the number of samples

of labels for the pointxb1,b2,...,bk−1
to achieve excess errorǫ being larger thanN , we see that in

order to achieve thiŝMT −M∗
T = O

(

T
κ+m−1
2κ+m−1

)

, we need that at least some constant fraction

of theseM segments receive an expected number of queriesΩ(N), so that we will need̂QT =

Ω(M ·N) = Ω
(

T
2κ+m−2
2κ+m−1

)

.
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Chapter 11

Active Learning with a Drifting Target

Concept

Abstract

1 This chapter describes results on learning in the presence of a drifting target concept. Specif-

ically, we provide bounds on the expected number of mistakeson a sequence of i.i.d. points,

labeled according to a target concept that can change by a given amount on each round. Some

of the results also describe an active learning variant of this setting, and provide bounds on the

number of queries for the labels of points in the sequence sufficient to obtain the stated bounds

on the number of mistakes.

11.1 Introduction

At this time, the work on active learning has focused on learning settings in which the concept

to be learned is static over time. However, in many real-world applications, such as webpage

classification, spam filtering, and face recognition, the data distribution and the concept itself

1This chapter is based on joint work with Steve Hanneke and Varun Kanade.
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change over time. Our existing work in the previous chapter addresses the problem of active

learning with a drifting distribution, providing theoretical guarantees on the number of mistakes

and label requests made by a particular active learning algorithm in a stream-based learning set-

ting. However, that work left open the question of a driftingtarget concept. To bridge this gap,

we propose to study the problem of active learning (and passive learning) with a drifting target

concept. Specifically, consider a statistical learning setting, in which data arrive i.i.d. in a stream,

and for each data point the learner is required to predict a label for the data point at that time,

and then optionally request the true (target) label of that point. We are then interested in making

a small number of queries and mistakes (including mistakes on unqueried labels) as a function

of the number of points processed so far at any given time. Thetarget labels are generated from

a function known to reside in a given concept space, and at each time the target function is al-

lowed to change by a distanceǫ (that is, the probability the new target function disagreeswith

the old target function on a random sample is at mostǫ). The recent work of [Koby Crammer

and Vaughan, 2010] studies this problem in the context of passive learning of linear separators.

In this theoretical study, we intend to broaden the scope of that work, to other concept spaces

and distributions, improve the guarantees on performance,establish lower bounds on achievable

performance, and extend the framework to study the number oflabels requested by an active

learning algorithm while maintaining the performance guarantees established for passive learn-

ing. In particular, we will be interested in bounding the number of queries and mistakes made

by a particular algorithm, as a function ofǫ, the VC dimension of the concept space, and the

number of time steps so far. We will also consider variants ofthis in whichǫ is also allowed to

change over time, and then the bounds on the number of mistakes and queries should depend on

the sequence ofǫ values.
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11.2 Definitions and Notations

Formally, in this setting, there is a sequence of data i.i.d.unlabeled dataX1, X2, . . ., each with

marginal distributionP over the instance spaceX . There is also a sequence of target functions

h∗1, h
∗
2, . . . in C, with P(x : h∗t (x) 6= h∗t+1(x)) ≤ ǫt+1 for eacht ∈ N. Eacht has an associated

target labelYt = h∗t (Xt). A predictionŶt is counted as a “mistake” if̂Yt 6= Yt. We suppose

eachh∗t is chosen independently fromXt, Xt+1, . . . (i.e., h∗t is chosen prior to the “draw” of

Xt, Xt+1, . . . ∼ P). For the purposes of the results below, we do not necessarily requireh∗t to be

independent fromX1, . . . , Xt−1. Additionally, for anyx ∈ (0,∞), defineLog(x) = ln(x) ∨ 1.

11.3 General Analysis under Constant Drift Rate: Inefficient

Passive Learning

The following Lemma is due to [Vapnik and Chervonenkis, 1971].

Lemma 11.1. There exists a universal constantc ∈ [1,∞) such that, for any classC of VC

dimensiond, ∀m ∈ N ∀δ ∈ (0, 1), with probability at least1− δ, everyh, g ∈ C have

∣

∣

∣

∣

∣

P(x : h(x) 6= g(x))− 1

m

m
∑

t=1

I[h(Xt) 6= g(Xt)]

∣

∣

∣

∣

∣

≤ c

√

√

√

√

(

1

m

m
∑

t=1

I[h(Xt) 6= g(Xt)]

)

d log(m/d) + log(1/δ)

m
+ c

d log(m/d) + log(1/δ)

m
.

Consider the following algorithm.

0. Predict arbitrary valueŝY1, . . . , Ŷm for Y1, . . . , Ym, respectively.

1. ForT = m+ 1,m+ 2, . . .

2. Let ĥT = ERM(C, {(XT−m, YT−m), . . . , (XT−1, YT−1)})

3. PredictŶT = ĥT (XT ) as the prediction for the value ofYT

The bound in the following theorem is a generalization of onegiven by [Koby Crammer and

Vaughan, 2010] for finite concept classes (which they claimed could be extended to spaces of
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infinite VC dimension, presumably yielding something resembling the result stated here).

Theorem 11.2. If everyǫt = ǫ, for some constant valueǫ ∈ (0, 1), then the above algorithm,

with m = ⌊
√

d/ǫ⌋, makes an expected number of mistakes among the firstT instances that is

O(
√
dǫ log(1/dǫ)T ).

Proof. The statement is trivial for anyǫ ≥ 1/(ed), so supposeǫ < 1/(ed). Let us bound

ert(ĥt) := P(x : ĥt(x) 6= h∗t (x)) for an arbitraryt > m. By a Chernoff bound, with probability

at least1− δ,

1

m

t−1
∑

i=t−m

I[h∗t−m(Xi) 6= h∗i (Xi)] ≤
log2(1/δ) + 2em2ǫ

m
≤ (2 log2(1/δ) + 2ed)

√

ǫ/d.

In particular, this means

1

m

t−1
∑

i=t−m

I[ĥt(Xi) 6= h∗t−m(Xi)] ≤ 2(2 log2(1/δ) + 2ed)
√

ǫ/d.

By Lemma 11.1, on an additional event of probability at least1− δ,

P(x : ĥt(x) 6= h∗t−m(x))

≤ 2(2 log2(1/δ)+2ed)
√

ǫ/d+c

√

2(2 log2(1/δ) + 2ed)
√

ǫ/d(d log(1/
√
dǫ) + log(1/δ))2

√

ǫ/d

+ c(d log(1/
√
dǫ) + log(1/δ))2

√

ǫ/d.

Takingδ =
√
dǫ, this is at most

2
√
dǫ
(

(
√

1/d log2(1/dǫ) + 2e) + 2c
√

1/d log2(1/dǫ) + 2c
√

2e log(1/dǫ) + c log(1/dǫ)
)

≤ 14(c+ 1)
√
dǫ log(1/dǫ)

Since this holds with probability1− 2δ = 1− 2
√
dǫ, andert(ĥt) ≤ 1 always, we have

E

[

ert(ĥt)
]

≤ P(x : ĥt(x) 6= h∗t−m(x)) + P(x : h∗t−m(x) 6= h∗t (x))

≤ 14(c+ 1)
√
dǫ log(1/dǫ) + 2

√
dǫ+mǫ ≤ (14c+ 17)

√
dǫ log(1/dǫ).
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Therefore,

E

[

T
∑

t=1

I[ĥt(Xt) 6= h∗t (Xt)]

]

≤ m+ (14c+ 17)
√
dǫ log(1/dǫ)(T −m) = O(

√
dǫ log(1/dǫ)T ).

It may be possible to remove thelog(1/dǫ) factor in some cases (e.g., homogeneous half-

spaces under a uniform distribution on the sphere); it’s notyet clear whether or not it should

sometimes belong there in the optimal number of mistakes.

11.4 General Analysis under Constant Drift Rate: Sometimes-

Efficient Passive Learning

The following method is often (though certainly not always)computationally efficient. For in-

stance, it is efficient for linear separators.

0. Let ĥ0 be an arbitrary classifier inC

1. ForT = 1, 2, . . .

2. If T > m⌈log2(1/ǫ)⌉, letmT ∈ {m, . . . ,m⌈log2(1/ǫ)⌉} be minimal s.t.

minh∈C
∑T−mT+m−1

t=T−mT
I[h(Xt) 6= Yt] = 0 (if it exists)

3. If mT exists, let̂hT = argminh∈C
∑T−mT+m−1

t=T−mT
I[h(Xt) 6= Yt]

4. Else let̂hT = ĥT−1

5. PredictŶT = ĥT (XT ) as the prediction for the value ofYT

Theorem 11.3. If everyǫt = ǫ, for some constant valueǫ ∈ (0, 1), then the above algorithm,

with m =
⌊

1
2
√
ǫ⌈log2(1/ǫ)⌉

⌋

, makes an expected number of mistakes among the firstT instances

that isO(d
√
ǫ log2(1/ǫ)T ).

Proof. The statement is trivial for anyǫ ≥ 1/(ed)2, so supposeǫ < 1/(ed)2. Let us bound

E[ert(ĥt)] := E[P(x : ĥt(x) 6= h∗t (x))] for an arbitraryt > m log2(1/
√
ǫ).
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Fix anyM ∈ {m, . . . ,m⌈log2(1/ǫ)⌉}. By a Chernoff bound, with probability at least1 −

ǫ/(m⌈log2(1/ǫ)⌉),

1

m

t−M+m−1
∑

k=t−M

I[h∗t−m⌈log2(1/ǫ)⌉(Xk) 6= h∗k(Xk)] ≤
1

m
log2((m⌈log2(1/ǫ)⌉)/ǫ) + 2eǫ⌈log2(1/ǫ)⌉m.

Combined with Lemma 11.1, this implies that with probabilityat least1 − 2ǫ/(m⌈log2(1/ǫ)⌉),

for anyh ∈ C with
t−M+m−1
∑

k=t−M

I[h(Xk) 6= h∗k(Xk)] = 0,

it must have

1

m

t−M+m−1
∑

k=t−M

I[h∗t−m⌈log2(1/ǫ)⌉(Xk) 6= h(Xk)] ≤
1

m
log2((m⌈log2(1/ǫ)⌉)/ǫ) + 2eǫ⌈log2(1/ǫ)⌉m,

and therefore

P(x : h(x) 6= h∗t−m⌈log2(1/ǫ)⌉(x))

≤
(

1

m
log2((m⌈log2(1/ǫ)⌉)/ǫ) + 2eǫ⌈log2(1/ǫ)⌉m

)

+ c

√

(

1

m
log2((m⌈log2(1/ǫ)⌉)/ǫ) + 2eǫ⌈log2(1/ǫ)⌉m

)

d log(m/d) + log((m⌈log2(1/ǫ)⌉)/ǫ)
m

+ c
d log(m/d) + log((m⌈log2(1/ǫ)⌉)/ǫ)

m

≤ 19
√
ǫ log22(1/ǫ) + 12c

√
dǫ log22(1/ǫ) + 24cd

√
ǫ log22(1/ǫ)

≤ 55cd
√
ǫ log22(1/ǫ).

If this is the case, then

ert(h) ≤ P(x : h∗t−m⌈log2(1/ǫ)⌉(x) 6= ht(x)) + P(x : h(x) 6= h∗t−m⌈log2(1/ǫ)⌉(x))

≤ ǫm⌈log2(1/ǫ)⌉+ 55cd
√
ǫ log22(1/ǫ)

≤ 56cd
√
ǫ log22(1/ǫ).

Thus, by a union bound, with probability at least1− 2ǫ, if mt exists, then

ert(ĥt) ≤ 56cd
√
ǫ log22(1/ǫ).
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For any giveni ∈ {1, . . . , ⌈log2(1/ǫ)⌉}, by a union bound, the probability that

t−m(i−1)−1
∑

k=t−mi

I[h∗t−m⌈log2(1/ǫ)⌉(Xk) 6= h∗k(Xk)] > 0

is at mostǫ⌈log2(1/ǫ)⌉m2 < 1/2. Since these sums are independent over values ofi, we have

that with probability at least1 − ǫ, at least one of these values ofi ∈ {1, . . . , ⌈log2(1/ǫ)⌉} will

have
∑t−m(i−1)−1

k=t−mi I[h∗t−m⌈log2(1/ǫ)⌉(Xk) 6= h∗k(Xk)] = 0. In particular, on this event, this implies

mt exists in Step 2.

Altogether, sinceert(ĥt) ≤ 1 always, we have

E[ert(ĥt)] ≤ 56cd
√
ǫ log22(1/ǫ) + 3ǫ ≤ 59cd

√
ǫ log22(1/ǫ).

Therefore,

E

[

T
∑

t=1

I

[

ĥt(Xt) 6= h∗t (Xt)
]

]

≤ m⌈log2(1/ǫ)⌉+ 59cd
√
ǫ log22(1/ǫ)T = O

(

d
√
ǫ log2(1/ǫ)T

)

.

11.4.1 Lower Bounds

In this section, we establish a lower bound on the number of mistakes that can be achieved when

the target function may drift byǫ, at each step.

Thresholds

For simplicity, we first consider the case where the distribution is uniform over[−1, 1], and the

concept class is threshold functions. Between each time-step the threshold may move to the left

or right byǫ.

Theorem 11.4.For any ǫ < 1/16, any algorithm for learning under drifting targets makes at

least
√
ǫT/4e in expectation.
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Proof. Consider the following strategy that the adversary uses to define the drifting thresholds.

For simplicity assume that2/
√
ǫ is an even integer andT is divisible by2/

√
ǫ. The game is

divided intok = T/(2/
√
ǫ) epochs, each consisting of2/

√
ǫ time steps. We have the following:

• At the beginning of each epoch, the threshold is at0. The adverary tosses an unbiased

coin.

• If the outcome is heads, for the next1/
√
ǫ time-steps, the threshold increase byǫ at each

time-step. Then for the next1/
√
ǫ it decreases byǫ at each time-step. Thus, at the begin-

ning of the next epoch, the threshold is again at0.

• If the outcome is tails, the adversary first decreases the threshold byǫ for the first1/
√
ǫ

time-steps; then increases again. Thus, in either case, at the end of the epoch the threshold

is again at0.

We first assume that the algorithm knows the strategy of the adversary (but not the coin

tosses). This can only make the algorithm more powerful. Since at the end of each epoch, the

algorithm knows exactly where the threshold is, the total (expected) number of mistakes isk

times the expected number of mistakes in each epoch. Withoutloss of generality consider the

first epoch,i.e., time-steps1 to 2/
√
ǫ. For t <

√
t, letZt denote the random variable that is1 if

at time-stept, the random examplext is inside the interval[−ǫt, ǫt]. Note thatPr[Zt = 1] = ǫt.

Let Mt denote the random variable that is1 if the algorithm makes a mistake at time-stept

and0 otherwise. (Here the expectation is over the randomness of the examples as well as the

adversary’s coin toss). Then, consider the following:

E[Mt | Z1 = 0, . . . , Zt−1 = 0, Zt = 1] =
1

2

This is because, the only information the algorithm has at this time is that the threshold is either

at−ǫt or ǫt, each with equal probability. Therefore,

E[Mt] ≥
ǫt(1−√ǫ)t−1

2
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Let S = 1/
√
ǫ. Then, the expected number of mistakes between the time-steps 1 to S is

E[
∑S

t=1Mt] =
∑S

t=1 E[Mt]. Then, we have

S
∑

t=1

E[Mt] ≥
1

2

S
∑

t=1

ǫt(1−√ǫ)t−1

Using the fact that
∑S

t=1 tx
t−1 ≥ (1− xS)/(1− x) for small enoughx, we get

S
∑

t=1

E[Mt] ≥
ǫ

2
· 1− (1−√ǫ)S
(1− (1−√ǫ))2

≥ 1

2e

In the last line we used the fact that(1 − x)1/x ≤ 1/e. Now, it must be the case that the total

(expected) number of mistakes is at leastk/2e =
√
ǫT/(4e).

Halfspaces

Now consider the case whereX = R
k for k ∈ N, and where the concept spaceC is the set of

halfspaces (linear separators): that is, for everyh ∈ C, ∃w ∈ R
k andb ∈ R such that∀x ∈ R

k,

h(x) = +1 iff w · x+ b ≥ 0. In this case, we have the following result.

Theorem 11.5.For anyk ∈ N, forX = R
k andC the class of halfspaces onRk, for anyǫ < 1/k,

for any algorithm for learning underǫ-drifting targets, there exists a distributionP overRk and

a sequence ofǫ-drifting (w.r.t. P) targetsh∗1, h
∗
2, . . . in C such that, for anyT ∈ N, the expected

number of mistakes made by the algorithm among the firstT rounds is at least
√
ǫkT/8.

Proof. Consider the distributionP that is uniform over the set

k
⋃

i=1

{0}i−1 × [0, 1]× {0}k−i :

that is,P is uniform in[0, 1] along each of the axes. Now, by the probabilistic method, it suffices

to show that there exists a way to randomly set the sequence oftarget functions so that the ex-

pected number of mistakes is at least the stated lower bound.We will choose the target functions
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from among the subset ofC consisting of halfspaces whose respective separating hyperplanes

intersection allk axes in[0, 1]: that is,∀i ≤ k, {x : w ·x+b = 0}∩({0}i−1×[0, 1]×{0}k−i) 6= ∅.

Note that each halfspace of this type can be specified byk values,(z1, . . . , zk), corresponding

to thek intersection values with the axes: that is,∀i ≤ k, thex ∈ {0}i−1 × [0, 1] × {0}k−i has

xi = zi ∈ [0, 1].

Consider the following strategy that the adversary uses to define the drifting targets. For sim-

plicity assume that2
√

k/ǫ is an even integer andT is divisible by2
√

k/ǫ. The game is divided

into ℓ = T/(2
√

k/ǫ) epochs, each consisting of2
√

k/ǫ time steps. We have the following:

• At the beginning of each epoch, the target function haszi = 1/2 for all i ≤ k. The adverary

tossesk unbiased coinsc1, . . . , ck.

• For eachi ≤ k, if the outcome of tossingci is heads, for the next
√

k/ǫ time-steps, the

value ofzi is increased byǫ at each time-step, and then for the following
√

k/ǫ time-steps

it decreases byǫ. Thus, at the beginning of the next epoch, the target once again has

zi = 1/2 for all i ≤ k.

• For eachi, if the outcome ofci is tails, the adversary first decreases the value ofzi by ǫ

for the next
√

k/ǫ time-steps, and then increases again byǫ on each round. Thus, in either

case, at the end of the epoch the target again has∀i ≤ k, zi = 1/2.

We first assume that the algorithm knows the strategy of the adversary (but not the coin

tosses). This can only make the algorithm more powerful. Since at the end of each epoch, the

algorithm knows exactly where the threshold is, the total (expected) number of mistakes isℓ

times the expected number of mistakes in each epoch. Withoutloss of generality consider the

first epoch,i.e., time-steps1 to 2
√

k/ǫ. For t ≤
√

k/ǫ andi ≤ k, let Zit denote the random

variable that is1 if at time-stept, theith coordinate of the random variablext is inside the interval

[1/2 − ǫt, 1/2 + ǫt]. Note thatPr[Zit = 1] = 2ǫt/k. Let Mt denote the random variable that

is 1 if the algorithm makes a mistake at time-stept and0 otherwise. (Here the expectation is

over the randomness of the examples as well as the adversary’s coin tosses). Then, consider the
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following:

E[Mt | Zi1 = 0, . . . , Zi(t−1) = 0, Zit = 1] =
1

2
.

For anyi ≤ k, if any Zit = 1 for t ≤
√

k/ǫ, then there must exist a first sucht, in which case

the above equality holds at that timet. Therefore,

E







√
k/ǫ
∑

t=1

Mt






≥

k
∑

i=1

1

2
P

(

∃t ≤
√

k/ǫ : Zit = 1
)

=
k

2






1−

√
k/ǫ
∏

t=1

(1− 2ǫt/k)







≥ k

2






1− exp











−2(ǫ/k)

√
k/ǫ
∑

t=1

t
















≥ k

2

(

1− e−1
)

≥ k/4.

Now, it must be the case that the total (expected) number of mistakes is at leastℓk/4 = T
√
ǫk/8.

11.4.2 Random Drifts

In this section, we consider a very simple case of “random drift”. We consider the class of

homogeneous linear separators inR
2, sayC2 and letµ be any radially symmetric measure onR2.

We show a simple lower bound that the achievable target driftrate in this setting isO(ǫ2/3T ).

Proposition 11.6. LetC2 be the class of homogeneous linear separators inR
2 and letµ be any

radially symmetric measure onR2. Then, ifc1, c2, . . . , cT is a (random) sequence of concepts

fromC2, whereci+1 is chosen uniformly at random from one of the two concepts inC2, such that

errµ(ci, ci+1) = ǫ. Then, for any algorithm the expected number of mistakes isΩ(ǫ2/3T ). (Here

the expectation is taken over the randomness of the sequenceci and the examples drawn fromµ.)

Proof. This follows from the anti-concentration of the standard random walk.

Proposition 11.7. Under conditions of the above proposition – the algorithm above achieves a

mistake bound ofO(ǫ2/3T ).
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Proof. The main idea is that because of random drift, the expected number of examples that are

consistent with a fixed classifier is actually1/ǫ1/3, instead of1/
√
ǫ.

11.5 Linear Separators under the Uniform Distribution

For the special case of learning linear separators inR
k, the results of Section 11.4 imply that

it is possible to achieve an expected number of mistakes and queriesÕ(d
√
ǫT ) among the first

T instances, using an algorithm that runs in timepoly(d, 1/ǫ) (and independent ofT ) for each

prediction. In the special case of learning homogeneous linear separators under the uniform

distribution on a unit sphere, it is possible to improve thisresult; specifically, we show there exists

an efficient algorithm that achieves a bound on the expected number of mistakes and queries that

is Õ(
√
dǫT ), as was possible with the inefficient algorithm of Section 11.3. The technique is

based on a modification of the algorithm presented in Section11.3, replacing ERM with (a

modification of) the computationally-efficient algorithm of [Awasthi, Balcan, and Long, 2013].

Formally, define the class of homogeneous linear separatorsas the set of classifiershw :

R
d → {−1,+1}, for w ∈ R

d with ‖w‖ = 1, such thathw(x) = sign(w · x) for everyx ∈ R
d.

We have the following result.

Theorem 11.8.WhenC is the space of homogeneous linear separators (withd ≥ 4) andP

is the uniform distribution on the surface of the origin-centered unit sphere inRd, whenǫt =

ǫ > 0 (constant) for allt ∈ N, there is an algorithm that runs in timepoly(d, 1/ǫ) for each

prediction, which makes an expected number of mistakes amongthe firstT instances that is

O
(√

ǫd log3/2
(

1
ǫd

)

T
)

. Furthermore, the expected number of labels requested by the algorithm

among the firstT instances isO
(√

ǫd log3/2
(

1
ǫd

)

T
)

.

Before stating the proof, we have a few additional definitionsand lemmas that will be needed.

For τ > 0 andx ∈ R, defineℓτ (x) = max
{

0, 1− x
τ

}

. Consider the following algorithm and

subroutine; parametersδk, mk, τk, rk, bk, α, andκ will all be specified below; we suppose

M =
∑⌈log2(1/α)⌉

k=0 mk.
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Algorithm: DriftingHalfspaces

0. Let ŵ0 be an arbitrary element ofRd with ‖ŵ0‖ = 1

1. Fori = 1, 2, . . .

2. ABL(M(i− 1))

Subroutine:ModPerceptron(t)

0. Letwt be any element ofRd with ‖wt‖ = 1

1. Form = t+ 1, t+ 2, . . . , t+m0

2. PredictŶm = hwm−1(Xm) as the prediction for the value ofYm

3. Request the labelYm

4. If Ŷm 6= Ym

5. wm ← wm−1 − 2(wm−1 ·Xm)Xm

6. Elsewm ← wm−1

7. Returnwt+m0

Subroutine:ABL(t)

0. Letw0 be the return value ofModPerceptron(t)

1. Fork = 1, 2, . . . , ⌈log2(1/α)⌉

2. Wk ← {}

3. Fors = t+
∑k−1

j=0 mj + 1, . . . , t+
∑k

j=0mj

4. PredictŶs = hwk−1
(Xs) as the prediction for the value ofYs

5. If |wk−1 ·Xs| ≤ bk−1, Request the labelYs

6. and letWk ← Wk ∪ {(Xs, Ys)}

7. Findvk ∈ R
d with ‖vk − wk−1‖ ≤ rk, 0 < ‖vk‖ ≤ 1, and

8.
∑

(x,y)∈Wk

ℓτk(y(vk · x)) ≤ inf
v:‖v−wk−1‖≤rk

∑

(x,y)∈Wk

ℓτk(y(v · x)) + κ|Wk|

9. Letwk =
1

‖vk‖vk

The following result forModPerceptron was proven by [Koby Crammer and Vaughan,

2010].

Lemma 11.9. Supposeǫ < 1
512

. Consider the valueswm obtained during the execution of

201



ModPerceptron(t). ∀m ∈ {t + 1, . . . , t +m0}, P(x : hwm(x) 6= h∗m(x)) ≤ P(x : hwm−1(x) 6=

h∗m(x)). Furthermore, lettingc1 = π2

d·400·215 , if P(x : hwm−1(x) 6= h∗m(x)) ≥ 1/32, then with

probability at least1/64, P(x : hwm(x) 6= h∗m(x)) ≤ (1− c1)P(x : hwm−1(x) 6= h∗m(x)).

This implies the following.

Lemma 11.10.Supposeǫ ≤ π2

400·227d . For m0 = max
{⌈

512 ln
(

1√
dǫ

)⌉

, ⌈128(1/c1) ln(32)⌉
}

,

with probability at least1 −
√
dǫ, ModPerceptron(t) returns a vectorw with P(x : hw(x) 6=

h∗t+m0+1(x)) ≤ 1/16.

Proof. By Lemma 11.9 and a union bound, in general we have

P(x : hwm(x) 6= h∗m+1(x)) ≤ P(x : hwm−1(x) 6= h∗m(x)) + ǫ. (11.1)

Furthermore, ifP(x : hwm−1(x) 6= h∗m(x)) ≥ 1/32, then wth probability at least1/64,

P(x : hwm(x) 6= h∗m+1(x)) ≤ (1− c1)P(x : hwm−1(x) 6= h∗m(x)) + ǫ. (11.2)

In particular, this implies that the numberN of valuesm ∈ {t + 1, . . . , t + m0} with either

P(x : hwm−1(x) 6= h∗m(x)) < 1/32 or P(x : hwm(x) 6= h∗m+1(x)) ≤ (1 − c1)P(x : hwm−1(x) 6=

h∗m(x)) + ǫ is lower-bounded by aBinomial(m, 1/64) random variable. Thus, a Chernoff bound

implies that with probability at least1 − exp{−m0/512} ≥ 1 −
√
dǫ, we haveN ≥ m0/128.

Suppose this happens.

Sinceǫm0 ≤ 1/32, if anym ∈ {t + 1, . . . , t +m0} hasP(x : hwm−1(x) 6= h∗m(x)) < 1/32,

then inductively applying (11.1) impliesP(x : hwt+m0
(x) 6= h∗t+m0+1(x)) ≤ 1/32+ǫm0 ≤ 1/16.

On the other hand, if allm ∈ {t+ 1, . . . , t+m0} haveP(x : hwm−1(x) 6= h∗m(x)) ≥ 1/32, then

in particular we haveN values ofm ∈ {t + 1, . . . , t + m0} satisfying (11.2). Combining this

fact with (11.1) inductively, we have that

P(x : hwt+m0
(x) 6= h∗t+m0+1(x)) ≤ (1− c1)NP(x : hwt(x) 6= h∗t+1(x)) + ǫm0

≤ (1− c1)(1/c1) ln(32)P(x : hwt(x) 6= h∗t+1(x)) + ǫm0 ≤
1

32
+ ǫm0 ≤

1

16
.
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Next, we consider the execution ofABL(t), and let the setsWk be as in that execution. We

will denote byw∗ the weight vector with‖w∗‖ = 1 such thath∗t+m0+1 = hw∗ . Also denote by

M1 =M −m0.

The proof relies on a few results proven in the work of [Awasthi, Balcan, and Long, 2013],

which we summarize in the following lemmas. Although the results were proven in a slightly

different setting in that work (namely, agnostic learning under a fixed joint distribution), one can

easily verify that their proofs remain valid in our present context as well.

Lemma 11.11. [Awasthi, Balcan, and Long, 2013] Fix anyk ∈ {1, . . . , ⌈log2(1/α)⌉}. Suppose

bk−1 = c72
1−k/
√
d for a universal constantc7 > 0, and letzk =

√

r2k/(d− 1) + b2k−1. For a

universal constantc1 > 0, if ‖w∗ − wk−1‖ ≤ rk,

∣

∣

∣

∣

∣

∣

E





∑

(x,y)∈Wk

ℓτk(|w∗ · x|)
∣

∣

∣
wk−1, |Wk|



− E





∑

(x,y)∈Wk

ℓτk(y(w
∗ · x))

∣

∣

∣
wk−1, |Wk|





∣

∣

∣

∣

∣

∣

≤ c1|Wk|
√

2kǫM1
zk
τk
.

Lemma 11.12. [Balcan and Long, 2013] For anyc > 0, there is a constantc′ > 0 depending

only onc (i.e., not depending ond) such that, for anyu, v ∈ R
d with ‖u‖ = ‖v‖ = 1, letting

∆ = P(x : hu(x) 6= hv(x)), if ∆ < 1/2, then

P
(

x : hu(x) 6= hv(x) and|v · x| ≥ c′
∆√
d

)

≤ c∆.

The following is a well-known lemma concerning concentration around the equator for the

uniform distribution (see e.g., [Awasthi, Balcan, and Long,2013, Balcan, Broder, and Zhang,

2007b, Dasgupta, Kalai, and Monteleoni, 2009]); for instance, it easily follows from the formulas

for the area in a spherical cap derived by [Li, 2011].

Lemma 11.13.For any constantC > 0, there are constantsc2, c3 > 0 depending only onC

(i.e., independent ofd) such that, for anyw ∈ R
d with ‖w‖ = 1, ∀γ ∈ [0, C/

√
d],

c2γ
√
d ≤ P (x : |w · x| ≤ γ) ≤ c3γ

√
d.

203



Based on this lemma, [Awasthi, Balcan, and Long, 2013] prove the following.

Lemma 11.14. [Awasthi, Balcan, and Long, 2013] ForX ∼ P, for anyw ∈ R
d with ‖w‖ = 1,

for anyC > 0 andτ, b ∈ [0, C/
√
d], for c2, c3 as in Lemma 11.13,

E

[

ℓτ (|w∗ ·X|)
∣

∣

∣
|w ·X| ≤ b

]

≤ c3τ

c2b
.

The following is a slightly stronger version of a result of [Awasthi, Balcan, and Long, 2013]

(specifically, the size ofmk, and consequently the bound on|Wk|, are both improved by a factor

of d compared to the original result).

Lemma 11.15.Fix any δ ∈ (0, 1/e). For universal constantsc4, c5, c6, c7, c8, c9, c10 ∈ (0,∞),

for an appropriate choice ofκ ∈ (0, 1) (a universal constant), ifα = c9

√

ǫd log
(

1
κδ

)

, for

everyk ∈ {1, . . . , ⌈log2(1/α)⌉}, if bk−1 = c72
1−k/
√
d, τk = c82

−k/
√
d, rk = c102

−k, δk =

δ/(⌈log2(4/α)⌉ − k)2, andmk =
⌈

c5
2k

κ2d log
(

1
κδk

)⌉

, and if P(x : hwk−1
(x) 6= hw∗(x)) ≤

2−k−3, then with probability at least1 − (4/3)δk, |Wk| ≤ c6
1
κ2d log

(

1
κδk

)

andP(x : hwk
(x) 6=

hw∗(x)) ≤ 2−k−4.

Proof. By Lemma 11.13, and a Chernoff and union bound, for an appropriately large choice of

c5 and anyc7 > 0, letting c2, c3 be as in Lemma 11.13 (withC = c7 ∨ (c8/2)), with probability

at least1− δk/3,

c2c72
−kmk ≤ |Wk| ≤ 4c3c72

−kmk. (11.3)

The claimed upper bound on|Wk| follows from this second inequality.

Next note that, ifP(x : hwk−1
(x) 6= hw∗(x)) ≤ 2−k−3, then

max{ℓτk(y(w∗ · x)) : x ∈ R
d, |wk−1 · x| ≤ bk−1, y ∈ {−1,+1}} ≤ c11

√
d

for some universal constantc11 > 0. Furthermore, sinceP(x : hwk−1
(x) 6= hw∗(x)) ≤ 2−k−3,

we know that the angle betweenwk−1 andw∗ is at most2−k−3π, so that

‖wk−1 − w∗‖ =
√

2− 2wk−1 · w∗ ≤
√

2− 2 cos(2−k−3π)

≤
√

2− 2 cos2(2−k−3π) =
√
2 sin(2−k−3π) ≤ 2−k−3π

√
2.
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Forc10 = π
√
22−3, this isrk. By Hoeffding’s inequality (under the conditional distribution given

|Wk|), the law of total probability, Lemma 11.11, and linearity of conditional expectations, with

probability at least1− δk/3, forX ∼ P,

∑

(x,y)∈Wk

ℓτk(y(w
∗ · x)) ≤ |Wk|E

[

ℓτk(|w∗ ·X|)
∣

∣

∣wk−1, |wk−1 ·X| ≤ bk−1

]

+ c1|Wk|
√

2kǫM1
zk
τk

+
√

|Wk|(1/2)c211d ln(3/δk). (11.4)

We bound each term on the right hand side separately. By Lemma 11.14, the first term is at most

|Wk| c3τk
c2bk−1

= |Wk| c3c82c2c7
. Next,

zk
τk

=

√

c2102
−2k/(d− 1) + 4c272

−2k/d

c82−k/
√
d

≤
√

2c210 + 4c27
c8

,

while 2k ≤ 2/α so that the second term is at most

√
2c1

√

2c210 + 4c27
c8

|Wk|
√

ǫm

α
.

Noting that

M1 =

⌈log2(1/α)⌉
∑

k′=1

mk′ ≤
32c5
κ2

1

α
d log

(

1

κδ

)

, (11.5)

we find that the second term on the right hand side of (11.4) is at most

√

c5
c9

8c1
κ

√

2c210 + 4c27
c8

|Wk|

√

ǫd log
(

1
κδ

)

α2
=

8c1
√
c5

κ

√

2c210 + 4c27
c8c9

|Wk|.

Finally, sinced ln(3/δk) ≤ 2d ln(1/δk) ≤ 2κ2

c5
2−kmk, and (11.3) implies2−kmk ≤ 1

c2c7
|Wk|, the

third term on the right hand side of (11.4) is at most

|Wk|
c11κ√
c2c5c7

.

Altogether, we have

∑

(x,y)∈Wk

ℓτk(y(w
∗ · x)) ≤ |Wk|

(

c3c8
2c2c7

+
8c1
√
c5

κ

√

2c210 + 4c27
c8c9

+
c11κ√
c2c5c7

)

.
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Takingc9 = 1/κ3 andc8 = κ, this is at most

κ|Wk|
(

c3
2c2c7

+ 8c1
√
c5

√

2c210 + 4c27 +
c11√
c2c5c7

)

.

Next, note that becausehwk
(x) 6= y ⇒ ℓτk(y(vk · x)) ≥ 1, and because (as proven above)

‖w∗ − wk−1‖ ≤ rk,

|Wk|erWk
(hwk

) ≤
∑

(x,y)∈Wk

ℓτk(y(vk · x)) ≤
∑

(x,y)∈Wk

ℓτk(y(w
∗ · x)) + κ|Wk|.

Combined with the above, we have

|Wk|erWk
(hwk

) ≤ κ|Wk|
(

1 +
c3

2c2c7
+ 8c1

√
c5

√

2c210 + 4c27 +
c11√
c2c5c7

)

.

Let c12 = 1 + c3
2c2c7

+ 8c1
√
c5
√

2c210 + 4c27 +
c11√
c2c5c7

. Furthermore,

|Wk|erWk
(hwk

) =
∑

(x,y)∈Wk

I[hwk
(x) 6= y]

≥
∑

(x,y)∈Wk

I[hwk
(x) 6= hw∗(x)]−

∑

(x,y)∈Wk

I[hw∗(x) 6= y].

For an appropriately large value ofc5, by a Chernoff bound, with probability at least1− δk/3,

t+
∑k

j=0 mj
∑

s=t+
∑k−1

j=0 mj+1

I[hw∗(Xs) 6= Ys] ≤ 2eǫM1mk + log2(3/δk).

In particular, this implies

∑

(x,y)∈Wk

I[hw∗(x) 6= y] ≤ 2eǫM1mk + log2(3/δk),

so that

∑

(x,y)∈Wk

I[hwk
(x) 6= hw∗(x)] ≤ |Wk|erWk

(hwk
) + 2eǫM1mk + log2(3/δk).

Noting that (11.5) and (11.3) imply

ǫM1mk ≤ ǫ
32c5
κ2

d log
(

1
κδ

)

c9

√

ǫd log
(

1
κδ

)

2k

c2c7
|Wk| ≤

32c5
c2c7c9κ2

√

ǫd log

(

1

κδ

)

2k|Wk|

=
32c5

c2c7c29κ
2
α2k|Wk| =

32c5κ
4

c2c7
α2k|Wk| ≤

32c5κ
4

c2c7
|Wk|,
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and (11.3) implieslog2(3/δk) ≤ 2κ2

c2c5c7
|Wk|, altogether we have

∑

(x,y)∈Wk

I[hwk
(x) 6= hw∗(x)] ≤ |Wk|erWk

(hwk
) +

64ec5κ
4

c2c7
|Wk|+

2κ2

c2c5c7
|Wk|

≤ κ|Wk|
(

c12 +
64ec5κ

3

c2c7
+

2κ

c2c5c7

)

.

Letting c13 = c12 +
64ec5
c2c7

+ 2
c2c5c7

, and notingκ ≤ 1, we have
∑

(x,y)∈Wk
I[hwk

(x) 6= hw∗(x)] ≤

c13κ|Wk|.

Lemma 11.1 (applied under the conditional distribution given |Wk|) and the law of total

probability imply that with probability at least1− δk/3,

|Wk|P
(

x : hwk
(x) 6= hw∗(x)

∣

∣

∣
|wk−1 · x| ≤ bk−1

)

≤
∑

(x,y)∈Wk

I[hwk
(x) 6= hw∗(x)] + c14

√

|Wk|(d log(|Wk|/d) + log(1/δk)),

for a universal constantc14 > 0. Combined with the above, and the fact that (11.3) implies

log(1/δk) ≤ κ2

c2c5c7
|Wk| and

d log(|Wk|/d) ≤ d log





8c3c5c7 log
(

1
κδk

)

κ2





≤ d log

(

8c3c5c7
κ3δk

)

≤ 3 log(8max{c3, 1}c5)c5d log
(

1

κδk

)

≤ 3 log(8max{c3, 1})κ22−kmk ≤
3 log(8max{c3, 1})

c2c7
κ2|Wk|,

we have

|Wk|P
(

x : hwk
(x) 6= hw∗(x)

∣

∣

∣|wk−1 · x| ≤ bk−1

)

≤ c13κ|Wk|+ c14

√

|Wk|
(

3 log(8max{c3, 1})
c2c7

κ2|Wk|+
κ2

c2c5c7
|Wk|

)

= κ|Wk|



c13 + c14

√

3 log(8max{c3, 1})
c2c7

+
1

c2c5c7



 .

Thus, lettingc15 =

(

c13 + c14

√

3 log(8max{c3,1})
c2c7

+ 1
c2c5c7

)

, we have

P
(

x : hwk
(x) 6= hw∗(x)

∣

∣

∣|wk−1 · x| ≤ bk−1

)

≤ c15κ. (11.6)
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Next, note that‖vk−wk−1‖ =
√

‖vk‖2 + 1− 2‖vk‖ cos(πP(x : hwk
(x) 6= hwk−1

(x))). Thus,

one implication of the fact that‖vk − wk−1‖ ≤ rk is that ‖vk‖
2

+
1−r2k
2‖vk‖ ≤ cos(πP(x : hwk

(x) 6=

hwk−1
(x))); since the left hand side is positive, we haveP(x : hwk

(x) 6= hwk−1
(x)) < 1/2. Addi-

tionally, by differentiating, one can easily verify that for φ ∈ [0, π], x 7→
√

x2 + 1− 2x cos(φ) is

minimized atx = cos(φ), in which case
√

x2 + 1− 2x cos(φ) = sin(φ). Thus,‖vk − wk−1‖ ≥

sin(πP(x : hwk
(x) 6= hwk−1

(x))). Since‖vk − wk−1‖ ≤ rk, we havesin(πP(x : hwk
(x) 6=

hwk−1
(x))) ≤ rk. Sincesin(πx) ≥ x for all x ∈ [0, 1/2], combining this with the fact (proven

above) thatP(x : hwk
(x) 6= hwk−1

(x)) < 1/2 impliesP(x : hwk
(x) 6= hwk−1

(x)) ≤ rk.

In particular, we have that bothP(x : hwk
(x) 6= hwk−1

(x)) ≤ rk andP(x : hw∗(x) 6=

hwk−1
(x)) ≤ 2−k−3 ≤ rk. Now Lemma 11.12 implies that, for any universal constantc > 0,

there exists a corresponding universal constantc′ > 0 such that

P
(

x : hwk
(x) 6= hwk−1

(x) and|wk−1 · x| ≥ c′
rk√
d

)

≤ crk

and

P
(

x : hw∗(x) 6= hwk−1
(x) and|wk−1 · x| ≥ c′

rk√
d

)

≤ crk,

so that (by a union bound)

P
(

x : hwk
(x) 6= hw∗(x) and|wk−1 · x| ≥ c′

rk√
d

)

≤ P
(

x : hwk
(x) 6= hwk−1

(x) and|wk−1 · x| ≥ c′
rk√
d

)

+ P
(

x : hw∗(x) 6= hwk−1
(x) and|wk−1 · x| ≥ c′

rk√
d

)

≤ 2crk.

In particular, lettingc7 = c′c10/2, we havec′ rk√
d
= bk−1. Combining this with (11.6), Lemma 11.13,
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and a union bound, we have that

P (x : hwk
(x) 6= hw∗(x))

≤ P (x : hwk
(x) 6= hw∗(x) and|wk−1 · x| ≥ bk−1) + P (x : hwk

(x) 6= hw∗(x) and|wk−1 · x| ≤ bk−1)

≤ 2crk + P
(

x : hwk
(x) 6= hw∗(x)

∣

∣

∣|wk−1 · x| ≤ bk−1

)

P (x : |wk−1 · x| ≤ bk−1)

≤ 2crk + c15κc3bk−1

√
d =

(

25cc10 + c15κc3c72
5
)

2−k−4.

Takingc = 1
26c10

andκ = 1
26c3c7c15

, we haveP(x : hwk
(x) 6= hw∗(x)) ≤ 2−k−4, as required.

By a union bound, this occurs with probability at least1− (4/3)δk.

Proof of Theorem 11.8.If ǫ > π2

400·227d , the result trivially holds, since thenT ≤ 400·227
π2

√
ǫdT .

Otherwise, supposeǫ ≤ π2

400·227d .

Fix anyi ∈ N. Lemma 11.10 implies that, with probability at least1−
√
ǫd, thew0 returned

in Step 0 ofABL(M(i− 1)) satisfiesP(x : hw0(x) 6= h∗M(i−1)+m0+1(x)) ≤ 1/16. Taking this as

a base case, Lemma 11.15 (withδ =
√
ǫd) then inductively implies that, with probability at least

1−
√
ǫd−

⌈log2(1/α)⌉
∑

k=1

(4/3)

√
ǫd

(⌈log2(4/α)⌉ − k)2

≥ 1−
√
ǫd

(

1 + (4/3)
∞
∑

ℓ=2

1

ℓ2

)

≥ 1− 2
√
ǫd,

everyk ∈ {0, 1, . . . , ⌈log2(1/α)⌉} has

P(x : hwk
(x) 6= h∗M(i−1)+m0+1(x)) ≤ 2−k−4, (11.7)

and furthermore the number of labels requested duringABL(M(i − 1)) total to at most (for

appropriate universal constantsĉ1, ĉ2)

m0 +

⌈log2(1/α)⌉
∑

k=1

|Wk| ≤ ĉ1



d+ ln

(

1

ǫd

)

+

⌈log2(1/α)⌉
∑

k=1

d log

(

(⌈log2(4/α)⌉ − k)2√
ǫd

)





≤ ĉ2d log
2

(

1

ǫd

)

.
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In particular, by a union bound, (11.7) implies that for every k ∈ {1, . . . , ⌈log2(1/α)⌉}, every

m ∈
{

M(i− 1) +
∑k−1

j=0 mj + 1, . . . ,M(i− 1) +
∑k

j=0mj

}

has

P(x : hwk−1
(x) 6= h∗m(x))

≤ P(x : hwk−1
(x) 6= h∗M(i−1)+m0+1(x)) + P(x : h∗M(i−1)+m0+1(x) 6= h∗m(x))

≤ 2−k−3 + ǫM.

Thus, noting that

M =

⌈log2(1/α)⌉
∑

k=0

mk = Θ



d+ log

(

1

ǫd

)

+

⌈log2(1/α)⌉
∑

k=1

2kd log

(

1

ǫd

)





= Θ

(

1

α
d log

(

1

ǫd

))

= Θ

(
√

d

ǫ
log

(

1

ǫd

)

)

,

we have that the expected number of labels requested among{yM(i−1)+1, . . . , yMi} is at most

ĉ2d log
2

(

1

ǫd

)

+ 2
√
ǫdM = O

(√
ǫd log3/2

(

1

ǫd

)

M

)

,

and the expected number of mistaken predictions among points{xM(i−1)+1, . . . , xMi} is at most

2
√
ǫdM + (1− 2

√
ǫd)



m0 +

⌈log2(1/α)⌉
∑

k=1

(2−k−3 + ǫM)mk





= O

(√
ǫdM + d log2

(

1

ǫd

)

+ ǫM2

)

= O

(√
ǫd log3/2

(

1

ǫd

)

M

)

.

These imply that the expected number of labels requested among{y1, . . . , yT}, for any given

T , is at most

O

(√
ǫd log3/2

(

1

ǫd

)

M

⌈

T

M

⌉)

= O

(√
ǫd log3/2

(

1

ǫd

)

T

)

,

and the expected number of mistaken predictions among points{x1, . . . , xT} is at most

O

(√
ǫd log3/2

(

1

ǫd

)

M

⌈

T

M

⌉)

= O

(√
ǫd log3/2

(

1

ǫd

)

T

)

.
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Remark: The original work of [Koby Crammer and Vaughan, 2010] additionally allowed for

some numberK of “jumps”: timest at whichǫt = 1. Note that, in the above algorithm, since the

influence of each sample is localized to the predictors trained within that “batch” ofM instances,

the effect of allowing such jumps would only change the boundon the number of mistakes to

Õ
(√

dǫT +
√

d
ǫ
K
)

. This compares favorably to the result of [Koby Crammer and Vaughan,

2010], which is roughlyO
(

(dǫ)1/4T + d1/4

ǫ3/4
K
)

. However, the result of [Koby Crammer and

Vaughan, 2010] was proven for a slightly more general setting, allowing distributionsP that

are not quite uniform (though they do require a relation between the angle between any two

separators and the probability mass they disagree on, similar to that holding for the uniform

distribution, which seems to require the distributions arenot too far from uniform). It is not clear

whether Theorem 11.8 can be generalized to this larger family of distributions.

11.6 General Analysis of Sublinear Mistake Bounds: Passive

Learning

First, consider the following general lemma.

Lemma 11.16.Supposeǫt → 0. Then there exists an increasing sequence{Ti}∞i=1 in N with

T1 = 1 such thatlimi→∞ Ti+1 − Ti =∞ while limi→∞
∑Ti+1−1

t=Ti
ǫt = 0.

Proof. LetT1 = 1, T2 = 2, andγ2 = ǫ1. Inductively, for eachi > 2, if
∑Ti−1+2(Ti−1−Ti−2)−1

t=Ti−1
ǫt ≤

γi−1/2, setTi = Ti−1 + 2(Ti−1 − Ti−2) andγi =
∑Ti−1

t=Ti−1
ǫt; otherwise, setTi = Ti−1 + (Ti−1 −

Ti−2) andγi = γi−1. Since any fixed valuek ∈ N haslimT→∞
∑T+k

t=T ǫt = 0, we know there

exist an infinite number of valuesi ∈ N with γi ≤ γi−1/2, at which point we then also have

Ti − Ti−1 = 2(Ti−1 − Ti−2) > Ti−1 − Ti−2; together these facts imply the stated properties.

SupposeC is the concept space, and thatC has finite VC dimensiond. Consider the following

passive learning algorithm, based on the sequnceTi implied by Lemma 11.16.
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0. Let ĥ1 be any element ofC

1. Fori = 1, 2, . . .

2. Fort = Ti, . . . , Ti+1 − 1

3. PredictŶt = ĥi(Xt) as the prediction for the value ofYt

4. Let ĥi+1 = ERM(C, {(XTi
, YTi

), . . . , (XTi+1−1, YTi+1−1)})
Theorem 11.17.If ǫt → 0, and{Ti}∞i=1 is the sequence guaranteed to exist by Lemma 11.16,

then the above algorithm has an expected cumulative number of mistakeso(T ).

Proof. Consider any valuei ∈ N, and lethi+1 = h∗Ti+1
. By a Chernoff bound, with probability

at least1− 1/(Ti+1 − Ti),
Ti+1−1
∑

t=Ti

I[hi+1(Xt) 6= h∗t (Xt)] ≤ log2(Ti+1 − Ti) + 2e

Ti+1
∑

t=Ti+1

Ti+1
∑

k=t

ǫk.

Furthermore, standard VC analysis implies that, with probability at least1 − 1/(Ti+1 − Ti),

∀h, g ∈ C,

Ti+1−1
∑

t=Ti

I[h(Xt) 6= g(Xt)] ≥ (Ti+1 − Ti)P(x : h(x) 6= g(x))− c
√

(d log(Ti+1 − Ti))(Ti+1 − Ti),

for some numerical constantc > 0. Thus, on these events, anyh ∈ C with P(x : h(x) 6=

hi+1(x)) > 2
log2(Ti+1−Ti)+2e

∑Ti+1
t=Ti+1

∑Ti+1
k=t ǫk

Ti+1−Ti
+ c
√

d log(Ti+1−Ti)
Ti+1−Ti

must have

Ti+1−1
∑

t=Ti

I[h(Xt) 6= h∗t (Xt)]

≥
Ti+1−1
∑

t=Ti

I[h(Xt) 6= hi+1(Xt)]−
Ti+1−1
∑

t=Ti

I[hi+1(Xt) 6= h∗t (Xt)]

> log2(Ti+1 − Ti) + 2e

Ti+1
∑

t=Ti+1

Ti+1
∑

k=t

ǫk

≥
Ti+1−1
∑

t=Ti

I[hi+1(Xt) 6= h∗t (Xt)]

≥
Ti+1−1
∑

t=Ti

I[ĥi+1(Xt) 6= h∗t (Xt)].
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Therefore, by a union bound, with probability at least1− 2/(Ti+1 − Ti),

P(x : ĥi+1(x) 6= hi+1(x)) ≤ 2
log2(Ti+1 − Ti) + 2e

∑Ti+1

t=Ti+1

∑Ti+1

k=t ǫk

Ti+1 − Ti
+ c

√

d log(Ti+1 − Ti)
Ti+1 − Ti

,

so that

E

[

P(x : ĥi+1(x) 6= hi+1(x))
]

≤ 2
log2(Ti+1 − Ti) + 2e

∑Ti+1

t=Ti+1

∑Ti+1

k=t ǫk

Ti+1 − Ti
+ c

√

d log(Ti+1 − Ti)
Ti+1 − Ti

+
2

Ti+1 − Ti
.

Denote bypi+1 the value on the right hand side of this inequality. SinceTi+1 − Ti → ∞

and 1
Ti+1−Ti

∑Ti+1

t=Ti+1

∑Ti+1

k=t ǫk ≤
∑Ti+1

t=Ti+1 ǫt → 0 (guaranteed by Lemma 11.16), we have

limi→∞ pi+1 = 0. SinceE[
∑Ti+2−1

t=Ti+1
I[hi+1(Xt) 6= h∗t (Xt)]] ≤

∑Ti+2−1
t=Ti+1+1

∑t
k=Ti+1+1 ǫk, we

have

E





Ti+2−1
∑

t=Ti+1

I[ĥi+1(Xt) 6= h∗t (Xt)]





≤ E





Ti+2−1
∑

t=Ti+1

I[ĥi+1(Xt) 6= hi+1(Xt)]



+ E





Ti+2−1
∑

t=Ti+1

I[hi+1(Xt) 6= h∗t (Xt)]





≤ (Ti+2 − Ti+1)E[P(x : ĥi+1(x) 6= hi+1(x))] +

Ti+2−1
∑

t=Ti+1+1

t
∑

k=Ti+1+1

ǫk

≤ (Ti+2 − Ti+1)pi+1 +

Ti+2−1
∑

t=Ti+1+1

t
∑

k=Ti+1+1

ǫk.

Sincepi+1 → 0, we have(Ti+2 − Ti+1)pi+1 = o(Ti+2 − Ti+1), and sinceTi+2 − Ti+1 → ∞,

we have
∑j

i=1(Ti+2−Ti+1)pi+1 = o(Tj). Furthermore, since
∑Ti+2−1

t=Ti+1+1

∑t
k=Ti+1+1 ǫk ≤ (Ti+2−

Ti+1)
∑Ti+2−1

t=Ti+1+1 ǫt = o(Ti+2−Ti+1), andTi+2−Ti+1 →∞, we have
∑j

i=1

∑Ti+2−1
t=Ti+1+1

∑t
k=Ti+1+1 ǫk =

o(Tj). Altogether, we have that the expected sum of mistakes up to time T (which is the sum

of the expected numbers of mistakes within the component segmentsTi+1, . . . , Ti+2 − 1) grows

sublinearly inT .
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11.7 General Analysis under Varying Drift Rate: Inefficient

Passive Learning

Consider the following algorithm.

0. ForT = 1, 2, . . .

1. LetmT = argminm∈{1,...,T−1}
∑T

t=T−m+1 ǫt +
d log(m/d)

m

2. Let ĥT = ERM(C, {(XT−mT
, YT−mT

), . . . , (XT−1, YT−1)})

3. PredictŶT = ĥT (XT ) as the prediction for the value ofYT

Theorem 11.18.The above algorithm makes an expected number of mistakes among the firstT

instances that is

O

(

T
∑

t=1

min
m∈{1,...,t−1}

t
∑

s=t−m+1

ǫs +
d log(m/d)

m

)

.

Proof. It suffices to show that, for anyT ∈ N, and anym ∈ {1, . . . , T − 1}, the classifier

ĥ = ERM(C, {(XT−m, YT−m), . . . , (XT−1, YT−1)}) has

E[P(x : ĥ(x) 6= h∗T (x))] ≤ c′
(

T
∑

t=T−m+1

ǫt +
d log(m/d)

m

)

,

for some universal constantc′ ∈ (0,∞). Minimization overm in the theorem statement then

follows from the fact thatmT minimizes this expression overm by definition. The result will

then follow by linearity of expectations.

Let E =
∑T

t=T−m+1 ǫt. By a Chernoff bound, with probability at least1− δ,

1

m

T−1
∑

i=T−m

I[h∗T−m(Xi) 6= h∗i (Xi)] ≤
log2(1/δ) + 2emE

m
=

log2(1/δ)

m
+ 2eE.

In particular, this means

1

m

T−1
∑

i=T−m

I[ĥ(Xi) 6= h∗T−m(Xi)] ≤
2 log2(1/δ)

m
+ 4eE.
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By Lemma 11.1, on an additional event of probability at least1− δ,

P(x : ĥ(x) 6= h∗T−m(x))

≤ 2 log2(1/δ)

m
+4eE+c

√

(

2 log2(1/δ)

m
+ 4eE

)

d log(m/d) + log(1/δ)

m
+c

d log(m/d) + log(1/δ)

m

≤ c′′
(

E+

√

E
d log(m/d) + log(1/δ)

m
+
d log(m/d) + log(1/δ)

m

)

,

for an appropriate numerical constantc′′ ∈ [1,∞). Takingδ = d/m, this is at most

2c′′
(

E+

√

E
d log(m/d)

m
+
d log(m/d)

m

)

.

Since this holds with probability1− 2δ = 1− 2d/m, andP(x : ĥ(x) 6= h∗T−m(x)) ≤ 1 always,

we have

E

[

P(x : ĥ(x) 6= h∗T (x))
]

≤ E

[

P(x : ĥ(x) 6= h∗T−m(x))
]

+ P(x : h∗T−m(x) 6= h∗T (x))

≤ 2c′′
(

E+

√

E
d log(m/d)

m
+
d log(m/d)

m

)

+ 2
d

m
+ E

≤ 4c′′
(

E+

√

E
d log(m/d)

m
+
d log(m/d)

m

)

≤ 4c′′
(

√
E+

√

d log(m/d)

m

)2

≤ 16c′′ max

{

E,
d log(m/d)

m

}

≤ 16c′′
(

E+
d log(m/d)

m

)

.

In particular, we have the following corollary.

Corollary 11.19. If
∑T

t=1 ǫt = o(T ), then the expected number of mistakes made by the above

algorithm is alsoo(T ).
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Proof. Let βt(m) = max
{

∑t
s=t−m+1 ǫs,

d log(m/d)
m

}

, and note that

t
∑

s=t−m+1

ǫs +
d log(m/d)

m
≤ 2βt(m),

so that Theorem 11.18 (combined with the fact that the probability of a mistake on a given round

is at most1) implies the expected number of mistakes isO(
∑T

t=1minm∈{1,...,t−1} βt(m)∧ 1). Let

m′
t = argminm∈{1,...,t−1} βt(m).

Fix anyM ∈ N. For a givent, if m′
t < M , then it must be that

∑t
s=t−M+1 ǫs >

d log(M/d)
M

.

Also, since
T
∑

t=M

t
∑

s=t−M+1

ǫs =
M−1
∑

t=1

tǫt +M
T
∑

t=M

ǫt = o(T ),

and
T
∑

t=M

I

[

t
∑

s=t−M+1

ǫs >
d log(M/d)

M

]

≤ M

d log(M/d)

T
∑

t=M

t
∑

s=t−M+1

ǫs,

we have that
T
∑

t=M

I [m′
t < M ] = o(T ).

Furthermore, consider anyt for whichm′
t ≥M . Then

min
m∈{1,...,t−1}

βt(m) ≤ max{
t
∑

s=t−M+1

ǫs,
d log(M/d)

M
}.

As established above,
T
∑

t=M

I

[

t
∑

s=t−M+1

ǫs >
d log(M/d)

M

]

= o(T ),

so that

T
∑

t=1

min
m∈{1,...,t−1}

βt(m) ∧ 1

≤ d log(M/d)

M
T +

T
∑

t=1

I

[

m′
t < M orm′

t ≥M and
t
∑

s=t−M+1

ǫs >
d log(M/d)

M

]

≤ d log(M/d)

M
T +

T
∑

t=1

I

[

t
∑

s=t−M+1

ǫs >
d log(M/d)

M

]

=
d log(M/d)

M
T + o(T ).
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Since this is true of anyM ∈ N, we have that

lim
T→∞

1

T

T
∑

t=1

min
m∈{1,...,t−1}

βt(m) ∧ 1 ≤ lim
M→∞

d log(M/d)

M
= 0,

so that the expected number of mistakes iso(T ), as claimed.
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Chapter 12

Surrogate Losses in Passive and Active

Learning

Abstract

1 Active learning is a type of sequential design for supervised machine learning, in which the

learning algorithm sequentially requests the labels of selected instances from a large pool of

unlabeled data points. The objective is to produce a classifier of relatively low risk, as measured

under the 0-1 loss, ideally using fewer label requests than the number of random labeled data

points sufficient to achieve the same. This work investigates the potential uses of surrogate loss

functions in the context of active learning. Specifically, it presents an active learning algorithm

based on an arbitrary classification-calibrated surrogateloss function, along with an analysis of

the number of label requests sufficient for the classifier returned by the algorithm to achieve a

given risk under the 0-1 loss. Interestingly, these resultscannot be obtained by simply optimizing

the surrogate risk via active learning to an extent sufficient to provide a guarantee on the 0-1 loss,

as is common practice in the analysis of surrogate losses forpassive learning. Some of the results

have additional implications for the use of surrogate losses in passive learning.

1The chapter is based on joint work with Steve Hanneke.
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12.1 Introduction

In supervised machine learning, we are tasked with learninga classifier whose probability of

making a mistake (i.e., error rate) is small. The study of when it is possible to learn an accurate

classifier via a computationally efficient algorithm, and how to go about doing so, is a subtle and

difficult topic, owing largely to nonconvexity of the loss function: namely, the0-1 loss. While

there is certainly an active literature on developing computationally efficient methods that suc-

ceed at this task, even under various noise conditions, it seems fair to say that at present, many

of these advances have not yet reached the level of robustness, efficiency, and simplicity required

for most applications. In the mean time, practitioners haveturned to various heuristics in the

design of practical learning methods, in attempts to circumvent these tough computational prob-

lems. One of the most common such heuristics is the use of a convex surrogateloss function

in place of the0-1 loss in various optimizations performed by the learning method. The con-

vexity of the surrogate loss allows these optimizations to be performed efficiently, so that the

methods can be applied within a reasonable execution time, even with only modest computa-

tional resources. Although classifiers arrived at in this way are not always guaranteed to be good

classifiers when performance is measured under the0-1 loss, in practice this heuristic has often

proven quite effective. In light of this fact, most modern learning methods either explicitly make

use of a surrogate loss in the formulation of optimization problems (e.g., SVM), or implicitly

optimize a surrogate loss via iterative descent (e.g., AdaBoost). Indeed, the choice of a surrogate

loss is often as fundamental a part of the process of approaching a learning problem as the choice

of hypothesis class or learning bias. Thus it seems essential that we come to some understanding

of how best to make use of surrogate losses in the design of learning methods, so that in the

favorable scenario that this heuristic actually does work,we have methods taking full advantage

of it.

In this work, we are primarily interested in how best to use surrogate losses in the context

of active learning, which is a type of sequential design in which the learning algorithm is pre-
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sented with a large pool of unlabeled data points (i.e., onlythe covariates are observable), and

can sequentially request to observe the labels (response variables) of individual instances from

the pool. The objective in active learning is to produce a classifier of low error rate while access-

ing a smaller number of labels than would be required for a method based on random labeled

data points (i.e.,passive learning) to achieve the same. We take as our starting point that we

have already committed to use a given surrogate loss, and we restrict our attention to just those

scenarios in which this heuristic actuallydoeswork. We are then interested in how best to make

use of the surrogate loss toward the goal of producing a classifier with relatively small error rate.

To be clear, we focus on the case where the minimizer of the surrogate risk also minimizes the

error rate, and is contained in our function class.

We construct an active learning strategy based on optimizing the empirical surrogate risk over

increasingly focused subsets of the instance space, and derive bounds on the number of label

requests the method requires to achieve a given error rate. Interestingly, we find that the basic

approach of optimizing the surrogate risk via active learning to a sufficient extent to guarantee

small error rate generally does not lead to as strong of results. In fact, the method our results

apply to typicallydoes notoptimize the surrogate risk (even in the limit). The insightleading

to this algorithm is that, if we are truly only interested in achieving low0-1 loss, then once we

have identified thesignof the optimal function at a given point, we need not optimizethe value

of the function at that point any further, and can therefore focus the label requests elsewhere. As

a byproduct of this analysis, we find this insight has implications for the use of certain surrogate

losses in passive learning as well, though to a lesser extent.

Most of the mathematical tools used in this analysis are inspired by recently-developed tech-

niques for the study of active learning [Hanneke, 2009, 2011, Koltchinskii, 2010], in conjunction

with the results of Bartlett, Jordan, and McAuliffe [2006] bounding the excess error rate in terms

of the excess surrogate risk, and the works of Koltchinskii [2006] and Bartlett, Bousquet, and

Mendelson [2005] on localized Rademacher complexity bounds.
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12.1.1 Related Work

There are many previous works on the topic of surrogate losses in the context of passive learning.

Perhaps the most relevant to our results below are the work ofBartlett, Jordan, and McAuliffe

[2006] and the related work of Zhang [2004]. These develop a general theory for converting

results on excess risk under the surrogate loss into resultson excess risk under the0-1 loss.

Below, we describe the conclusions of that work in detail, andwe build on many of the basic

definitions and insights pioneered in these works.

Another related line of research, initiated by Audibert andTsybakov [2007], studies “plug-in

rules,” which make use of regression estimates obtained by optimizing a surrogate loss, and are

then rounded to{−1,+1} values to obtain classifiers. They prove results under smoothness as-

sumptions on the actual regression function, which (remarkably) are oftenbetterthan the known

results for methods that directly optimize the0-1 loss. Under similar conditions, Minsker [2012]

studies an analogous active learning method, which again makes use of a surrogate loss, and

obtains improvements in label complexity compared to the passive learning method of Audibert

and Tsybakov [2007]; again, the results for this method based on a surrogate loss are actually

better than those derived from existing active learning methods designed to directly optimize

the0-1 loss. The works of Audibert and Tsybakov [2007] and Minsker [2012] raise interesting

questions about whether the general analyses of methods that optimize the0-1 loss remain tight

under complexity assumptions on the regression function, and potentially also about the design

of optimal methods for classification when assumptions are phrased in terms of the regression

function.

In the present work, we focus our attention on scenarios where the main purpose of using the

surrogate loss is to ease the computational problems associated with minimizing an empirical

risk, so that our statistical results are typically strongest when the surrogate loss is the0-1 loss

itself. Thus, in the specific scenarios studied by Minsker [2012], our results are generally not

optimal; rather, the main strength of our analysis lies in its generality. In this sense, our results
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are more closely related to those of Bartlett, Jordan, and McAuliffe [2006] and Zhang [2004]

than to those of Audibert and Tsybakov [2007] and Minsker [2012]. That said, we note that

several important elements of the design and analysis of theactive learning method below are

already present to some extent in the work of Minsker [2012].

There are several interesting works on active learning methods that optimize a general loss

function. Beygelzimer, Dasgupta, and Langford [2009] and Koltchinskii [2010] have both pro-

posed active learning methods, and analyzed the number of label requests the methods make

before achieving a given excess risk for that loss function.The former method is based on

importance weighted sampling, while the latter makes clearan interesting connection to local

Rademacher complexities. One natural idea for approaching the problem of active learning with

a surrogate loss is to run one of these methods with the surrogate loss. The results of Bartlett,

Jordan, and McAuliffe [2006] allow us to determine a sufficiently small valueγ such that any

function with excess surrogate risk at mostγ has excess error rate at mostε. Thus, by evalu-

ating the established bounds on the number of label requestssufficient for these active learning

methods to achieve excess surrogate riskγ, we immediately have a result on the number of label

requests sufficient for them to achieve excess error rateε. This is a common strategy for con-

structing and analyzing passive learning algorithms that make use of a surrogate loss. However,

as we discuss below, this strategy does not generally lead tothe best behavior in active learning,

and often will not be much better than simply using a related passive learning method. Instead,

we propose a new method that typically does not optimize the surrogate risk, but makes use of it

in a different way so as to achieve stronger results when performance is measured under the0-1

loss.

12.2 Definitions

Let (X ,BX ) be a measurable space, whereX is called theinstance space; for convenience, we

suppose this is a standard Borel space. LetY = {−1,+1}, and equip the spaceX × Y with its
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productσ-algebra:B = BX⊗2Y . Let R̄ = R∪{−∞,∞}, letF∗ denote the set of all measurable

functionsg : X → R̄, and letF ⊆ F∗, whereF is called thefunction class. Throughout, we fix

a distributionPXY overX ×Y, and we denote byP the marginal distribution ofPXY overX . In

the analysis below, we make the usual simplifying assumption that the events and functions in the

definitions and proofs are indeed measurable. In most cases,this holds under simple conditions

onF andPXY [see e.g., van der Vaart and Wellner, 2011]; when this is not the case, we may

turn to outer probabilities. However, we will not discuss these technical issues further.

For anyh ∈ F∗, and any distributionP overX × Y, denote theerror rate by er(h;P ) =

P ((x, y) : sign(h(x)) 6= y); whenP = PXY , we abbreviate this aser(h) = er(h;PXY ). Also,

let η(X;P ) be a version ofP(Y = 1|X), for (X, Y ) ∼ P ; whenP = PXY , abbreviate this as

η(X) = η(X;PXY ). In particular, note thater(h;P ) is minimized at anyh with sign(h(x)) =

sign(η(x;P )− 1/2) for all x ∈ X . In this work, we will also be interested in certain conditional

distributions and modifications of functions, specified as follows. For any measurableU ⊆ X

withP(U) > 0, define the probability measurePU(·) = PXY (·|U×Y) = PXY (·∩U×Y)/P(U):

that is,PU is the conditional distribution of(X, Y ) ∼ PXY given thatX ∈ U . Also, for any

h, g ∈ F∗, define the spliced functionhU ,g(x) = h(x)IU(x) + g(x)IX\U(x). For a setH ⊆ F∗,

denoteHU ,g = {hU ,g : h ∈ H}.

For anyH ⊆ F∗, define theregion of sign-disagreementDIS(H) = {x ∈ X : ∃h, g ∈

H s.t. sign(h(x)) 6= sign(g(x))}, and theregion of value-disagreementDISF(H) = {x ∈

X : ∃h, g ∈ H s.t.h(x) 6= g(x)}, and denote byDIS(H) = DIS(H) × Y andDISF(H) =

DISF(H) × Y. Additionally, we denote by[H] = {f ∈ F∗ : ∀x ∈ X , infh∈H h(x) ≤ f(x) ≤

suph∈H h(x)} the minimal bracket set containingH.

Our interest here is learning from data, so letZ = {(X1, Y1), (X2, Y2), . . .} denote a sequence

of independentPXY -distributed random variables, referred to as thelabeled datasequence, while

{X1, X2, . . .} is referred to as theunlabeled datasequence. Form ∈ N, we also denoteZm =

{(X1, Y1), . . . , (Xm, Ym)}. Throughout, we will letδ ∈ (0, 1/4) denote an arbitrary confidence
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parameter, which will be referenced in the methods and theorem statements.

Theactive learningprotocol is defined as follows. An active learning algorithmis initially

permitted access to the sequenceX1, X2, . . . of unlabeled data. It may then select an indexi1 ∈ N

andrequestto observeYi1; after observingYi1, it may select another indexi2 ∈ N, request to

observeYi2, and so on. After a number of such label requests not exceeding some specified bud-

getn, the algorithm halts and returns a functionĥ ∈ F∗. Formally, this protocol specifies a type

of mapping that maps the random variableZ to a functionĥ, whereĥ is conditionally indepen-

dent ofZ givenX1, X2, . . . and(i1, Yi1), (i2, Yi2), . . . , (in, Yin), where eachik is conditionally

independent ofZ andik+1, . . . , in givenX1, X2, . . . and(i1, Yi1), . . . , (ik−1, Yik−1
).

12.2.1 Surrogate Loss Functions for Classification

Throughout, we letℓ : R̄→ [0,∞] denote an arbitrarysurrogate loss function; we will primarily

be interested in functionsℓ that satisfy certain conditions discussed below. To simplify some

statements below, it will be convenient to supposez ∈ R⇒ ℓ(z) <∞. For anyg ∈ F∗ and dis-

tributionP overX ×Y, letRℓ(g;P ) = E [ℓ(g(X)Y )], where(X, Y ) ∼ P ; in the caseP = PXY ,

abbreviateRℓ(g) = Rℓ(g;PXY ). Also defineℓ̄ = 1∨ supx∈X suph∈F maxy∈{−1,+1} ℓ(yh(x)); we

will generally supposēℓ <∞. In practice, this is more often a constraint onF than onℓ; that is,

we could haveℓ unbounded, but due to some normalization of the functionsh ∈ F , ℓ is bounded

on the corresponding set of values.

Throughout this work, we will be interested in loss functions ℓ whose point-wise minimizer

necessarily also optimizes the0-1 loss. This property was nicely characterized by Bartlett, Jor-

dan, and McAuliffe [2006] as follows. Forη0 ∈ [0, 1], defineℓ⋆(η0) = infz∈R̄(η0ℓ(z) + (1 −

η0)ℓ(−z)), andℓ⋆−(η0) = infz∈R̄:z(2η0−1)≤0(η0ℓ(z) +(1− η0)ℓ(−z)).

Definition 12.1. The lossℓ is classification-calibratedif, ∀η0 ∈ [0, 1] \ {1/2}, ℓ⋆−(η0) > ℓ⋆(η0).

In our context, forX ∼ P, ℓ⋆(η(X)) represents the minimum value of the conditionalℓ-risk

atX, so thatE[ℓ⋆(η(X))] = infh∈F∗ Rℓ(h), while ℓ⋆−(η(X)) represents the minimum conditional
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ℓ-risk atX, subject to having a sub-optimal conditional error rate atX: i.e., sign(h(X)) 6=

sign(η(X)− 1/2). Thus, being classification-calibrated implies the minimizer of the conditional

ℓ-risk atX necessarily has the same sign as the minimizer of the conditional error rate atX.

Since we are only interested here in usingℓ as a reasonable surrogate for the0-1 loss, throughout

the work below we supposeℓ is classification-calibrated.

Though not strictly necessary for our results below, it willbe convenient for us to suppose

that, for all η0 ∈ [0, 1], this infimum valueℓ⋆(η0) is actuallyobtainedasη0ℓ(z⋆(η0)) + (1 −

η0)ℓ(−z⋆(η0)) for somez⋆(η0) ∈ R̄ (not necessarily unique). For instance, this is the case

for any nonincreasing right-continuousℓ, or continuous and convexℓ, which include most of

the cases we are interested in using as surrogate losses anyway. The proofs can be modified in a

natural way to handle the general case, simply substitutinganyz with conditional risk sufficiently

close to the minimum value. For any distributionP , denoteh∗P (x) = z⋆(η(x;P )) for all x ∈

X . In particular, note thath∗P obtainsRℓ(h
∗
P ;P ) = infg∈F∗ Rℓ(g;P ). WhenP = PXY , we

abbreviate this ash∗ = h∗PXY
. Furthermore, ifℓ is classification-calibrated, thensign(h∗P (x)) =

sign(η(x;P )−1/2) for all x ∈ X with η(x;P ) 6= 1/2, and henceer(h∗P ;P ) = infh∈F∗ er(h;P )

as well.

For any distributionP overX ×Y, and anyh, g ∈ F∗, define theloss distanceDℓ(h, g;P ) =
√

E
[

(ℓ(h(X)Y )− ℓ(g(X)Y ))2
]

, where(X, Y ) ∼ P . Also define theloss diameterof a class

H ⊆ F∗ asDℓ(H;P ) = suph,g∈HDℓ(h, g;P ), and theℓ-risk ε-minimal set ofH asH(ε; ℓ, P ) =

{h ∈ H : Rℓ(h;P )− infg∈H Rℓ(g;P ) ≤ ε}. WhenP = PXY , we abbreviate these asDℓ(h, g) =

Dℓ(h, g;PXY ), Dℓ(H) = Dℓ(H;PXY ), andH(ε; ℓ) = H(ε; ℓ,PXY ). Also, for anyh ∈ F∗,

abbreviatehU = hU ,h∗ , and for anyH ⊆ F∗, defineHU = {hU : h ∈ H}.

We additionally define related quantities for the0-1 loss, as follows. Define thedistance

∆P (h, g) = P(x : sign(h(x)) 6= sign(g(x))) andradius radius(H;P ) = suph∈H ∆P (h, h
∗
P ).

Also define theε-minimal set ofH asH(ε; 01, P ) = {h ∈ H : er(h;P )− infg∈H er(g;P ) ≤ ε},

and forr > 0, define ther-ball centered ath in H by BH,P (h, r) = {g ∈ H : ∆P (h, g) ≤ r}.
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WhenP = PXY , we abbreviate these as∆(h, g) = ∆PXY
(h, g), radius(H) = radius(H;PXY ),

H(ε; 01) = H(ε; 01,PXY ), andBH(h, r) = BH,PXY
(h, r); whenH = F , further abbreviate

B(h, r) = BF(h, r).

We will be interested in transforming results concerning the excess surrogate risk into results

on the excess error rate. As such, we will make use of the following abstract transformation.

Definition 12.2. For any distributionP overX × Y, and anyε ∈ [0, 1], define

Γℓ(ε;P ) = sup{γ > 0 : F∗(γ; ℓ, P ) ⊆ F∗(ε; 01, P )} ∪ {0}.

Also, for anyγ ∈ [0,∞), define the inverse

Eℓ(γ;P ) = inf {ε > 0 : γ ≤ Γℓ(ε;P )} .

WhenP = PXY , abbreviateΓℓ(ε) = Γℓ(ε;PXY ) andEℓ(γ) = Eℓ(γ;PXY ).

By definition,Γℓ has the property that

∀h ∈ F∗, ∀ε ∈ [0, 1], Rℓ(h)− Rℓ(h
∗) < Γℓ(ε) =⇒ er(h)− er(h∗) ≤ ε. (12.1)

In fact,Γℓ is defined to be maximal with this property, in thatanyΓ′
ℓ for which (12.1) is satisfied

must haveΓ′
ℓ(ε) ≤ Γℓ(ε) for all ε ∈ [0, 1].

In our context, we will typically be interested in calculating lower bounds onΓℓ for any

particular scenario of interest. Bartlett, Jordan, and McAuliffe [2006] studied various lower

bounds of this type. Specifically, forζ ∈ [−1, 1], defineψ̃ℓ(ζ) = ℓ⋆−
(

1+ζ
2

)

− ℓ⋆
(

1+ζ
2

)

, and

let ψℓ be the largest convex lower bound ofψ̃ℓ on [0, 1], which is well-defined in this context

[Bartlett, Jordan, and McAuliffe, 2006]; for convenience, also defineψℓ(x) for x ∈ (1,∞)

arbitrarily subject to maintaining convexity ofψℓ. Bartlett, Jordan, and McAuliffe [2006] show

ψℓ is continuous and nondecreasing on(0, 1), and in fact thatx 7→ ψℓ (x) /x is nondecreasing on

(0,∞). They also show everyh ∈ F∗ hasψℓ(er(h)−er(h∗)) ≤ Rℓ(h)−Rℓ(h
∗), so thatψℓ ≤ Γℓ,

and they find this inequality can be tight for a particular choice ofPXY . They further study more

subtle relationships between excessℓ-risk and excess error rate holding for any classification-

calibratedℓ. In particular, following the same argument as in the proof of their Theorem 3, one
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can show that ifℓ is classification-calibrated, everyh ∈ F∗ satisfies

∆(h, h∗) · ψℓ

(

er(h)− er(h∗)

2∆(h, h∗)

)

≤ Rℓ(h)− Rℓ(h
∗).

The implication of this in our context is the following. Fix any nondecreasing functionΨℓ :

[0, 1]→ [0,∞) such that∀ε ≥ 0,

Ψℓ(ε) ≤ radius(F∗(ε; 01))ψℓ

(

ε

2radius(F∗(ε; 01))

)

. (12.2)

Any h ∈ F∗ with Rℓ(h)−Rℓ(h
∗) < Ψℓ(ε) also has∆(h, h∗)ψℓ

(

er(h)−er(h∗)
2∆(h,h∗)

)

< Ψℓ(ε); combined

with the fact thatx 7→ ψℓ(x)/x is nondecreasing on(0, 1), this impliesradius(F∗(er(h) −

er(h∗); 01))ψℓ

(

er(h)−er(h∗)
2radius(F∗(er(h)−er(h∗);01))

)

< Ψℓ(ε); this meansΨℓ(er(h) − er(h∗)) < Ψℓ(ε), and

monotonicity ofΨℓ implieser(h)− er(h∗) < ε. Altogether, this impliesΨℓ(ε) ≤ Γℓ(ε). In fact,

though we do not present the details here, with only minor modifications to the proofs below,

whenh∗ ∈ F , all of our results involvingΓℓ(ε) will also hold while replacingΓℓ(ε) with any

nondecreasingΨ′
ℓ such that∀ε ≥ 0,

Ψ′
ℓ(ε) ≤ radius(F(ε; 01))ψℓ

(

ε

2radius(F(ε; 01))

)

, (12.3)

which can sometimes lead to tighter results.

Some of our stronger results below will be stated for a restricted family of losses, originally

explored by Bartlett, Jordan, and McAuliffe [2006]: namely,smooth losses whose convexity

is quantified by a polynomial. Specifically, this restriction is characterized by the following

condition.

Condition 12.3. F is convex, with∀x ∈ X , supf∈F |f(x)| ≤ B̄ for some constant̄B ∈ (0,∞),

and there exists a pseudometricdℓ : [−B̄, B̄]2 → [0, d̄ℓ] for some constant̄dℓ ∈ (0,∞), and con-

stantsL,Cℓ ∈ (0,∞) andrℓ ∈ (0,∞] such that∀x, y ∈ [−B̄, B̄], |ℓ(x)− ℓ(y)| ≤ Ldℓ(x, y) and

the functionδ̄ℓ(ε) = inf
{

1
2
ℓ(x) + 1

2
ℓ(y)− ℓ(1

2
x+ 1

2
y) : x, y ∈ [−B̄, B̄], dℓ(x, y) ≥ ε

}

∪ {∞}

satisfies∀ε ∈ [0,∞), δ̄ℓ(ε) ≥ Cℓε
rℓ .
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In particular, note that ifF is convex, the functions inF are uniformly bounded, andℓ is

convex and continuous, Condition 12.3 is always satisfied (though possibly withrℓ = ∞) by

takingdℓ(x, y) = |x− y|/(4B̄).

12.2.2 A Few Examples of Loss Functions

Here we briefly mention a few loss functionsℓ in common practical use, all of which are

classification-calibrated. These examples are taken directly from the work of Bartlett, Jor-

dan, and McAuliffe [2006], which additionally discusses many other interesting examples of

classification-calibrated loss functions and their correspondingψℓ functions.

Example 1 The exponential lossis specified asℓ(x) = e−x. This loss function appears in

many contexts in machine learning; for instance, the popular AdaBoost method can be viewed as

an algorithm that greedily optimizes the exponential loss [Freund and Schapire, 1997]. Bartlett,

Jordan, and McAuliffe [2006] show that under the exponential loss,ψℓ(x) = 1−
√
1− x2, which

is tightly approximated byx2/2 for smallx. They also show this loss satisfies the conditions on

ℓ in Condition 12.3 withdℓ(x, y) = |x− y|, L = eB̄, Cℓ = e−B̄/8, andrℓ = 2.

Example 2 Thehinge loss, specified asℓ(x) = max {1− x, 0}, is another common surrogate

loss in machine learning practice today. For instance, it isused in the objective of the Support

Vector Machine (along with a regularization term) [Cortes and Vapnik, 1995]. Bartlett, Jordan,

and McAuliffe [2006] show that for the hinge loss,ψℓ(x) = |x|. The hinge loss is Lipschitz con-

tinuous, with Lipschitz constant1. However, for the remaining conditions onℓ in Condition 12.3,

anyx, y ≤ 1 have1
2
ℓ(x) + 1

2
ℓ(y) = ℓ(1

2
x+ 1

2
y), so that̄δℓ(ε) = 0; hence,rℓ =∞ is required.

Example 3 The quadratic loss(or squared loss), specified asℓ(x) = (1 − x)2, is often used

in so-calledplug-in classifiers [Audibert and Tsybakov, 2007], which approach the problem of

learning a classifier by estimating the regression functionE[Y |X = x] = 2η(x) − 1, and then
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taking the sign of this estimator to get a binary classifier. The quadratic loss has the convenient

property that for any distributionP overX×Y, h∗P (·) = 2η(·;P )−1, so that it is straightforward

to describe the set of distributionsP satisfying the assumptionh∗P ∈ F . Bartlett, Jordan, and

McAuliffe [2006] show that for the quadratic loss,ψℓ(x) = x2. They also show the quadratic

loss satisfies the conditions onℓ in Condition 12.3, withL = 2(B̄ + 1), Cℓ = 1/4, andrℓ = 2.

In fact, they study the general family of lossesℓ(x) = |1 − x|p, for p ∈ (1,∞), and show that

ψℓ(x) andrℓ exhibit a range of behaviors varying withp.

Example 4 The truncated quadratic lossis specified asℓ(x) = (max{1 − x, 0})2. Bartlett,

Jordan, and McAuliffe [2006] show that in this case,ψℓ(x) = x2. They also show that, under

the pseudometricdℓ(a, b) = |min{a, 1} − min{b, 1}|, the truncated quadratic loss satisfies the

conditions onℓ in Condition 12.3, withL = 2(B̄ + 1), Cℓ = 1/4, andrℓ = 2.

12.2.3 Empirical ℓ-Risk Minimization

For anym ∈ N, g : X → R̄, andS = {(x1, y1), . . . , (xm, ym)} ∈ (X×Y)m, define theempirical

ℓ-risk asRℓ(g;S) = m−1
∑m

i=1 ℓ(g(xi)yi). At times it will be convenient to keep track of the

indices for a subsequence ofZ, and for this reason we also overload the notation, so that for

anyQ = {(i1, y1), . . . , (im, ym)} ∈ (N × Y)m, we defineS[Q] = {(Xi1 , y1), . . . , (Xim , ym)}

andRℓ(g;Q) = Rℓ(g;S[Q]). For completeness, we also generally defineRℓ(g; ∅) = 0. The

method of empiricalℓ-risk minimization, here denoted byERMℓ(H,Zm), is characterized by

the property that it returnŝh = argminh∈H Rℓ(h;Zm). This is a well-studied and classical

passive learning method, presently in popular use in applications, and as such it will serve as our

baseline for passive learning methods.
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12.2.4 Localized Sample Complexities

The derivation of localized excess risk bounds can essentially be motivated as follows. Suppose

we are interested in bounding the excessℓ-risk of ERMℓ(H,Zm). Further suppose we have a

coarse guaranteeUℓ(H,m) on the excessℓ-risk of the ĥ returned byERMℓ(H,Zm): that is,

Rℓ(ĥ)− Rℓ(h
∗) ≤ Uℓ(H,m). In some sense, this guarantee identifies a setH′ ⊆ H of functions

that a priori have thepotentialto be returned byERMℓ(H,Zm) (namely,H′ = H(Uℓ(H,m); ℓ)),

while those inH \ H′ do not. With this information in hand, we can think ofH′ as a kind of

effectivefunction class, and we can then think ofERMℓ(H,Zm) as equivalent toERMℓ(H′,Zm).

We may then repeat this same reasoning forERMℓ(H′,Zm), calculatingUℓ(H′,m) to determine

a setH′′ = H′(Uℓ(H′,m); ℓ) ⊆ H′ of potential return values forthis empirical minimizer, so

thatERMℓ(H′,Zm) = ERMℓ(H′′,Zm), and so on. This repeats until we identify a fixed-point

setH(∞) of functions such thatH(∞)(Uℓ(H(∞),m); ℓ) = H(∞), so that no further reduction is

possible. Following this chain of reasoning back to the beginning, we find thatERMℓ(H,Zm) =

ERMℓ(H(∞),Zm), so that the function̂h returned byERMℓ(H,Zm) has excessℓ-risk at most

Uℓ(H(∞),m), which may be significantly smaller thanUℓ(H,m), depending on how refined the

originalUℓ(H,m) bound was.

To formalize this fixed-point argument forERMℓ(H,Zm), Koltchinskii [2006] makes use of

the following quantities to define the coarse boundUℓ(H,m) [see also Bartlett, Bousquet, and

Mendelson, 2005, Gińe and Koltchinskii, 2006]. For anyH ⊆ [F ], m ∈ N, s ∈ [1,∞), and any

distributionP onX × Y, lettingQ ∼ Pm, define

φℓ(H;m,P ) = E

[

sup
h,g∈H

(Rℓ(h;P )− Rℓ(g;P ))− (Rℓ(h;Q)− Rℓ(g;Q))

]

,

Ūℓ(H;P,m, s) = K̄1φℓ(H;m,P ) + K̄2Dℓ(H;P )
√

s

m
+
K̄3ℓ̄s

m
,

Ũℓ(H;P,m, s) = K̃

(

φℓ(H;m,P ) + Dℓ(H;P )
√

s

m
+
ℓ̄s

m

)

,

whereK̄1, K̄2, K̄3, andK̃ are appropriately chosen constants.

We will be interested in having access to these quantities inthe context of our algorithms;
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however, sincePXY is not directly accessible to the algorithm, we will need to approximate

these by data-dependent estimators. Toward this end, we define the following quantities, again

taken from the work of Koltchinskii [2006]. Forε > 0, let Zε = {j ∈ Z : 2j ≥ ε}. For any

H ⊆ [F ], q ∈ N, andS = {(x1, y1), . . . , (xq, yq)} ∈ (X × {−1,+1})q, letH(ε; ℓ, S) = {h ∈

H : Rℓ(h;S) − infg∈H Rℓ(g;S) ≤ ε}; then for any sequenceΞ = {ξk}qk=1 ∈ {−1,+1}q, and

anys ∈ [1,∞), define

φ̂ℓ(H;S,Ξ) = sup
h,g∈H

1

q

q
∑

k=1

ξk · (ℓ(h(xk)yk)− ℓ(g(xk)yk)) ,

D̂ℓ(H;S)2 = sup
h,g∈H

1

q

q
∑

k=1

(ℓ(h(xk)yk)− ℓ(g(xk)yk))2 ,

Ûℓ(H;S,Ξ, s) = 12φ̂ℓ(H;S,Ξ) + 34D̂ℓ(H;S)
√

s

q
+

752ℓ̄s

q
.

For completeness, definêφℓ(H; ∅, ∅) = D̂ℓ(H; ∅) = 0, andÛℓ(H; ∅, ∅, s) = 752ℓ̄s.

The above quantities (with appropriate choices ofK̄1, K̄2, K̄3, andK̃) can be formally related

to each other and to the excessℓ-risk of functions inH via the following general result; this

variant is due to Koltchinskii [2006].

Lemma 12.4. For anyH ⊆ [F ], s ∈ [1,∞), distributionP overX × Y, and anym ∈ N, if

Q ∼ Pm andΞ = {ξ1, . . . , ξm} ∼ Uniform({−1,+1})m are independent, andh∗ ∈ H has

Rℓ(h
∗;P ) = infh∈H Rℓ(h;P ), then with probability at least1− 6e−s, the following claims hold.

∀h ∈ H,Rℓ(h;P )− Rℓ(h
∗;P ) ≤ Rℓ(h;Q)− Rℓ(h

∗;Q) + Ūℓ(H;P,m, s),

∀h ∈ H,Rℓ(h;Q)− inf
g∈H

Rℓ(g;Q) ≤ Rℓ(h;P )− Rℓ(h
∗;P ) + Ūℓ(H;P,m, s),

Ūℓ(H;P,m, s) < Ûℓ(H;Q,Ξ, s) < Ũℓ(H;P,m, s).

We typically expect thēU , Û , andŨ quantities to be roughly within constant factors of each

other. Following Koltchinskii [2006] and Gińe and Koltchinskii [2006], we can use this result

to derive localized bounds on the number of samples sufficient for ERMℓ(H,Zm) to achieve a

given excessℓ-risk. Specifically, forH ⊆ [F ], distributionP overX × Y, valuesγ, γ1, γ2 ≥ 0,
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s ∈ [1,∞), and any functions : (0,∞)2 → [1,∞), define the following quantities.

M̄ℓ(γ1, γ2;H, P, s) = min
{

m ∈ N : Ūℓ(H(γ2; ℓ, P );P,m, s) < γ1
}

,

M̄ℓ(γ;H, P, s) = sup
γ′≥γ

M̄ℓ(γ
′/2, γ′;H, P, s(γ, γ′)),

M̃ℓ(γ1, γ2;H, P, s) = min
{

m ∈ N : Ũℓ(H(γ2; ℓ, P );P,m, s) ≤ γ1

}

,

M̃ℓ(γ;H, P, s) = sup
γ′≥γ

M̃ℓ(γ
′/2, γ′;H, P, s(γ, γ′)).

These quantities are well-defined forγ1, γ2, γ > 0 when limm→∞ φℓ(H;m,P ) = 0. In other

cases, for completeness, we define them to be∞.

In particular, the quantitȳMℓ(γ;F ,PXY , s) is used in Theorem 12.6 below to quantify the

performance ofERMℓ(F ,Zm). The primary practical challenge in calculatinḡMℓ(γ;H, P, s)

is handling theφℓ(H(γ′; ℓ, P );m,P ) quantity. In the literature, the typical (only?) way such

calculations are approached is by first deriving a bound onφℓ(H′;m,P ) for everyH′ ⊆ H

in terms of some natural measure of complexity for the full classH (e.g., entropy numbers)

and some very basic measure of complexity forH′: most oftenDℓ(H′;P ) and sometimes a

seminorm of an envelope function forH′. After this, one then proceeds to bound these basic

measures of complexity for the specific subsetsH(γ′; ℓ, P ), as a function ofγ′. Composing these

two results is then sufficient to boundφℓ(H(γ′; ℓ, P );m,P ). For instance, bounds based on an

entropy integral tend to follow this strategy. This approach effectively decomposes the problem

of calculating the complexity ofH(γ′; ℓ, P ) into the problem of calculating the complexity ofH

and the problem of calculating some much more basic properties ofH(γ′; ℓ, P ). See [Bartlett,

Jordan, and McAuliffe, 2006, Giné and Koltchinskii, 2006, Koltchinskii, 2006, van der Vaartand

Wellner, 1996], or Section 12.5 below, for several explicitexamples of this technique.

Another technique often (though not always) used in conjunction with the above strategy

when deriving explicit rates of convergence is to relaxDℓ(H(γ′; ℓ, P );P ) toDℓ(F∗(γ′; ℓ, P );P )

or Dℓ([H](γ′; ℓ, P );P ). This relaxation can sometimes be a source of slack; however, in many

interesting cases, such as for certain lossesℓ [e.g., Bartlett, Jordan, and McAuliffe, 2006], or
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even certain noise conditions [e.g., Mammen and Tsybakov, 1999, Tsybakov, 2004], this relaxed

quantity can still lead to nearly tight bounds.

For our purposes, it will be convenient to make these common techniques explicit in the

results. In later sections, this will make the benefits of ourproposed methods more explicit,

while still allowing us to state results in a form abstract enough to capture the variety of specific

complexity measures most often used in conjunction with theabove approach. Toward this end,

we have the following definition.

Definition 12.5. For every distributionP overX × Y, let φ̊ℓ(σ,H;m,P ) be a quantity defined

for everyσ ∈ [0,∞],H ⊆ [F ], andm ∈ N, such that the following conditions are satisfied when

h∗P ∈ H.

If 0 ≤ σ ≤ σ′,H ⊆ H′ ⊆ [F ],U ⊆ X , andm′ ≤ m,

thenφ̊ℓ(σ,HU ,h∗
P
;m,P ) ≤ φ̊ℓ(σ

′,H′;m′, P ). (12.4)

∀σ ≥ Dℓ(H;P ), φℓ(H;m,P ) ≤ φ̊ℓ(σ,H;m,P ). (12.5)

For instance, most bounds based on entropy integrals can be made to satisfy this. See Sec-

tion 12.5.3 for explicit examples of quantities̊φℓ from the literature that satisfy this definition.

Given a functionφ̊ℓ of this type, we define the following quantity form ∈ N, s ∈ [1,∞),

ζ ∈ [0,∞],H ⊆ [F ], and a distributionP overX × Y.

Ůℓ(H, ζ;P,m, s)

= K̃

(

φ̊ℓ(Dℓ([H](ζ; ℓ, P );P ),H;m,P ) + Dℓ([H](ζ; ℓ, P );P )
√

s

m
+
ℓ̄s

m

)

.

Note that whenh∗P ∈ H, sinceDℓ([H](γ; ℓ, P );P ) ≥ Dℓ(H(γ; ℓ, P );P ), Definition 12.5 im-

pliesφℓ(H(γ; ℓ, P );m,P ) ≤ φ̊ℓ(Dℓ([H](γ; ℓ, P );P ),H(γ; ℓ, P );P,m), and furthermoreH(γ; ℓ, P ) ⊆

H so that̊φℓ(Dℓ([H](γ; ℓ, P );P ),H(γ; ℓ, P );P,m) ≤ φ̊ℓ(Dℓ([H](γ; ℓ, P );P ),H;P,m). Thus,

Ũℓ(H(γ; ℓ, P );P,m, s) ≤ Ůℓ(H(γ; ℓ, P ), γ;P,m, s) ≤ Ůℓ(H, γ;P,m, s). (12.6)
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Furthermore, whenh∗P ∈ H, for any measurableU ⊆ U ′ ⊆ X , any γ′ ≥ γ ≥ 0, and any

H′ ⊆ [F ] withH ⊆ H′,

Ůℓ(HU ,h∗
P
, γ;P,m, s) ≤ Ůℓ(H′

U ′,h∗
P
, γ′;P,m, s). (12.7)

Note that the fact that we useDℓ([H](γ; ℓ, P );P ) instead ofDℓ(H(γ; ℓ, P );P ) in the defini-

tion of Ůℓ is crucial for these inequalities to hold; specifically, it is not necessarily true that

Dℓ(HU ,h∗
P
(γ; ℓ, P );P ) ≤ Dℓ(HU ′,h∗

P
(γ; ℓ, P );P ), but it is always the case that[HU ,h∗

P
](γ; ℓ, P ) ⊆

[HU ′,h∗
P
](γ; ℓ, P )whenh∗P ∈ [H], so thatDℓ([HU ,h∗

P
](γ; ℓ, P );P ) ≤ Dℓ([HU ′,h∗

P
](γ; ℓ, P );P ).

Finally, forH ⊆ [F ], distributionP overX × Y, valuesγ, γ1, γ2 ≥ 0, s ∈ [1,∞), and any

functions : (0,∞)2 → [1,∞), define

M̊ℓ(γ1, γ2;H, P, s) = min
{

m ∈ N : Ůℓ(H, γ2;P,m, s) ≤ γ1

}

,

M̊ℓ(γ;H, P, s) = sup
γ′≥γ

M̊ℓ(γ
′/2, γ′;H, P, s(γ, γ′)).

For completeness, define̊Mℓ(γ1, γ2;H, P, s) = ∞ whenŮℓ(H, γ2;P,m, s) > γ1 for everym ∈

N.

It will often be convenient to isolate the terms in̊Uℓ when inverting for a sufficientm, thus

arriving at an upper bound on̊Mℓ. Specifically, define

Ṁℓ(γ1, γ2;H, P, s) = min

{

m ∈ N : Dℓ([H](γ2; ℓ, P );P )
√

s

m
+
ℓ̄s

m
≤ γ1

}

,

M̈ℓ(γ1, γ2;H, P ) = min
{

m ∈ N : φ̊ℓ (Dℓ([H](γ2; ℓ, P );P ),H;P,m) ≤ γ1

}

.

This way, forc̃ = 1/(2K̃), we have

M̊ℓ(γ1, γ2;H, P, s) ≤ max
{

M̈ℓ(c̃γ1, γ2;H, P ), Ṁℓ(c̃γ1, γ2;H, P, s)
}

. (12.8)

Also note that we clearly have

Ṁℓ(γ1, γ2;H, P, s) ≤ s ·max

{

4Dℓ([H](γ2; ℓ, P ); ℓ, P )2
γ21

,
2ℓ̄

γ1

}

, (12.9)

so that, in the task of bounding̊Mℓ, we can simply focus on bounding̈Mℓ.
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We will express our main abstract results below in terms of the incremental values̊Mℓ(γ1, γ2;H,PXY , s);

the quantitẙMℓ(γ;H,PXY , s) will also be useful in deriving analogous results forERMℓ. When

h∗P ∈ H, (12.6) implies

M̄ℓ(γ;H, P, s) ≤ M̃ℓ(γ;H, P, s) ≤ M̊ℓ(γ;H, P, s). (12.10)

12.3 Methods Based on Optimizing the Surrogate Risk

Perhaps the simplest way to make use of a surrogate loss function is to try to optimizeRℓ(h) over

h ∈ F , until identifyingh ∈ F with Rℓ(h)− Rℓ(h
∗) < Γℓ(ε), at which point we are guaranteed

er(h) − er(h∗) ≤ ε. In this section, we briefly discuss some known results for this basic idea,

along with a comment on the potential drawbacks of this approach for active learning.

12.3.1 Passive Learning: Empirical Risk Minimization

In the context of passive learning, the method ofempiricalℓ-risk minimizationis one of the most-

studied methods for optimizingRℓ(h) overh ∈ F . Based on Lemma 12.4 and the above defini-

tions, one can derive a bound on the number of labeled data pointsm sufficient forERMℓ(F ,Zm)

to achieve a given excess error rate. Specifically, the following theorem is due to Koltchinskii

[2006] (slightly modified here, following Gińe and Koltchinskii [2006], to allow for generals

functions). It will serve as our baseline for comparison in the applications below.

Theorem 12.6. Fix any functions : (0,∞)2 → [1,∞). If h∗ ∈ F , then for anym ≥

M̄ℓ(Γℓ(ε);F ,PXY , s), with probability at least1 −∑j∈ZΓℓ(ε)
6e−s(Γℓ(ε),2

j), ERMℓ(F ,Zm) pro-

duces a function̂h such thater(ĥ)− er(h∗) ≤ ε.

12.3.2 Negative Results for Active Learning

As mentioned, there are several active learning methods designed to optimize a general loss

function [Beygelzimer, Dasgupta, and Langford, 2009, Koltchinskii, 2010]. However, it turns
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out that for many interesting loss functions, the number of labels required for active learning to

achieve a given excess surrogate risk value is not significantly smaller than that sufficient for

passive learning byERMℓ.

Specifically, consider a problem withX = {x0, x1}, let z ∈ (0, 1/2) be a constant, and for

ε ∈ (0, z), letP({x1}) = ε/(2z),P({x0}) = 1−P({x1}), and supposeF andℓ are such that for

η(x1) = 1/2 + z and anyη(x0) ∈ [4/6, 5/6], we haveh∗ ∈ F . For this problem, any functionh

with sign(h(x1)) 6= +1 haser(h)−er(h∗) ≥ ε, so thatΓℓ(ε) ≤ (ε/(2z))(ℓ⋆−(η(x1))−ℓ⋆(η(x1)));

whenℓ is classification-calibrated and̄ℓ <∞, this iscε, for someℓ-dependentc ∈ (0,∞). Any

functionh with Rℓ(h)−Rℓ(h
∗) ≤ cε for this problem must haveRℓ(h;P{x0})−Rℓ(h

∗;P{x0}) ≤

cε/P({x0}) = O(ε). Existing results of Hanneke and Yang [2010] (with a slight modification

to rescale forη(x0) ∈ [4/6, 5/6]) imply that, for many classification-calibrated lossesℓ, the

minimax optimal number of labels sufficient for an active learning algorithm to achieve this is

Θ(1/ε). Hanneke and Yang [2010] specifically show this for lossesℓ that are strictly positive,

decreasing, strictly convex, and twice differentiable with continuous second derivative; however,

that result can easily be extended to a wide variety of other classification-calibrated losses, such

as the quadratic loss, which satisfy these conditions in a neighborhood of0. It is also known

[Bartlett, Jordan, and McAuliffe, 2006] (see also below) that for many such losses (specifically,

those satisfying Condition 12.3 withrℓ = 2), Θ(1/ε) random labeled samples are sufficient for

ERMℓ to achieve this same guarantee, so that results that only bound the surrogate risk of the

function produced by an active learning method in this scenario can be at most a constant factor

smaller than those provable for passive learning methods.

In the next section, we provide an active learning algorithmand a general analysis of its per-

formance which, in the special case described above, guarantees excess error rate less thanεwith

high probability, using a number of label requestsO(log(1/ε) log log(1/ε)). The implication is

that, to identify the improvements achievable by active learning with a surrogate loss, it is not

sufficient to merely analyze the surrogate risk of the function produced by a given active learning
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algorithm. Indeed, since we are not particularly interested in the surrogate risk itself, we may

even consider active learning algorithms that do not actually optimizeRℓ(h) overh ∈ F (even

in the limit).

12.4 Alternative Use of the Surrogate Loss

Given that we are interested inℓ only insofar as it helps us to optimize the error rate with compu-

tational efficiency, we should ask whether there is a method that sometimes makes more effective

use ofℓ in terms of optimizing the error rate, while maintaining essentially the same computa-

tional advantages. The following method is essentially a relaxation of the methods of Koltchin-

skii [2010] and Hanneke [2012]. Similar results should alsohold for analogous relaxations of the

related methods of Balcan, Beygelzimer, and Langford [2006],Dasgupta, Hsu, and Monteleoni

[2007a], Balcan, Beygelzimer, and Langford [2009], and Beygelzimer, Dasgupta, and Langford

[2009].

Algorithm 1:

Input: surrogate lossℓ, unlabeled sample budgetu, labeled sample budgetn

Output: classifier̂h

0. V ← F ,Q← {},m← 1, t← 0

1. Whilem < u andt < n

2. m← m+ 1

3. If Xm ∈ DIS(V )

4. Request labelYm and letQ← Q ∪ {(m,Ym)}, t← t+ 1

5. If log2(m) ∈ N

6. V ←
{

h ∈ V : Rℓ(h;Q)− infg∈V Rℓ(g;Q) ≤ T̂ℓ(V ;Q,m)
}

7. Q← {}

8. Return̂h = argminh∈V Rℓ(h;Q)
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The intuition behind this algorithm is that, since we are only interested in achieving low

error rate, once we have identifiedsign(h∗(x)) for a givenx ∈ X , there is no need to further

optimize the valueE[ℓ(ĥ(X)Y )|X = x]. Thus, as long as we maintainh∗ ∈ V , the data points

Xm /∈ DIS(V ) are typically less informative than thoseXm ∈ DIS(V ). We therefore focus the

label requests on thoseXm ∈ DIS(V ), since there remains some uncertainty aboutsign(h∗(Xm))

for these points. The algorithm updatesV periodically (Step 6), removing those functionsh

whose excess empirical risks (under the current sampling distribution) are relatively large; by

setting this threshold̂Tℓ appropriately, we can guarantee the excess empirical risk of h∗ is smaller

than T̂ℓ. Thus, the algorithm maintainsh∗ ∈ V as an invariant, while focusing the sampling

regionDIS(V ).

In practice, the setV can be maintained implicitly, simply by keeping track of theconstraints

(Step 6) that define it; then the condition in Step 3 can be checked by solving two constraint sat-

isfaction problems (one for each sign); likewise, the valueinfg∈V Rℓ(g;Q) in these constraints,

as well as the final̂h, can be found by solving constrained optimization problems. Thus, for

convex loss functions and convex classes of function, thesesteps typically have computationally

efficient realizations, as long as thêTℓ values can also be obtained efficiently. The quantityT̂ℓ in

Algorithm 1 can be defined in one of several possible ways. In our present abstract context, we

consider the following definition. Let{ξ′k}k∈N denote independent Rademacher random variables

(i.e., uniform in{−1,+1}), also independent fromZ; these should be considered internal ran-

dom bits used by the algorithm, which is therefore a randomized algorithm. For anyq ∈ N∪{0}

andQ = {(i1, y1), . . . , (iq, yq)} ∈ (N × {−1,+1})q, let S[Q] = {(Xi1 , y1), . . . , (Xiq , yq)},

Ξ[Q] = {ξ′ik}
q
k=1. Fors ∈ [1,∞), define

Ûℓ(H;Q, s) = Ûℓ(H;S[Q],Ξ[Q], s).

Then we can define the quantitŷTℓ in the method above as

T̂ℓ(H;Q,m) = Ûℓ(H;Q, ŝ(m)), (12.11)
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for somês : N→ [1,∞). This definition has the appealing property that it allows usto interpret

the update in Step 6 in two complementary ways: as comparing the empirical risks of functions in

V under the conditional distribution given the region of disagreementPDIS(V ), and as comparing

the empirical risks of the functions inVDIS(V ) under the original distributionPXY . Our abstract

results below are based on this definition ofT̂ℓ. This can sometimes be problematic due to the

computational challenge of the optimization problem in thedefinitions ofφ̂ℓ andD̂ℓ. There has

been considerable work on calculating and boundingφ̂ℓ for various classesF and lossesℓ [e.g.,

Bartlett and Mendelson, 2002, Koltchinskii, 2001], but it isnot always feasible. However, the

specific applications below continue to hold if we instead take T̂ℓ based on a well-chosen upper

bound on the respective̊Uℓ function, such as those obtained in the derivations of thoserespective

results below; we provide descriptions of such efficiently-computable relaxations for each of the

applications below (though in some cases, these bounds havea mild dependence onPXY via

certain parameters of the specific noise conditions considered there).

We have the following theorem, which represents our main abstract result. The proof is

included in Appendix 12.6.

Theorem 12.7.Fix any function̂s : N→ [1,∞). Letjℓ = −⌈log2(ℓ̄)⌉, defineujℓ−2 = ujℓ−1 = 1,

and for each integerj ≥ jℓ, let Fj = F(Eℓ(2
2−j); 01)DIS(F(Eℓ(22−j);01)), Uj = DIS(Fj), and

supposeuj ∈ N satisfieslog2(uj) ∈ N and

uj ≥ 2M̊ℓ(2
−j−1, 22−j ;Fj,PXY , ŝ(uj)) ∨ uj−1 ∨ 2uj−2. (12.12)

Supposeh∗ ∈ F . For anyε ∈ (0, 1) ands ∈ [1,∞), lettingjε = ⌈log2(1/Γℓ(ε))⌉, if

u ≥ ujε and n ≥ s+ 2e

jε
∑

j=jℓ

P(Uj)uj,

then, with argumentsℓ, u, andn, Algorithm 1 uses at mostu unlabeled samples and makes at

mostn label requests, and with probability at least

1− 2−s −
log2(ujε )
∑

i=1

6e−ŝ(2i),
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returns a function̂h with er(ĥ)− er(h∗) ≤ ε.

The number of label requests indicated by Theorem 12.7 can often (though not always) be sig-

nificantly smaller than the number of random labeled data points sufficient forERMℓ to achieve

the same, as indicated by Theorem 12.6. This is typically thecase whenP(Uj)→ 0 asj →∞.

When this is the case, the number of labels requested by the algorithm is sublinear in the number

of unlabeled samples it processes; below, we will derive more explicit results for certain types of

function classesF , by characterizing the rate at whichP(Uj) vanishes in terms of a complexity

measure known as the disagreement coefficient.

For the purpose of calculating the valuesM̊ℓ in Theorem 12.7, it is sometimes convenient to

use the alternative interpretation of Algorithm 1, in termsof samplingQ from the conditional

distributionPDIS(V ). Specifically, the following lemma allows us to replace calculations in terms

of Fj andPXY with calculations in terms ofF(Eℓ(2
1−j); 01) andPDIS(Fj). Its proof is included

in Appendix 12.6

Lemma 12.8. Let φ̊ℓ be any function satisfying Definition 12.5. LetP be any distribution over

X × Y. For any measurableU ⊆ X × Y with P (U) > 0, definePU(·) = P (·|U). Also, for any

σ ≥ 0,H ⊆ [F ], andm ∈ N, if P
(

DISF(H)
)

> 0, define

φ̊′
ℓ(σ,H;m,P ) =

32



 inf
U=U ′×Y:

U ′⊇DISF(H)

P (U)φ̊ℓ

(

σ
√

P (U)
,H; ⌈(1/2)P (U)m⌉, PU

)

+
ℓ̄

m
+ σ

√

1

m



 , (12.13)

and otherwise define̊φ′
ℓ(σ,H;m,P ) = 0. Then the function̊φ′

ℓ also satisfies Definition 12.5.

Plugging this̊φ′
ℓ function into Theorem 12.7 immediately yields the following corollary, the

proof of which is included in Appendix 12.6.

Corollary 12.9. Fix any function̂s : N → [1,∞). Let jℓ = −⌈log2(ℓ̄)⌉, defineujℓ−2 = ujℓ−1 =

1, and for each integerj ≥ jℓ, letFj andUj be as in Theorem 12.7, and ifP(Uj) > 0, suppose
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uj ∈ N satisfieslog2(uj) ∈ N and

uj ≥ 4P(Uj)−1M̊ℓ

(

2−j−7

P(Uj)
,
22−j

P(Uj)
;Fj,PUj

, ŝ(uj)

)

∨ uj−1 ∨ 2uj−2. (12.14)

If P(Uj) = 0, let uj ∈ N satisfylog2(uj) ∈ N anduj ≥ K̃ℓ̄ŝ(uj)2
j+2 ∨ uj ∨ 2uj−2. Suppose

h∗ ∈ F . For anyε ∈ (0, 1) ands ∈ [1,∞), lettingjε = ⌈log2(1/Γℓ(ε))⌉, if

u ≥ ujε and n ≥ s+ 2e

jε
∑

j=jℓ

P(Uj)uj,

then, with argumentsℓ, u, andn, Algorithm 1 uses at mostu unlabeled samples and makes at

mostn label requests, and with probability at least

1− 2−s −
log2(ujε )
∑

i=1

6e−ŝ(2i),

returns a function̂h with er(ĥ)− er(h∗) ≤ ε.

Algorithm 1 can be modified in a variety of interesting ways, leading to related methods that

can be analyzed analogously. One simple modification is to use a more involved bound to define

the quantityT̂ℓ. For instance, forQ as above, and a function̂s : (0,∞)× Z× N→ [1,∞), one

could define

T̂ℓ(H;Q,m) = (3/2)q−1 inf
{

λ > 0 : ∀k ∈ Zλ,

Ûℓ

(

H
(

3q−12k−1; ℓ, S[Q]
)

;Q, ŝ(λ, k,m)
)

≤ 2k−4q−1
}

,

for which one can also prove a result similar to Lemma 12.4 [see Gińe and Koltchinskii, 2006,

Koltchinskii, 2006]. This definition shares the convenientdual-interpretations property men-

tioned above about̂Uℓ(H;Q, ŝ(m)); furthermore, results analogous to those above for Algorithm

1 also hold under this definition (under mild restrictions onthe allowed̂s functions), with only a

few modifications to constants and event probabilities (e.g., summing over thek ∈ Zλ argument

to ŝ in the probability, while setting theλ argument to2−j for the largestj with uj ≤ 2i).

The update trigger in Step 5 can also be modified in several ways, leading to interesting re-

lated methods. One possibility is that, if we have updated the V setk − 1 times already, and
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the previous update occurred atm = mk−1, at which pointV = Vk−1, Q = Qk−1 (before

the update), then we could choose to updateV a kth time whenlog2(m − mk−1) ∈ N and

Ûℓ(V ;Q, ŝ(γ̂k−1,m − mk−1))
|Q|∨1

m−mk−1
≤ γ̂k−1/2, for some function̂s : (0,∞) × N → [1,∞),

whereγ̂k−1 is inductively defined aŝγk−1 = Ûℓ(Vk−1;Qk−1, ŝ(γ̂k−2,mk−1 −mk−2))
|Qk−1|∨1

mk−1−mk−2

(and γ̂0 = ℓ̄), and we would then usêUℓ(V ;Q, ŝ(γ̂k−1,m − mk−1)) for the T̂ℓ value in the up-

date; in other words, we could updateV when the value of the concentration inequality used in

the update has been reduced by a factor of2. This modification leads to results quite similar

to those stated above (under mild restrictions on the allowed ŝ functions), with only a change

to the probability (namely, summing the exponential failure probabilitiese−ŝ(2−j ,2i) over values

of j betweenjℓ andjε, and values ofi between1 andlog2(uj)); additionally, with this modifi-

cation, because we check forlog2(m − mk−1) ∈ N rather thanlog2(m) ∈ N, one can remove

the “∨uj−1 ∨ 2uj−2” term in (12.12) and (12.14) (though this has no effect for the applications

below). Another interesting possibility in this vein is to update whenlog2(m − mk−1) ∈ N

andÛℓ(V ;Q, ŝ(Γℓ(2
−k),m −mk−1))

|Q|∨1
m−mk−1

< Γℓ(2
−k). Of course, the valueΓℓ(2

−k) is typi-

cally not directly available to us, but we could substitute adistribution-independent lower bound

on Γℓ(2
−k), for instance based on theψℓ function of Bartlett, Jordan, and McAuliffe [2006];

in the active learning context, we could potentially use unlabeled samples to estimate aP-

dependent lower bound onΓℓ(2
−k), or evendiam(V )ψℓ(2

−k/2diam(V )), based on (12.3), where

diam(V ) = suph,g∈V ∆(h, g).

12.5 Applications

In this section, we apply the abstract results from above to afew commonly-studied scenarios:

namely, VC subgraph classes and entropy conditions, with some additional mention of VC major

classes and VC hull classes. In the interest of making the results more concise and explicit, we

express them in terms of well-known conditions relating distances to excess risks. We also

express them in terms of a lower bound onΓℓ(ε) of the type in (12.2), with convenient properties
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that allow for closed-form expression of the results. To simplify the presentation, we often omit

numerical constant factors in the inequalities below, and for this we use the common notation

f(x) . g(x) to mean thatf(x) ≤ cg(x) for some implicit universal constantc ∈ (0,∞).

12.5.1 Diameter Conditions

To begin, we first state some general characterizations relating distances to excess risks; these

characterizations will make it easier to express our results more concretely below, and make

for a more straightforward comparison between results for the above methods. The following

condition, introduced by Mammen and Tsybakov [1999] and Tsybakov [2004], is a well-known

noise condition, about which there is now an extensive literature [e.g., Bartlett, Jordan, and

McAuliffe, 2006, Hanneke, 2011, 2012, Koltchinskii, 2006].

Condition 12.10. For somea ∈ [1,∞) andα ∈ [0, 1], for everyg ∈ F∗,

∆(g, h∗) ≤ a (er(g)− er(h∗))α .

Condition 12.10 can be equivalently expressed in terms of certain noise conditions [Bartlett,

Jordan, and McAuliffe, 2006, Mammen and Tsybakov, 1999, Tsybakov, 2004]. Specifically,

satisfying Condition 12.10 with someα < 1 is equivalent to the existence of somea′ ∈ [1,∞)

such that, for allε > 0,

P (x : |η(x)− 1/2| ≤ ε) ≤ a′εα/(1−α),

which is often referred to as alow noisecondition. Additionally, satisfying Condition 12.10 with

α = 1 is equivalent to having somea′ ∈ [1,∞) such that

P (x : |η(x)− 1/2| ≤ 1/a′) = 0,

often referred to as abounded noisecondition.

For simplicity, we formulate our results in terms ofa andα from Condition 12.10. However,

for the abstract results in this section, the results remainvalid under the weaker condition that

243



replacesF∗ byF , and adds the condition thath∗ ∈ F . In fact, the specific results in this section

also remain valid using this weaker condition while additionally using (12.3) in place of (12.2),

as remarked above.

An analogous condition can be defined for the surrogate loss function, as follows. Similar

notions have been explored by Bartlett, Jordan, and McAuliffe [2006] and Koltchinskii [2006].

Condition 12.11. For someb ∈ [1,∞) andβ ∈ [0, 1], for everyg ∈ [F ],

Dℓ (g, h
∗
P ;P )

2 ≤ b (Rℓ(g;P )− Rℓ(h
∗
P ;P ))

β .

Note that these conditions arealwayssatisfied forsomevalues ofa, b, α, β, sinceα = β = 0

trivially satisfies the conditions. However, in more benignscenarios, values ofα andβ strictly

greater than0 can be satisfied. Furthermore, for some loss functionsℓ, Condition 12.11 can

even be satisfieduniversally, in the sense that a value ofβ > 0 is satisfied forall distributions. In

particular, Bartlett, Jordan, and McAuliffe [2006] show that this is the case under Condition 12.3,

as stated in the following lemma [see Bartlett, Jordan, and McAuliffe, 2006, for the proof].

Lemma 12.12.Suppose Condition 12.3 is satisfied. Letβ = min{1, 2
rℓ
} andb = (2Cℓd̄

min{rℓ−2,0}
ℓ )−βL2.

TheneverydistributionP overX ×Y withh∗P ∈ [F ] satisfies Condition 12.11 with these values

of b andβ.

Under Condition 12.10, it is particularly straightforward to obtain bounds onΓℓ(ε) based on

a functionΨℓ(ε) satisfying (12.2). For instance, sincex 7→ xψℓ(1/x) is nonincreasing on(0,∞)

[Bartlett, Jordan, and McAuliffe, 2006], the function

Ψℓ(ε) = aεαψℓ

(

ε1−α/(2a)
)

(12.15)

satisfiesΨℓ(ε) ≤ Γℓ(ε) [Bartlett, Jordan, and McAuliffe, 2006]. Furthermore, for classification-

calibratedℓ, Ψℓ in (12.15) is strictly increasing, nonnegative, and continuous on(0, 1) [Bartlett,

Jordan, and McAuliffe, 2006], and hasΨℓ(0) = 0; thus, the inverseΨ−1
ℓ (γ), defined for allγ > 0

by

Ψ−1
ℓ (γ) = inf{ε > 0 : γ ≤ Ψℓ(ε)} ∪ {1}, (12.16)
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is strictly increasing, nonnegative, and continuous on(0,Ψℓ(1)). Furthermore, one can easily

showx 7→ Ψ−1
ℓ (x)/x is nonincreasing on(0,∞). Also note that∀γ > 0,Eℓ(γ) ≤ Ψ−1

ℓ (γ).

12.5.2 The Disagreement Coefficient

In order to more concisely state our results, it will be convenient to boundP(DIS(H)) by a linear

function of radius(H), for radius(H) in a given range. This type of relaxation has been used

extensively in the active learning literature [Balcan, Hanneke, and Vaughan, 2010, Beygelzimer,

Dasgupta, and Langford, 2009, Dasgupta, Hsu, and Monteleoni, 2007a, Friedman, 2009, Han-

neke, 2007a, 2009, 2011, 2012, Koltchinskii, 2010, Mahalanabis, 2011, Raginsky and Rakhlin,

2011, Wang, 2011], and the coefficient in the linear functionis typically referred to as thedis-

agreement coefficient. Specifically, the following definition is due to Hanneke [2007a, 2011];

related quantities have been explored by Alexander [1987] and Gińe and Koltchinskii [2006].

Definition 12.13. For anyr0 > 0, define thedisagreement coefficientof a functionh : X → R

with respect toF underP as

θh(r0) = sup
r>r0

P(DIS(B(h, r)))
r

∨ 1.

If h∗ ∈ F , define the disagreement coefficient of the classF asθ(r0) = θh∗(r0).

The value ofθ(ε) has been studied and bounded for various function classesF under various

conditions onP. In many cases of interest,θ(ε) is known to be bounded by a finite constant

[Balcan, Hanneke, and Vaughan, 2010, Friedman, 2009, Hanneke, 2007a, 2011, Mahalanabis,

2011], while in other cases,θ(ε) may have an interesting dependence onε [Balcan, Hanneke,

and Vaughan, 2010, Raginsky and Rakhlin, 2011, Wang, 2011]. The reader is referred to the

works of Hanneke [2011, 2012] for detailed discussions on the disagreement coefficient.
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12.5.3 Specification of̊φℓ

Next, we recall a few well-known bounds on theφℓ function, which leads to a more concrete

instance of a function̊φℓ satisfying Definition 12.5. Below, we letG∗ denote the set of measurable

functionsg : X ×Y → R̄. Also, forG ⊆ G∗, letF(G) = supg∈G |g| denote the minimalenvelope

function forG, and forg ∈ G∗ let ‖g‖2P =
∫

g2dP denote the squaredL2(P ) seminorm ofg; we

will generally assumeF(G) is measurable in the discussion below.

Uniform Entropy: The first bound is based on the work of van der Vaart and Wellner [2011];

related bounds have been studied by Giné and Koltchinskii [2006], Gińe, Koltchinskii, and Well-

ner [2003], van der Vaart and Wellner [1996], and others. Fora distributionP overX × Y,

a setG ⊆ G∗, andε ≥ 0, letN (ε,G, L2(P )) denote the size of a minimalε-cover ofG (that

is, the minimum number of balls of radius at mostε sufficient to coverG), where distances are

measured in terms of theL2(P ) pseudo-metric:(f, g) 7→ ‖f − g‖P . For σ ≥ 0 andF ∈ G∗,

define the function

J(σ,G,F) = sup
Q

∫ σ

0

√

1 + lnN (ε‖F‖Q,G, L2(Q))dε,

whereQ ranges over all finitely discrete probability measures.

Fix any distributionP overX × Y and anyH ⊆ [F ] with h∗P ∈ H, and let

GH = {(x, y) 7→ ℓ(h(x)y) : h ∈ H},

andGH,P = {(x, y) 7→ ℓ(h(x)y)− ℓ(h∗P (x)y) : h ∈ H}. (12.17)

Then, sinceJ(σ,GH,F) = J(σ,GH,P ,F), it follows from Theorem 2.1 of van der Vaart and

Wellner [2011] (and a triangle inequality) that for some universal constantc ∈ [1,∞), for any

m ∈ N, F ≥ F(GH,P ), andσ ≥ Dℓ(H;P ),

φℓ(H;P,m) ≤ (12.18)

cJ

(

σ

‖F‖P
,GH,F

)

‖F‖P





1√
m

+
J
(

σ
‖F‖P ,GH,F

)

‖F‖P ℓ̄
σ2m



 .
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Based on (12.18), it is straightforward to define a functionφ̊ℓ that satisfies Definition 12.5.

Specifically, define

φ̊
(1)
ℓ (σ,H;m,P ) =

inf
F≥F(GH,P )

inf
λ≥σ

cJ

(

λ

‖F‖P
,GH,F

)

‖F‖P





1√
m

+
J
(

λ
‖F‖P ,GH,F

)

‖F‖P ℓ̄
λ2m



 , (12.19)

for c as in (12.18). By (12.18),̊φ(1)
ℓ satisfies (12.5). Also note thatm 7→ φ̊

(1)
ℓ (σ,H;m,P ) is non-

increasing, whileσ 7→ φ̊
(1)
ℓ (σ,H;m,P ) is nondecreasing. Furthermore,H 7→ N (ε,GH, L2(Q))

is nondecreasing for allQ, so thatH 7→ J(σ,GH,F) is nondecreasing as well; sinceH 7→

F(GH,P ) is also nondecreasing, we see thatH 7→ φ̊
(1)
ℓ (σ,H;m,P ) is nondecreasing. Similarly,

for U ⊆ X , N (ε,GHU,h∗P
, L2(Q)) ≤ N (ε,GH, L2(Q)) for all Q, so thatJ(σ,GHU,h∗P

,F) ≤

J(σ,GH,F); becauseF(GHU,h∗P ,P ) ≤ F(GH,P ), we have̊φ(1)
ℓ (σ,HU ,h∗

P
;m,P ) ≤ φ̊

(1)
ℓ (σ,H;m,P )

as well. Thus, to satisfy Definition 12.5, it suffices to takeφ̊ℓ = φ̊
(1)
ℓ .

Bracketing Entropy: Our second bound is a classic result in empirical process theory. For func-

tionsg1 ≤ g2, abracket[g1, g2] is the set of functionsg ∈ G∗ with g1 ≤ g ≤ g2; [g1, g2] is called

anε-bracket underL2(P ) if ‖g1− g2‖P < ε. ThenN[](ε,G, L2(P )) denotes the smallest number

of ε-brackets (underL2(P )) sufficient to coverG. Forσ ≥ 0, define the function

J[](σ,G, P ) =
∫ σ

0

√

1 + lnN[](ε,G, L2(P ))dε.

Fix anyH ⊆ [F ], and letGH andGH,P be as above. Then sinceJ[](σ,GH, P ) = J[](σ,GH,P , P ),

Lemma 3.4.2 of van der Vaart and Wellner [1996] and a triangleinequality imply that for some

universal constantc ∈ [1,∞), for anym ∈ N andσ ≥ Dℓ(H;P ),

φℓ(H;P,m) ≤ cJ[] (σ,GH, P )
(

1√
m

+
J[] (σ,GH, P ) ℓ̄

σ2m

)

. (12.20)

As-is, the right side of (12.20) nearly satisfies Definition 12.5 already. Only a slight modification

is required to fulfill the requirement of monotonicity inσ. Specifically, define

φ̊
(2)
ℓ (σ,H;P,m) = inf

λ≥σ
cJ[] (λ,GH, P )

(

1√
m

+
J[] (λ,GH, P ) ℓ̄

λ2m

)

, (12.21)
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for c as in (12.20). Then taking̊φℓ = φ̊
(2)
ℓ suffices to satisfy Definition 12.5.

Since Definition 12.5 is satisfied for both̊φ(1)
ℓ andφ̊(2)

ℓ , it is also satisfied for

φ̊ℓ = min
{

φ̊
(1)
ℓ , φ̊

(2)
ℓ

}

. (12.22)

For the remainder of this section, we supposeφ̊ℓ is defined as in (12.22) (for all distributionsP

overX × Y), and study the implications arising from the combination of this definition with the

abstract theorems above.

12.5.4 VC Subgraph Classes

For a collectionA of sets, a set{z1, . . . , zk} of points is said to beshatteredby A if |{A ∩

{z1, . . . , zk} : A ∈ A}| = 2k. The VC dimensionvc(A) of A is then defined as the largest

integerk for which there existk points{z1, . . . , zk} shattered byA [Vapnik and Chervonenkis,

1971]; if no such largestk exists, we definevc(A) = ∞. For a setG of real-valued functions,

denote byvc(G) the VC dimension of the collection{{(x, y) : y < g(x)} : g ∈ G} of subgraphs

of functions inG (called the pseudo-dimension [Haussler, 1992, Pollard, 1990]); to simplify

the statement of results below, we adopt the convention thatwhen the VC dimension of this

collection is0, we letvc(G) = 1. A setG is said to be a VC subgraph class ifvc(G) < ∞

[van der Vaart and Wellner, 1996].

Because we are interested in results concerning values ofRℓ(h) − Rℓ(h
∗), for functionsh

in certain subsetsH ⊆ [F ], we will formulate results below in terms ofvc(GH), for GH defined

as above. Depending on certain properties ofℓ, these results can often be restated directly in

terms ofvc(H); for instance, this is true whenℓ is monotone, sincevc(GH) ≤ vc(H) in that case

[Dudley, 1987, Haussler, 1992, Nolan and Pollard, 1987].

The following is a well-known result for VC subgraph classes[see e.g., van der Vaart and

Wellner, 1996], derived from the works of Pollard [1984] andHaussler [1992].

Lemma 12.14.For anyG ⊆ G∗, for any measurableF ≥ F(G), for any distributionQ such that
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‖F‖Q > 0, for anyε ∈ (0, 1),

N (ε‖F‖Q,G, L2(Q)) ≤ A(G)
(

1

ε

)2vc(G)
.

whereA(G) . (vc(G) + 1)(16e)vc(G).

In particular, Lemma 12.14 implies that anyG ⊆ G∗ has,∀σ ∈ (0, 1],

J (σ,G,F) ≤
∫ σ

0

√

ln(eA(G)) + 2vc(G) ln(1/ε)dε (12.23)

≤ 2σ
√

ln(eA(G)) +
√

8vc(G)
∫ σ

0

√

ln(1/ε)dε

= 2σ
√

ln(eA(G)) + σ
√

8vc(G) ln(1/σ) +
√

2πvc(G)erfc
(

√

ln(1/σ)
)

.

Sinceerfc(x) ≤ exp{−x2} for all x ≥ 0, (12.23) implies∀σ ∈ (0, 1],

J(σ,G,F) . σ
√

vc(G)Log(1/σ). (12.24)

Applying these observations to boundJ(σ,GH,P ,F) for H ⊆ [F ] andF ≥ F(GH,P ), noting

J(σ,GH,F) = J(σ,GH,P ,F) andvc(GH,P ) = vc(GH), and plugging the resulting bound into

(12.19) yields the following well-known bound on̊φ(1)
ℓ due to Gińe and Koltchinskii [2006]. For

anym ∈ N andσ > 0,

φ̊
(1)
ℓ (σ,H;m,P )

. inf
λ≥σ

λ

√

√

√

√

vc(GH)Log
(

‖F(GH,P )‖P
λ

)

m
+

vc(GH)ℓ̄Log
(

‖F(GH,P )‖P
λ

)

m
. (12.25)

Specifically, to arrive at (12.25), we relaxed theinfF≥F(GH,P ) in (12.19) by takingF ≥ F(GH,P )

such that‖F‖P = max{σ, ‖F(GH,P )‖P}, thus maintainingλ/‖F‖P ∈ (0, 1] for the minimizing

λ value, so that (12.24) remains valid; we also made use of the fact thatLog ≥ 1, which gives us

Log(‖F‖P/λ) = Log(‖F(GH,P )‖P/λ) for this case.

In particular, (12.25) implies

M̈ℓ(γ1, γ2;H, P )

. inf
σ≥Dℓ([H](γ2;ℓ,P );P )

(

σ2

γ21
+

ℓ̄

γ1

)

vc(GH)Log
(‖F(GH,P )‖P

σ

)

. (12.26)
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Following Gińe and Koltchinskii [2006], forr > 0, defineBH,P (h
∗
P , r; ℓ) = {g ∈ H :

Dℓ(g, h
∗
P ;P )

2 ≤ r}, and forr0 ≥ 0, define

τℓ(r0;H, P ) = sup
r>r0

∥

∥F
(

GBH,P (h∗
P ,r;ℓ),P

)∥

∥

2

P

r
∨ 1.

WhenP = PXY , abbreviate this asτℓ(r0;H) = τℓ(r0;H,PXY ), and whenH = F , further

abbreviateτℓ(r0) = τℓ(r0;F ,PXY ). Forλ > 0, whenh∗P ∈ H andP satisfies Condition 12.11,

(12.26) implies that,

sup
γ≥λ

M̈ℓ(γ/(4K̃), γ;H(γ; ℓ, P ), P )

.

(

b

λ2−β
+
ℓ̄

λ

)

vc(GH)Log
(

τℓ
(

bλβ;H, P
))

. (12.27)

Combining this observation with (12.6), (12.8), (12.9), (12.10), and Theorem 12.6, we arrive

at a result for the sample complexity of empiricalℓ-risk minimization with a general VC subgraph

class under Conditions 12.10 and 12.11. Specifically, fors : (0,∞)2 → [1,∞), whenh∗ ∈ F ,

(12.6) implies that

M̄ℓ(Γℓ(ε);F ,PXY , s) ≤ M̃ℓ(Γℓ(ε);F ,PXY , s)

= sup
γ≥Γℓ(ε)

M̃ℓ(γ/2, γ;F(γ; ℓ),PXY , s(Γℓ(ε), γ))

≤ sup
γ≥Γℓ(ε)

M̊ℓ(γ/2, γ;F(γ; ℓ),PXY , s(Γℓ(ε), γ)). (12.28)

SupposingPXY satisfies Conditions 12.10 and 12.11, applying (12.8), (12.9), and (12.27) to

(12.28), and takings(λ, γ) = Log
(

12γ
λδ

)

, we arrive at the following theorem, which is implicit in

the work of Gińe and Koltchinskii [2006].

Theorem 12.15.For a universal constantc ∈ [1,∞), if PXY satisfies Condition 12.10 and

Condition 12.11,ℓ is classification-calibrated,h∗ ∈ F , andΨℓ is as in (12.15), then for any

ε ∈ (0, 1), lettingτℓ = τℓ
(

bΨℓ(ε)
β
)

, for anym ∈ N with

m ≥ c

(

b

Ψℓ(ε)2−β
+

ℓ̄

Ψℓ(ε)

)

(vc(GF)Log (τℓ) + Log (1/δ)) , (12.29)

with probability at least1− δ, ERMℓ(F ,Zm) produceŝh with er(ĥ)− er(h∗) ≤ ε.
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As noted by Gińe and Koltchinskii [2006], in the special case whenℓ is itself the 0-1 loss, the

bound in Theorem 12.15 simplifies quite nicely, since in thatcase‖F(GBF,PXY
(h∗,r;ℓ),PXY

)‖2PXY
=

P (DIS (B (h∗, r))), so thatτℓ(r0) = θ(r0); in this case, we also havevc(GF) ≤ vc(F) and

Ψℓ(ε) = ε/2, and we can takeβ = α andb = a, so that it suffices to have

m ≥ caεα−2 (vc(F)Log (θ) + Log (1/δ)) , (12.30)

whereθ = θ (aεα) andc ∈ [1,∞) is a universal constant. It is known that this is sometimes the

minimax optimal number of samples sufficient for passive learning [Castro and Nowak, 2008,

Hanneke, 2011, Raginsky and Rakhlin, 2011].

Next, we turn to the performance of Algorithm 1 under the conditions of Theorem 12.15.

Specifically, supposePXY satisfies Conditions 12.10 and 12.11, and forγ0 ≥ 0, define

χℓ(γ0) = sup
γ>γ0

P (DIS (B (h∗, aEℓ (γ)
α)))

bγβ
∨ 1.

Note that‖F(GFj ,PXY
)‖2PXY

≤ ℓ̄2P (DIS (F (Eℓ (2
2−j) ; 01))). Also, note thatvc(GFj

) ≤

vc(GF(Eℓ(22−j);01)) ≤ vc(GF). Thus, by (12.26), forjℓ ≤ j ≤ ⌈log2(1/Ψℓ(ε))⌉,

M̈ℓ(2
−j−2K̃−1, 22−j ;Fj,PXY ) .

(

b2j(2−β) + ℓ̄2j
)

vc(GF)Log
(

χℓ (Ψℓ(ε)) ℓ̄
)

. (12.31)

With a little additional work to define an appropriateŝ function and derive closed-form

bounds on the summation in Theorem 12.7, we arrive at the following theorem regarding the

performance of Algorithm 1 for VC subgraph classes. For completeness, the remaining techni-

cal details of the proof are included in Appendix 12.6

Theorem 12.16.For a universal constantc ∈ [1,∞), if PXY satisfies Condition 12.10 and Con-

dition 12.11,ℓ is classification-calibrated,h∗ ∈ F , andΨℓ is as in(12.15), for anyε ∈ (0, 1), let-

tingθ = θ (aεα),χℓ = χℓ(Ψℓ(ε)),A1 = vc(GF)Log(χℓℓ̄)+Log(1/δ),B1 = min
{

1
1−2(α+β−2) ,Log(ℓ̄/Ψℓ(ε))

}

,

andC1 = min
{

1
1−2(α−1) ,Log(ℓ̄/Ψℓ(ε))

}

, if

u ≥ c

(

b

Ψℓ(ε)2−β
+

ℓ̄

Ψℓ(ε)

)

A1 (12.32)
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and

n ≥ cθaεα
(

b(A1 + Log(B1))B1

Ψℓ(ε)2−β
+
ℓ̄(A1 + Log(C1))C1

Ψℓ(ε)

)

, (12.33)

then, with argumentsℓ, u, andn, and an appropriatês function, Algorithm 1 uses at mostu

unlabeled samples and makes at mostn label requests, and with probability at least1 − δ,

returns a function̂h with er(ĥ)− er(h∗) ≤ ε.

To be clear, in specifyingB1 andC1, we have adopted the convention that1/0 = ∞ and

min{∞, x} = x for anyx ∈ R, so thatB1 andC1 are well-defined even whenα = β = 1,

or α = 1, respectively. Note that, whenα + β < 2, B1 = O(1), so that the asymptotic

dependence onε in (12.33) isO
(

θεαΨℓ(ε)
β−2Log(χℓ)

)

, while in the case ofα = β = 1, it is

O (θLog(1/ε)(Log(θ) + Log(Log(1/ε)))). It is likely that the logarithmic and constant factors

can be improved in many cases (particularly theLog(χℓℓ̄),B1, andC1 factors).

Comparing the result in Theorem 12.16 to Theorem 12.15, we seethat the condition on

u in (12.32) is almost identical to the condition onm in (12.29), aside from a change in the

logarithmic factor, so that the total number of data points needed is roughly the same. However,

the number oflabelsindicated by (12.33) may often be significantly smaller thanthe condition

in (12.29), reducing it by a factor of roughlyθaεα. This reduction is particularly strong whenθ

is bounded by a finite constant. Moreover, this is the sametypeof improvement that is known to

occur whenℓ is itself the0-1 loss [Hanneke, 2011], so that in particular these results agree with

the existing analysis in this special case, and are therefore sometimes nearly minimax [Hanneke,

2011, Raginsky and Rakhlin, 2011]. Regarding the slight difference between (12.32) and (12.29)

from replacingτℓ byχℓℓ̄, the effect is somewhat mixed, and which of these is smaller may depend

on the particular classF and lossℓ; we can generally boundχℓ as a function ofθ(aεα), ψℓ, a, α,

b, andβ. In the special case ofℓ equal the0-1 loss, bothτℓ andχℓℓ̄ are equal toθ(a(ε/2)α).

We note that the valueŝs(m) used in the proof of Theorem 12.16 have a direct dependence on

the parametersb, β, a, α, andχℓ. Such a dependence may be undesirable for many applications,

where information about these values is not available. However, one can easily follow this same
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proof, takingŝ(m) = Log
(

12 log2(2m)2

δ

)

instead, which only leads to an increase by alog log

factor: specifically, replacing the factor ofA1 in (12.32), and the factors(A1 + Log(B1)) and

(A1 + Log(C1)) in (12.33), with a factor of(A1 + Log(Log(ℓ̄/Ψℓ(ε)))). It is not clear whether

it is always possible to achieve the slightly tighter resultof Theorem 12.16 without having direct

access to the valuesb, β, a, α, andχℓ in the algorithm.

As mentioned above, though convenient in the sense that it offers a completely abstract and

unified approach, the choice of̂Tℓ(V ;Q,m) given by (12.11) may often make Algorithm 1 com-

putationally inefficient. However, for each of the applications studied here, we can relax thisT̂ℓ

function to a computationally-accessible value, which will then allow the algorithm to be effi-

cient under convexity conditions on the loss and class of functions. In particular, in the present

application to VC Subgraph classes, Theorem 12.16 remains valid if we instead definêTℓ as fol-

lows. If we letV (m) andQm denote the setsV andQ upon reaching Step 5 for any given value

of m with log2(m) ∈ N realized in Algorithm 1, then consider defininĝTℓ in Step 6 inductively

by letting γ̂m/2 =
8(|Qm/2|∨1)

m

(

T̂ℓ(V
(m/2);Qm/2,m/2) ∧ ℓ̄

)

(or γ̂m/2 = ℓ̄ if m = 2), and taking

(with a slight abuse of notation to alloŵTℓ to depend on setsV (m′) andQm′ with m′ < m)

T̂ℓ(V
(m);Qm,m) =

c0
m/2

|Qm| ∨ 1









√

√

√

√γ̂βm/2

b

m

(

vc(GF)Log
(

ℓ̄(|Qm|+ ŝ(m))

mbγ̂βm/2

)

+ ŝ(m)

)

+
ℓ̄

m

(

vc(GF)Log
(

ℓ̄(|Qm|+ ŝ(m))

mbγ̂βm/2

)

+ ŝ(m)

)









, (12.34)

for an appropriate universal constantc0. This value is essentially derived by upper bounding

m/2
|Q|∨1 Ũℓ(VDIS(V );PXY ,m/2, ŝ(m)) (which is a bound on (12.11) by Lemma 12.4), based on

(12.25) and Condition 12.11 (along with a Chernoff bound to argue |Qm| ≈ P(DIS(V ))m/2);

since the sample sizes derived foru andn in Theorem 12.16 are based on these relaxations

anyway, they remain sufficient (with slight changes to the constant factors) for these relaxed̂Tℓ
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values. For brevity, we defer a more detailed proof that these values ofT̂ℓ suffice to achieve

Theorem 12.16 to Appendix 12.7. Note that we have introduceda dependence onb andβ in

(12.34). These values would indeed be available for some applications, such as when they are

derived from Lemma 12.12 when Condition 12.3 is satisfied; however, in other cases, there may

be more-favorable values ofb andβ than given by Lemma 12.12, dependent on the specific

PXY distribution, and in these cases direct observation of these values might not be available.

Thus, there remains an interesting open question of whetherthere exists a function̂Tℓ(V ;Q,m),

which is efficiently computable (under convexity assumptions) and yet preserves the validity of

Theorem 12.16; this same question applies to each of the results below as well.

In the special case whenℓ satisfies Condition 12.3, we can derive a sometimes-strongerresult

via Corollary 12.9. Specifically, we can combine (12.26), (12.8), (12.9), and Lemma 12.12, to

get that ifh∗ ∈ F and Condition 12.3 is satisfied, then forj ≥ jℓ in Corollary 12.9,

M̊ℓ

(

2−j−7

P(Uj)
,
22−j

P(Uj)
;Fj,PUj

, s

)

(12.35)

.
(

b
(

2jP(Uj)
)2−β

+ 2j ℓ̄P(Uj)
)

(

vc(GF)Log
(

ℓ̄2jβP(Uj)β/b
)

+ s
)

,

whereb andβ are as in Lemma 12.12. Plugging this into Corollary 12.9, withŝ defined analogous

to that used in the proof of Theorem 12.16, and bounding the summation in the condition forn

in Corollary 12.9, we arrive at the following theorem. The details of the proof proceed along

similar lines as the proof of Theorem 12.16, and a sketch of the remaining technical details is

included in Appendix 12.6.

Theorem 12.17.For a universal constantc ∈ [1,∞), if PXY satisfies Condition 12.10,ℓ is

classification-calibrated and satisfies Condition 12.3,h∗ ∈ F , Ψℓ is as in(12.15), andb andβ

are as in Lemma 12.12, then for anyε ∈ (0, 1), lettingθ = θ(aεα), A2 =

vc(GF)Log
(

(

ℓ̄/b
)

(aθεα/Ψℓ(ε))
β
)

+Log (1/δ),B2 = min
{

1
1−2(α−1)(2−β) ,Log

(

ℓ̄/Ψℓ(ε)
)

}

, and

C2 = min
{

1
1−2(α−1) ,Log

(

ℓ̄/Ψℓ(ε)
)

}

, if

u ≥ c

(

b (aθεα)1−β

Ψℓ(ε)2−β
+

ℓ̄

Ψℓ(ε)

)

A2, (12.36)
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and

n ≥ c

(

b(A2 + Log(B2))B2

(

aθεα

Ψℓ(ε)

)2−β

+ ℓ̄(A2 + Log(C2))C2

(

aθεα

Ψℓ(ε)

)

)

, (12.37)

then, with argumentsℓ, u, andn, and an appropriatês function, Algorithm 1 uses at mostu

unlabeled samples and makes at mostn label requests, and with probability at least1 − δ,

returns a function̂h with er(ĥ)− er(h∗) ≤ ε.

Examining the asymptotic dependence onε in the above result, the sufficient number of un-

labeled samples isO

(

(θεα)1−β

Ψℓ(ε)2−βLog

(

(

θεα

Ψℓ(ε)

)β
))

, and the sufficient number of label requests is

O

(

(

θεα

Ψℓ(ε)

)2−β

Log

(

(

θεα

Ψℓ(ε)

)β
))

in the case thatα < 1, orO
(

θ2−βLog(1/ε)Log
(

θβLog(1/ε)
))

in the case thatα = 1. This is noteworthy in the caseα > 0 andrℓ > 2, for at least two rea-

sons. First, the number of label requests indicated by this result can often be smaller than that

indicated by Theorem 12.16, by a factor of roughlyÕ
(

(θεα)1−β
)

; this is particularly interesting

whenθ is bounded by a finite constant. The second interesting feature of this result is that even

the sufficient number ofunlabeledsamples, as indicated by (12.36), can often be smaller than

the number oflabeledsamples sufficient forERMℓ, as indicated by Theorem 12.15, again by a

factor of roughlyÕ
(

(θεα)1−β
)

. This indicates that, in the case of a surrogate lossℓ satisfying

Condition 12.3 withrℓ > 2, when Theorem 12.15 is tight, even if we have complete accessto a

fully labeled data set, we may still prefer to use Algorithm 1rather thanERMℓ; this is somewhat

surprising, since (as (12.37) indicates) we expect Algorithm 1 to ignore the vast majority of the

labels in this case. That said, it is not clear whether there exist natural classification-calibrated

lossesℓ satisfying Condition 12.3 withrℓ > 2 for which the indicated sufficient size ofm in

Theorem 12.15 is ever competitive with the known results formethods that directly optimize the

empirical0-1 risk (i.e., Theorem 12.15 withℓ the0-1 loss); thus, the improvements inu andn re-

flected by Theorem 12.17 may simply indicate that Algorithm 1is, to some extent,compensating

for a choice of lossℓ that would otherwise lead to suboptimal label complexities.

We note that, as in Theorem 12.16, the valuesŝ used to obtain this result have a direct

dependence on certain values, which are typically not directly accessible in practice: in this
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case,a, α, andθ. However, as was the case for Theorem 12.16, we can obtain only slightly

worse results by instead takingŝ(m) = Log
(

12 log2(2m)2

δ

)

, which again only leads to an increase

by a log log factor: replacing the factor ofA2 in (12.36), and the factors(A2 + Log(B2)) and

(A2+Log(C2)) in (12.37), with a factor of(A2+Log(Log(ℓ̄/Ψℓ(ε)))). As before, it is not clear

whether the slightly tighter result of Theorem 12.17 is always available, without requiring direct

dependence on these quantities.

As was also true of Theorem 12.16, while the above choice ofT̂ℓ(V ;Q,m) given by (12.11)

provides an elegant unifying perspective, it may often be infeasible to calculate efficiently. How-

ever, as was possible in that case, we can define an alternative that is specialized to the conditions

of Theorem 12.17, for which the theorem statement remains valid. Specifically, consider instead

definingT̂ℓ in Step 6 as

T̂ℓ(V
(m);Qm,m)

= c0

(

b

|Qm| ∨ 1

(

vc(GF)Log
(

ℓ̄

b

( |Qm|
bvc(GF)

)
β

2−β

)

+ ŝ(m)

))

1
2−β

∧ ℓ̄, (12.38)

for b andβ as in Lemma 12.12, and for an appropriate universal constantc0. This value is essen-

tially derived by bounding̃Uℓ(V ;PDIS(V ), ŝ(m)), which is informative in Step 6 via Lemma 12.4.

Since Theorem 12.17 is proven by considering concentrationunder the conditional distributions

PUj
via Corollary 12.9, and (12.38) represents the concentration bound one gets from directly

applying Lemma 12.4 to the samples from the conditional distributionPDIS(V (m)), one can show

that the conclusions of Theorem 12.17 remain valid for this specification ofT̂ℓ in place of (12.11).

For brevity, the details of the proof are omitted. Note that,unlike the analogous result for The-

orem 12.16 based on (12.34) above, in this case all of the quantities in T̂ℓ(V ;Q,m) are directly

observable (in particular,b andβ), aside from any possible dependence arising in the specifica-

tion of ŝ.
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12.5.5 Entropy Conditions

Next we turn to problems satisfying certain entropy conditions. In particular, the following

represent two commonly-studied conditions, which allow for concise statement of results below.

Condition 12.18. For someq ≥ 1, ρ ∈ (0, 1), andF ≥ F(GF ,PXY
), either∀ε > 0,

lnN[](ε‖F‖PXY
,GF , L2(PXY )) ≤ qε−2ρ, (12.39)

or for all finitely discreteP , ∀ε > 0,

lnN (ε‖F‖P ,GF , L2(P )) ≤ qε−2ρ. (12.40)

In particular, note that whenF satisfies Condition 12.18, for0 ≤ σ ≤ 2‖F‖PXY
,

φ̊ℓ(σ,F ;PXY ,m) . max







√
q‖F‖ρPXY

σ1−ρ

(1− ρ)m1/2
,
ℓ̄

1−ρ
1+ρ q

1
1+ρ‖F‖

2ρ
1+ρ

PXY

(1− ρ) 2
1+ρm

1
1+ρ







. (12.41)

SinceDℓ([F ]) ≤ 2‖F‖PXY
, this implies that for any numerical constantc ∈ (0, 1], for every

γ ∈ (0,∞), if PXY satisfies Condition 12.11, then

M̈ℓ(cγ, γ;F ,PXY ) .
q‖F‖2ρPXY

(1− ρ)2 max
{

b1−ργβ(1−ρ)−2, ℓ̄1−ργ−(1+ρ)
}

. (12.42)

Combined with (12.8), (12.9), (12.10), and Theorem 12.6, taking s(λ, γ) = Log
(

12γ
λδ

)

, we arrive

at the following classic result [e.g., Bartlett, Jordan, andMcAuliffe, 2006, van der Vaart and

Wellner, 1996].

Theorem 12.19.For a universal constantc ∈ [1,∞), if PXY satisfies Condition 12.10 and

Condition 12.11,F andPXY satisfy Condition 12.18,ℓ is classification-calibrated,h∗ ∈ F , and

Ψℓ is as in(12.15), then for anyε ∈ (0, 1) andm with

m ≥ c
q‖F‖2ρPXY

(1− ρ)2
(

b1−ρ

Ψℓ(ε)2−β(1−ρ)
+

ℓ̄1−ρ

Ψℓ(ε)1+ρ

)

+ c

(

b

Ψℓ(ε)2−β
+

ℓ̄

Ψℓ(ε)

)

Log

(

1

δ

)

,

with probability at least1− δ, ERMℓ(F ,Zm) produceŝh with er(ĥ)− er(h∗) ≤ ε.
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Next, turning to the analysis of Algorithm 1 under these sameconditions, combining (12.42)

with (12.8), (12.9), and Theorem 12.7, we have the followingresult. The details of the proof

follow analogously to the proof of Theorem 12.16, and are therefore omitted for brevity.

Theorem 12.20.For a universal constantc ∈ [1,∞), if PXY satisfies Condition 12.10 and

Condition 12.11,F andPXY satisfy Condition 12.18,ℓ is classification-calibrated,h∗ ∈ F , and

Ψℓ is as in(12.15), then for anyε ∈ (0, 1), lettingB1 andC1 be as in Theorem 12.16,B3 =

min
{

1
1−2(α+β(1−ρ)−2) ,Log(ℓ̄/Ψℓ(ε))

}

,C3 = min
{

1
1−2(α−(1+ρ)) ,Log(ℓ̄/Ψℓ(ε))

}

, andθ = θ (aεα),

if

u ≥ c
q‖F‖2ρPXY

(1− ρ)2
(

b1−ρ

Ψℓ(ε)2−β(1−ρ)
+

ℓ̄1−ρ

Ψℓ(ε)1+ρ

)

+ c

(

b

Ψℓ(ε)2−β
+

ℓ̄

Ψℓ(ε)

)

Log

(

1

δ

)

(12.43)

and

n ≥ cθaεα
q‖F‖2ρPXY

(1− ρ)2
(

b1−ρB3

Ψℓ(ε)2−β(1−ρ)
+

ℓ̄1−ρC3

Ψℓ(ε)1+ρ

)

+ cθaεα
(

bB1Log(B1/δ)

Ψℓ(ε)2−β
+
ℓ̄C1Log(C1/δ)

Ψℓ(ε)

)

, (12.44)

then, with argumentsℓ, u, andn, and an appropriatês function, Algorithm 1 uses at mostu

unlabeled samples and makes at mostn label requests, and with probability at least1 − δ,

returns a function̂h with er(ĥ)− er(h∗) ≤ ε.

The sufficient size ofu in Theorem 12.20 is essentially identical (up to the constant factors)

to the number of labels sufficient forERMℓ to achieve the same, as indicated by Theorem 12.19.

In particular, the dependence onε in these results isO
(

Ψℓ(ε)
β(1−ρ)−2

)

. On the other hand, when

θ(εα) = o(ε−α), the sufficient size ofn in Theorem 12.20doesreflect an improvement in the

number of labels indicated by Theorem 12.19, by a factor withdependence onε of O (θεα).

As before, in the special case whenℓ satisfies Condition 12.3, we can derive sometimes

stronger results via Corollary 12.9. In this case, we will distinguish between the cases of (12.40)

and (12.39), as we find a slightly stronger result for the former.
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First, suppose (12.40) is satisfied for all finitely discreteP and allε > 0, with F ≤ ℓ̄. Then

following the derivation of (12.42) above, combined with (12.9), (12.8), and Lemma 12.12, for

values ofj ≥ jℓ in Corollary 12.9,

M̊ℓ

(

2−j−7

P(Uj)
,
22−j

P(Uj)
;Fj,PUj

, s

)

.
qℓ̄2ρ

(1− ρ)2
(

b1−ρ
(

2jP(Uj)
)2−β(1−ρ)

+ ℓ̄1−ρ
(

2jP(Uj)
)1+ρ

)

+
(

b
(

2jP(Uj)
)2−β

+ ℓ̄2jP(Uj)
)

s,

whereq andρ are from Lemma 12.12. This immediately leads to the following result by reason-

ing analogous to the proof of Theorem 12.17.

Theorem 12.21.For a universal constantc ∈ [1,∞), if PXY satisfies Condition 12.10,ℓ is

classification-calibrated and satisfies Condition 12.3,h∗ ∈ F , Ψℓ is as in(12.15), b andβ are as

in Lemma 12.12, and(12.40)is satisfied for all finitely discreteP and allε > 0, withF ≤ ℓ̄, then

for anyε ∈ (0, 1), lettingB2 andC2 be as in Theorem 12.17,B4 = min
{

1
1−2(α−1)(2−β(1−ρ)) ,Log(ℓ̄/Ψℓ(ε))

}

,

C4 = min
{

1
1−2(α−1)(1+ρ) ,Log(ℓ̄/Ψℓ(ε))

}

, andθ = θ (aεα), if

u ≥ c

(

qℓ̄2ρ

(1− ρ)2
)

(

(

b1−ρ

Ψℓ(ε)

)(

aθεα

Ψℓ(ε)

)1−β(1−ρ)

+

(

ℓ̄1−ρ

Ψℓ(ε)

)(

aθεα

Ψℓ(ε)

)ρ
)

+ c

(

(

b

Ψℓ(ε)

)(

aθεα

Ψℓ(ε)

)1−β

+
ℓ̄

Ψℓ(ε)

)

Log(1/δ)

and

n ≥ c

(

qℓ̄2ρ

(1− ρ)2
)

(

B4b
1−ρ

(

aθεα

Ψℓ(ε)

)2−β(1−ρ)

+ C4ℓ̄
1−ρ

(

aθεα

Ψℓ(ε)

)1+ρ
)

+ c

(

B2Log(B2/δ)b

(

aθεα

Ψℓ(ε)

)2−β

+ C2Log(C2/δ)ℓ̄

(

aθεα

Ψℓ(ε)

)

)

,

then, with argumentsℓ, u, andn, and an appropriatês function, Algorithm 1 uses at mostu

unlabeled samples and makes at mostn label requests, and with probability at least1 − δ,

returns a function̂h with er(ĥ)− er(h∗) ≤ ε.
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Compared to Theorem 12.20, in terms of the asymptotic dependence onε, the sufficient

sizes for bothu andn here may be smaller by a factor ofO
(

(θεα)1−β(1−ρ)
)

, which sometimes

represents a significant refinement, particularly whenθ is much smaller thanε−α. In particular,

as was the case in Theorem 12.17, whenθ(ε) = o(1/ε), the size ofu indicated by Theorem 12.21

is smaller than the known results forERMℓ(F ,Zm) from Theorem 12.19.

The case where (12.39) is satisfied can be treated similarly,though the result we obtain here

is slightly weaker. Specifically, for simplicity suppose (12.39) is satisfied withF = ℓ̄ constant. In

this case, we havēℓ ≥ F(GFj ,PUj
) as well, whileN[](εℓ̄,GFj

, L2(PUj
)) = N[](εℓ̄

√

P(Uj),GFj
, L2(PXY )),

which is no larger thanN[](εℓ̄
√

P(Uj),GF , L2(PXY )), so thatFj andPUj
also satisfy (12.39)

with F = ℓ̄; specifically,

lnN[]

(

εℓ̄,GFj
, L2(PUj

)
)

≤ qP(Uj)−ρε−2ρ.

Thus, based on (12.42), (12.8), (12.9), and Lemma 12.12, we have that ifh∗ ∈ F and Condi-

tion 12.3 is satisfied, then forj ≥ jℓ in Corollary 12.9,

M̊ℓ

(

2−j−7

P(Uj)
,
22−j

P(Uj)
;Fj,PUj

, s

)

.

(

qℓ̄2ρ

(1− ρ)2
)

P(Uj)−ρ
(

b1−ρ
(

2jP(Uj)
)2−β(1−ρ)

+ ℓ̄1−ρ
(

2jP(Uj)
)1+ρ

)

+
(

b
(

2jP(Uj)
)2−β

+ ℓ̄2jP(Uj)
)

s,

whereb andβ are as in Lemma 12.12. Combining this with Corollary 12.9 and reasoning analo-

gously to the proof of Theorem 12.17, we have the following result.

Theorem 12.22.For a universal constantc ∈ [1,∞), if PXY satisfies Condition 12.10,ℓ is

classification-calibrated and satisfies Condition 12.3,h∗ ∈ F , Ψℓ is as in (12.15), b and β

are as in Lemma 12.12, and(12.39) is satisfied withF = ℓ̄ constant, then for anyε ∈ (0, 1),

lettingB2 andC2 be as in Theorem 12.17,B5 = min
{

1
1−2(α−1)(2−β(1−ρ))−αρ ,Log

(

ℓ̄
Ψℓ(ε)

)}

, C5 =
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min
{

1
1−2α−1−ρ ,Log

(

ℓ̄
Ψℓ(ε)

)}

, andθ = θ (aεα), if

u ≥ c

(

qℓ̄2ρ

(1− ρ)2
)

(

(

b1−ρ

Ψℓ(ε)1+ρ

)(

aθεα

Ψℓ(ε)

)(1−β)(1−ρ)

+
ℓ̄1−ρ

Ψℓ(ε)1+ρ

)

+ c

(

(

b

Ψℓ(ε)

)(

aθεα

Ψℓ(ε)

)1−β

+
ℓ̄

Ψℓ(ε)

)

Log(1/δ)

and

n ≥ c

(

qℓ̄2ρ

(1− ρ)2
)

(

(

B5b
1−ρ

Ψℓ(ε)ρ

)(

aθεα

Ψℓ(ε)

)1+(1−β)(1−ρ)

+
C5ℓ̄

1−ρaθεα

Ψℓ(ε)1+ρ

)

+ c

(

bB2Log(B2/δ)

(

aθεα

Ψℓ(ε)

)2−β

+ ℓ̄C2Log(C2/δ)

(

aθεα

Ψℓ(ε)

)

)

,

then, with argumentsℓ, u, andn, and an appropriatês function, Algorithm 1 uses at mostu

unlabeled samples and makes at mostn label requests, and with probability at least1 − δ,

returns a function̂h with er(ĥ)− er(h∗) ≤ ε.

In this case, compared to Theorem 12.20, in terms of the asymptotic dependence onε, the

sufficient sizes for bothu andn here may be smaller by a factor ofO
(

(θεα)(1−β)(1−ρ)
)

, which

may sometimes be significant, though not quite as dramatic a refinement as we found under

(12.40) in Theorem 12.21. As with Theorem 12.21, whenθ(ε) = o(1/ε), the size ofu indicated

by Theorem 12.22 is smaller than the known results forERMℓ(F ,Zm) from Theorem 12.19.

12.5.6 Remarks on VC Major and VC Hull Classes

Another widely-studied family of function classes includes VC Major classes. Specifically, we

sayG is a VC Major class with indexd if d = vc({{z : g(z) ≥ t} : g ∈ G, t ∈ R}) < ∞.

We can derive results for VC Major classes, analogously to the above, as follows. For brevity,

we leave many of the details as an exercise for the reader. Forany VC Major classG ⊆ G∗

with indexd, by reasoning similar to that of Giné and Koltchinskii [2006], one can show that if

F = ℓ̄IU ≥ F(G) for some measurableU ⊆ X × Y, then for any distributionP andε > 0,

lnN (ε‖F‖P ,G, L2(P )) .
d

ε
log

(

ℓ̄

ε

)

log

(

1

ε

)

.
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This implies that forF a VC Major class, andℓ classification-calibrated and either nonincreasing

or Lipschitz, ifh∗ ∈ F andPXY satisfies Condition 12.10 and Condition 12.11, then the condi-

tions of Theorem 12.7 can be satisfied with the probability bound being at least1 − δ, for some

u = Õ
(

θ1/2εα/2

Ψℓ(ε)2−β/2 +Ψℓ(ε)
β−2
)

andn = Õ
(

θ3/2ε3α/2

Ψℓ(ε)2−β/2 + θεαΨℓ(ε)
β−2
)

, whereθ = θ(aεα), and

Õ(·) hides logarithmic and constant factors. Under Condition 12.3, with β as in Lemma 12.12,

the conditions of Corollary 12.9 can be satisfied with the probability bound being at least1− δ,

for someu = Õ

(

(

1
Ψℓ(ε)

)(

θεα

Ψℓ(ε)

)1−β/2
)

andn = Õ

(

(

θεα

Ψℓ(ε)

)2−β/2
)

.

For example, forX = [0, 1] andF the class of all nondecreasing functions mappingX to

[−1, 1], F is a VC Major class with index1, andθ(0) ≤ 2 for all distributionsP. Thus, for

instance, ifη is nondecreasing andℓ is the quadratic loss, thenh∗ ∈ F , and Algorithm 1 achieves

excess error rateε with high probability for someu = Õ (ε2α−3) andn = Õ
(

ε3(α−1)
)

.

VC Major classes are contained in special types ofVC Hull classes, which are more generally

defined as follows. LetC be a VC Subgraph class of functions onX , with bounded envelope, and

for B ∈ (0,∞), letF = Bconv(C) =
{

x 7→ B
∑

j λjhj(x) :
∑

j |λj| ≤ 1, hj ∈ C

}

denote the

scaled symmetric convex hull ofC; thenF is called a VC Hull class. For instance, these spaces

are often used in conjunction with the popular AdaBoost learning algorithm. One can derive

results for VC Hull classes following analogously to the above, using established bounds on the

uniform covering numbers of VC Hull classes [see van der Vaart and Wellner, 1996, Corollary

2.6.12], and noting that for any VC Hull classF with envelope functionF, and anyU ⊆ X , FU

is also a VC Hull class, with envelope functionFIU . Specifically, one can use these observations

to derive the following results. For a VC Hull classF = Bconv(C) with d = 2vc(C), if ℓ is

classification-calibrated and Lipschitz,h∗ ∈ F , andPXY satisfies Condition 12.10 and Condi-

tion 12.11, then the conditions of Theorem 12.7 can be satisfied with the probability bound being

at least1− δ, for someu = Õ
(

(θεα)
d

d+2 Ψℓ(ε)
2β
d+2

−2
)

andn = Õ
(

(θεα)
2d+2
d+2 Ψℓ(ε)

2β
d+2

−2
)

. Un-

der Condition 12.3, withβ as in Lemma 12.12, the conditions of Corollary 12.9 can be satisfied

with the probability bound being at least1 − δ, for someu = Õ

(

(

1
Ψℓ(ε)

)(

θεα

Ψℓ(ε)

)1− 2β
d+2

)

and
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n = Õ

(

(

θεα

Ψℓ(ε)

)2− 2β
d+2

)

. However, it is not clear whether these results for VC Hull classes have

any practical implications, since we do not know of any examples of VC Hull classes where these

results reflect an improvement over a more direct analysis ofERMℓ for these scenarios.

12.6 Proofs

Proof of Theorem 12.7.Fix anyε ∈ (0, 1), s ∈ [1,∞), valuesuj satisfying (12.12), and consider

running Algorithm 1 with values ofu andn satisfying the conditions specified in Theorem 12.7.

The proof has two main components: first, showing that, with high probability,h∗ ∈ V is main-

tained as an invariant, and second, showing that, with high probability, the setV will be suffi-

ciently reduced to provide the guarantee onĥ after at most the stated number of label requests,

given the value ofu is as large as stated. Both of these components are served by the following

application of Lemma 12.4.

Let S denote the set of values ofm obtained in Algorithm 1 for whichlog2(m) ∈ N. For

eachm ∈ S, let V (m) andQm denote the values ofV andQ (respectively) upon reaching

Step 5 on the round that Algorithm 1 obtains that value ofm, and letṼ (m) denote the value

of V upon completing Step 6 on that round; also denoteDm = DIS(V (m)) andLm = {(1 +

m/2, Y1+m/2), . . . , (m,Ym)}, and definẽV (1) = F andD1 = DIS(F).

Consider anym ∈ S, and note that∀h, g ∈ V (m),

(|Qm| ∨ 1) (Rℓ(h;Qm)− Rℓ(g;Qm))

=
m

2
(Rℓ(hDm ;Lm)− Rℓ(gDm ;Lm)) , (12.45)

and furthermore that

(|Qm| ∨ 1)Ûℓ(V
(m);Qm, ŝ(m)) =

m

2
Ûℓ(V

(k)
Dm

;Lm, ŝ(m)). (12.46)

Applying Lemma 12.4 under the conditional distribution givenV (m), combined with the law of

total probability, we have that, for everym ∈ N with log2(m) ∈ N, on an event of probability
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at least1 − 6e−ŝ(m), if h∗ ∈ V (m) andm ∈ S, then lettingÛm = Ûℓ

(

V
(m)
Dm

;Lm, ŝ(m)
)

, every

hDm ∈ V (m)
Dm

has

Rℓ(hDm)− Rℓ(h
∗) < Rℓ(hDm ;Lm)− Rℓ(h

∗;Lm) + Ûm, (12.47)

Rℓ(hDm ;Lm)− min
gDm∈V (m)

Dm

Rℓ(gDm ;Lm) < Rℓ(hDm)− Rℓ(h
∗) + Ûm, (12.48)

and furthermore

Ûm < Ũℓ

(

V
(m)
Dm

;PXY ,m/2, ŝ(m)
)

. (12.49)

By a union bound, on an event of probability at least1 −∑log2(ujε )
i=1 6e−ŝ(2i), for everym ∈ S

with m ≤ ujε andh∗ ∈ V (m), the inequalities (12.47), (12.48), and (12.49) hold. Call this event

E.

In particular, note that on the eventE, for anym ∈ S with m ≤ ujε andh∗ ∈ V (m), since

h∗Dm = h∗, (12.45), (12.48), and (12.46) imply

(|Qm| ∨ 1)

(

Rℓ(h
∗;Qm)− inf

g∈V (m)
Rℓ(g;Qm)

)

=
m

2

(

Rℓ(h
∗;Lm)− inf

gDm∈V (m)
Dm

Rℓ(gDm ;Qm)

)

<
m

2
Ûm = (|Qm| ∨ 1)Ûℓ(V

(m);Qm, ŝ(m)),

so thath∗ ∈ Ṽ (m) as well. Sinceh∗ ∈ V (2), and everym ∈ S with m > 2 hasV (m) = Ṽ (m/2),

by induction we have that, on the eventE, everym ∈ S with m ≤ ujε hash∗ ∈ V (m) and

h∗ ∈ Ṽ (m); this also implies that (12.47), (12.48), and (12.49) all hold for these values ofm on

the eventE.

We next prove by induction that, on the eventE, ∀j ∈ {jℓ − 2, jℓ − 1, jℓ, . . . , jε}, if uj ∈

S ∪ {1}, thenṼ (uj)
Duj
⊆ [F ](2−j; ℓ) andṼ (uj) ⊆ F (Eℓ(2

−j); 01). This claim is trivially satisfied

for j ∈ {jℓ − 2, jℓ − 1}, since in that case[F ](2−j; ℓ) = [F ] ⊇ Ṽ
(uj)
Duj

andF(Eℓ(2
−j); 01) = F ,

so that these values can serve as our base case. Now take as an inductive hypothesis that, for

somej ∈ {jℓ, . . . , jε}, if uj−2 ∈ S ∪ {1}, then on the eventE, Ṽ (uj−2)
Duj−2

⊆ [F ](22−j ; ℓ) and
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Ṽ (uj−2) ⊆ F (Eℓ(2
2−j); 01), and suppose the eventE occurs. Ifuj /∈ S, the claim is trivially

satisfied; otherwise, supposeuj ∈ S, which further impliesuj−2 ∈ S ∪ {1}. Sinceuj ≤ ujε , for

anyh ∈ Ṽ (uj), (12.47) implies

uj
2

(

Rℓ(hDuj
)− Rℓ(h

∗)
)

<
uj
2

(

Rℓ(hDuj
;Luj

)− Rℓ(h
∗;Luj

) + Ûuj

)

.

Since we have already established thath∗ ∈ V (uj), (12.45) and (12.46) imply

uj
2

(

Rℓ(hDuj
;Luj

)− Rℓ(h
∗;Luj

) + Ûuj

)

= (|Quj
| ∨ 1)

(

Rℓ(h;Quj
)− Rℓ(h

∗;Quj
) + Ûℓ(V

(uj);Quj
, ŝ(uj))

)

.

The definition ofṼ (uj) from Step 6 implies

(|Quj
| ∨ 1)

(

Rℓ(h;Quj
)− Rℓ(h

∗;Quj
) + Ûℓ(V

(uj);Quj
, ŝ(uj))

)

≤ (|Quj
| ∨ 1)

(

2Ûℓ(V
(uj);Quj

, ŝ(uj))
)

.

By (12.46) and (12.49),

(|Quj
| ∨ 1)

(

2Ûℓ(V
(uj);Quj

, ŝ(uj))
)

= ujÛuj
< ujŨℓ

(

V
(uj)
Duj

;PXY , uj/2, ŝ(uj)
)

.

Altogether, we have that,∀h ∈ Ṽ (uj),

Rℓ(hDuj
)− Rℓ(h

∗) < 2Ũℓ

(

V
(uj)
Duj

;PXY , uj/2, ŝ(uj)
)

. (12.50)

By definition ofM̊ℓ, monotonicity ofm 7→ Ůℓ(·, ·; ·,m, ·), and the condition onuj in (12.12), we

know that

Ůℓ

(

Fj, 2
2−j ;PXY , uj/2, ŝ(uj)

)

≤ 2−j−1.

The fact thatuj ≥ 2uj−2, combined with the inductive hypothesis, implies

V (uj) ⊆ Ṽ (uj−2) ⊆ F
(

Eℓ(2
2−j); 01

)

.

This also impliesDuj
⊆ DIS(F(Eℓ(2

2−j); 01)). Combined with (12.7), these imply

Ůℓ

(

V
(uj)
Duj

, 22−j ;PXY , uj/2, ŝ(uj)
)

≤ 2−j−1.
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Together with (12.6), this implies

Ũℓ

(

V
(uj)
Duj

(22−j ; ℓ);PXY , uj/2, ŝ(uj)
)

≤ 2−j−1.

The inductive hypothesis impliesV (uj)
Duj

= V
(uj)
Duj

(22−j ; ℓ), which means

Ũℓ

(

V
(uj)
Duj

;PXY , uj/2, ŝ(uj)
)

≤ 2−j−1.

Plugging this into (12.50) implies,∀h ∈ Ṽ (uj),

Rℓ(hDuj
)− Rℓ(h

∗) < 2−j. (12.51)

In particular, sinceh∗ ∈ F , we always havẽV (uj)
Duj
⊆ [F ], so that (12.51) establishes thatṼ

(uj)
Duj
⊆

[F ](2−j; ℓ). Furthermore, sinceh∗ ∈ V (uj) onE, sign(hDuj
) = sign(h) for everyh ∈ Ṽ (uj), so

that everyh ∈ Ṽ (uj) haser(h) = er(hDuj
), and therefore (by definition ofEℓ(·)), (12.51) implies

er(h)− er(h∗) = er(hDuj
)− er(h∗) ≤ Eℓ

(

2−j
)

.

This impliesṼ (uj) ⊆ F (Eℓ(2
−j); 01), which completes the inductive proof. This implies that, on

the eventE, if ujε ∈ S, then (by monotonicity ofEℓ(·) and the fact thatEℓ(Γℓ(ε)) ≤ ε)

Ṽ (ujε ) ⊆ F(Eℓ(2
−jε); 01) ⊆ F(Eℓ(Γℓ(ε)); 01) ⊆ F(ε; 01).

In particular, since the update in Step 6 always keeps at least one element inV , the function

ĥ in Step 8 exists, and haŝh ∈ Ṽ (ujε ) (if ujε ∈ S). Thus, on the eventE, if ujε ∈ S, then

er(ĥ) − er(h∗) ≤ ε. Therefore, sinceu ≥ ujε , to complete the proof it suffices to show that

takingn of the size indicated in the theorem statement suffices to guaranteeujε ∈ S, on an event

(which includesE) having at least the stated probability.

Note that for anyj ∈ {jℓ, . . . , jε} with uj−1 ∈ S ∪ {1}, everym ∈ {uj−1 + 1, . . . , uj} ∩ S

hasV (m) ⊆ Ṽ (uj−1); furthermore, we showed above that on the eventE, if uj−1 ∈ S, then

Ṽ (uj−1) ⊆ F(Eℓ(2
1−j); 01), so thatDIS(V (m)) ⊆ DIS(Ṽ (uj−1)) ⊆ DIS(F(Eℓ(2

1−j); 01)) ⊆ Uj.

Thus, on the eventE, to guaranteeujε ∈ S, it suffices to have

n ≥
jε
∑

j=jℓ

uj
∑

m=uj−1+1

IUj
(Xm).
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Noting that this is a sum of independent Bernoulli random variables, a Chernoff bound implies

that on an eventE ′ of probability at least1− 2−s,

jε
∑

j=jℓ

uj
∑

m=uj−1+1

IUj
(Xm) ≤ s+ 2e

jε
∑

j=jℓ

uj
∑

m=uj−1+1

P(Uj)

= s+ 2e

jε
∑

j=jℓ

P(Uj)(uj − uj−1) ≤ s+ 2e

jε
∑

j=jℓ

P(Uj)uj.

Thus, forn satisfying the condition in the theorem statement, on the eventE ∩ E ′, we have

ujε ∈ S, and therefore (as proven above)er(ĥ)− er(h∗) ≤ ε. Finally, a union bound implies that

the eventE ∩ E ′ has probability at least

1− 2−s −
log2(ujε )
∑

i=1

6e−ŝ(2i),

as required.

Proof of Lemma 12.8.If P
(

DISF(H)
)

= 0, thenφℓ(H;m,P ) = 0, so that in this case,̊φ′
ℓ

trivially satisfies (12.5). Otherwise, supposeP
(

DISF(H)
)

> 0. By the classic symmetrization

inequality [e.g., van der Vaart and Wellner, 1996, Lemma 2.3.1],

φℓ(H,m, P ) ≤ 2E
[∣

∣

∣
φ̂ℓ(H;Q,Ξ[m])

∣

∣

∣

]

,

whereQ ∼ Pm andΞ[m] = {ξ1, . . . , ξm} ∼ Uniform({−1,+1}m) are independent. Fix any

measurableU ⊇ DISF(H). Then

E

[∣

∣

∣
φ̂ℓ(H;Q,Ξ[m])

∣

∣

∣

]

= E

[

∣

∣

∣
φ̂ℓ(H;Q ∩ U ,Ξ[|Q∩U|])

∣

∣

∣

|Q ∩ U|
m

]

, (12.52)

whereΞ[q] = {ξ1, . . . , ξq} for anyq ∈ {0, . . . ,m}. By the classic desymmetrization inequality

[see e.g., Koltchinskii, 2008], applied under the conditional distribution given|Q ∩ U|, the right

hand side of (12.52) is at most

E

[

2φℓ(H, |Q ∩ U|, PU)
|Q ∩ U|
m

]

+ sup
h,g∈H

|Rℓ(h;PU)− Rℓ(g;PU)|
E

[

√

|Q ∩ U|
]

m
. (12.53)
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By Jensen’s inequality, the second term in (12.53) is at most

sup
h,g∈H

|Rℓ(h;PU)− Rℓ(g;PU)|
√

P (U)
m
≤ Dℓ(H;PU)

√

P (U)
m

= Dℓ(H;P )
√

1

m
.

Decomposing based on|Q ∩ U|, the first term in (12.53) is at most

E

[

2φℓ(H, |Q ∩ U|, PU)
|Q ∩ U|
m

I [|Q ∩ U| ≥ (1/2)P (U)m]

]

+ 2ℓ̄P (U)P (|Q ∩ U| < (1/2)P (U)m) . (12.54)

Since|Q∩U| ≥ (1/2)P (U)m⇒ |Q∩U| ≥ ⌈(1/2)P (U)m⌉, andφℓ(H, q, PU) is nonincreasing

in q, the first term in (12.54) is at most

2φℓ(H, ⌈(1/2)P (U)m⌉, PU)E

[ |Q ∩ U|
m

]

= 2φℓ(H, ⌈(1/2)P (U)m⌉, PU)P (U),

while a Chernoff bound implies the second term in (12.54) is atmost

2ℓ̄P (U) exp {−P (U)m/8} ≤ 16ℓ̄

m
.

Plugging back into (12.53), we have

φℓ(H,m, P ) ≤ 4φℓ(H, ⌈(1/2)P (U)m⌉, PU)P (U) +
32ℓ̄

m
+ 2Dℓ(H;P )

√

1

m
. (12.55)

Next, note that, for anyσ ≥ Dℓ(H;P ), σ√
P (U)

≥ Dℓ(H;PU). Also, if U = U ′ × Y for some

U ′ ⊇ DISF(H), thenh∗PU = h∗P , so that ifh∗P ∈ H, (12.5) implies

φℓ(H, ⌈(1/2)P (U)m⌉, PU) ≤ φ̊ℓ

(

σ
√

P (U)
,H; ⌈(1/2)P (U)m⌉, PU

)

. (12.56)

Combining (12.55) with (12.56), we see thatφ̊′
ℓ satisfies the condition (12.5) of Definition 12.5.

Furthermore, by the fact that̊φℓ satisfies (12.4) of Definition 12.5, combined with the mono-

tonicity imposed by the infimum in the definition of̊φ′
ℓ, it is easy to check that̊φ′

ℓ also satisfies

(12.4) of Definition 12.5. In particular, note that anyH′′ ⊆ H′ ⊆ [F ] andU ′′ ⊆ X have

DISF(H′′
U ′′) ⊆ DISF(H′), so that the range ofU in the infimum is never smaller forH = H′′

U ′′

relative to that forH = H′.
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Proof of Corollary 12.9.Let φ̊′
ℓ be as in Lemma 12.8, and define for anym ∈ N, s ∈ [1,∞),

ζ ∈ [0,∞], andH ⊆ [F ],

Ů ′
ℓ(H, ζ;PXY ,m, s)

= K̃

(

φ̊′
ℓ(Dℓ([H](ζ; ℓ)),H;m,PXY ) + Dℓ([H](ζ; ℓ))

√

s

m
+
ℓ̄s

m

)

.

That is,Ů ′
ℓ is the function̊Uℓ that would result from using̊φ′

ℓ in place ofφ̊ℓ. LetU = DISF(H),

and supposeP(U) > 0. Then sinceDISF([H]) = DISF(H) implies

Dℓ([H](ζ; ℓ)) = Dℓ([H](ζ; ℓ);PU)
√

P(U)

= Dℓ([H](ζ/P(U); ℓ,PU);PU)
√

P(U),

a little algebra reveals that form ≥ 2P(U)−1,

Ů ′
ℓ(H, ζ;PXY ,m, s) ≤ 33P(U)Ůℓ(H, ζ/P(U);PU , ⌈(1/2)P(U)m⌉, s). (12.57)

In particular, forj ≥ jℓ, takingH = Fj, we have (from the definition ofFj) U = DISF(H) =

DIS(H) = Uj, so that whenP(Uj) > 0, any

m ≥ 2P(Uj)−1M̊ℓ

(

2−j−1

33P(Uj)
,
22−j

P(Uj)
;Fj,PUj

, ŝ(2m)

)

suffices to make the right side of (12.57) (withs = ŝ(2m) and ζ = 22−j) at most2−j−1; in

particular, this means takinguj equal to2m ∨ uj−1 ∨ 2uj−2 for any suchm (with log2(m) ∈

N) suffices to satisfy (12.12) (with the̊Mℓ in (12.12) defined with respect to the̊φ′
ℓ function);

monotonicity ofζ 7→ M̊ℓ

(

ζ, 22−j

P(Uj)
;Fj ,PUj

, ŝ(2m)
)

implies (12.14) is a sufficient condition

for this. In the special case whereP(Uj) = 0, Ů ′
ℓ(Fj, 2

2−j ;PXY ,m, s) = K̃ ℓ̄s
m

, so that taking

uj ≥ K̃ℓ̄ŝ(uj)2
j+2∨uj−1∨2uj−1 suffices to satisfy (12.12) (again, with the̊Mℓ in (12.12) defined

in terms ofφ̊′
ℓ). Plugging these values into Theorem 12.7 completes the proof.

Proof of Theorem 12.16.Let j̃ε = ⌈log2(1/Ψℓ(ε))⌉. Forjℓ ≤ j ≤ j̃ε, letsj = Log

(

48(2+j̃ε−j)
2

δ

)

,

and defineuj = 2⌈log2(u
′
j)⌉, where

u′j = c′
(

b2j(2−β) + ℓ̄2j
) (

vc (GF) Log
(

χℓℓ̄
)

+ sj
)

, (12.58)
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for an appropriate universal constantc′ ∈ [1,∞). A bit of calculus reveals that forjℓ + 2 ≤

j ≤ j̃ε, u′j ≥ u′j−1 andu′j ≥ 2u′j−2, so thatuj ≥ uj−1 anduj ≥ 2uj−2 as well; this is also

trivially satisfied forj ∈ {jℓ, jℓ + 1} if we takeuj−2 = 1 in these cases (as in Theorem 12.7).

Combining this fact with (12.31), (12.8), and (12.9), we find that, for an appropriate choice of

the constantc′, theseuj satisfy (12.12) when we definês such that, for everyj ∈ {jℓ, . . . , j̃ε},

∀m ∈ {2uj−1, . . . , uj} with log2(m) ∈ N,

ŝ(m) = Log

(

12 log2 (4uj/m)2
(

2 + j̃ε − j
)2

δ

)

.

Additionally, lets = log2(2/δ).

Next, note that, sinceΨℓ(ε) ≤ Γℓ(ε) anduj is nondecreasing inj,

ujε ≤ uj̃ε ≤ 26c′
(

b

Ψℓ(ε)2−β
+

ℓ̄

Ψℓ(ε)

)

(

vc (GF) Log
(

χℓℓ̄
)

+ Log(1/δ)
)

,

so that, for anyc ≥ 26c′, we haveu ≥ uiε , as required by Theorem 12.7.

ForUj as in Theorem 12.7, note that by Condition 12.10 and the definition of θ,

P (Uj) = P
(

DIS
(

F
(

Eℓ

(

22−j
)

; 01

)))

≤ P
(

DIS
(

B
(

h∗, aEℓ

(

22−j
)α)))

≤ θmax
{

aEℓ

(

22−j
)α
, aεα

}

≤ θmax
{

aΨ−1
ℓ

(

22−j
)α
, aεα

}

.

BecauseΨℓ is strictly increasing on(0, 1), for j ≤ j̃ε, Ψ
−1
ℓ (22−j)≥ ε, so that this last expression

is equal toθaΨ−1
ℓ (22−j)

α. This implies

jε
∑

j=jℓ

P (Uj) uj ≤
j̃ε
∑

j=jℓ

P (Uj) uj

.

j̃ε
∑

j=jℓ

aθΨ−1
ℓ

(

22−j
)α (

b2j(2−β) + ℓ̄2j
) (

A1 + Log
(

2 + j̃ε − j
))

. (12.59)

We can change the order of summation in the above expression by lettingi = j̃ε−j and summing

from 0 toN = jε − jℓ. In particular, since2j̃ε ≤ 2/Ψℓ(ε), (12.59) is at most

N
∑

i=0

aθΨ−1
ℓ

(

22−j̃ε2i
)α
(

4b2i(β−2)

Ψℓ(ε)2−β
+

2ℓ̄2−i

Ψℓ(ε)

)

(A1 + Log(i+ 2)) . (12.60)
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Sincex 7→ Ψ−1
ℓ (x)/x is nonincreasing on(0,∞), Ψ−1

ℓ

(

22−j̃ε2i
)

≤ 2i+2Ψ−1
ℓ

(

2−j̃ε
)

, and

sinceΨ−1
ℓ is increasing, this latter expression is at most2i+2Ψ−1

ℓ (Ψℓ(ε)) = 2i+2ε. Thus, (12.60)

is at most

16aθεα
N
∑

i=0

(

b2i(α+β−2)

Ψℓ(ε)2−β
+
ℓ̄2i(α−1)

Ψℓ(ε)

)

(A1 + Log(i+ 2)) . (12.61)

In general,Log(i + 2) ≤ Log(N + 2), so that
∑N

i=0 2
i(α+β−2) (A1 + Log(i+ 2)) ≤ (A1 +

Log(N+2))(N+1) and
∑N

i=0 2
i(α−1) (A1 + Log(i+ 2)) ≤ (A1+Log(N+2))(N+1). Whenα+

β < 2, we also have
∑N

i=0 2
i(α+β−2) ≤∑∞

i=0 2
i(α+β−2) = 1

1−2(α+β−2) and
∑N

i=0 2
i(α+β−2)Log(i+

2) ≤∑∞
i=0 2

i(α+β−2)Log(i+2) ≤ 2
1−2(α+β−2)Log

(

1
1−2(α+β−2)

)

. Similarly, if α < 1,
∑N

i=0 2
i(α−1) ≤

∑∞
i=0 2

i(α−1) = 1
1−2(α−1) and likewise

∑N
i=0 2

i(α−1)Log(i + 2) ≤ ∑∞
i=0 2

i(α−1)Log(i + 2) ≤
2

1−2(α−1)Log
(

1
1−2(α−1)

)

. By combining these observations (along with a convention that 1
1−2(α−1) =

∞ whenα = 1, and 1
1−2(α+β−2) =∞ whenα = β = 1), we find that (12.61) is

. aθεα
(

b(A1 + Log(B1))B1

Ψℓ(ε)2−β
+
ℓ̄(A1 + Log(C1))C1

Ψℓ(ε)

)

.

Thus, for an appropriately large numerical constantc, anyn satisfying (12.33) has

n ≥ s+ 2e

j̃ε
∑

j=jℓ

P(Uj)uj,

as required by Theorem 12.7.

Finally, we need to show the success probability from Theorem 12.7 is at least1 − δ, for ŝ

ands as above. Toward this end, note that

log2(ujε )
∑

i=1

6e−ŝ(2i)

≤
j̃ε
∑

j=jℓ

log2(uj)
∑

i=log2(uj−1)+1

δ

2 (2 + log2(uj)− i)2
(

2 + j̃ε − j
)2

=

j̃ε
∑

j=jℓ

log2(uj/uj−1)−1
∑

t=0

δ

2(2 + t)2
(

2 + j̃ε − j
)2

<

j̃ε
∑

j=jℓ

δ

2
(

2 + j̃ε − j
)2 <

∞
∑

t=0

δ

2(2 + t)2
< δ/2.
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Noting that2−s = δ/2, we find that indeed

1− 2−s −
log2(ujε )
∑

i=1

6e−ŝ(2i) ≥ 1− δ.

Therefore, Theorem 12.7 implies the stated result.

Proof Sketch of Theorem 12.17.The proof follows analogously to that of Theorem 12.16, with

the exception that now, for each integerj with jℓ ≤ j ≤ j̃ε, we replace the definition ofu′j from

(12.58) with the following definition. Lettingcj = vc(GF)Log
(

(

ℓ̄/b
) (

aθ2jΨ−1
ℓ (22−j)α

)β
)

,

define

u′j = c′
(

b2j(2−β)
(

aθΨ−1
ℓ (22−j)α

)1−β
+ ℓ̄2j

)

(cj + sj) ,

wherec′ ∈ [1,∞) is an appropriate universal constant, andsj is as in the proof of Theorem 12.16.

With this substitution in place, the valuesuj ands, and function̂s, are then defined as in the proof

of Theorem 12.16. Sincex 7→ xΨ−1
ℓ (1/x) is nondecreasing, a bit of calculus revealsuj ≥ uj−1

anduj ≥ 2uj−2. Combined with (12.35), (12.9), (12.8), and Lemma 12.12, this implies we can

choose the constantc′ so that theseuj satisfy (12.14). By an identical argument to that used in

Theorem 12.16, we have

1− 2−s −
log2(ujε )
∑

i=1

6e−ŝ(2i) ≥ 1− δ.

It remains only to show that any values ofu andn satisfying (12.36) and (12.37), respectively,

necessarily also satisfy the respective conditions foru andn in Corollary 12.9.

Toward this end, note that sincex 7→ xΨ−1
ℓ (1/x) is nondecreasing on(0,∞), we have that

ujε ≤ uj̃ε .

(

b (aθεα)1−β

Ψℓ(ε)2−β
+

ℓ̄

Ψℓ(ε)

)

A2.

Thus, for an appropriate choice ofc, anyu satisfying (12.36) hasu ≥ ujε , as required by Corol-

lary 12.9.

272



Finally, note that forUj as in Theorem 12.7, andij = j̃ε − j,

jε
∑

j=jℓ

P(Uj)uj ≤
jε
∑

j=jℓ

aθΨ−1
ℓ (22−j)αuj

.

j̃ε
∑

j=jℓ

b
(

aθ2jΨ−1
ℓ (22−j)α

)2−β
(A2 + Log (ij + 2))

+

j̃ε
∑

j=jℓ

ℓ̄aθ2jΨ−1
ℓ (22−j)α (A2 + Log (ij + 2)) .

By changing the order of summation, now summing over values ofij from 0 toN = j̃ε−jℓ ≤

log2(4ℓ̄/Ψℓ(ε)), and noting2j̃ε ≤ 2/Ψℓ(ε), andΨ−1
ℓ (2−j̃ε22+i) ≤ 22+iε for i ≥ 0, this last

expression is

.

N
∑

i=0

b

(

aθ2i(α−1)εα

Ψℓ(ε)

)2−β

(A2 + Log (i+ 2)) (12.62)

+
N
∑

i=0

ℓ̄aθ2i(α−1)εα

Ψℓ(ε)
(A2 + Log (i+ 2)) .

Considering these sums separately, we have
∑N

i=0 2
i(α−1)(2−β)(A2+Log(i+2)) ≤ (N+1)(A2+

Log(N + 2)) and
∑N

i=0 2
i(α−1)(A2 + Log(i+ 2)) ≤ (N + 1)(A2 + Log(N + 2)). Whenα < 1,

we also have
∑N

i=0 2
i(α−1)(2−β)(A2 + Log(i + 2)) ≤ ∑∞

i=0 2
i(α−1)(2−β)(A2 + Log(i + 2)) ≤

2
1−2(α−1)(2−β)Log

(

1
1−2(α−1)(2−β)

)

+ 1
1−2(α−1)(2−β)A2, and similarly

∑N
i=0 2

i(α−1)(A2+Log(i+2)) ≤
1

1−2(α−1)A2 +
2

1−2(α−1)Log
(

1
1−2(α−1)

)

. Thus, generally
∑N

i=0 2
i(α−1)(2−β)(A2 + Log(i + 2)) .

B2(A2+Log(B2)) and
∑N

i=0 2
i(α−1)(A2+Log(i+2)) . C2(A2+Log(C2)). Plugging this into

(12.62), we find that for an appropriately large numerical constantc, anyn satisfying (12.37) has

n ≥∑jε
j=jℓ
P(Uj)uj, as required by Corollary 12.9.

12.7 Results for Efficiently Computable Updates

Here we include more detailed sketches of the arguments leading to computationally efficient

variants of Algorithm 1, for which the specific results proven above for the given applications
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remain valid. Throughout this section, we adopt the notational conventions introduced in the

proof of Theorem 12.7 (e.g.,V (m), Ṽ (m), Qm, Lm, S), except in each instance here these are

defined in the context of applying Algorithm 1 with the respective stated variant of̂Tℓ.

12.7.1 Proof of Theorem 12.16 under(12.34)

We begin with the application to VC Subgraph classes, first showing that if we specifŷTℓ(V ;Q,m)

as in (12.34), the conclusions of Theorem 12.16 remain valid. Fix anyŝ function (to be specified

below), and fix any value ofε ∈ (0, 1). First note that, for anym with log2(m) ∈ N, by a Cher-

noff bound and the law of total probability, on an eventE ′′
m of probability at least1− 21−ŝ(m), if

m ∈ S, then

(1/2)mP(Dm)−
√

ŝ(m)mP(Dm) ≤ |Qm| ≤ ŝ(m) + emP(Dm). (12.63)

Also recall that, for anym with log2(m) ∈ N, by Lemma 12.4 and the law of total probability,

on an eventEm of probability at least1− 6e−ŝ(m), if m ∈ S andh∗ ∈ V (m), then

(|Qm| ∨ 1)

(

Rℓ(h
∗;Qm)− inf

g∈V (m)
Rℓ(g;Qm)

)

=
m

2

(

Rℓ(h
∗;Lm)− inf

gDm∈V (m)
Dm

Rℓ(gDm ;Lm)

)

<
m

2
Ũℓ

(

V
(m)
Dm

;PXY ,m/2, ŝ(m)
)

(12.64)

and∀h ∈ Ṽ (m),

m

2
(Rℓ(hDm)− Rℓ(h

∗))

<
m

2

(

Rℓ(hDm ;Lm)− Rℓ(h
∗;Lm) + Ũℓ

(

V
(m)
Dm

;PXY ,m/2, ŝ(m)
)

∧ ℓ̄
)

= |Qm| (Rℓ(h;Qm)− Rℓ(h
∗;Qm)) +

m

2

(

Ũℓ

(

V
(m)
Dm

;PXY ,m/2, ŝ(m)
)

∧ ℓ̄
)

≤ (|Qm| ∨ 1)T̂ℓ
(

V (m);Qm,m
)

+
m

2

(

Ũℓ

(

V
(m)
Dm

;PXY ,m/2, ŝ(m)
)

∧ ℓ̄
)

. (12.65)
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Fix a valueiε ∈ N (an appropriate value for which will be determined below), and letχℓ =

χℓ(Ψℓ(ε)). Form ∈ N with log2(m) ∈ N, let

T̃ℓ(m) = c2

(

b

m

(

vc(GF)Log(χℓℓ̄) + ŝ(m)
)

) 1
2−β

+ c2
ℓ̄

m

(

vc(GF)Log(χℓℓ̄) + ŝ(m)
)

,

for an appropriate universal constantc2 ∈ [1,∞) (to be determined below); for completeness,

also defineT̃ℓ(1) = ℓ̄. We will now prove by induction that, for an appropriate value of the

constantc0 in (12.34), for anym′ with log2(m
′) ∈ {1, . . . , iε}, on the event

⋂log2(m
′)−1

i=1 E2i ∩

E ′′
2i+1 , if m′ ∈ S, thenh∗ ∈ V (m′),

V
(m′)
Dm′ ⊆ [F ](γ̂m′/2; ℓ) ⊆ [F ](2T̃ℓ(m′/2) ∨Ψℓ(ε); ℓ),

V (m′) ⊆ F(Eℓ(γ̂m′/2); 01) ⊆ F(Eℓ(2T̃ℓ(m
′/2) ∨Ψℓ(ε)); 01),

Ũℓ

(

V
(m′)
Dm′ ;PXY ,m

′/2, ŝ(m′)
)

∧ ℓ̄ ≤ |Qm′ | ∨ 1

m′/2

(

T̂ℓ

(

V (m′);Qm′ ,m′
)

∧ ℓ̄
)

,

and if γ̂m′/2 ≥ Ψℓ(ε),

|Qm′ | ∨ 1

m′/2

(

T̂ℓ

(

V (m′);Qm′ ,m′
)

∧ ℓ̄
)

≤ T̃ℓ(m
′).

As a base case for this inductive argument, we note that form′ = 2, we have (by definition)

γ̂m′/2 = ℓ̄, and furthermore (ifc0 ∧ c2 ≥ 2) T̂ℓ(V (2);Q2, 2) ≥ ℓ̄ and T̃ℓ(1) ≥ ℓ̄, so that the

claimed inclusions and inequalities trivially hold. Now, for the inductive step, take as an inductive

hypothesis that the claim is satisfied form′ = m for somem ∈ N with log2(m) ∈ {1, . . . , iε−1}.

Suppose the event
⋂log2(m)

i=1 E2i ∩ E ′′
2i+1 occurs, and that2m ∈ S. By the inductive hypothesis,

combined with (12.64) and the fact that(|Qm| ∨ 1)Rℓ(h
∗;Qm) ≤ (m/2)ℓ̄, we have

(|Qm| ∨ 1)

(

Rℓ(h
∗;Qm)− inf

g∈V (m)
Rℓ(g;Qm)

)

≤ m

2

(

Ũℓ

(

V
(m)
Dm

;PXY ,m/2, ŝ(m)
)

∧ ℓ̄
)

≤ (|Qm| ∨ 1)T̂ℓ
(

V (m);Qm,m
)

.
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Therefore,h∗ ∈ Ṽ (m) as well, which impliesh∗ ∈ V (2m) = Ṽ (m). Furthermore, by (12.65), the

inductive hypothesis, and the definition ofṼ (m) from Step 6,∀h ∈ V (2m) = Ṽ (m),

Rℓ(hDm)− Rℓ(h
∗) < 2

|Qm| ∨ 1

m/2

(

T̂ℓ
(

V (m);Qm,m
)

∧ ℓ̄
)

,

and if γ̂m/2 ≥ Ψℓ(ε), then this is at most2T̃ℓ(m).

Since γ̂m = 2 |Qm|∨1
m/2

(

T̂ℓ
(

V (m);Qm,m
)

∧ ℓ̄
)

, andRℓ(hD2m) ≤ Rℓ(hDm) for everyh ∈

V (2m)d, we haveV (2m)
D2m

⊆ [F ](γ̂m; ℓ) ⊆ [F ](2T̃ℓ(m) ∨ Ψℓ(ε); ℓ). By definition ofEℓ(·), we

also haveer(hD2m) − er(h∗) ≤ Eℓ(γ̂m) for every h ∈ V (2m); sinceh∗ ∈ V (2m), we have

sign(hD2m) = sign(h), so thater(h)−er(h∗) ≤ Eℓ(γ̂m) as well: that is,V (2m) ⊆ F(Eℓ(γ̂m); 01) ⊆

F(Eℓ(2T̃ℓ(m) ∨Ψℓ(ε)); 01). Combining these facts with (12.5), (12.25), Condition 12.11, mono-

tonicity of vc(GHU ) in bothU andH, and the fact that‖F(G
V

(2m)
D2m

,PXY
)‖2PXY

≤ ℓ̄2P(D2m), we

have that

Ũℓ

(

V
(2m)
D2m

;PXY ,m, ŝ(2m)
)

≤ c1

√

√

√

√

bγ̂βm
vc(GF)Log

(

ℓ̄P(D2m)

bγ̂β
m

)

+ ŝ(2m)

m

+ c1ℓ̄
vc(GF)Log

(

ℓ̄P(D2m)

bγ̂β
m

)

+ ŝ(2m)

m
, (12.66)

for some universal constantc1 ∈ [1,∞). By (12.63), we haveP(D2m) ≤ 3
m
(|Q2m|+ ŝ(2m)), so

that the right hand side of (12.66) is at most

c1

√

√

√

√

bγ̂βm
vc(GF)Log

(

ℓ̄6(|Q2m|+ŝ(2m))

2mbγ̂β
m

)

+ ŝ(2m)

m

+ c1ℓ̄
vc(GF)Log

(

ℓ̄6(|Q2m|+ŝ(2m))

2mbγ̂β
m

)

+ ŝ(2m)

m

≤ 8c1

√

√

√

√

bγ̂βm
vc(GF)Log

(

ℓ̄(|Q2m|+ŝ(2m))

2mbγ̂β
m

)

+ ŝ(2m)

2m

+ 8c1ℓ̄
vc(GF)Log

(

ℓ̄(|Q2m|+ŝ(2m))

2mbγ̂β
m

)

+ ŝ(2m)

2m
.

Thus, if we takec0 = 8c1 in the definition ofT̂ℓ in (12.34), then we have

Ũℓ

(

V
(2m)
D2m

;PXY ,m, ŝ(2m)
)

∧ ℓ̄ ≤ |Q2m| ∨ 1

m

(

T̂ℓ
(

V (2m);Q2m, 2m
)

∧ ℓ̄
)

.
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Furthermore, (12.63) implies|Q2m| ≤ ŝ(2m)+2emP(D2m). In particular, if̂s(2m) > 2emP(D2m),

then

|Q2m| ∨ 1

m

(

T̂ℓ
(

V (2m);Q2m, 2m
)

∧ ℓ̄
)

≤ ŝ(2m) + 2emP(D2m)

m
ℓ̄ ≤ 2ŝ(2m)ℓ̄

m
,

and taking anyc2 ≥ 4 guarantees this last quantity is at mostT̃ℓ(2m). On the other hand,

if ŝ(2m) ≤ 2emP(D2m), then |Q2m| ≤ 4emP(D2m), and we have already established that

V (2m) ⊆ F(Eℓ(γ̂m); 01), so that

|Q2m| ∨ 1

m

(

T̂ℓ
(

V (2m);Q2m, 2m
)

∧ ℓ̄
)

≤ 8c1

√

√

√

√

bγ̂βm
vc(GF)Log

(

ℓ̄3eP(DIS(F(Eℓ(γ̂m);01)))

bγ̂β
m

)

+ ŝ(2m)

2m

+ 8c1ℓ̄
vc(GF)Log

(

ℓ̄3eP(DIS(F(Eℓ(γ̂m);01)))

bγ̂β
m

)

+ ŝ(2m)

2m
. (12.67)

If γ̂m ≥ Ψℓ(ε), then this is at most

8c1





√

bγ̂βm
vc(GF)Log

(

3eχℓℓ̄
)

+ ŝ(2m)

2m
+ ℓ̄

vc(GF)Log
(

3eχℓℓ̄
)

+ ŝ(2m)

2m





≤ 48c1





√

bγ̂βm
vc(GF)Log

(

χℓℓ̄
)

+ ŝ(2m)

2m
+ ℓ̄

vc(GF)Log
(

χℓℓ̄
)

+ ŝ(2m)

2m



 .

For brevity, letK = vc(GF )Log(χℓℓ̄)+ŝ(2m)
2m

. As argued above,̂γm ≤ 2T̃ℓ(m), so that the right hand

side of the above inequality is at most

48
√
2c1

(
√

bT̃ℓ(m)βK + ℓ̄K

)

.

Then sincês(m) ≤ 2ŝ(2m), the above expression is at most

48 · 4c1
√
c2

(
√

b
(

(bK)
1

2−β ∨ ℓ̄K
)β

K + ℓ̄K

)

. (12.68)

If ℓ̄K ≤ (bK)
1

2−β , then (12.68) is equal

48 · 4c1
√
c2

(

(bK)
1

2−β + ℓ̄K
)

.
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On the other hand, if̄ℓK > (bK)
1

2−β , then (12.68) is equal

48 · 4c1
√
c2

(

√

bK(ℓ̄K)β + ℓ̄K

)

< 48 · 4c1
√
c2

(

√

(ℓ̄K)2−β(ℓ̄K)β + ℓ̄K

)

= 48 · 8c1
√
c2ℓ̄K.

In all of the above cases, takingc2 = 9 · 214c21 in the definition ofT̃ℓ yields

|Q2m| ∨ 1

m

(

T̂ℓ
(

V (2m);Q2m, 2m
)

∧ ℓ̄
)

≤ T̃ℓ(2m).

This completes the inductive step, so that we have proven that the claim holds for allm′ with

log2(m
′) ∈ {1, . . . , iε}.

Let jℓ = −⌈log2(ℓ̄)⌉, j̃ε = ⌈log2(1/Ψℓ(ε))⌉, and for eachj ∈ {jℓ, . . . , j̃ε}, let sj =

log2

(

144(2+j̃ε−j)2

δ

)

, define

m′
j = 32c22

(

b2j(2−β) + ℓ̄2j
) (

vc(GF)Log(χℓℓ̄) + sj
)

,

and letmj = 2⌈log2(m
′
j)⌉. Also definemjℓ−1 = 1. Using this notation, we can now define

the relevant values of thês function as follows. For eachj ∈ {jℓ, . . . , j̃ε}, and eachm ∈

{mj−1 + 1, . . . ,mj} with log2(m) ∈ N, define

ŝ(m) = log2

(

16 log2(4mj/m)2(2 + j̃ε − j)2
δ

)

.

In particular, takingiε = log2(mj̃ε
), we have that2T̃ℓ(2iε−1) ≤ Ψℓ(ε), so that on the event

⋂iε−1
i=1 E2i ∩ E ′′

2i+1 , if we have2iε ∈ S, then ĥ ∈ V (2iε ) ⊆ F(Eℓ(2T̃ℓ(2
iε−1) ∨ Ψℓ(ε)); 01) =

F(Eℓ(Ψℓ(ε)); 01) ⊆ F(Ψ−1
ℓ (Ψℓ(ε)); 01) = F(ε; 01), so thater(ĥ)− er(h∗) ≤ ε.

Furthermore, we established above that, on the event
⋂iε−1

i=1 E2i ∩ E ′′
2i+1 , for every j ∈

{jℓ, . . . , j̃ε} with mj ∈ S, and everym ∈ {mj−1 + 1, . . . ,mj} with log2(m) ∈ N, V (m) ⊆

F(Eℓ(2T̃ℓ(m/2) ∨ Ψℓ(ε)); 01) ⊆ F(Eℓ(2T̃ℓ(mj−1) ∨ Ψℓ(ε)); 01). Noting that2T̃ℓ(mj−1) ≤ 21−j,

we have
∑

m∈S:m≤mj̃ε

|Qm| ≤
j̃ε
∑

j=jℓ

mj
∑

m=mj−1+1

IDIS(F(Eℓ(21−j);01))(Xm).
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A Chernoff bound implies that, on an eventE ′ of probability at least1− δ/2, the right hand side

of the above inequality is at most

log2(2/δ) + 2e

j̃ε
∑

j=jℓ

(mj −mj−1)P(DIS(F(Eℓ(2
1−j); 01)))

≤ log2(2/δ) + 2e

j̃ε
∑

j=jℓ

mjP(DIS(F(Ψ−1
ℓ (21−j); 01))).

By essentially the same reasoning used in the proof of Theorem12.16, the right hand side of this

inequality is

. aθεα
(

b(A1 + Log(B1))B1

Ψℓ(ε)2−β
+
ℓ̄(A1 + Log(C1))C1

Ψℓ(ε)

)

.

Since

mj̃ε
.

(

b

Ψℓ(ε)2−β
+

ℓ̄

Ψℓ(ε)

)

A1,

the conditions onu andn stated in Theorem 12.16 (with an appropriate constantc) suffice to

guaranteeer(ĥ)−er(h∗) ≤ ε on the eventE ′∩⋂iε−1
i=1 E2i ∩E ′′

2i+1. Finally, the proof is completed

by noting that a union bound implies the eventE ′ ∩⋂iε−1
i=1 E2i ∩ E ′′

2i+1 has probability at least

1− δ

2
−

iε−1
∑

i=1

21−ŝ(2i+1) + 6e−ŝ(2i)

≥ 1− δ

2
−

j̃ε
∑

j=jℓ

log2(mj)
∑

i=log2(mj−1)+1

δ

2(2 + log2(mj)− i)2(2 + j̃ε − j)2

≥ 1− δ

2
−

j̃ε
∑

j=jℓ

∞
∑

k=0

δ

2(2 + k)2(2 + j̃ε − j)2

≥ 1− δ

2
−

j̃ε
∑

j=jℓ

δ

2(2 + j̃ε − j)2
≥ 1− δ

2
−

∞
∑

t=0

δ

2(2 + t)2
≥ 1− δ.

Note that, as in Theorem 12.16, the functionŝ in this proof has a direct dependence ona,

α, andχℓ, in addition tob andβ. As before, with an alternative definition ofŝ, similar to that

mentioned in the discussion following Theorem 12.16, it is possible to remove this dependence,

at the expense of the same logarithmic factors mentioned above.
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Chapter 13

Online Allocation and Pricing with

Economies of Scale

Abstract

1Allocating multiple goods to customers in a way that maximizes some desired objective is a

fundamental part of Algorithmic Mechanism Design. We consider here the problem of offline

and online allocation of goods that have economies of scale,or decreasing marginal cost per item

for the seller. In particular, we analyze the case where customers have unit-demand and arrive

one at a time with valuations on items, sampled iid from some unknown underlying distribution

over valuations. Our strategy operates by using an initial sample to learn enough about the

distribution to determine how best to allocate to future customers, together with an analysis of

structural properties of optimal solutions that allow for uniform convergence analysis. We show,

for instance, if customers have binary valuations over items, and the goal of the allocator is to

give each customer an item he or she values, we can efficientlyproduce such an allocation with

cost at most a constant factor greater than the minimum over such allocations in hindsight, so

long as the marginal costs do not decrease too rapidly. We also give a bicriteria approximation

1This chapter is based on joint work with Avrim Blum and YishayMansour.
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to social welfare for the case of more general valuation functions when the allocator is budget

constrained.

13.1 Introduction

Imagine it is the Christmas season, and Santa Claus is tasked with allocating toys. There is a

sequence of children coming up with their Christmas lists of toys they want. Santa wants to give

each child some toy from his or her list (for simplicity, assume all children have been good this

year). But of course, even Santa Claus has to be cost-conscious, so he wants to perform this

allocation of toys to children at a near-minimum cost to himself (call this the Thrifty Santa Claus

Problem). Now if it was the case that every toy had a fixed price, this would be easy: simply

allocate to each child the cheapest toy on his or her list and move on to the next child. But here

we are interested in the case where goods have economies of scale. For example, producing a

millon toy cars might be cheaper than a million times the costof producing one toy car. Thus,

even if producing a single toy car is more expensive than a single Elmo doll, if a much larger

number of children want the toy car than the Elmo doll, the minimum-cost allocation might give

toy cars to many children, even if some of them also have the Elmo doll on their lists.

The problem faced by Santa (or by any allocator that must satisfy a collection of disjunctive

constraints in the presence of economies of scale) makes sense in both offline and online settings.

In the offline setting, in the extreme case of goods such as software where all the cost is in the first

copy, this is simply weighted set-cover, admitting aΘ(log n) approximation to the minimum-cost

allocation. We will be interested in the online case where customers are iid samples from some

arbitrary distribution over subsets of item-setI (i.e., Christmas lists), where the allocator must

make allocation decisions online, and where the marginal cost of goods does not decrease so

sharply. We show that for a range of cost curves, including the case that the marginal cost of copy

t of an item ist−α, for someα ∈ [0, 1), we will be able to get a constant-factor approximation so

long as the number of customers is sufficiently large compared to the number of items.
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One basic observation we show is that, if the marginal costs are non-increasing, there is al-

ways an optimal allocation that can be described as an ordering of the possible toys, so that as

each child comes, Santa simply gives the child the first toy inthe ordering that appears on the

child’s list. Another observation we prove is that, if the marginal costs do not drop too quickly,

then if we are given the lists of all the children before determining the allocation, we can effi-

ciently find an allocation that is within a constant factor ofthe minimum-cost allocation, as op-

posed to the logarithmic factor required for the set-cover problem. Since, however, the problem

we are interested in does not supply the lists before the allocations, but rather requires a decision

for each child in sequence, we rely on the iid assumption and use ideas from machine learning,

as follows: after processing a small initial number of children (with no nontrivial guarantees on

allocation costs for these), we take their wish lists as representative of the future children, and

find the optimal solution (in hindsight) for those, while treating each of these children as repre-

senting many future children (supposing we know the total number of children ahead of time).

We then take the ordered list of toys from this solution, and allocate according to this preference

ordering in the future (allocating to each child the earliest toy in the ordering that is also on his

or her list). We show that, as long as we take a sufficiently large number of initial children, this

procedure will find an ordering that will be near-optimal forallocating to the remaining children.

More generally, we can imagine the case where, rather than simple lists of items, the lists

also provide valuations for each item, and we are interestedin the trade-off between maximizing

the total of valuations for allocated items while minimizing the total cost of the allocation. In this

case, we might think of the allocator as being a large companywith many different projects, and

each project has some valuations over different resources (e.g., types of laptops for employees

involved in that project), where it could use one or another resource but prefers some resources

over others. One natural quantity to consider in this context is the social welfare: the difference

between the happiness (total of valuations for the allocation) minus the total cost of the allocation.

In this case, it turns out the optimal allocation rule can be described by a pricing scheme. In
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another words, whatever the optimal allocation is, there always exist prices such that if the buyers

purchase what they most want at those prices, they will actually produce that allocation. We note

that, algorithmically, this is a harder problem than the list-based problem (which corresponds to

binary valuations).

Aside from social welfare, it is also interesting to consider a variant in which we have a

budget constraint, and are interested in maximizing the total valuation of the allocation, subject

to that budget constraint on the total cost of the allocation. It turns out this latter problem can be

reduced to a problem known as the weighted budget maximum coverage problem. Technically,

this problem is originally formulated for the case in which the marginal cost of a given item

drops to zero after the first item of that type is allocated (asin the set cover reduction mentioned

above); however, viewed appropriately, we are able to formulate this reduction for arbitrary

decreasing marginal cost functions. What we can then do is runan algorithm for the weighted

budget maximum coverage problem, and then convert the solution into a pricing. As before, this

strategy will be effective for the offline problem, in which all of the valuations are given ahead of

time. However, we can extend it to the online setting with iidvaluation functions by generating

a pricing based on an appropriately-sized initial sample ofvaluation functions, and then apply

that pricing to sequentially generate allocations for the remaining valuations. Again, as long as

the marginal costs are not decreasing too rapidly, we can obtain an allocation strategy for which

the sum of valuations of the allocated items will be within a constant factor of the maximum

possible, subject to the budget constraint on the cost.

13.1.1 Our Results and Techniques

We consider this problem under two, related, natural objectives. In the first (the “thrifty Santa

Claus” objective) we assume customers have binary{0, 1} valuations, and the goal of the seller is

to give each customer a toy of value 1, but in such a way that minimizes the total cost to the seller.

We show that so long as the number of buyersn is large compared to the number of itemsr, and
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so long as the marginal costs do not decrease too rapidly (e.g., a rate1/tα for some0 ≤ α < 1),

we can efficiently perform this allocation task with cost at most a constant factor greater than that

of the optimal allocation of items in hindsight. Note that ifcosts decrease much more rapidly,

then even if all customers’ valuations were known up front, we would be faced with (roughly)

a set-cover problem and so one could not hope to achieve costo(log n) times optimal. The

second objective we consider, which we apply to customers ofarbitrary unit-demand valuation,

is that of maximizing total social welfare of customers subject to a cost bound on the seller; for

this, we also give a strategy that is constant-competitive with respect to the optimal allocation in

hindsight.

Our algorithms operate by using initial buyers to learn enough about the distribution to de-

termine how best to allocate to the future buyers. In fact, there are two main technical parts of

our work: the sample complexity and the algorithmic aspects. From the perspective of sample

complexity, one key component of this analysis is examininghow complicated the allocation

rule needs to be in order to achieve good performance, because simpler allocation rules require

fewer samples in order to learn. We do this by providing a characterization of what the op-

timal strategies look like. For example, for the thrifty Santa Claus version, we show that the

optimal solution can be assumed wlog to have a simple permutation structure. In particular, so

long as the marginal costs are nonincreasing, there is always an optimal strategy in hindsight of

this form: order the items according to some permutation andfor each bidder, give it the ear-

liest item of its desire in the permutation. This characterization is used inside both our sample

complexity results and our algorithmic guarantees. Specifically, we prove that for cost function

cost(t) =
∑t

τ=1 1/τ
α, for α ∈ [0, 1), running greedy weighted set cover incurs total cost at

most 1
1−α

OPT. More generally, if the average cost is within some factor ofthe marginal cost,

we have a greedy algorithm that achieves constant approximation ratio. To allocate to new buy-

ers, we simply give it the earliest item of its desire in the learnt permutation. For the case of

general valuations, we give a characterization showing that the optimal allocation rule in terms
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of social welfare can be described by a pricing scheme. That is, there exists a pricing scheme

such that if buyers purchased their preferred item at these prices, the optimal allocation would

result. Algorithmically, we show that we can reduce to a weighted budgeted maximum coverage

problem with single-parameter demand for which there is a known constant-approximation-ratio

algorithm [Khuller, Moss, and Naor, 1999].

13.1.2 Related Work

In this work we focus on the case of decreasing marginal cost.There have been a large body

of research devoted to unlimited supply, which is implicitly constant marginal cost (e.g., [Nisan,

Roughgarden, Tardos, and Vazirani, 2007] Chapter 13), where the goal is to achieve a constant

competitive ratio in both offline and online models. The caseof increasing marginal cost was

studies in [Blum, Gupta, Mansour, and Sharma, 2011] where constant competitive ratio where

given.

We analyze an online setting where buyers arrive one at a time, sampled iid from some

unknown underlying distribution over valuations. Other related online problems with stochastic

inputs such as matching problems have been studied in ad auctions [Goel and Mehta, 2008,

Mehta, Saberi, Vazirani, and Vazirani, 2007]. Algorithmically, our work is related to the online

set cover body of work where [Alon, Awerbuchy, Azarz, Buchbinder, and Naor, 2009] gave the

first O(logm log n) competitive algorithm (heren is the number of elements in the ground set

andm is size of a family of subsets of the ground set). The problemswe study are also related to

online matching problems [Devanur and Hayes, 2009, Devanurand Jain, 2012, Karp, Vazirani,

and Vazirani, 1990] in the iid setting; however our problem is a bit like the “opposite” of online

matching in that the cumulative cost curve for us is concave rather than convex.
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13.2 Model, Definitions, and Notation

We have a setI of r items. We have a setN = {1, . . . , n} indexingn unit demand buyers. Our

setting can then generally be formalized in the following terms.

13.2.1 Utility Functions

Each buyerj ∈ N has a weightuj,i for each itemi ∈ I. We suppose the vectorsuj,· are sampled

i.i.d. according to a fixed (but arbitrary and unknown) distribution. In theonlinesetting we are

interested in, the buyers’ weight vectorsuj,· are observed in sequence, and for each one (before

observing the next) we are required to allocate a set of itemsTj ⊆ I to that buyer. Theutility

of buyer j for this allocation is then defined asuj(Tj) = maxi∈Tj
uj,i. A few of our results

consider a slight variant of this model, in which we are only required to begin allocating goods

after some initialo(n) number of customers has been observed (to whom we may allocate items

retroactively).

This general setting is referred to as theweighted unit demandsetting. We will also be

interested in certain special cases of this problem. In particular, many of our results are for the

uniform unit demandsetting, in which everyj ∈ N andi ∈ I haveuj,i ∈ {0, 1}. In this case,

we may refer to the setSj = {i ∈ I : uj,i = 1} as the list of items buyerj wants(one of).

13.2.2 Production cost

We suppose there arecumulative cost functionscosti : N → [0,∞] for each itemi ∈ I, where

for t ∈ N, the value ofcosti(t) represents the cost of producingt copies of itemi. We suppose

eachcosti(·) is nondecreasing.

We would like to consider the case ofdecreasing marginal cost, wheret 7→ costi(t + 1) −

costi(t) is nonincreasing for eachi ∈ I.

A natural class of decreasing marginal costs we will be especially interested in are of the
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form t−α for α ∈ [0, 1). That is,costi(t) = c0
∑t

τ=1 τ
−α.

13.2.3 Allocation problems

After processing then buyers, we will have allocated some set of itemsT , consisting ofmi(T ) =

∑

j∈N ITj
(i) copies of each itemi ∈ I. We are then interested in two quantities in this setting:

the total (production) costcost(T ) =
∑

i∈I costi(mi(T )) and thesocial welfareSW (T ) =

∑

j∈N uj(Tj).

We are interested in several different objectives within this setting, each of which is some

variant representing the trade-off between reducing totalproduction cost while increasing social

welfare.

In theallocate allproblem, we have to allocate to each buyerj ∈ N one itemi ∈ Sj (in the

uniform demand setting): that is,SW (T ) = n. The goal is to minimize the total costcost(T ),

subject to this constraint.

Theallocate with budgetproblem requires our total cost to never exceed a given limitb (i.e.,

cost(T ) ≤ b). Subject to this constraint, our objective is to maximize the social welfareSW (T ).

For instance, in the uniform demand setting, this corresponds to maximizing the number of

satisfied buyers (that get an item from their setSj).

The objective in themaximize social surplusproblem is to maximize the difference of the

social welfare and the total cost (i.e.,SW (T )− cost(T )).

13.3 Structural Results and Allocation Policies

We now present several results about the structure of optimal (and non-optimal but “reasonable”)

solutions to allocation problems in the setting of decreasing marginal costs. These will be impor-

tant in our sample-complexity analysis because they allow us to focus on allocation policies that

have inherent complexity that depends only on the number ofitemsand not on the number of
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customers, allowing for the use of uniform convergence bounds. That is, a small random sample

of customers will be sufficient to uniformly estimate the performance of these policies over the

full set of customers.

13.3.1 Permutation and pricing policies

A permutation policyhas a permutationπ overI and is applicable in the case of uniform unit

demand. Given buyerj arriving, we allocate to him the minimal (first) demanded item in the

permutation, i.e.,argmini∈Sj
π(i). A pricing policyassigns a pricepricei to each itemi and is

applicable to general quasilinear utility functions. Given buyerj arriving, we allocate to him

whatever he wishes to purchase at those prices, i.e.,argmaxTj
uj(Tj)−

∑

i∈Tj
pricei.

2

We will see below that for uniform unit demand buyers, there always exists a permutation

policy that is optimal for the allocate-all task, and for general quasilinear utilities there always

exists a pricing policy that is optimal for the task of maximizing social surplus. We will also

see that for weighted unit demand buyers, there always exists a pricing policy that is optimal

for the allocate-with-budget task; moreover, for any even non-optimal solution (e.g., that might

be produced by a polynomial-time algorithm) there exists a pricing policy that sells the same

number of copies each item and has social welfare at least as high (and can be computed in

polynomial time given the initial solution).

13.3.2 Structural results

Theorem 13.1.For general quasilinear utilities, any allocation that maximizes social surplus

can be produced by a pricing policy. That is, ifT = {T1, . . . , Tn} is an allocation maximizing

SW (T ) − cost(T ) then there exist pricesprice1, . . . , pricer such that buyers purchasing their

most-demanded bundle recoversT , assuming that the marginal cost function is strictly decreas-

2When more that one subset is applicable, we assume we have the freedom to select any such set.
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ing.3

Proof. Consider the optimal allocationOPT. Definepricei to be the marginal cost of the next

copy of itemi underOPT, i.e.,pricei = costi(#i(OPT)+1). Suppose some buyerj is assigned

setTj in OPT but prefers setT ′
j under these prices. Then,

uj(T
′
j)−

∑

i∈T ′
j

pricei ≥ uj(Tj)−
∑

i∈Tj

pricei,

which implies

uj(T
′
j)− uj(Tj) +

∑

i∈Tj\T ′
j

pricei −
∑

i∈T ′
j\Tj

pricei ≥ 0. (13.1)

Now, consider modifyingOPT by replacingTj with T ′
j . This increases buyerj’s utility by

uj(T
′
j) − uj(Tj), incurs an extra purchase costexactly

∑

i∈T ′
j\Tj

pricei and a savings of strictly

more than
∑

i∈Tj\T ′
j
pricei (because marginal costs are decreasing). Thus, by (13.1) this would

be a strictly preferable allocation, contradicting the optimality of OPT.

Corollary 13.2. For uniform unit demand buyers there exists an optimal allocation that is a

permutation policy, for theallocate alltask.

Proof. Imagine each buyerj had valuationvmax on items inSj wherevmax is greater than the

maximum cost of any single item. The allocationOPT that maximizes social surplus would

then minimize cost subject to allocating exactly one item toeach buyer and therefore would

be optimal for the allocate-all task. Consider the pricing associated to this allocation given by

Theorem 13.1. Since each buyerj is uniform unit demand, he will simply purchase the cheapest

item inSj. Therefore, the permutationπ that orders items according to increasing price according

to the prices of Theorem 13.1 will produce the same allocation.

We now present a structural statement that will be useful forthe allocate-with-budget task.

3If the marginal cost function is only non-increasing, we canhave the same result, assuming we can select

between the utility maximizing bundles.
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Theorem 13.3.For weighted unit-demand buyers, for any allocationT there exists a pricing

policy that allocates the samemultisetof itemsT (or a subset ofT ) and has social welfare at

least as large asT . Moreover, this pricing can be computed efficiently fromT and the buyers’

valuations.

Proof. Let T be the multiset of items allocated byT . Weighted unit-demand valuations satisfy

the gross-substitutes property, so by the Second Welfare Theorem (e.g., see [Nisan, Roughgar-

den, Tardos, and Vazirani, 2007] Theorem 11.15) there exists a Walrasian equilibrium: a set of

prices for the items inT that clears the market. Moreover, these prices can be computed effi-

ciently from demand queries (e.g., [Nisan, Roughgarden, Tardos, and Vazirani, 2007], Theorem

11.24), which can be evaluated efficiently for weighted unit-demand buyers. Furthermore, these

prices must assign all copies of thesameitem inT the same price (else the pricing would not be

an equilibrium) so it corresponds to a legal pricing policy.Thus, we have a legal pricing such

that if all buyers were shown only the items represented inT , at these prices, then the market

would clear perfectly (breaking any ties in our favor). We can address the fact that there may be

items not represented inT (i.e., they had zero copies sold) by simply setting their price to infinity.

Finally, by the First Welfare Theorem (e.g., [Nisan, Roughgarden, Tardos, and Vazirani, 2007]

Theorem 11.13), this pricing maximizes social welfare overall allocations ofT , and therefore

achieves social welfare at least as large asT , as desired.

The above structural results will allow us to use the following sketch of an online algorithm.

First sample an initial set ofℓ buyers. Then, for the allocate-all problem, compute the best

(or approximately best) permutation policy according to the empirical frequencies given by the

sample. Or, for the allocate-with budget task, compute the best (or approximately best) allocation

according to these empirical frequencies and convert it into a pricing policy. Then run this

permutation or pricing policy on the remainder of the customers. Finally, using the fact that

these policies have low complexity (they are lists or vectors in a space that depends only on the

number of items and not on the number of buyers) compute the size of initial sample needed to
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ensure that the estimated performance is close to true performance uniformly over all policies in

the class.

13.4 Uniform Unit Demand and the Allocate-All problem

Here we consider the allocate-all problem for the setting ofuniform unit demand. For intuition,

we begin by considering the following simple class of decreasing marginal cost curves.

Definition 13.4. We say the cost functioncost(t) is α-poly if the marginal cost of itemt is 1/tα

for α ∈ [0, 1). That is,cost(t) =
∑t

τ=1 1/τ
α.

Theorem 13.5.If each cost function isα-poly, then there exists an efficient offline algorithm that

given a setX of buyers produces a permutation policy that incurs total cost at most 1
1−α

OPT.

Proof. We run the greedy set-cover algorithm. Specifically, we choose the item desired by the

most buyers and put it at the top of the permutationπ. We then choose the item desired by

the most buyers who did not receive the first item and put it next, and so on. For notational

convenience assumeπ is the identity, and letSi denote the set of buyers that receive itemi, For

any setS ⊆ X, letOPT(S) denote the cost of the optimal solution to the subproblemS (i.e., the

problem in which we are only required to cover buyers inS). ClearlyOPT(Sr) = cost(|Sr|) =
∑|Sr|

τ=1 1/τ
α ≥ ∑|Sr|

t=1

∫ |St|
1

x−αdx = 1
1−α
|Sr|1−α − 1, since any solution using more than one set

to cover the elements ofSr has at least as large a cost.

Now, for the purpose of induction, suppose that somek ∈ {2, . . . , r} hasOPT(
⋃r

t=k St) ≥
∑r

t=k |St|1−α. Then, sinceSk−1 was chosen to be the largest subset of
⋃r

t=k−1 St that can be

covered by a single item, it must be that the sets used by any allocation for the
⋃r

t=k−1 St sub-

problem achievingOPT(
⋃r

t=k−1 St) have size at most|Sk−1|, and thus the marginal costs for

each of the elements ofSk−1 in theOPT(
⋃r

t=k−1 St) solution is at least1/|Sk−1|α.

This impliesOPT(
⋃r

t=k−1 St) ≥ OPT(
⋃r

t=k St) +
∑

x∈Sk−1
1/|Sk−1|α = OPT(

⋃r
t=k St) +

|Sk−1|1−α. By the inductive hypothesis, this latter expression is at least as large as
∑r

t=k−1 |St|1−α.
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By induction, this impliesOPT(X) = OPT(
⋃r

t=1 St) ≥
∑r

t=1 |St|1−α. On the other hand,

the total cost incurred by the greedy algorithm is
∑r

t=1

∑|Sr|
τ=1 1/τ

α ≤ ∑r
t=1

∫ |St|
0

x−αdx =

1
1−α

∑r
t=1 |St|1−α. By the above argument, this is at most1

1−α
OPT(X).

More general cost curves We can generalize the above result to a natural class of smoothly de-

creasing cost curves. Define the average cost of itemi given to setSi of buyers asAvgC(i, |Si|) =
cost(|Si|)

|Si| . Define the marginal costMarC(i, t) = costi(t)− costi(t− 1). Here is a greedy algo-

rithm.

Algorithm: GreedyGeneralCost(S)

0. i = argminAvgC(i, |Si|)

1. CallGreedyGeneralCost(S − Si)

We make the following assumption:

Assumption 13.6.∀i, t, AvgC(i, t) ≤ βMarC(i, t), for someβ > 0.

For example, for the case of anα-poly cost, we have:MarC(t) = 1
tα

andAvgC =

1
t

∑t
τ=1

1
τα
≈ t−α

1−α
; so, therefore we haveβ = 1

1−α
.

Theorem 13.7.The algorithm GreedyGeneralCost achieves approximation ratio β.

Proof. Order the elements in the order that GreedyGeneralCost allocates them. LetNj be the

set of consumers that receive itemj, andN = ∪Nj in GreedyGeneralCost. For consumer

i let itemopt(i) be the item thatOPT allocates to consumeri. Let ℓopt(j) be the number of

consumers that are allocated itemj. By Assumption 13.6 we haveMarC(j, l) ≤ AvgC(j, l) ≤

βMarC(j, l) (the first inequality is due to having decreasing marginal cost).
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We would like to consider the influence of the consumers inN1 on the cost ofOPT . Let

OPT(N)−OPT(N −N1) ≥
∑

i∈N1
MarC(itemopt(i), ℓopt(itemopt(i)))

≥ ∑

i∈N1

1
β
AvgC(itemopt(i), ℓopt(itemopt(i)))

≥ 1
β
|N1|AvgC(1, |N1|) = 1

β
GreedyCost(N1)

The first inequality follows since taking the final marginal cost can only reduce the cost (decreas-

ing marginal cost). The second inequality follows from Assumption 13.6. The third inequality

follows since GreedyGeneralCost selects the lowest averagecost of any allocated item .

We can now continue inductively. LetT0 = N , T1 = N −N1, andTi = Ti−1 −Ni. We can

show similarly that,

OPT(Ti−1)−OPT(Ti) ≥
1

β
GreedyCost(Ni)

Summing over alli we have

OPT (T )−OPT (∅) =
∑

i

OPT(Ti−1)−OPT(Ti) ≥
1

β

∑

i

GreedyCost(Ni)

=
1

β
GreedyCost(N)

Corollary 13.8. If the cost function isα-poly, then forβ = 1
1−α

, Assumption 13.6 holds. Thus

GreedyCost(Sj)

OPTCost(Sj)
≤ 1

1−α
.

Additionally, the following property is satisfied for theseβ-nice cost functions.

Lemma 13.9. For cost satisfying Assumption 13.6,∀x ∈ N, ∀ǫ ∈ (0, 1), ∀i ≤ r, costi(ǫx) ≤

ǫlog2(1+
1
2β

)costi(x).

Proof. By the fact that marginal costs are non-negative,AvgC(2ǫx) ≥ costi(ǫx)/(2ǫx). There-

fore, by Assumption 13.6,MarC(2ǫx) ≥ costi(ǫx)/(2ǫxβ). By the decreasing marginal cost

property, we have

costi(2ǫx) ≥ costi(ǫx) + ǫxMarC(2ǫx) ≥ costi(ǫx) + costi(ǫx)/(2β) = (1 +
1

2β
)costi(ǫx).
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Applying this argumentlog2(1/ǫ) times, we have

costi(x) ≥ (1 +
1

2β
)log2(1/ǫ)costi(ǫx) = (

1

ǫ
)log2(1+

1
2β

)costi(ǫx).

Multiplying both sides byǫlog2(1+
1
2β

) completes the proof.

13.4.1 Generalization Result

Sayn is the total number of customers;ℓ is the size of subsample where we do estimate on;

r is the total number of items;α ∈ (0, 1] is some constant, and the cost isα-poly, so that

cost(t) =
∑t

τ=1 1/τ
α ≃

∫ t

0
y−αdy =

[

y1−α

1−α

]t

0
= t1−α

1−α
. We have the following generalization

result:

Theorem 13.10.Supposen ≥ ℓ and the cost function isα-poly. With probability at least1−δ(ℓ),

for any permutationsΠ,

cost(Π, ℓ)(1 + ǫ)−2
(n

ℓ

)1−α

≤ cost(Π, n) ≤ cost(Π, ℓ)(1 + ǫ)2(1−α)
(n

ℓ

)1−α

,

whereδ(ℓ) = r2r(δ1 + δ2 + δ3) and δ1 = exp{−ǫ2
(

ǫ
r

) 1
1−α n/3}, δ2 = exp{−ǫ2ℓ

(

ǫ
r

) 1
1−α /3},

δ3 = exp{−
(

ǫ
r

) 1
1−α nǫ2/2}.

Proof. Fix a permutationΠ. Let πj denote the event that a customer buys itemΠj and not

covered by itemsΠ1 throughΠj−1. Namely, the probability that the consumer set of desired

items includej and none of the items1, . . . , j − 1. Let qj denotePr[πj], and letq̂j denote the

fraction ofΠj on the initialℓ-sample.

Item j to is a “Low probability item” ifqj <
(

ǫ
r

) 1
1−α ; and “High probability items” ifqj ≥

(

ǫ
r

) 1
1−α . Let the set “Low” include all “Low probability items”; and the set “High” include all

“High probability items”.

First we address the case of itemj of low probability. The quantity of itemj that we

will sell is at most
(

ǫ
r

) 1
1−α n(1 + ǫ) (Chernoff bound) with probability at least1 − δ1 with

δ1 = exp{−ǫ2
(

ǫ
r

) 1
1−α n/3}. By a union bound, this holds for all low probability itemj, with

probability at least1− |Low|δ1.
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Next, we supposej has high probability. In this case, the quantity of itemj we will sell is at

mostqjn(1 + ǫ), with probability at least1 − exp{−ǫ2qjn/3} ≥ 1 − δ1. Again, a union bound

implies this holds for all high probabilityj with probability at least1− |High|δ1.

We have that (by Chernoff bounds), with probability at least1−exp{−ǫ2ℓqj/3} ≥ 1−δ2, we

haveqj/q̂j ≤ (1+ ǫ). A union bound implies this holds for all high probabilityj with probability

1− rδ2.

Furthermore, noting thatqjn(1 + ǫ) = q̂jn(1 + ǫ)
qj
q̂j

, and upper boundingqj
q̂j

by 1 + ǫ, we get

thatqjn(1 + ǫ) ≤ (1 + ǫ)2q̂jn, with probability1− δ2. Thus,

cost(Π, n) ≤ cost(Low) + cost(High)

≤ r

(

( ǫ

r

) 1
1−α

n(1 + ǫ)

)1−α

+
∑

j∈High

(

(1 + ǫ)2q̂jn
)1−α

≤ ǫ(1 + ǫ)1−αn1−α + (1 + ǫ)2(1−α)n1−α
∑

j∈High

(q̂j)
1−α .

Note that the total cost of all low probability items is at most ǫ-fraction ofOPT which is at least

n1−α

1−α
. Also,

(1 + ǫ)2(1−α)n1−α
∑

j∈High

(q̂j)
1−α = (1 + ǫ)2(1−α)

(n

ℓ

)1−α∑

j

(q̂jℓ)
1−α

= (1 + ǫ)2(1−α)
(n

ℓ

)1−α

cost(Π, ℓ)

by definition ofcost(Π, ℓ).

Therefore we showed,

cost(Π, n) ≤ ǫ(1 + ǫ)1−αℓ1−α
(n

ℓ

)1−α

+ (1 + ǫ)2(1−α)
(n

ℓ

)1−α

cost(Π, ℓ)

≤ (1 + 5ǫ)
(n

ℓ

)1−α

cost(Π, ℓ)

The lower bound is basically similar. Forj ∈ Low, we haveqj <
(

ǫ
r

) 1
1−α and q̂j <
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(

ǫ
r

) 1
1−α (1 + ǫ) (by Chernoff bounds). So we have

∑

j

(q̂jℓ)
1−α ≤

∑

j

(

( ǫ

r

) 1
1−α

(1 + ǫ)ℓ

)1−α

= r
ǫ

r
(1 + ǫ)1−αℓ1−α

= ǫ(1 + ǫ)1−αn1−α

(

ℓ

n

)1−α

≤ ǫ(1 + ǫ)1−αcost(Π, n)

(

ℓ

n

)1−α

Thus,

cost(Π, ℓ) =
∑

j∈Low
(q̂jℓ)

1−α +
∑

j∈High

(q̂jℓ)
1−α

≤ cost(Π, n)ǫ

(

ℓ

n

)1−α

(1 + ǫ)1−α +
∑

j∈High

(qjn)
1−α

(

ℓ

n

)1−α(
q̂j
qj

)1−α

≤ cost(Π, n)ǫ

(

ℓ

n

)1−α

(1 + ǫ) +
∑

j∈High

(qjn)
1−α

(

ℓ

n

)1−α

(1 + ǫ)

≤ (1 + ǫ)2cost(Π, n)

(

ℓ

n

)1−α

with probability at least1 − exp {−qjnǫ2/2} ≥ 1 − δ3. For low-probabilityj, the number of

item j sold is≥
(

ǫ
r

) 1
1−α n(1 − ǫ) with probability at least1 − δ3. A union bound extends these

to all j with combined probability1− rδ3.

Thus we obtain the upper bound:cost(Π, n) ≤ cost(Π, ℓ)(1 + ǫ)2(1−α)
(

n
ℓ

)1−α
and the lower

bound:cost(Π, n) ≥ cost(Π, ℓ)(1 + ǫ)−2
(

n
ℓ

)1−α
, with probability at least1− r2r(δ1 + δ2 + δ3).

A naive union bound can be done over all the permutations, which will add a factor ofr!,

we can reduce the factor tor2r by noticing that we are only interested in events of the typeπj,

namely a given item (say,j) is in the set of desired items, and another set (say,{1, . . . , j − 1}) is

not in that set. This has onlyr2r different events we need to perform the union over.
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13.4.2 Generalized Performance Guarantees

We defineGreedyGeneralCost(ℓ, n) as follows. For the firstℓ customers it allocates arbi-

trary items they desire, and observed their desired sets. Give the sets of the firstℓ customers,

it runsGreedyGeneralCost and computes a permutation̂Π of the items. For the remaining

customers it allocates using permutationΠ̂. Namely, each customer is allocated the first item in

the permutation̂Π that is in its desired set. The following theorem bounds the performance of

GreedyGeneralCost(ℓ, n) for α-poly cost functions.

Theorem 13.11.With probability1− δ(ℓ) (for δ(ℓ) as in Theorem 13.10), the cost of

GreedyGeneralCost(ℓ, n) is at most

ℓ+
(1 + ǫ)4−2α

1− α OPT

Proof. Let Π̂ be the permutation policy produced by GreedyGeneralCost, after theℓ first cus-

tomers. By Theorem 13.7,

cost(Π̂, ℓ) ≤ 1

1− α min
Π

cost(Π, ℓ).

By Theorem 13.10, with probability1− δ(ℓ),

min
Π

cost(Π, ℓ) ≤ min
Π

cost(Π, n)(1 + ǫ)2
(

ℓ

n

)1−α

.

Additionally, on this same event,

cost(Π̂, n) ≤ cost(Π̂, ℓ)(1 + ǫ)2(1−α)
(n

ℓ

)1−α

.

Altogether, this implies

cost(Π̂, n) ≤ (1 + ǫ)2(1−α)

1− α
(n

ℓ

)1−α

min
Π

cost(Π, n)(1 + ǫ)2
(

ℓ

n

)1−α

=
(1 + ǫ)4−2α

1− α min
Π

cost(Π, n).
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Corollary 13.12. For any fixed constantδ ∈ (0, 1), for any

ℓ ≥ 3

ǫ2

(r

ǫ

) 1
1−α

ln

(

3r2r

δ

)

,

and

n ≥
(

ℓ

ǫ

) 1
1−α

with probability at least1− δ we haveGreedyGeneralCost(n, ℓ) is at most

(

(1 + ǫ)4−2α

1− α + ǫ

)

OPT

13.4.3 Generalization forβ-nice costs

Toward extending the offline-model results under Assumption 13.6 to the online setting, consider

the following lemma.

Lemma 13.13.For any costcost satisfying Assumption 13.6 with a givenβ, for anyk ≥ 1, the

costcost′ with cost′i(x) = costi(kx) also satisfies Assumption 13.6 with the sameβ.

Proof.

costi(kx)

x
= k

costi(kx)

kx
≤ βk(costi(kx)− costi(kx− 1)).

Also, the property of nonincreasing marginal costs implies∀t ∈ {1, . . . , k},

costi(kx)− costi(kx− 1) ≤ costi(kx− (t− 1))− costi(kx− t),

so that

k(costi(kx)−costi(kx−1)) ≤
k
∑

t=1

(costi(kx−(t−1))−costi(kx−t)) = costi(kx)−costi(k(x−1)).

Therefore,

costi(kx)

x
≤ β(costi(kx)− costi(k(x− 1))).
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Now the strategy is to run GreedyGeneralCost with the rescaled cost functioncost′i(x) =

costi(
n
ℓ
x). This provides aβ-approximation guarantee for the rescaled problem. The following

theorem describes the generalization capabilities of thisstrategy.

Theorem 13.14.Supposen ≥ ℓ and the cost function satisfies Assumption 13.6, and that∀i,

costi(1) ∈ [1, B], whereB ≥ 1 is constant. Letcost′i(x) = costi(
n
ℓ
x). With probability at least

1− δ(ℓ), for any permutationsΠ,

cost′(Π, ℓ)
1− ǫ

1 + 2ǫ− ǫ2 ≤ cost(Π, n) ≤ cost′(Π, ℓ)
(1 + ǫ)2

1− ǫ ,

whereδ(ℓ) = r22r+1(δ1 + δ2), δ1 = exp{−ǫ3nlog2(1+
1
2β

)/(3rB(1 + ǫ))}, and

δ2 = exp{−ǫ2ℓ ǫ
rB(1+ǫ)

nlog2(1+
1
2β

)−1/3}. It is not necessary for the set ofℓ customers to be

contained in the set ofn customers for this.

Proof. Fix a permutationΠ. Let πj denote the event that a customer buys itemΠj and not

covered by itemsΠ1 throughΠj−1. Namely, the probability that the consumer set of desired

items includej and none of the items1, . . . , j − 1. Let qj denotePr[πj], and letq̂j denote the

fraction ofΠj on the initialℓ-sample.

Let q∗ = ǫ
rB(1+ǫ)

nc−1, wherec = log2(1+
1
2β
). Itemj is a “Low probability item” ifqj < q∗,

and is called a “High probability item” ifqj ≥ q∗. Let the set “Low” include all “Low probability

items”; and the set “High” include all “High probability items”.

First we address the case of itemj of low probability. By a Chernoff bound, the quantity of

item j that we will sell when applyingΠ to n customers is at mostq∗n(1 + ǫ), with probability

at least1− exp{−ǫ2q∗n/3} = 1− δ1. By a union bound, this holds for all low probability items

j with probability at least1− |Low|δ1.

Next, supposej has high probability. In this case, the quantity of itemj we will sell when

applyingΠ to n customers is at mostqjn(1 + ǫ), with probability at least1− exp{−ǫ2qjn/3} ≥

1− δ1. Again, a union bound implies this holds for all high probability j with probability at least

1− |High|δ1.
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We have that (by Chernoff bounds), with probability at least1−exp{−ǫ2ℓqj/3} ≥ 1−δ2, we

haveqj/q̂j ≤ (1+ ǫ). A union bound implies this holds for all high probabilityj with probability

1− rδ2.

Furthermore, noting thatqjn(1 + ǫ) = q̂jn(1 + ǫ)
qj
q̂j

, and upper boundingqj
q̂j

by 1 + ǫ, we get

that qjn(1 + ǫ) ≤ (1 + ǫ)2q̂jn, with probability at least1 − δ2. Thus, with probability at least

1− rδ1 − rδ2,

cost(Π, n) ≤ cost(Low) + cost(High)

≤
∑

j∈Low

costj (q
∗n(1 + ǫ)) +

∑

j∈High

costj
(

(1 + ǫ)2q̂jn
)

≤ rBq∗n(1 + ǫ) + (1 + ǫ)2
∑

j∈High

costj (q̂jn)

= rBq∗n(1 + ǫ) + (1 + ǫ)2
∑

j∈High

cost′j(Π, ℓ).

Note that Lemma 13.9 (withǫ = 1/x) implies that onn customers,OPT ≥ minj costj(n) ≥

nlog2(1+
1
2β

)minj costj(1) ≥ nlog2(1+
1
2β

) = nc, where the third inequality is by the assumption on

the range ofcosti(1). Thus,rBq∗n(1 + ǫ) = ǫnc ≤ ǫOPT.

We showed that

cost(Π, n) ≤ ǫOPT + (1 + ǫ)2
∑

j∈High

cost′j(Π, ℓ)

≤ ǫcost(Π, n) + (1 + ǫ)2
∑

j∈High cost
′
j(Π, ℓ).

Therefore,

cost(Π, n) ≤ (1 + ǫ)2

1− ǫ
∑

j∈High

cost′j(Π, ℓ)

≤ (1 + ǫ)2

1− ǫ cost′(Π, ℓ).

The lower bound is basically similar. Forj ∈ Low, a Chernoff bound implies we have
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q̂j < q∗(1 + ǫ) with probability at least1− exp{−ǫ2q∗ℓ/3} ≥ 1− δ2. So we have

∑

j∈Low

costj(q̂jn) ≤
∑

j∈Low

costj(q
∗(1 + ǫ)n)

≤ rB(1 + ǫ)q∗n

= ǫnc

≤ ǫOPT

≤ ǫcost(Π, n).

For j ∈ High, again by a Chernoff bound, we haveq̂j/qj ≤ (1 + ǫ) with probability at least

1− exp{−ǫ2qjℓ/3} ≥ 1− δ2. Thus, by a union bound, with probability at least1− rδ2,

cost′(Π, ℓ) =
∑

j∈Low

costj(q̂jn) +
∑

j∈High

costj(q̂jn)

≤ ǫcost(Π, n) +
∑

j∈High

costj(qjn(1 + ǫ)).

By another application of Chernoff and union bounds, with probability at least1−∑j∈High exp{−ǫ2qjn/2} ≥

1 − rδ1, for everyj ∈ High, the number ofj we will sell when applyingΠ to n customers is at

leastqin(1− ǫ). Thus,

∑

j∈High

costj(qjn(1 + ǫ)) =
∑

j∈High

costj(qjn(1− ǫ)
1 + ǫ

1− ǫ) ≤
1 + ǫ

1− ǫ
∑

j∈High

costj(qjn(1− ǫ)) ≤
1 + ǫ

1− ǫcost(Π, n).

Altogether, we have proven that with probability at least1− r(δ1 + δ2),

cost′(Π, ℓ) ≤
(

ǫ+
1 + ǫ

1− ǫ

)

cost(Π, n)

=
1 + 2ǫ− ǫ2

1− ǫ cost(Π, n),

which implies
1− ǫ

1 + 2ǫ− ǫ2 cost
′(Π, ℓ) ≤ cost(Π, n).

A naive union bound can be done over all the permutations, which will add a factor ofr!;

we can reduce the factor tor2r by noticing that we are only interested in events of the typeπj,
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namely a given item (say,j) is in the set of desired items, and another set (say,{1, . . . , j − 1}) is

not in that set. This has onlyr2r different events we need to perform the union over. Thus, the

above inequalities hold for all permutations with probability at least1− r22r+1(δ1 + δ2).

Let n0 = 0, n1 = 2
(

3rB(1+ǫ)
ǫ3

ln
(

4r22r+2

δ

)) 1

log2(1+
1
2β

) . For each integeri ≥ 2, define

ni =





(
∑i−1

j=1 nj)ǫ
3

3rB(1 + ǫ) ln
(

(i+2)2r22r+2

δ

)





1

1−log2(1+
1
2β

)

.

We defineGreedyGeneralCostβ(n) as follows. Allocate arbitrary (valid) items to the first

n1 customers. For eachi ≥ 2 with
∑i

j=1 ni ≤ n, runGreedyGeneralCost(S) with cost func-

tion cost′, whereS is the set of buyers1, 2, . . . ,
∑i−1

j=1 nj, and∀j, cost′j(x) = costj(xni/
∑i−1

t=1 nt);

this produces a permutation policyΠ̂. We then allocate to the customers(
∑i−1

j=1 nj)+1, . . . ,
∑i

j=1 nj

using the permutation policŷΠ.

The following theorem bounds the performance ofGreedyGeneralCostβ(n).

Theorem 13.15.If cost satisfies Assumption 13.6, and hascostj(1) ∈ [1, B] for everyj ≤ r,

with probability at least1− δ, the cost ofGreedyGeneralCostβ(n) is at most

Bn1 + β
(1 + ǫ)2(1 + 2ǫ− ǫ2)

(1− ǫ)2
∑

i:
∑i

j=1 nj≤n

OPT(ni).

Proof. By Theorem 13.7, Lemma 13.13, and Theorem 13.14 and a union bound, with probability

at least1−δ, for everyi, the cost ofGreedyGeneralCostβ on customers1+
∑i−1

j=1 nj , . . . ,
∑i

j=1 nj

is at most

cost′
(

Π̂,
i−1
∑

j=1

nj

)

(1 + ǫ)2

1− ǫ ≤ βmin
Π

cost′
(

Π,
i−1
∑

j=1

nj

)

(1 + ǫ)2

1− ǫ

≤ βmin
Π

cost(Π, ni)
(1 + ǫ)2(1 + 2ǫ− ǫ2)

(1− ǫ)2

= β
(1 + ǫ)2(1 + 2ǫ− ǫ2)

(1− ǫ)2 OPT(ni).

Summing overi yields the result.
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If we are allowed to preview the utilities of some initialo(n) set of buyers, then we can get

the following simpler result.

Theorem 13.16.If cost satisfies Assumption 13.6, and hascostj(1) ∈ [1, B] for everyj ≤ r, with

probability at least1−δ, the cost of applying the policy found byGreedyGeneralCost({1, . . . , ℓ})

to all n customers is at most

β
(1 + ǫ)2(1 + 2ǫ− ǫ2)

(1− ǫ)2 OPT(n),

whereℓ =
⌈

n1−log2(1+
1
2β

) 3rB(1+ǫ)
ǫ3

ln
(

r22r+2

δ

)⌉

= o(n).

Proof. By Theorem 13.7, Lemma 13.13, and Theorem 13.14, with probability at least1− δ, the

cost of applying the policŷΠ found byGreedyGeneralCost({1, . . . , ℓ}) to customers1, . . . , n

is at most

cost′(Π̂, ℓ)
(1 + ǫ)2

1− ǫ ≤ βmin
Π

cost′(Π, ℓ)
(1 + ǫ)2

1− ǫ
≤ βmin

Π
cost(Π, n)

(1 + ǫ)2(1 + 2ǫ− ǫ2)
(1− ǫ)2

= β
(1 + ǫ)2(1 + 2ǫ− ǫ2)

(1− ǫ)2 OPT(n).

Also consider the following lemma.

Lemma 13.17.If cost satisfies Assumption 13.6, then for anyn ∈ N,OPT(2n) ≥
(

1 + 1
2β

)

OPT(n).

Proof.

We defineGreedyGeneralCost′β(n) as follows. Allocate an arbitrary (valid) item to the first

customer. For eachi ≥ 1 with i ≤ log2(n), runGreedyGeneralCost(S), whereS is the set of

buyers1, 2, . . . , 2i−1; this produces a permutation policŷΠ. We then allocate to the customers

2i−1 + 1, . . . , 2i using the permutation policŷΠ.

The following theorem bounds the performance ofGreedyGeneralCost′β(n).
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Theorem 13.18.If cost satisfies Assumption 13.6, and hascostj(1) ∈ [1, B] for everyj ≤ r, let-

ting ℓ denote the smallest power of2 greater than
(

3rB(1+ǫ)
ǫ3

ln
(

4r22r+2

δ

)) 1

log2(1+
1
2β

) , with proba-

bility at least1−∑log2(n)−1
i=log2(ℓ)

r22r+2
(

δ
4r22r+2

)2
(i−log2(ℓ)) log2(1+

1
2β

)

, the cost ofGreedyGeneralCost′β(n)

is at most

Bℓ+
(1 + ǫ)2(1 + 2ǫ− ǫ2)

(1− ǫ)2 (2β)2OPT(n).

Proof. By Theorem 13.7, Theorem 13.14 and a union bound, with the stated probability, for

everyi > log2(ℓ), the cost ofGreedyGeneralCost′β on customers2i−1 + 1, . . . , 2i is at most

cost
(

Π̂, {1, . . . , 2i−1}
) (1 + ǫ)2

1− ǫ ≤ βmin
Π

cost
(

Π, {1, . . . , 2i−1}
) (1 + ǫ)2

1− ǫ
≤ βmin

Π
cost(Π, {2i−1 + 1, . . . , 2i})(1 + ǫ)2(1 + 2ǫ− ǫ2)

(1− ǫ)2

= β
(1 + ǫ)2(1 + 2ǫ− ǫ2)

(1− ǫ)2 OPT({2i−1 + 1, . . . , 2i}).

By Lemma 13.17,

OPT({2i−1 + 1, . . . , 2i}) = OPT(2i−1) ≤ OPT(2n2i−1−⌈log2(n)⌉)

≤
(

1

1 + 1
2β

)⌈log2(n)⌉+1−i

2OPT(n).

Summing this overi ∈ {log2(ℓ) + 1, . . . , ⌈log2(n)⌉} is at most4βOPT(n). Plugging this into

the above bound on the cost supplies the stated result.

13.5 General Unit Demand Utilities

In this section we show how to give a constant approximation for the case of general unit demand

buyers in the offline setting in the case when we have a budgetB to bound the cost we incur and

we would like to maximize the buyers social welfare given this budget constraint. The main tool

would be a reduction of our problem to the budgeted maximum coverage problem.

Definition 13.19. An instance of thebudgeted maximum coverage problemhas a universeX

of m elements where eachxi ∈ X has an associated weightwi; there is a collection ofm sets
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S such that each setsSj ∈ S has a costcj; and there is a budgetL. A feasible solution is a

collection of setsS ′ ⊂ S such that
∑

Sj∈S′ cj ≤ L. The goal is to maximize the weight of the

elements inS ′, i.e.,w(S ′) =
∑

xi∈∪S∈S′S wi.

While the budgeted maximum coverage problem is NP-complete there is a(1−1/e) approx-

imation algorithm [Khuller, Moss, and Naor, 1999]. Their algorithm is a variation of the greedy

algorithm, where on the one hand it computes the greedy allocation, where each time a set which

maximizes the ratio between weight of the elements covered and the cost of the set is added, as

long as the budget constraint is not violated. On the other hand the single best set is computed.

The output is the best of the two alternative (either the single best set of the greedy allocation).

Before we show the reduction from a general unit demand utility to the budgeted maximum

coverage problem, we show a simpler case where for each buyerj has a valuevj such that of any

item i eithervj = uj,i or uj,i = 0, which we callbuyer-uniform unit demand.

Lemma 13.20.There is a reduction from the budgeted buyer-uniform unit demand buyers prob-

lem to the budgeted maximum coverage problem. In addition the greedy algorithm can be com-

puted in polynomial time on the resulting instance.

Proof. For each buyerj we create an elementxj with weight vj. For each itemk and any

subsets of buyersS we create a setTS,k = {xj : j ∈ S} and has costcostk(|S|). The budget is

set to beL = B. Clearly any feasible allocation of the budgeted maximum coverage problem

TS1,k1 , . . . TSr ,kr can be translated to a solution of the budgeted buyer-uniform unit demand buyers

by simply producing itemki for all the buyers inTSi,ki . The welfare is the sum of the weight of

the elements covered which is the social welfare, and the cost is exactly the production cost.

Note that the reduction generates an exponential number of sets, if we do it explicitly. How-

ever,we can run the Greedy algorithm easily, without generating the sets explicitly. Assume

we havem′ remaining buyers. For each itemi and anyℓ ∈ [1,m′] we compute the cost

costi(ℓ)/gaini(ℓ), wheregaini(ℓ) is the weight of theℓ buyers with highest valuation for itemi.

Greedy select the itemi and number of buyersℓ which have the highest ratio and adding this set
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still satisfies the budget constraint. Note that given that greedy selectsTS,k where|S| = ℓ then

its cost iscostk(ℓ) and its weigh isw(TS,k) ≤ gaink(ℓ), and hence Greedy will always select one

of the sets we are considering.

In the above reduction we used very heavily the fact that eachbuyerj has a single valuation

vj regardless of which desired item it gets. In the following weshow a slightly more involved

reduction which handles the general unit demand buyers.

Lemma 13.21.There is a reduction from the budgeted general unit demand buyers problem to

the budgeted maximum coverage problem. In addition the greedy algorithm can be computed in

polynomial time on the resulting instance.

Proof. For each buyerj we sort its valuationsuj,i1 ≤ · · · ≤ uj,im . We setvj,i1 = uj,i1 and

vj,ir = uj,ir − uj,ir−1. Note that
∑r

s=1 vj,is = uj,ir . For each buyerj we createm elementsxj,r,

1 ≤ r ≤ m. For a buyerj and itemk letXj,k be all the elements that represent lower valuation

thanuj,k, i.e.,Xj,k = {xj,r : uj,ir ≤ uj,k}. For each itemk and any subsets of buyersS we create

a setTS,k = ∪j∈SXj,k and has costcostk(|S|). The budget is set to beL = B.

Any feasible allocation of the budgeted maximum coverage problemTS1,k1 , . . . TSl,kr can be

translated to a solution of the budgeted general unit demandbuyers producing itemki for all the

buyers inTSi,ki . We call buyerj aswinner if there exists someb such thatxj,b ∈ ∪r
i=1TSi,ki . Let

Winners we the set of all winner buyers. For any winner buyerj ∈ Winner let item(j) = s

such thats = max{b : xj,b ∈ ∪r
i=1TSi,ki}.

The cost of our allocation is by definition at mostL = B. The social welfare is

∑

xj,b∈∪r
i=1TSi,ki

vj,b =
∑

j∈Winner

uj,item(j)

Again, note that the reduction generates an exponential number of sets, if we do it explicitly.

However, we can run the Greedy algorithm easily, without generating the sets explicitly. For

each itemi and anyℓ ∈ [1,m] we compute the costcosti(ℓ)/gaini(ℓ), wheregaini(ℓ) is the

weight of theℓ buyers with highest valuation for itemi. Greedy selects the itemi and number
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of buyersℓ which have the highest ratio which still satisfies the budgetconstraint. Note that

given that greedy selectsTS,k where|S| = ℓ then its production cost iscostk(ℓ) and its weight

is w(TS,k) ≤ gaink(ℓ), and hence Greedy will always select one of the sets we are considering.

Once the Greedy selects a setTS,k we need to update the utility of any buyerj ∈ S for any

other itemi, by settinguj,i = max{uj,i− uj,k, 0}, which is the residual valuation buyerj has for

getting itemi in addition to itemk.

Combining our reduction with approximation algorithm of [Khuller, Moss, and Naor, 1999]

we have the following theorem.

Theorem 13.22.There exists a poly-time algorithm for the budgeted generalunit demand buyers

problem which achieves social welfare at least(1− 1/e)OPT.

13.5.1 Generalization

To extend these results to the online setting, we will use Theorem 13.3 to represent allocations

by pricing policies, and then use the results from above to learn a good pricing policy based on

an initial sample.

Theorem 13.23.Suppose everyuj,i ∈ [0, B]. With ℓ = O((1/ǫ2)(r3 log(rB/ǫ) + log(1/δ)))

random samples, with probability at least1 − δ, the empirical per-customer social welfare is

within±ǫ of the expected per-customer social welfare, uniformly overall price vectors in[0, B]r.

Proof. We will show that, for any distributionP and valueǫ > 0, there existN = 2O(r3 log(rB/ǫ))

functionsf1, . . . , fN such that, for every price vectorprice ∈ [0, B]r, the functiong(x) =

xargmaxi≤r xi−pricei hasmink≤N

∫

|fk − g|dP ≤ ǫ. This valueN is known as theuniform ǫ-

covering number. The result then follows from standard uniform convergencebounds (see e.g.,

[Haussler, 1992]).

The functionx 7→ maxi≤r xi − pricei is a hyperplane with slope1 in coordinatei and slope

0 in all other coordinates. So the subgraph (i.e., the set ofr + 1-dimensional points(x, y) for
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which maxi≤r xi − pricei ≥ y is a union ofr halfspaces inr + 1 dimensions. The space of

unions ofr halfspaces inr+ 1 dimensions has VC dimensionr(r+ 2), so this upper bounds the

pseudo-dimension of the space of functionsmaxi≤r xi− pricei, parametrized by the price vector

price. Therefore, the uniformǫ-covering number of this class is2O(r2 log(B/ǫ)).

For eachi ≤ r, the set of vectorsx ∈ [0, B]r such thati = argmaxk xk − pricek is an

intersection ofr halfspaces inr dimensions. Thus, the functionx 7→ priceargmaxi xi−pricei
is

contained in the family of linear combinations ofr disjoint intersections ofr halfspaces. The

VC dimension of an intersection ofr halfspaces inr dimensions isr(r + 1). So assuming the

prices are bounded in a range[0, B], the uniformǫ-covering number for linear combinations (with

weights in[0, B]) of r disjoint intersections ofr halfspaces is2O(r3 log(rB/ǫ)). To prove this, we

can take anǫ/(2rB) cover (of{0, 1}-valued functions) of intersections ofr halfspaces, which

has size(rB/ǫ)O(r2), and then take anǫ/(2r) grid in [0, B] and multiply each function in the

cover by each of these values to get a space of real-valued functions; there are(rB/ǫ)O(r2) total

functions in this cover, and for each term in the linear combination ofr disjoint intersections of

r halfspaces, at least one of these real-valued functions will be within ǫ/r of it. Thus, taking the

set of sums ofr functions from this cover forms anǫ-cover of the space of linear combinations

of r disjoint intersections ofr halfspaces, with size(rB/ǫ)O(r3).

Now note thatxargmaxi(xi−pricei) = maxi(xi−pricei)+priceargmaxi(xi−pricei)
. So the uniform

ǫ-covering number for the space of possible functionsxargmaxi(xi−pricei) is at most the produce

of the uniform(ǫ/2)-covering number for the space of functionsx 7→ maxi(xi − pricei) and

the uniform(ǫ/2)-covering number for the space of functionsx 7→ priceargmaxi(xi−pricei)
; by the

above, this produce is2O(r3 log(rB/ǫ)).

13.6 Properties ofβ-nice cost

Let cost(n) be aβ-nice cost function. We show a few properties of it.
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Claim 13.24.

cost(2n) ≥ cost(n)

(

1 +
1

2β

)

Proof. Let a = cost(n)/n be the average cost of the firstn items. Then the cost of the first2n

items is at leastan, and has an average cost of at leasta/2. The marginal cost of item2n is at

leasta/(2β). Therefore the cost of the itemsn+ 1 to 2n is at leastan/(2β).

We can get a better bound by a more refine analysis.

Claim 13.25. Letan = cost(n)/n be the average cost of the firstn items. Then,

an+1 ≥ an
n

n+ 1

(

1 +
1

β(n+ 1)

)

and

an ≥ a1
1

n

n
∏

t=1

(

1 +
1

β(t+ 1)

)

≥ e1/β
2 · a1n−1+(1/β)

Proof. The marginal cost of itemn+1 is at leastan/β. Therefore the cost of the first itemsn+1

is at leastnan + an/(β), which gives the first expression.

We get the expression ofan as a function ofa1 by repeatedly using the recursion. The

approximation follows from,

ln(an) ≥ ln(a1)− ln(n) +
n
∑

t=1

ln(1 +
1

β(n+ 1)
)

≥ ln(a1)− ln(n) +
n
∑

t=1

1

β(t+ 1)
− 1

(β(t+ 1))2

≥ ln(a1)− ln(n) +
1

β
ln(n)− 1

β2

where we used the identityx− x2 ≤ ln(1 + x).
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