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Active learning is a type of sequential design for supervised machine
learning, in which the learning algorithm sequentially requests the labels of
selected instances from a large pool of unlabeled data points. The vbjiscti
to produce a classifier of relatively low risk, as measured under tho8s1
ideally using fewer label requests than the number of random labeled data
points sufficient to achieve the same. This work investigates the potential
uses of surrogate loss functions in the context of active learningifisadly,
it presents an active learning algorithm based on an arbitrary classificatio
calibrated surrogate loss function, along with an analysis of the number of
label requests sufficient for the classifier returned by the algorithmhiewe
a given risk under the 0-1 loss. Interestingly, these results cannditamed
by simply optimizing the surrogate risk via active learning to an extent suf-
ficient to provide a guarantee on the 0-1 loss, as is common practice in the
analysis of surrogate losses for passive learning. Some of the réasuks
additional implications for the use of surrogate losses in passive learning

1. Introduction. In supervised machine learning, we are tasked with learning
a classifier whose probability of making a mistake (i.e., error rate) is small. The
study of when it is possible to learn an accurate classifier via a computationally
efficient algorithm, and how to go about doing so, is a subtle and difficuit top
owing largely to nonconvexity of the loss function: namely, thé loss. While
there is certainly an active literature on developing computationally efficietiit-me
ods that succeed at this task, even under various noise conditionsjit Sair
to say that at present, many of these advances have not yet reaehesiehof
robustness, efficiency, and simplicity required for most applications.dnrtéan
time, practitioners have turned to various heuristics in the design of pradeticat
ing methods, in attempts to circumvent these tough computational problems. One
of the most common such heuristics is the use of a cosuerogateloss function
in place of thed-1 loss in various optimizations performed by the learning method.
The convexity of the surrogate loss allows these optimizations to be perfaffired
ciently, so that the methods can be applied within a reasonable execution tane, ev
with only modest computational resources. Although classifiers arrivadthis
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2 HANNEKE AND YANG

way are not always guaranteed to be good classifiers when perfcenmmea-
sured under thé-1 loss, in practice this heuristic has often proven quite effective.

In light of this fact, most modern learning methods either explicitly make use of

a surrogate loss in the formulation of optimization problems (e.g., SVM), or im-
plicitly optimize a surrogate loss via iterative descent (e.g., AdaBoost). dhdee
choice of a surrogate loss is often as fundamental a part of the prfcggsroach-

ing a learning problem as the choice of hypothesis class or learning as.ifl
seems essential that we come to some understanding of how best to make use o
surrogate losses in the design of learning methods, so that in the favecabkerio

that this heuristic actually does work, we have methods taking full advanfage

In this work, we are primarily interested in how best to use surrogate lasses
the context ofactive learning which is a type of sequential design in which the
learning algorithm is presented with a large pool of unlabeled data points (i.e.,
only the covariates are observable), and can sequentially requesseovelihe
labels (response variables) of individual instances from the poolobfestive in
active learning is to produce a classifier of low error rate while accessémggaller
number of labels than would be required for a method based on randohladabe
data points (i.e.passive learningto achieve the same. We take as our starting
point that we have already committed to use a given surrogate loss, amstnietr
our attention to just those scenarios in which this heuristic actdakswork. We
are then interested in how best to make use of the surrogate loss towachtlod g
producing a classifier with relatively small error rate. To be clear, wad@n the
case where the minimizer of the surrogate risk also minimizes the error ratis, and
contained in our function class.

We construct an active learning strategy based on optimizing the empirieal su
rogate risk over increasingly focused subsets of the instance spateleave
bounds on the number of label requests the method requires to achievena gi
error rate. Interestingly, we find that the basic approach of optimizinguitegate
risk via active learning to a sufficient extent to guarantee small errogeaterally
does not lead to as strong of results. In fact, the method our results apgpito
cally does nobptimize the surrogate risk (even in the limit). The insight leading to
this algorithm is that, if we are truly only interested in achieving [bwloss, then
once we have identified thegn of the optimal function at a given point, we need
not optimize the value of the function at that point any further, and camfibrer
focus the label requests elsewhere. As a byproduct of this analysina this
insight has implications for the use of certain surrogate losses in pasaivénig
as well, though to a lesser extent.

Most of the mathematical tools used in this analysis are inspired by recently-
developed techniques for the study of active learnit®) 19, 25], in conjunction
with the results of Bartlett, Jordan, and McAuliffé][bounding the excess er-
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ror rate in terms of the excess surrogate risk, and the works of Koltah[rd
and Bartlett, Bousquet, and Mendelsafh ¢n localized Rademacher complexity
bounds.

1.1. Related Work. There are many previous works on the topic of surrogate
losses in the context of passive learning. Perhaps the most relevamt tesaolts
below are the work of Bartlett, Jordan, and McAulifi@ pnd the related work of
Zhang B8]. These develop a general theory for converting results on exis#ss r
under the surrogate loss into results on excess risk undérihess. Below, we
describe the conclusions of that work in detail, and we build on many of tsie ba
definitions and insights pioneered in these works.

Another related line of research, initiated by Audibert and TsybaRhvsfud-
ies “plug-in rules,” which make use of regression estimates obtained by optimiz
ing a surrogate loss, and are then rounded-td, +1} values to obtain classi-
fiers. They prove results under smoothness assumptions on the aghésisien
function, which (remarkably) are oftdsetterthan the known results for methods
that directly optimize thé®-1 loss. Under similar conditions, Minske2§] studies
an analogous active learning method, which again makes use of a sarlogs
and obtains improvements in label complexity compared to the passive learning
method of Audibert and Tsybako@]f again, the results for this method based on
a surrogate loss are actually better than those derived from existing dein-
ing methods designed to directly optimize the loss. The works of Audibert and
Tsybakov P] and Minsker R8] raise interesting questions about whether the gen-
eral analyses of methods that optimize thé loss remain tight under complexity
assumptions on the regression function, and potentially also about the adsig
optimal methods for classification when assumptions are phrased in terms of the
regression function.

In the present work, we focus our attention on scenarios where the nngioge
of using the surrogate loss is to ease the computational problems assodtated w
minimizing an empirical risk, so that our statistical results are typically strongest
when the surrogate loss is thel loss itself. Thus, in the specific scenarios studied
by Minsker 8], our results are generally not optimal; rather, the main strength
of our analysis lies in its generality. In this sense, our results are morelyclose
related to those of Bartlett, Jordan, and McAulifeg find Zhang B8] than to those
of Audibert and TsybakovZ] and Minsker R8]. That said, we note that several
important elements of the design and analysis of the active learning methed belo
are already present to some extent in the work of MinsR&}. [

There are several interesting works on active learning methods that aptmiz
general loss function. Beygelzimer, Dasgupta, and Langf@jrdrid Koltchinskii
[25] have both proposed active learning methods, and analyzed the nufaer o
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bel requests the methods make before achieving a given excess ritlafdoss
function. The former method is based on importance weighted sampling, while the
latter makes clear an interesting connection to local Rademacher complexites. O
natural idea for approaching the problem of active learning with a gatedoss is

to run one of these methods with the surrogate loss. The results of BarttdtinJo
and McAuliffe [6] allow us to determine a sufficiently small valgesuch that any
function with excess surrogate risk at modtas excess error rate at mesi hus,

by evaluating the established bounds on the number of label requestiestifior
these active learning methods to achieve excess surrogate, gk immediately
have a result on the number of label requests sufficient for them toveckieess
error rates. This is a common strategy to constructing and analyzing passive learn-
ing algorithms that make use of a surrogate loss. However, as we disglogg b
this strategy does not generally lead to the best behavior in active leaaridg
often will not be much better than simply using a related passive learning method
Instead, we propose a new method that typically does not optimize the atarog
risk, but makes use of it in a different way so as to achieve strongeltseghen
performance is measured under €hg loss.

2. Definitions. Let (X,Byx) be a measurable space, whe¥eis called the
instance spacefor convenience, we suppose this is a standard Borel space. Let
Y = {-1,+1}, and equip the spac& x ) with its producto-algebra:B =
By ®2Y. LetR = RU{—o0, 0o}, let * denote the set of all measurable functions
g: X — R, and letF C F*, whereF is called thefunction classThroughout, we
fix a distributionPxy over X x ), and we denote b§ the marginal distribution
of Pxy overX. In the analysis below, we make the usual simplifying assumption
that the events and functions in the definitions and proofs are indeed rablesu
In most cases, this holds under simple conditionsfoand Pxy [see e.g.34;
when this is not the case, we may turn to outer probabilities. However, weatill n
discuss these technical issues further.

For anyh € F*, and any distributiorP over X x ), denote theerror rate by
er(h; P) = P((x,y) : sign(h(z)) # y); when P = Pxy, we abbreviate this as
er(h) = er(h; Pxy). Also, letn(X; P) be aversion oP(Y = 1|X), for (X,Y) ~
P; when P = Pxy, abbreviate this ag(X) = n(X;Pxy). In particular, note
thater(h; P) is minimized at any: with sign(h(z)) = sign(n(z; P) —1/2) for all
z € X. In this work, we will also be interested in certain conditional distributions
and modifications of functions, specified as follows. For any measutalile X
with P(U) > 0, define the probability measufg,(-) = Pxy (-[UxY) = Pxy(-N
U xY)/PU): that is, Py, is the conditional distribution of X, Y) ~ Pxy given
that X € U. Also, for anyh,g € F*, define the spliced functiohy, ,(xz) =
h(z)1y(z) + g(z)Ly\y(x). Forasetd C F*, denoteHy g = {hy g : h € H}.
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For anyH C F*, define theregion of sign-disagreemefiIS(H) = {z € X :
Jh,g € H s.t.sign(h(x)) # sign(g(z))}, and theregion of value-disagreement
DISF(H) = {z € X : 3h,g € H s.t.h(x) # g(x)}, and denote bPIS(H) =
DIS(#H) x Y andDISF(H) = DISF(H) x Y. Additionally, we denote byH] =
{f € F* : Vo € X,infpey h(z) < f(x) < sup,ey h(z)} the minimal bracket
set containingH.

Our interest here is learning from data, so #t= {(X;,Y7), (X2,Y2),...}
denote a sequence of independ®ity -distributed random variables, referred to
as thelabeled datasequence, whilé X, X», ...} is referred to as thanlabeled
data sequence. Fom € N, we also denoteZ,,, = {(X1,Y1),...,(Xm,Ym)}-
Throughout, we will letd € (0,1/4) denote an arbitrary confidence parameter,
which will be referenced in the methods and theorem statements.

Theactive learningprotocol is defined as follows. An active learning algorithm
is initially permitted access to the sequeng X, ... of unlabeled data. It may
then select an index € N andrequestio observey;, ; after observing7;, , it may
select another indek € N, request to observg;,, and so on. After a number
of such label requests not exceeding some specified bugge¢ algorithm halts
and returns a functioh € F*. Formally, this protocol specifies a type of map-
ping that maps the random variabfeto a functionk, whereh is conditionally
independent ofZ given X, Xo,... and (i1, Y, ), (i2, Yi,), . . ., (in, i, ), Where
eachiy is conditionally independent & andiy 1, ...,%, given X;, X,,... and
(ilﬂ }/Zd)v R (ik*h Yik—1)'

2.1. Surrogate Loss Functions for ClassificationThroughout, we let : R —
[0, 0] denote an arbitrargurrogate loss functigrwe will primarily be interested
in functions/ that satisfy certain conditions discussed below. To simplify some
statements below, it will be convenient to suppese R = /¢(z) < oco. For any
g € F* and distributionP over X x ), let Ry(g; P) = E[¢(9(X)Y)], where
(X,Y) ~ P;inthe caseP = Pxy, abbreviat&,(g) = Re(g; Pxy). Also define
{ =1V sup,ey Suppecrmaxye(_1 +13 {(yh(z)); we will generally supposé <
oo. In practice, this is more often a constraintBrthan or¥; that is, we could have
¢ unbounded, but due to some normalization of the functioasF, ¢ is bounded
on the corresponding set of values.

Throughout this work, we will be interested in loss functidmghose point-wise
minimizer necessarily also optimizes thd loss. This property was nicely char-
acterized by Bartlett, Jordan, and McAuliffé] [as follows. For, € [0, 1], define
0*(110) = inf e (mo(2) + (1~ 170)€(~)), ande* (5j0) = inf . 2 1)<0(M04(2)
+(1 = no)l(—2)).

DEFINITION 1. The los¢ is classification-calibrated, Vn, € [0, 1] \ {1/2},
t* (no) > £*(mo)- o
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In our context, forX ~ P, ¢*(n(X)) represents the minimum value of the
conditional/-risk at X, so thatE[¢*(n(X))] = infrer+ Re(h), while £= (n(X))
represents the minimum conditionatisk at X, subject to having a sub-optimal
conditional error rate ak: i.e., sign(h(X)) # sign(n(X) — 1/2). Thus, being
classification-calibrated implies the minimizer of the conditiofiakk at X nec-
essarily has the same sign as the minimizer of the conditional error rate at
Since we are only interested here in usihgs a reasonable surrogate for thé
loss, throughout the work below we suppdss classification-calibrated.

Though not strictly necessary for our results below, it will be converimmus
to suppose that, for aftly € [0, 1], this infimum valug* (1)) is actuallyobtainedas
nol(2*(no)) + (1 — n9)¢(—2*(no)) for somez*(ny) € R (not necessarily unique).
For instance, this is the case for any nonincreasing right-contingjaurscontin-
uous and convex, which include most of the cases we are interested in using as
surrogate losses anyway. The proofs can be modified in a natural wapntte the
general case, simply substituting anwith conditional risk sufficiently close to
the minimum value. For any distributioR, denotef;(xz) = 2z*(n(z; P)) for all
x € X. In particular, note thaf}, obtainsR,(f5; P) = infse 7« Ry(g; P). When
P = Pxy, we abbreviate this ag* = f;xy. Furthermore, i is classification-
calibrated, themign(f5(z)) = sign(n(x; P) —1/2) for all z € X with n(z; P) #
1/2, and hencer(f5; P) = infcr+ er(h; P) as well.

For any distributionP over X x ), and anyh, g € F*, define thdoss distance

Dy(h, g; P) = \/E [(Z(h(X)Y) - z(g(X)Y))Q] ,where(X,Y) ~ P. Also define

theloss diameteof a classi C F* asD(H; P) = supy, 4ey De(h, g; P), and the
(-riske-minimal set ofi{ ast(e; ¢, P) = {h € H : Ry(h; P)—infgey Re(g; P) <
£}. WhenP = Pyy, we abbreviate these & (h, g) = Dy(h, g; Pxy ), De(H) =
Dy(H;Pxy), andH(s;¢) = H(e; 4, Pxy). Also, for anyh € F*, abbreviate
hy = hy ¢+, and for anyH C F*, definety = {hy : h € H}.

We additionally define related quantities for té loss, as follows. Define the
distanceAp(h, g) = P(x : sign(h(x)) # sign(g(x))) andradiusradius(#; P) =
suppey Ap(h, f5). Also define the=-minimal set ofH asH(e;01, P) = {h €
H : er(h; P) — infyeyer(g; P) < €}, and forr > 0, define ther-ball cen-
tered ath in H by By p(h,r) = {g € H : Ap(h,g9) < r}. WhenP = Pxy,
we abbreviate these &@S(h,g) = Ap,, (h,g), radius(H) = radius(H; Pxy),
H(eg;01) = H(es 01, Pxy ), andBy (h,r) = By py, (h,r); whenH = F, further
abbreviateB(h,r) = Bx(h,r).

We will be interested in transforming results concerning the excess sitierog
risk into results on the excess error rate. As such, we will make use ajltbeiing
abstract transformation.
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DEFINITION 2. For any distributionP over X’ x ), and anye € [0, 1], define
Ly(e; P) = sup{y > 0: F*(v; 4, P) € F*(g;01, P)} U {0}.
Also, for anyy € [0, 00), define the inverse
Ee(v; P)=inf{e >0:7<Ty(e;P)}.

WhenP = Pxy, abbreviatel'y(¢) = I'y(s; Pxy) and &y(y) = E¢(v; Pxy)-

By definition, for classification-calibratetiI', has the property that
(1) Vh e F*, Ve €[0,1], Ry(h) —Re(f*) <Tp(e) = er(h) —er(f*) <e.

In fact,I', is defined to be maximal with this property, in ttaatyI", for which (1)
is satisfied must havig;(¢) < T'y(e) for all e € [0, 1].

In our context, we will typically be interested in calculating lower bound$'pn
for any particular scenario of interest. Bartlett, Jordan, and McAuléfes{udied
various lower bounds of this type. Specifically, fore [—1, 1], defineqﬁg(g) =

o (154) — e+ (1), and lety, be the largest convex lower boundiafon [0, 1],

which is well-defined in this contexg]. Bartlett, Jordan, and McAuliffed] show

1y is continuous and nondecreasing @n1), and in fact thate — 1y (z) /x is
nondecreasing oft), oo). They also show every € F* hasyy(er(h) —er(f*)) <
Re(h) — Re(f*), so thaty, < TI'y, and they find this inequality can be tight for
a particular choice oPxy . They further study more subtle relationships between
excesst-risk and excess error rate holding for any classification-calibréateal
particular, following the same argument as in the proof of their Theorenme, o
can show that if is classification-calibrated, evetye F* satisfies

er(h) —er(f*)

A(h7f*)¢€< 2A(h f*)

> < Ry(h) — Re(f7).

The implication of this in our context is the following. Fix any nondecreasimg{fu
tion ¥, : [0, 1] — [0, c0) such that’e > 0,

2) We(e) < radius(F7 (g5 00))0 <2radiuS(-€7:*(5' m))> '

2A(h,f*)
U, (e); combined with the fact that — y(z)/x is nondecreasing oft), o), this

implies radius(F*(ex(h) — er(f*); o)) (s oy ) < Pele);

Any h € F*with Ry(h) — Ry(f*) < Wy(e) also hasA(h, f*)iy, (M) <
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this meansl(er(h) — er(f*)) < ¥,(e), and monotonicity oft, implieser(h) —
er(f*) < e. Altogether, this impliesl,(s) < T'y(e). In fact, though we do not
present the details here, with only minor modifications to the proofs belowy whe
f* € F,all of our results involving™,(¢) will also hold while replacind’;(¢) with

any nondecreasingg such thatve > 0,

3) W) (e) < radius(F(s;01))th (M dius(ef = 01))> :
which can sometimes lead to tighter results.

Some of our stronger results below will be stated for a restricted family aé$oss
originally explored by Bartlett, Jordan, and McAuliff6]{ namely, smooth losses
whose convexity is quantified by a polynomial. Specifically, this restrictionas-ch
acterized by the following condition.

CONDITION 3. F is convex, withvz € X,sup;.z|f(z)] < B for some
constantB € (0,c0), and there exists a pseudometidg : [ 5, B]?> — [0,d/]
for some constant, € (0, 00), and constantd.,, C; € (0,00) andr, € (0, o0
such thatvz,y € [-B, B],|¢(x) — £(y)| < Ldi(z,y) and the functions,(e)
= inf {10(z) + 30(y) — L(3z + Jy) 1 2,y € [-B, B], d(z,y) > £} U {0} sat-
isfiesVe € (0,1), d¢(e) > Cpe'™. o

In particular, note that ifF is convex, the functions i are uniformly bounded,
and/ is continuous, ConditioB is always satisfied (though possibly with= c0).

2.2. A Few Examples of Loss Functionddere we briefly mention a few loss
functions/ in common practical use, all of which are classification-calibrated.
These examples are taken directly from the work of Bartlett, Jordan, aAdiliffe
[6], which additionally discusses many other interesting examples of classificatio
calibrated loss functions and their correspondindunctions.

Example 1. The exponential losss specified ag(x) = e~ *. This loss func-

tion appears in many contexts in machine learning; for instance, the popaiar A
aBoost method can be viewed as an algorithm that greedily optimizes the expo-
nential loss 13]. Bartlett, Jordan, and McAuliffeq] show that under the expo-
nential lossyy(r) = 1 — /1 — 22, which is tightly approximated by? /2 for
smallz. They also show this loss satisfies the conditiong anCondition3 with
de(z,y) = |z —y|, L =eP, Cp = e B/8, andr, = 2.

Example 2. Thehinge lossspecified ag(x) = max {1 — x,0}, is another com-
mon surrogate loss in machine learning practice today. For instance, itdgruse
the objective of the Support Vector Machine (along with a regularizatiam)ter
[10Q]. Bartlett, Jordan, and McAuliffed] show that for the hinge lossy (z) = |z|.
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The hinge loss is Lipschitz continuous, with Lipschitz constamtowever, for the
remaining conditions ot in Condition3, anyx,y < 1 have/(x) + 5((y) =
((3z + 3y), so thatsy(¢) = 0; hencey, = o is required.

Example 3. Thequadratic losgor squared loss), specified §g) = (1 — z)?, is
often used in so-calleplug-in classifiers 2], which approach the problem of learn-
ing a classifier by estimating the regression functi&itr | X = z] = 2n(x) — 1,
and then taking the sign of this estimator to get a binary classifier. The digadra
loss has the convenient property that for any distribuffoaver X' x Y, f5(-) =
2n(-; P) — 1, so that it is straightforward to describe the set of distributiBreat-
isfying the assumptiorf;, € F; for this reason, we will make use of the quadratic
loss in constructing many of our illustrative examples below. Bartlett, Joedah,
McAuliffe [6] show that for the quadratic losgy(z) = 22. They also show the
quadratic loss satisfies the conditions om Condition3, with L = 2(B + 1),

Cy = 1/4, andr, = 2. In fact, they study the general family of lossés) =

|1 — z|P, for p € (1, 00), and show thaty,(z) andr, exhibit a range of behaviors
varying withp.

Example 4. Thetruncated quadratic losis specified ag(z) = (max{1—z,0}).

Bartlett, Jordan, and McAuliffed] show that in this casejy,(z) = x2. They also
show that, under the pseudomet#i€a, b) = | min{a, 1} — min{b, 1}|, the trun-
cated quadratic loss satisfies the conditiong imnCondition3, with L = 2(B+1),

Cy = 1/4, andr, = 2.

2.3. Empirical ¢-Risk Minimization. For anym € N, g : X — R, andS =
{(x1,y1)s -y (Tm,ym)} € (X x Y)™, define theempirical -risk asRy(g; S) =
m~L Y U(g(x;)y;). At times it will be convenient to keep track of the indices
for a subsequence of, and for this reason we also overload the notation, so
that for any@ = {(i1,v1)s---, (im,ym)} € (N x I)™, we defineS[Q] =
{(Xi, 1),y (Xi,um) andRy(g; Q) = Ru(g; S[Q]). For completeness, we
also generally defin®,(g; ) = 0. The method of empirical-risk minimization,
here denoted b¥.RM,(#, Z,,,), is characterized by the property that it returns
h = argming, .4, Re(h; Z,,). This is a well-studied and classical passive learning
method, presently in popular use in applications, and as such it will serveras
baseline for passive learning methods.

2.4. Localized Sample ComplexitiesThe derivation of localized excess risk
bounds can essentially be motivated as follows. Suppose we are intendsbeitid-
ing the excesg-risk of ERM,(H, Z,,,). Further suppose we have a coarse guaran-
tee Ug(H, m) on the excesg-risk of the i returned byERM, (7, Z,,): that is,

Re(h) — Re(f*) < Uy(H,m). In some sense, this guarantee identifies &&et
‘H of functions that a priori have thgotentialto be returned byERM,(#, Z.,,)
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(namely,H' = H(Uy(H,m); ¢)), while those inH \ H' do not. With this informa-
tion in hand, we can think of{’ as a kind ofeffectivefunction class, and we can
then think ofERM,(H, Z,,) as equivalent tt RM,(#', Z,,,). We may then repeat
this same reasoning f&RM, (', Z,,), calculatingU,(H', m) to determine a set
H" = H (U(H',m); ) € H' of potential return values fahis empirical mini-
mizer, so thatkRM,(H’, Z,,) = ERMy(H", Z,,), and so on. This repeats until
we identify a fixed-point seH(>) of functions such thatt (> (U, (#(>), m); £)

= (), so that no further reduction is possible. Following this chain of reasoning
back to the beginning, we find thBRM,(H, Z,,) = ERM,(#(>), Z,,), so that
the function’ returned byERM,(H, Z,,) has excesérisk at most/,(H (), m),
which may be significantly smaller thd# (7, m), depending on how refined the
original Uy(#, m) bound was.

To formalize this fixed-point argument f&@RM,(#, Z,,), Koltchinskii [23]
makes use of the following quantities to define the coarse b&u#, m) [see
also7, 15]. For anyH C [F], m € N, s € [1,00), and any distribution” on
X x Y, letting@Q ~ P™, define

¢e(H;m, P) =E

sup (Re(h; P) — Ry(g; P)) — (Re(h; Q) — Re(y; Q))] :
h,geH

_ _ — S KgZS
Ue(H;P,m, S) :Kl(ﬁe(H;m,P)+K2D4(H;P)UE+ ,

m

g - 12
Ul(H; Pym,s) = K (d)g(’H;m, P) +Dy(H; P) % + 2) ,

whereK, K», K3, andK are appropriately chosen constants.

We will be interested in having access to these quantities in the context of our
algorithms; however, sinc®xy is not directly accessible to the algorithm, we
will need to approximate these by data-dependent estimators. Toward this en
we define the following quantities, again taken from the work of Koltchinskii
[23. Fore > 0,letZ. = {j € Z : 27 > ¢}. ForanyH C [F],q € N,
andS = {(z1,v1),...,(xq,yq)} € (X x {=1,+1})9, let H(e;¢,S) = {h €
H : Re(h; S) — infgep Re(g; S) < e}; then for any sequence = {&,}7_, <
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{=1,+1}4, and anys € [1, o), define

6u(34:5,%) = swp =3 6 (@) — Hotau)
A |

q

Di(3:5)? = sp ; > (Uhlenue) ~ ol

: 2 ° 752/,
Ue(H: 5., 5) = 1244(H; 5. %) +34Dg(?-[;5)\/§ + 22,

For completeness, defingy(H;0,0) = Dy(H;0) = 0, and Uy(H;0,0,s) =
7520s.

The above quantities (with appropriate choicedsaf K5, K3, andK) can be
formally related to each other and to the excésisk of functions in# via the
following general result; this variant is due to Koltchinsig].

LEMMA 4. ForanyH C [F], s € [1,00), distribution P over X x ), and
anym € N,if @ ~ P and= = {{,...,&n} ~ Uniform({—1,+1})™ are
independent, anfl* € H hasR,(h*; P) = inf,cy Re(h; P), then with probability
at leastl — 6e*, the following claims hold.

Vh € H,Re(h; P) — Re(h™; P) < Ry(h; Q) — Re(h*; Q) + Up(H; Py, s),
Vh € H,Re(h; Q) — inf Re(g; Q) < Re(h; P) = Re(h"s P) + Ur(H; Pym, s),
g

Uy(H; Pym, s) < Up(H; Q, B, 5) < Up(H; Pym, s).

<

We typically expectthé/, U/, andU quantities to be roughly within constant fac-
tors of each other. Following Koltchinski2B] and Giré and Koltchinskii L5], we
can use this result to derive localized bounds on the number of sampliegestif
for ERM,(H, Z,,,) to achieve a given excegsrisk. Specifically, forH C [F],
distribution P over X x ), valuesy,v1,72 > 0, s € [1,00), and any function
s5:(0,00)? — [1,0), define the following quantities.

M¢(v1,72; H, P, s) = min {m € N : Uy(H(y2; £, P); P,m,s) <},

M (v; H, P,s) = sup My(v'/2,7"; 1, P,s(v,v)),
v >y

My(v1,v2; H, P, s) = min {m e N: UZ(H(VQ;E, P); P,m,s) < 'yl} ,

M(7v; H, P,s) = sup Mo(v' /2,7s 1, P,s(v, 7).
v >y
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These quantities are well-defined far, 2, v > 0 whenlim,,,_,~ ¢¢(H;m, P) =
0. In other cases, for completeness, we define them towbe

In particular, the quantityM,(v; F, Pxy,s) is used in Theorent below to
quantify the performance dERM,(F, Z,,). The primary practical challenge in
calculatingM,(+; H, P, s) is handling thep,(#(v'; ¢, P); m, P) quantity. In the
literature, the typical (only?) way such calculations are approachedfissbyle-
riving a bound onyp,(#H'; m, P) for everyH' C H in terms of some natural mea-
sure of complexity for the full clasK (e.g., entropy numbers) and some very basic
measure of complexity fo}": most oftenD,(?’; P) and sometimes a seminorm
of an envelope function fo}'. After this, one then proceeds to bound these basic
measures of complexity for the specific subsk{s/’; ¢, P), as a function ofy’.
Composing these two results is then sufficient to bapui@((+'; ¢, P); m, P). For
instance, bounds based on an entropy integral tend to follow this strateigpy.
approach effectively decomposes the problem of calculating the complafity
H(+'; ¢, P) into the problem of calculating the complexity &f and the problem
of calculating some much more basic propertie$(¢f’; ¢, P). See , 15, 23, 35],
or Sectiorb below, for several explicit examples of this technique.

Another technique often (though not always) used in conjunction withtibeea
strategy when deriving explicit rates of convergence is to rBlg#i(+'; ¢, P); P)
to Dy(F*(v'; 4, P); P) or Dy([H](7'; ¢, P); P). This relaxation can sometimes be
a source of slack; however, in many interesting cases, such as faindeissed
[e.g., 6], or even certain noise conditions [e.g84, 33|, this relaxed quantity can
still lead to nearly tight bounds.

For our purposes, it will be convenient to make these common techniques ex
plicit in the results. In later sections, this will make the benefits of our prapose
methods more explicit, while still allowing us to state results in a form abstract
enough to capture the variety of specific complexity measures most oftdnruse
conjunction with the above approach. Toward this end, we have the fotjodéft
inition.

DEFINITION 5. For every distributionP over X’ x ), let ng(o,H;m,P) be
a quantity defined for every € [0,00], H C [F], andm € N, such that the
following conditions are satisfied whefiy, € .

fo<o <o ,HCH C[Fl,UCX, andm' <m,
(4) theng, (o, Hu,pz3m, P) < Ge(o’, H;m!, P).
(5) Vo > DE(H7P)7¢€(Ham7 P) < Q;)Z(O-vH;mv P)

<

For instance, most bounds based on entropy integrals can be made jotbestisf
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See Sectiob.3for explicit examples of quantitie?ﬁe from the literature that satisfy
this definition. Given a functior, of this type, we define the following quantity
form e N, s € [1,00), ¢ € [0,00], H C [F], and a distributiorP overX x ).

(}g(IH,C;P,’I?’L, S)

= & (SuDUHIG . P ). M, P) + D[ €. PPy 2+ )
Note that whenfy € H, sinceD,([H](v; ¢, P); P) > Dy(H(v; ¢, P); P), Defini-
ti0n5imp|ies¢g(7-l(7;€, P),m,P) < gzg(DZ([ ](’77€ P)7 ),H(’Y,E,P);P,m),
and furthermoré{(v; £, P) C H so thatpy(D,([H](v; £, P); P), H(v; £, P); P,m)
< ¢e(De([H](v; £, P); P), H; P,m). Thus,

6) Un(H(y;l, P); Pym,s) < Ug(H(v: ¢, P),v; Pym,s) < U(H,~; Pym, s).

Furthermore, wherf;, € %, for any measurabled C ¢’ C X, anyy’ > v > 0,
and anyH’ C [F] with H C H/,

(7) ﬁe(Hu,f;,’% Pa m, S) < UOYK(HZ,/{’JI*,’V/;P: m, 5)-

Note that the fact that we udgy ([#](~; ¢, P); P) instead ofD,(#(v; ¢, P); P) in
the definition ofU; is crucial for these inequalities to hold; specifically, it is not
necessarily true thad,(Hy 5 (v; ¢, P); P) < De(Hur g3 (73 ¢4, P); P), but it is
always the case thay, s3] (v €, P) € [Hur 13](v: ¢, P) when f5 € [H], so that
De([Hut,p3 (v 4, P); P) < De([Hur s )(v: £, P); P).

Finally, for # C [F], distribution P over X x Y, valuesy,~i,v2 > 0, s €
[1,00), and any functios : (0,00)? — [1, ), define

Mg('yl,'yg;H,P, $) = min {m €eN: f]g(H,'yg;P,m,s) < 'yl},

My(y; H, P,s) = sup My(v' /2,7 H, P,s5(7,7")).
v >y

For completeness, defind;(v1,v2; H, P, s) = co whenUy(H, v2; P,m, s) > 71
for everym € N.

It will often be convenient to isolate the termslih when inverting for a suffi-
cientm, thus arriving at an upper bound ofy. Specifically, define

M(('Yla'YQ;,H,P, 8) = min {m eN: Dg([?’[](’y%& P); P)\/;"i‘ £s < 71}

m

Mg(’yl,”yg;?’-[,P) = min {m eN: <£g (De([H](~y2; ¢, P); P), H; P,m) < fyl} )
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This way, foré = 1/(2K), we have
(8) M(Z(’Yla Y25 Ha P7 S) S max {Mé(é’hv Y25 Ha P)7 Mf(é’yh Y25 Ha P7 S)} .

Also note that we clearly have

- 4D 0, P); 0, P)? 20
9) Mz(’Yl,WQ;?{,P,S)SS-max{ Z([H](PYQ;Q’ ); 4 )7%},
1

so that, in the task of boundirg,, we can simply focus on boundind;.

We will express our main abstract results below in terms of the incremental
valuesM,(y1,v2; H, Pxy, s); the quantityM,(v; X, Pxy, s) will also be useful
in deriving analogous results falRM,. When f7, € H, (6) implies

(lo) M@(Y;H,P,ﬁ) < M@(’ﬁ%,P,ﬁ) < M@(’Y§H,P,5)~

3. Methods Based on Optimizing the Surrogate Risk. Perhaps the simplest
way to make use of a surrogate loss function is to try to optifiZé) overh € F,
until identifying h € F with Ry(h) — Re(f*) < T'¢(e), at which point we are
guaranteedr(h) — er(f*) < e. In this section, we briefly discuss some known
results for this basic idea, along with a comment on the potential drawbatis of
approach for active learning.

3.1. Passive Learning: Empirical Risk MinimizationIn the context of passive
learning, the method aémpirical ¢-risk minimizationis one of the most-studied
methods for optimizing},(h) overh € F. Based on Lemmé and the above def-
initions, one can derive a bound on the number of labeled data paistsficient
for ERM(F, Z,,) to achieve a given excess error rate. Specifically, the following
theorem is due to Koltchinskii2B] (slightly modified here, following Gia and
Koltchinskii [15], to allow for generab functions). It will serve as our baseline for
comparison in the applications below.

THEOREMG6. If f* € Fands : (0,00)? — [1,00) is nonincreasing in its first
argument, then for anyn > M,(Ty(¢); F, Pxy,s), on an eventt,, (T'y(¢)) of
probability at leastl — 3, 6e*(e(=):2") 'ERM,(F, Z,,) produces a func-

l €

tion i such thater(h) — er(f*) < e. o

3.2. Negative Results for Active LearningAs mentioned, there are several ac-
tive learning methods designed to optimize a general loss fund@ia2b]. How-
ever, it turns out that for many interesting loss functions, the number eifdab
required for active learning to achieve a given excess surrogateaisk is not
significantly smaller than that sufficient for passive learningciRyM,.
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Specifically, consider a problem witki = {z¢,z1}, letz € (0,1/2) be a con-
stant, and foe € (0, z), let P({z1}) = ¢/(22), P{zo}) = 1 — P({x:1}), and
supposeF and/ are such that for(z1) = 1/2 + z and anyn(z¢) € [4/6,5/6],
we havef* € F. For this problem, any function with sign(h(z1)) # +1
haser(h) — er(f*) > e, so thatly(e) < (£/(22))(¢* (n(z1)) — €*(n(z1)));
when/ is classification-calibrated and < oo, this is ce, for some/-dependent
¢ € (0,00). Any functionh with Ry(h) — Re(f*) < ce for this problem must have
Re(7; Pragy) — Re(f*5 Pragy) < cg/P({wo}) = O(e). Existing results of Han-
neke and Yangd1] (with a slight modification to rescale foy(zy) € [4/6,5/6])
imply that, for many classification-calibrated losgeshe minimax optimal num-
ber of labels sufficient for an active learning algorithm to achieve thi3(ils/<).
Hanneke and Yang2fl] specifically show this for losse&that are strictly posi-
tive, decreasing, strictly convex, and twice differentiable with continsmeond
derivative; however, that result can easily be extended to a widetyarfiether
classification-calibrated losses, such as the quadratic loss, which sla¢isé/con-
ditions in a neighborhood df. It is also known §] (see also below) that for many
such losses (specifically, those satisfying CondiBonith », = 2), ©(1/¢) ran-
dom labeled samples are sufficient 8RM, to achieve this same guarantee, so
that results that only bound the surrogate risk of the function produged hctive
learning method in this scenario can be at most a constant factor smalleradisan th
provable for passive learning methods.

In the next section, we provide an active learning algorithm and a Jearaak
ysis of its performance which, in the special case described abovegees ex-
cess error rate less tharwith high probability, using a number of label requests
O(log(1/¢e)loglog(1/¢)). The implication is that, to identify the improvements
achievable by active learning with a surrogate loss, it is not sufficient telyne
analyze the surrogate risk of the function produced by a given actveitey algo-
rithm. Indeed, since we are not particularly interested in the surrogatiesedk we
may even consider active learning algorithms that do not actually optiRyi¢e)
overh € F (even in the limit).

4. Alternative Use of the Surrogate Loss. Given that we are interested in
only insofar as it helps us to optimize the error rate with computational effigienc
we should ask whether there is a method that sometimes makes more effegtive us
of £ in terms of optimizing the error rate, while maintaining essentially the same
computational advantages. The following method is essentially a relaxatioa of th
methods of Koltchinskii25] and Hanneked0]. Similar results should also hold for
analogous relaxations of the related methods of Balcan, Beygelzimeraagddrd
[3], Dasgupta, Hsu, and Monteleorii]], Balcan, Beygelzimer, and Langford][
and Beygelzimer, Dasgupta, and Langfosy [
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Algorithm 1.:
Input: surrogate Ipsé unlabeled sample budget labeled sample budget
Output: classifieh

0.V F,Qe0m+—0,t« 0k« 1,m < 0,4 /¢
1. Whilem < wandt < n
2. m+<m+1
If X,, € DIS(V)
Request labél,,, and letQ < Q U {(m,Y,,)}, t + t + 1
If logy(m — my,) € N andTy(V; Q,m,k)M < /2

m—my —

Vi {heV iR Q) ~ infyev Re(g:Q) < Tu(V:Qm. )}
Q+ 0, k+k+1

3

4

5

6. Aer e Te(ViQum k) myyy - m
7

8 ~

9. Returnh = argming, ¢y, Re(h; Q)

In practice, the set’ can be maintained implicitly, simply by keeping track of
the constraints (Step 7) that define it; then the condition in Step 3 can beachiegk
solving two constraint satisfaction problems (one for each sign), anchidiés ftan
be found as the solution of a constrained optimization problem. The qudiiity
Algorithm 1 can be defined in one of several possible ways. In our xtyrmie con-
sider the following definition. Le{¢} }xen denote independent Rademacher ran-
dom variables (i.e., uniform if—1, +1}), also independent frorg; these should
be considered internal random bits used by the algorithm, which is therafor
randomized algorithm. For any € N U {0} and@ = {(i1,v1),...,(iq,¥q)} €
(N x {1,411, let S[Q] = {(Xi,.91). .. (Xi,y9)} EIQ) = {& }1_,. For

€ [1,00), define

Us(H; Q, 5) = Ue(H; S[QL E[Q), 5)-
Then we can define the quantify in the method above as
(11) Tf(HaQ)m7 k) = UZ(H7Q7§(§/kam_mk)))

for somes : (0,00) x N — [1,00). This definition has the appealing property
that it allows us to interpret the update in Step 7 in two complementary ways: as
comparing the empirical risks of functions ¥ under the conditional distribution
given the region of disagreemeRty;s(y-), and as comparing the empirical risks of
the functions inlp (1) under the original distributiofyy .

For convenience, we will also suppose the functian (11) satisfiesyy > 0
andm € N,

(12) 5(vy,m) = §(2M0801 ),
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so that we can effectively roungdto a power oR.
We have the following theorem, which represents our main abstract rebalt. T
proof is included in AppendiA.

THEOREM7. For eachj > —[logy ()], lets;(-) = §(277,-), for 5 satisfying
(12), let Fj = F(€4(2' ) 01) prs(r(e 21-3):00))» Uy = DIS(F;), and letu; € N
satisfylogy(u;) € N and
(13) uj = Me(27972, 2179, Fj, Py, ().

Supposg* € F. Foranye € (0,1), ands € [1, 00), if

[logs(2/Te(e)) ) [loga(2/T'e(¢))]
u > Z uj and n>s+2e Z PU;)uj,
7=—log,(0)] j=—[log2(0)]

then, with arguments, », andn, Algorithm 1 uses at most unlabeled samples
and makes at most label requests, and with probability at least

[loga(2/Te(e))] loga (u;)

1—275— Z Z 6% ()

j=—[logy(6)] =1
returns a functiorh, with er(h) — er(f*) < e. o

The number of label requests indicated by Theoieoan often (though not
always) be significantly smaller than the number of random labeled data points
sufficient forERM, to achieve the same, as indicated by Theo6eifhis is typi-
cally the case whe®(l{;) — 0 asj — oo. When this is the case, the number of
labels requested by the algorithm is sublinear in the number of unlabeled sample
it processes; below, we will derive more explicit results for certain tygdanc-
tion classesF, by characterizing the rate at whig(l{;) vanishes in terms of a
complexity measure known as the disagreement coefficient.

For the purpose of calculating the valukk in Theorem?7, it is sometimes
convenient to use the alternative interpretation of Algorithm 1, in terms of lsagnp
@ from the conditional distributiorPp;5(y. Specifically, the following lemma
allows us to replace calculations in terms Bf and Pxy with calculations in
terms of F(€¢(2'77); 1) andPpyg ). Its proof is included in AppendiR

LEMMA 8. Letd, be any function satisfying Definitidn Let P be any dis-
tribution over X’ x ). For any measurablé/ C X x ) with P(U{) > 0, define
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Py(-) = P(-[U4). Also, for anyr > 0, H C [F], andm € N, if P (DISF(H)) > 0,
define

(14) ¢)(a,H;m, P) =
l 1
JH; [ (1/2>P<U>mw,Pu> +—taoy/— |,

m

g

JPU)

and otherwise definé@(a, H;m, P) = 0. Then the functiodﬁ} also satisfies Defi-
nition 5. o

32 inf  P(U)dy (
U=U"xY:
U/ DDISF(H)

Plugging thichb’e function into Theorem7 immediately yields the following
corollary, the proof of which is included in Appendix

COROLLARY 9. For eachj > —Jlog,(¢)], let F;, U;, ands; be as in Theo-
rem7, and if P(U;) > 0, letu; € N satisfylog,(u;) € N and

9—j—8 9l—j
PU;) PU;)
If P(U;) = 0, letu; € N satisfylog,(u;) € Nandu; > K0s;(u;)2/+2. Suppose
f* e F.Foranye € (0,1) ands € [1,00), if

(15) uj = 277(2/{]')_11\0/Ig ( ;E,Pz,{j,sj(uj)> .

[logo (2/T¢(e))] [logo(2/T¢(e))]
u > Z u;j and n> s+ 2e Z P(Uj)uj,
j=—[log,(0)] j=—[logy(0)]

then, with argumentg, v, andn, Algorithm 1 uses at most unlabeled samples
and makes at most label requests, and with probability at least

[loga(2/Te(e))] loga (u;)

1-27— Y S e @),

j=—[logy ()] =1

returns a functiorh, with er(h) — er(f*) < e. o

Algorithm 1 can be modified in a variety of interesting ways, leading to related
methods that can be analyzed analogously. One simple modification is to use a
more involved bound to define the quantify. For instance, fof) as above, and a
functionsy, : (0,00) x N — [1, 00), one could define

Ty(H: Qum, k) = (3/2)¢ Linf {)\ >0:V) € Zy,

Ue (H (3¢ 727 14,51Q1); Q.81 (3¢ "2 ,m — my)) < 2j_4q_1},



SURROGATE LOSSES 19

for which one can also prove a result similar to Lem#in@ee15, 23]. This def-
inition shares the convenient dual-interpretations property mentionee abmut
Ug(?‘l; Q, (9%, m—my)); furthermore, the results above for Algorithm 1 also hold
under this definition (for appropriatg functions), with only minor modifications
to constants and event probabilities.

The update trigger in Step 5 can be modified in several ways, leading tcsitatere
ing related methods. One simple change would be replacing itledtfim) € N,
as in the methods of Hannek2(], which simplifies the algorithm to some ex-
tent. In most applications of interest, this still yields a result similar to Theo-
rem 7, since we might expect the valdd, (2772, 2'7: F;, Pxy, 5,(u;)) to be
at least twice as large ad,(277~1,2279; F; 1, Pxy,s;_1(u;_1)) anyway. An-
other interesting possibility is to replace the last condition in Step 5 with a check
for T,(V: Q,m, k)% < I'y(27%). Of course, the valu&,(27%) is typically
not directly available to us, but we could substitute a distribution-indepénden
lower bound onl',(27%), for instance based on thg function of Bartlett, Jor-
dan, and McAuliffe f]; in the active learning context, we could potentially use
unlabeled samples to estimatePadependent lower bound dry(2*), or even
diam(V)v,(27% /2diam(V')), based onJ), wherediam (V) = supy, gey A(h, 9)-

5. Applications. In this section, we apply the abstract results from above to a
few commonly-studied scenarios: namely, VC subgraph classes angyento-
ditions, with some additional mention of VC major classes and VC hull classes.
In the interest of making the results more concise and explicit, we exprass the
in terms of well-known conditions relating distances to excess risks. We &lso e
press them in terms of a lower bound By(e) of the type in R), with convenient
properties that allow for closed-form expression of the results. To siyrthkéf pre-
sentation, we often omit numerical constant factors in the inequalities beholw, a
for this we use the common notatigiiz) < ¢g(z) to mean thaff (z) < cg(x) for
some implicit universal constante (0, co).

5.1. Diameter Conditions. To begin, we first state some general characteriza-
tions relating distances to excess risks; these characterizations will maisseit e
to express our results more concretely below, and make for a more stoavggutdl
comparison between results for the above methods. The following condiitiam,
duced by Mammen and Tsybakad¥7] and Tsybakov 33], is a well-known noise
condition, about which there is now an extensive literature [6,d.9, 20, 23].

CONDITION 10. For somes € [1,00) anda € [0, 1], for everyg € F*,

A(g, [*) < afer(g) —er(f7))".
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Condition10 can be equivalently expressed in terms of certain noise conditions
[6, 27, 33]. Specifically, satisfying Conditiod0 with some« < 1 is equivalent to
the existence of som€ € [1, o) such that, for alk > 0,

7) (.’E : |77($) - ]./2| S E) S a/EO‘/(lfoé)7

which is often referred to aslaw noisecondition. Additionally, satisfying Condi-
tion 10with « = 1 is equivalent to having some € [1, oo) such that

P (x:|n(z)—1/2] < 1/d") =0,

often referred to as bounded noiseondition.

For simplicity, we formulate our results in terms@o&anda from Condition10.
However, for the abstract results in this section, the results remain valet timel
weaker condition that replaces* by F, and adds the condition thgt € F. In
fact, the specific results in this section also remain valid using this weakeitioond
while additionally using 3) in place of @), as remarked above.

An analogous condition can be defined for the surrogate loss functdioj-a
lows. Similar notions have been explored by Bartlett, Jordan, and McAUi6ffe
and Koltchinskii R3].

CoNDITION 11. For someb € [1,00) and§ € [0, 1], for everyg € [F],
Dy (g, £%; P)* < b(Re(g; P) = Re(f% P))° .

<

Note that these conditions aaivayssatisfied fosomevalues ofa, b, «, 3, since
a = [ = 0 trivially satisfies the conditions. However, in more benign scenarios,
values ofa and g strictly greater thar®) can be satisfied. Furthermore, for some
loss functions/, Condition11 can even be satisfiaghiversally in the sense that
a value of 3 > 0 is satisfied forall distributions. In particular, Bartlett, Jordan,
and McAuliffe [6] show that this is the case under Conditi®nas stated in the
following lemma [sees, for the proof].

LEMMA 12. Suppose ConditioB is satisfied. Lef3 = min{1, %} andb =
(2C})~PL?, whereC) = C, for r, > 2, andC} = C,d,~* otherwise. Theevery
distribution P over X’ x ) with f} € [F] satisfies Conditiorl1 with these values
of b andg. o

Under Conditionl0, it is particularly straightforward to obtain bounds By(¢)
based on a functio,(¢) satisfying @). For instance, since — xzy(1/z) is
nonincreasing ofi0, o) [6], the function

(16) () = asy (17 (2a)
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satisfiesl,(e) < I'y(e) [6]. Furthermore, for classification-calibratéd¥, in (16)
is strictly increasing, nonnegative, and continuougo] [6], and haslt,(0) = 0;
thus, the invers@; ' (v), defined for ally > 0 by

(17) U, (y) =inf{e > 0: 7 < Ty(e)} U {1},

is strictly increasing, nonnegative, and continuous@®@n,(1)). Furthermore, one
can easily show — ¥, ' (z)/x is nonincreasing o0, o). Also note that/y >
0,&(y) < U ().

5.2. The Disagreement Coefficientln order to more concisely state our re-
sults, it will be convenient to bourf@(DIS(H)) by a linear function ofadius(H),
for radius(#) in a given range. This type of relaxation has been used extensively
in the active learning literaturé] 8, 11, 14, 17-20, 25, 26, 32, 37], and the coef-
ficient in the linear function is typically referred to as tiisagreement coefficient
Specifically, the following definition is due to HanneKier[ 19]; related quantities
have been explored by Alexanddj and Gire and Koltchinskii L5].

DEFINITION 13. For anyry > 0, define thedisagreement coefficierdf a
functionh : X — R with respect toF underP as

01(r0) — sup PPISB(.1)))

r>70 r

V1.

If f* € F, define the disagreement coefficient of the classs 0(rg) = 07+ (ro).
<

The value off(¢) has been studied and bounded for various function classes
F under various conditions oR. In many cases of interest(¢) is known to be
bounded by a finite constar§,[14, 17, 19, 26], while in other cased)(¢) may have
an interesting dependence ofi5, 32, 37]. The reader is referred to the works of
Hanneke 19, 20] for detailed discussions on the disagreement coefficient.

5.3. Specification ofy;. Next, we recall a few well-known bounds on the
function, which leads to a more concrete instance of a fun@i@csatisfying Defi-
nition 5. Below, we letG* denote the set of measurable functignst x ) — R.
Also, forG C G*, letF(G) = sup,c¢ |g| denote the minimagnvelopdunction for
g, and forg € G* let ||g||% = [ g°dP denote the squarekh(P) seminorm ofy;
we will generally assumg(G) is measurable in the discussion below.

Uniform Entropy The first bound is based on the work of van der Vaart and Well-
ner [34]; related bounds have been studied by &and Koltchinskii 15], Giné,
Koltchinskii, and Wellner 16], van der Vaart and WellneBp|, and others. For a
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distributionP overX x ), asetg C G*, ande > 0, let (¢, G, Ly(P)) denote the
size of a minimak-cover ofG (that is, the minimum number of balls of radius at
moste sufficient to covelG), where distances are measured in terms offthe’)
pseudo-metric(f, g) — || f — g||p. Forec > 0 andF € G*, define the function

10.0.8) =sup [ /14N E[Flg,6. Lo @)
Q Jo

where( ranges over all finitely discrete probability measures.
Fix any distributionP” over X x Y and anyH C [F] with f € H, and let
Gn = {(z,y) = L(h(x)y) : h € H},
(18) andGy,p = {(z,y) = L(h(z)y) — ((fp(x)y) : h € H}.
Then, sinceJ (o, Gy, F) = J(o,Gy p, F), it follows from Theorem 2.1 of van der

Vaart and Wellner34] (and a triangle inequality) that for some universal constant
€ [1,00), foranym € N, F > F(Gy p), ando > Dy(H; P),

J 2 7gHaF ||F”PZ
CJ<”,9H,F> FP( L, (- F) )

BE Jm o?m

Based on19), itis straightforward to define a function that satisfies Definitio.
Specifically, define

20) 6" (0, H;m, P) =

\ _
il’lf CJ <7g'H7F> HF”P ( + <”F”P > )

F>F(Grp) Azo  \|[F|[p Jm m

for casin (19). By (19), <f>§1) satisfies §). Also note thatn — gf)él)(o: H;m, P)is
nonincreasing, while: — &gl)(a,H; m, P) is nondecreasing. Furthermofé, —
N (e,Gu, L2(Q)) is nondecreasing for al), so thatH — J(o, Gy, F) is nonde-
creasing as well; sincel — F(Gy p) is also nondecreasing, we see tiat—

g;)él)(a,’H;m,P) is nondecreasing. Similarly, far C X, N (e, Gx,, - ,L2(Q))
I p
< N, Gy, Lo(Q)) for all Q, so thatJ(o, Gy, 5. F) < J(0,Gy, F); because
p

F(g’;.[u’f;fp) < F(Gu,p), we haveq?,(gl)(a, HuJ}g;m,P) < dD)y)(o,’H;m,P) as

well. Thus, to satisfy Definitio, it suffices to takeb, = ¢
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Bracketing EntropyOur second bound is a classic result in empirical process the-
ory. For functionsy; < g9, abracket[g, g2] is the set of functiong € G* with

g1 < g < g2; [91,92] is called anc-bracket undetLy(P) if ||g1 — g2llp < €.
ThenN (e, G, L2(P)) denotes the smallest numbersbrackets (undef;(P))
sufficient to covely. Foro > 0, define the function

Jy(0,G,P) :/0 \/1+1n/\f[](s,g,L2(P))d5.

Fix anyH C [F], and letGy andGy p be as above. Then sincg (o, Gy, P) =

Jy(o, Gy p, P), Lemma 3.4.2 of van der Vaart and Welln&5] and a triangle
inequality imply that for some universal constank [1, o), for anym € N and
o > Dy(H; P),

vm a’m

As-is, the right side of1) nearly satisfies Definitioh already. Only a slight mod-
ification is required to fulfill the requirement of monotonicity én Specifically,
define

(21) ¢4<H;P,m>gcJﬂ<a,gH7p)< ! +Ju<ff’9ﬂ,P>e>'

° 1 Jg(A\Gu, P)E

vm A2m
for ¢ as in @1). Then takingd, = ¢\>) suffices to satisfy Definitio.

Since Definition is satisfied for botl!") andé!®, itis also satisfied for
(23) de = min {4, 67 } .

For the remainder of this section, we suppé@és defined as inZ3) (for all dis-
tributions P over X’ x ))), and study the implications arising from the combination
of this definition with the abstract theorems above.

5.4. VC Subgraph ClassesFor a collectionA4 of sets, a se{z,..., 2z} of
points is said to behatteredby A if [{A N {z1,...,2} : A € A} = 2*. The
VC dimensionvc(.A) of A is then defined as the largest integefor which there
existk points{z1,...,z;} shattered byA [36]; if no such largest exists, we
definevc(A) = oo. For a setG of real-valued functions, denote by (G) the
VC dimension of the collectiok{(x,y) : v < g(z)} : g € G} of subgraphs of
functions inG (called the pseudo-dimensioZ, 31]); to simplify the statement
of results below, we adopt the convention that when the VC dimension of this



24 HANNEKE AND YANG

collection is0, we letve(G) = 1. A setg is said to be a VC subgraph class if
ve(G) < oo [35).

Because we are interested in results concerning valuBg(af) — R,(f*), for
functionsh in certain subsetd/ C [F], we will formulate results below in terms
of ve(Gy ), for Gy defined as above. Depending on certain properties tifese
results can often be restated directly in terms/@fH); for instance, this is true
when/ is monotone, sincec(Gy) < ve(H) in that casel2, 22, 29].

The following is a well-known result for VC subgraph classes [see 85j,,
derived from the works of Pollar@(] and HausslerZ?2).

LEMMA 14, ForanygG C G*, for any measurabl& > F(G), for any distribu-
tion @ such that|F||g > 0, for anye € (0,1),

2ve(G)
N([Fllg.6. L2(Q)) < A(G) (1) |

g
whereA(G) < (ve(G) + 1)(16e)¥(9). o

In particular, Lemmd.4implies that anyg C G* has,Yo € (0, 1],

(24) J (0,G,F) / VIn(eA(G)) + 2ve(G) In(1/¢)de
< 20/In(eA(G)) + /8ve(G) /ff VIn(1/e)de
ov/In(eA(G)) + o+/8ve(G) In(1/0) + \/2mve(G) erfc( ln(l/a)) .

Sinceerfc(z) < exp{—2z?} forall x > 0, (24) impliesVo € (0, 1],

(25) J(0,G,F) < ov/ve(G)Log(1/o).

Applying these observations to boundo, Gy p,F) for # C [F] andF >
F(Gy,p), notingJ (o, Gy, F) = J(o, Gy p, F) andve(Gy, p) = ve(Gy), and plug-
ging the resulting bound int®() yields the following well-known bound oa;jél)
due to Gire and Koltchinskii 15]. For anym € N ando > 0,

26) ¢\ (0, H;m, P)

ve(Gy)Log IF (G, p)llp
< inf )\J ( A )

)\>0'

VC(QH)ZLog (M)
+ .

m m

Specifically, to arrive at46), we relaxed thean>F(g,H ») 1IN (20) by takingF >
F(Gy,p) such that|F||p = max{o, |F(Gu,pr)|r}, thus maintaining\/||F||p €
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(0, 1] for the minimizing value, so thatZ5) remains valid; we also made use of
the fact thatLog > 1, which gives udog(||F||p/\) = Log(||F(Gx.p)|lp/) for
this case.

In particular, 6) implies

(27) My(71,72:H, P)
.
et (2 D o (IR
71 o

o>Dy([H(2:6.PP) \ 7]
Following Giré and Koltchinskii 15], for » > 0, defineBy, p(f5,7:¢) = {g €
H : Dy(g, f5; P)? < r}, and forrg > 0, define

2
HF (gB%P(ff:.,?";@),P) H
Te(ro; H, P) = sup

r>rg r

L.

WhenP = Pxy, abbreviate this as/(ro; H) = 7¢(ro; H, Pxy ), and wherH =
F, further abbreviate,(r¢) = 7¢(ro; F, Pxy). ForA > 0, when f, € H andP
satisfies Conditiori1, (27) implies that,

(28) sup My(v/(4K),v; H(y: ¢, P), P)

TZA )
S (/\Qb_ﬁ + f\) ve(Gy ) Log <Te (b)\ﬁ;”;'-[, P)) .

Combining this observation witl6}, (8), (9), (10), and Theoren®, we arrive at
a result for the sample complexity of empiricatisk minimization with a general
VC subgraph class under Conditioh® and11. Specifically, fors : (0,00)? —
[1,00), whenf* € F, (6) implies that

M (Ty(e); F, Pxy,5) < My(Ty(e); F, Pxy, 5)
= sup My(7/2,7 F(v:0), Pxvy,s(Te(e), 7))
v>Ty(e)
(29) < sup My(7/2,7; F(v;€), Pxy,5(Te(e), 7))
v>Ty(e)

SupposingPxy satisfies Conditions0and11, applying 8), (9), and 8) to (29),
and takings(\,v) = Log (%7) we arrive at the following theorem, which is

implicit in the work of Gire and Koltchinskii 15)].
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THEOREM 15. For a universal constant € [1,c0), if Pxy satisfies Condi-
tion 10 and Conditionll, ¢ is classification-calibratedf* € F, and ¥, is as in
(16), then for anye € (0,1), letting, = 7 (b¥,(¢)”), for anym € N with

(B30) m>e (% ( 5)2_@ i \yf@)) (ve(Gr)Log () + Log (1/6))

with probability at least. — 5, ERM(F, Z,,,) produces: with er(h) —er(f*) < e.
&

As noted by Gig and Koltchinskii 15], in the special case whehis itself
the 0-1 loss, the bound in Theorebd simplifies quite nicely, since in that case
IF(Gss o, (i) Py By = P (DIS (B (f*,7))), 50 thatry(ro) = 6(ro); in
this case, we also hawe(Gr) < ve(F) and¥,(e) = ¢/2, and we can takg = «
andb = a, so that it suffices to have

(31) m > cae® % (ve(F)Log (8) + Log (1/9)),

wheref = 0 (ac®) andc € [1,00) is a universal constant. It is known that this is
sometimes the minimax optimal number of samples sufficient for passive learning
[9, 19, 32].

Next, we turn to the performance of Algorithm 1 under the conditions of Theo
rem15. Specifically, supposPyy satisfies Conditiong0and11, and forvy, > 0,
define e N

oo — sup POIS B age (1))

>0 b’Y’g
Note thatl[F(Gz; pxy )5y, < 7P (DIS (F (& (2'77);0))). Thus, by £7), for

—[logy(0)] < j < [logy(2/We(e))],
(32)

V(279K 270 5 Py ) 5 (027077 227) ve(Gr)Log (xe (Wele)) )

V1.

With a little additional work to define an appropriate function and derive
closed-form bounds on the summations in Theoigmwve arrive at the follow-
ing theorem regarding the performance of Algorithm 1 for VC subgrdaéses.
For completeness, the remaining technical details of the proof are includgd in
pendixA

THEOREM 16. For a universal constant € [1,0), if Pxy satisfies Con-
dition 10 and Conditionl1, ¢ is classification-calibratedf* < F, and ¥, is
as in (16), for anye € (0,1), letting @ = 6 (ac®), x¢ = xe(Ve(e)), A1 =
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ve(G)Log(xed) + Log(1/8), By = min { ;L Log(7/s(2)) }, andC =
min{m,Log (€)Wy(e) }
l
SRR A
and

(B34) 0> chac (b("“ + Log(B1)B1 | U+ Log(ca))cu) |

\1’5(6)2_5 ‘1’4(6)

then, with argumentg, u, andn, and an appropriates function satisfying12),

Algorithm 1 uses at mostunlabeled samples and makes at moktbel requests,

and with probability at least — 4, returns a functior with er(h) — er(f*) < e.
o

To be clear, in specifyin@; andC1, we have adopted the convention thah =
oo andmin{oo, z} = x for anyx € R, so thatB; andC] are well-defined even
whena = 5 =1, ora = 1, respectively. Note that, when+ 5 < 2, B; = O(1),
so that the asymptotic dependencesan (34) is O (6=, (¢)*~2Log(x.)), while
in the case ofv = § = 1, itis O (ALog(1/e)(Log(8) + Log(Log(1/¢)))). Itis
likely that the logarithmic and constant factors can be improved in many cases
(particularly theLog(x.¢), B1, andC; factors).

Comparing the result in Theoreb®to Theorenil5, we see that the condition on
u in (33) is almost identical to the condition on in (30), aside from a change in
the logarithmic factor, so that the total number of data points needed is ratinghly
same. However, the number labelsindicated by 84) may often be significantly
smaller than the condition ir8(Q), reducing it by a factor of roughlfac®. This
reduction is particularly strong whehis bounded by a finite constant. Moreover,
this is the saméype of improvement that is known to occur whéris itself the
0-1 loss [19], so that in particular these results agree with the existing analysis in
this special case, and are therefore sometimes nearly minitBa7]. Regarding
the slight difference betweesg) and @0) from replacingr, by x.¢, the effect is
somewhat mixed, and which of these is smaller may depend on the particutar clas
F and los¥; we can generally boung, as a function of(ac®), vy, a, «, b, ands3.

In the special case dfequal thed-1 loss, bothr, andx,/ are equal td(a(s/2)%).

We note that the valueg~y, m) used in the proof of Theorert6 have a direct
dependence on the parametkrs, a, anda from Condition11and ConditiornlO.
Such a dependence may be undesirable for many applications, wheareatitm
about these values is not available. However, one can easily follow this jgeoof,

taking(2=7,m) = Log (1210‘%2(4‘7222 log2(2m)2> instead, which only leads to an
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increase by doglog factor: specifically, replacing the factor ef; in (33), and
the factors(4; + Log(B;)) and(A; + Log(C4)) in (34), with a factor of(A; +
Log(Log(¢/W,(¢)))). It is not clear whether it is always possible to achieve the
slightly tighter result of Theoreri6 without having direct access to the valugs
B, a, anda in the algorithm.

In the special case whehsatisfies Conditior8, we can derive a sometimes-
stronger result via Corollar®. Specifically, we can combin&7), (8), (9), and
Lemmal2 to get that if f* € F and Condition3 is satisfied, then foy >

—[logy(¢)] in Corollary9,

9—j—8 9l—j

Py pay 5 Pe)

S (6 (@PW)*™" + 22PW;)) (ve(Gr)Log (R2FPPU;) 1) +5)

(35) My (

whereb and are as in Lemmaz2. Plugging this into Corollar®, with 5 defined
analogous to that used in the proof of TheorgBnand bounding the summations
in the conditions for: andn in Corollary 9, we arrive at the following theorem.
The details of the proof proceed along similar lines as the proof of Thetfizm
and a sketch of the remaining technical details is included in Appehdix

THEOREM 17. For a universal constant € [1, ), if Pxy satisfies Con-
dition 10, ¢ is classification-calibrated and satisfies ConditiBnf* € F, ¥,
is as in(16), and b and 5 are as in Lemmal2, then for anys € (0,1), let-

ting 0 = #(ac®), Ay = ve(Gr)Log ((Z/b) (a@s"‘/\lfg(s))ﬂ> + Log (1/6), By =

min {m, LOg (Z/\IIK(E)) }, andCQ = min {172(+—U’ LOg (Z/\IJK(E)) },
if

b(ae®)' P 7
(36) u>c ( \M;M + \ye(s)> Ao
and
(37) 2-3
n>c (b(Az + Log(B2)) B2 <$Z€5)> + ((As + Log(C)) Oy <‘;LZ6€)>> 7

then, with argumentg, u, andn, and an appropriates function satisfying12),

Algorithm 1 uses at mostunlabeled samples and makes at moktbel requests,

and with probability at least — ¢, returns a functior with er(h) — er(f*) < e.
<
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Examining the asymptotic dependence«im the above result, the sufficient

ayl— « \B
number of unlabeled samples@(%Log ((\1,95(6)) >> and the number

a 2_18 a B .
of label requests i©® ((q?f@)) Log <<\I,9;(5)> )) in the case that < 1, or

O (6> PLog(1/e)Log (#°Log(1/¢))) in the case that = 1. This is noteworthy
in the casex > 0 andr, > 2, for at least two reasons. First, the number of label
requests indicated by this result can often be smaller than that indicatedely Th

rem16, by a factor of roughlyO ((950‘)1_5) ; this is particularly interesting when
f is bounded by a finite constant. The second interesting feature of thisisebat

even the sufficient number ahlabeledsamples, as indicated b§6), can often be
smaller than the number tdbeledsamples sufficient foERM,, as indicated by

Theoreml5, again by a factor of roughlg ((950‘)1’5). This indicates that, in the

case of a surrogate logsatisfying Conditior8 with r, > 2, when Theoreni5is
tight, even if we have complete access to a fully labeled data set, we may st pref
to use Algorithm 1 rather thaBRMy; this is somewhat surprising, since (&83)
indicates) we expect Algorithm 1 to ignore the vast majority of the labels in this
case. That said, it is not clear whether there exist natural classifiezdidrated
lossed satisfying Conditior83 with », > 2 for which the indicated sufficient size
of m in Theoreml5 is ever competitive with the known results for methods that
directly optimize the empiricdl-1 risk (i.e., Theorenl5with ¢ the0-1 loss); thus,
the improvements im. andn reflected by Theorem7 may simply indicate that
Algorithm 1 is, to some extent, compensating for a choice of losat would
otherwise lead to suboptimal label complexities.

We note that, as in Theoreib, the valuess used to obtain this result have
a direct dependence on certain values, which are typically not direatlysaie
ble in practice: in this cases;, «, and . However, as was the case for Theo-
rem 16, we can obtain only slightly worse results by instead taki(@y/, m) =
(1210552(422](22 10g2(2m)2), which again only leads to an increase bjoglog
factor: replacing the factor ofi, in (36), and the factorg§As + Log(B2)) and
(A + Log(Csy)) in (37), with a factor of( Ay + Log(Log(¢/¥,(¢)))). As before,
it is not clear whether the slightly tighter result of Theorgwis always available,
without requiring direct dependence on these quantities.

Log

5.5. Entropy Conditions. Next we turn to problems satisfying certain entropy
conditions. In particular, the following represent two commonly-studieddicon
tions, which allow for concise statement of results below.

ConDITION 18. For someq > 1, p € (0,1), andF > F(Grpy, ), €ither
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Ve > 0,

(38) In N (|| F||pyy,Gr, La(Pxy)) < qg~27,
or for all finitely discreteP, Ve > 0,

(39) 1nN(€"F|’p,g]:,L2(P)) < qe_zp.

In particular, note that whe# satisfies Conditiold8, for 0 < o < 2||F||p, ,

2p

1-p 1
VallFlp, o' =F Eie gt |[F] 57

Pxy

(40) ng(O', ]:; PXYam) 5 max /2 2 1
(1—p)m (1= p)THrmT+e

SinceD,([F]) < 2||F|lpy, , this implies that for any numerical constant (0, 1],
for everyy € (0, 00), if Pxy satisfies Conditiod1, then

: q[F(17,
. < XY 1—p.B(1=p)—2 pl—p.—(1+p)
(41) My(cv,v; F,Pxy) S 1= p2 max {b v TPy }
Combined with 8), (9), (10), and Theoren®, takings(\,v) = Log (%) we
arrive at the following classic result [e.®.,35].

THEOREM 19. For a universal constant € [1, o), if Pxy satisfies Condi-
tion 10 and Conditionll, F and Pxy satisfy Conditionl8, ¢ is classification-
calibrated, f* € F, and ¥, is as in(16), then for any € (0, 1) andm with

L S R
=07 N e

e (web)w " \Pie)> boe @ ’

with probability at leastt — 8, ERM(F, Z,,) producesh wither(h) —er(f*) < e.
&

Next, turning to the analysis of Algorithm 1 under these same conditions, com-
bining (41) with (8), (9), and Theoren?, we have the following result. The details
of the proof follow analogously to the proof of Theoréd® and are therefore omit-
ted for brevity.
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THEOREM 20. For a universal constant € [1,00), if Pxy satisfies Condi-
tion 10 and Conditionll, F and Pxy satisfy Conditionl8, / is classification-
calibrated, f* € F, and ¥, is as in(16), then for anye € (0,1), letting B;

andC; be as in Theoren6, B3 = min {W,Log@/%(e))}, Cs =
min {Hﬂm Log(@/‘llg(s))}, andd = 0 (ac®), if

JIF|2 pin o
42 > XY
12) w2, <w<s>2-6<1—p>+w<e>1+ﬂ>

e (%(32—5 " \Ifj(@) bos <<15>

aQHFH%pXY b'=P By n 0=rCy
(1= p)? \Wy(e)>PU=p) — Wy(e)l+e
bB1Log(B1/d)  ¢CiLog(C1/9)
- + )
Wy(e)?P Uy(e)

and

(43) n > clae

+ chas® (

then, with argumentg, u, andn, and an appropriates function satisfying12),

Algorithm 1 uses at mostunlabeled samples and makes at moktbel requests,

and with probability at least — ¢, returns a functior with er(h) — er(f*) < e.
&

The sulfficient size of, in Theorem20 is essentially identical (up to the con-
stant factors) to the number of labels sufficient FiRM, to achieve the same,
as indicated by Theorei®. In particular, the dependence erin these results is
O (W(2)?(1=)=2). On the other hand, whef(=®) = o(¢~%), the sufficient size
of n in Theorem20 doesreflect an improvement in the number of labels indicated
by Theoreml9, by a factor with dependence erof O ().

As before, in the special case whésatisfies Conditio3, we can derive some-
times stronger results via Corolla®y In this case, we will distinguish between the
cases of39) and @38), as we find a slightly stronger result for the former.

First, supposed9) is satisfied for all finitely discretd® and alle > 0, with
F < ¢. Then following the derivation of41) above, combined with9j, (8), and
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Lemmal2, for values ofj > —[log,(¢)] in Corollary9,

M <2_j_8 2 Fop )

Z 7’7; 4’ Z/{’S

PU;) PU;) =7
02

S qop (0 @R 1 (2P w) )

+ (b @PW)* + RIPW)) 5

whereq andp are from Lemmal2. This immediately leads to the following result
by reasoning analogous to the proof of TheorEm

THEOREM 21. For a universal constant € [1,00), if Pxy satisfies Con-
dition 10, 7 is classification-calibrated and satisfies Conditi8n f* € F, ¥,
is as in(16), b and 5 are as in Lemmaél2, and (39) is satisfied for all finitely

discrete P and alle > 0, with F < ¢, then for anye € (0,1), letting B2
and C; be as in Theoreml7, By = min { sy Log(f/We(e)) |,

G = min { gty Loa(F/ (<)}, ando = 0 (a), i

() (5 ()™ () ()

e ((\pf@) ( ;j;;)” . Wj@) Log(1/9)
and

ql?r > 1 < afs® )25(1”) - < afs® )Hp
n>cl|l ——= Bab —* + Cyt~="P
- ((1 —p)? ( EEANE) T\

an 2-8 afs®
‘e <32L0g<32/6>b (51)  + Cotostusot <qf§s>>> |

then, with argumentg, «, and n, and an appropriates function satisfying12),

Algorithm 1 uses at mostunlabeled samples and makes at moktbel requests,

and with probability at least — ¢, returns a functior with er(h) — er(f*) < e.
<o

Compared to Theore20, in terms of the asymptotic dependence:pthe suffi-
cient sizes for botly andn here may be smaller by a factor@f((esa)l’ﬁ(l’p)>,
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which sometimes represents a significant refinement, particularly sieemuch
smaller than="¢. In particular, as was the case in Theor&f) whenf(s) =
o(1/e), the size ofu indicated by Theoren2l is smaller than the known results
for ERMy(F, Z,,,) from Theoreml9.

The case where3@) is satisfied can be treated similarly, though the result we
obtain here is slightly weaker. Specifically, for simplicity suppo38) (s satis-
fied with F = /¢ constant. In this case, we hage> F(g;ﬁpuj) as well, while

Ny(el,Gr;, L2(Py;)) = Ny(ely/PU;), GF,, L2(Pxy)), which is no larger than
Ny(el/PU;),GF, La(Pxy)), so thatF; and Py, also satisfy 88) with F = /;
specifically,

InNj (e, Gr,, L2(Py,)) < qPU;) e

Thus, based o), (8), (9), and Lemmadl2, we have that iff* € F and Condi-

tion 3 is satisfied, then fof > —[log,(¢)] in Corollary9,
. 9—j—8 9l—j
‘ <7’(Uj)’ P(Uj)’E’PMJ’S>
0% , _B(1— ,
S (( ? p)2>7>(uj)-P (0= @P@y)” 7+ B (2P ) )
+ (b (@P@y) "+ 2PWy)) s

whereb andg are as in Lemma2. Combining this with Corollar® and reasoning
analogously to the proof of Theoreh, we have the following result.

THEOREM 22. For a universal constant € [1,0), if Pxy satisfies Con-
dition 10, ¢ is classification-calibrated and satisfies Conditi®nf* € F, ¥, is
as in(16), b and 5 are as in Lemmal2, and (38) is satisfied withF = ¢ con-
stant, then for any € (0,1), letting By and Cy be as in Theorenl7, B; =

B =t ER e E ]
andf = 0 (ae®), i

nee ((f p>) ((miw) (gfi))u_m_p) ! \Df(>+>

e ((mf()) <wf<>>ﬁ y \Pi)) Los(1/9)
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and

ns e ql?r Bsbl—r afe \ HI=H0=p) n O =Pahe
— \(1-p)? ()P ) \Wele) Wy(e)tte
abe®

2-8 afe®
Y (bBQLog(Bg /6) ( T, (E)> + (C5Log(Cy/d) <\I,f?5)>> ;

then, with argumentg, u, andn, and an appropriates function satisfying12),

Algorithm 1 uses at mostunlabeled samples and n]akes at r[ml;ibel requests,

and with probability at least — 4, returns a functior with er(h) — er(f*) < e.
&

In this case, compared to Theor&f, in terms of the asymptotic dependence
on ¢, the sufficient sizes for both andn here may be smaller by a factor of

0 ((Hga)(l—ﬂ)(l—l))), which may sometimes be significant, though not quite as
dramatic a refinement as we found und23)(n Theorenm21. As with Theoren?1,
whenf(s) = o(1/e), the size ofu indicated by Theoren22 is smaller than the
known results foERM,(F, Z,,) from Theoreml9.

5.6. Remarks on VC Major and VC Hull Classe#Another widely-studied
family of function classes include¢C Major classes. Specifically, we s&j is
a VC Major class with indeX if d = ve({{z : g(z) >t} : g € G,t € R}) < 0.
We can derive results for VC Major classes, analogously to the absvellaws.
For brevity, we leave many of the details as an exercise for the readeaniyo
VC Major classGg C G* with indexd, by reasoning similar to that of Génand
Koltchinskii [15], one can show that i = ¢1;; > F(G) for some measurable
U C X x Y, then for any distributior? andes > 0,

d ‘ 1
In N (¢||F||p, G, L2(P)) < —log <> log <> .
e e 3
This implies that forF a VC Major class, and classification-calibrated and ei-
ther nonincreasing or Lipschitz, jf* € F andPxy satisfies Conditiori0 and
Condition 11, then the conditions of Theoreihcan be satisfied with the proba-

bility bound being at least — 4, for someu = O (% + \I’E(E)B_2> and

n=0 (% + ega\pg(a)ﬂ*), wheref = 0(as®), andO(-) hides logarith-
mic and constant factors. Under Condit@rmwith £ asin Lemmadl2, the conditions

of Corollary9 can be satisfied with the probability bound being at ldastd, for

someu = O <<q,€1(5)) (%)16/2> andn = O <(ff(z))26/2>.
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For example, forX = [0, 1] and F the class of all nondecreasing functions
mappingX’ to [—1, 1], F is a VC Major class with index, and#(0) < 2 for all
distributionsP. Thus, for instance, ifi is nondecreasing arfds the quadratic loss,
then f* € F, and Algorithm 1 achieves excess error ratwith high probability
for someu = O (2¢7%) andn = O (¢3(@7V).

VC Major classes are contained in special tydpe&Gf Hull classes, which
are more generally defined as follows. L&the a VC Subgraph class of func-
tions onX’, with bounded envelope, and fét € (0, 00), let F = Bconv(C) =

x> BY i Ahi(x) 3 A <1k € C} denote the scaled symmetric convex
hull of C; then F is called a VC Hull class. For instance, these spaces are of-
ten used in conjunction with the popular AdaBoost learning algorithm. One can
derive results for VC Hull classes following analogously to the aboveci@ip
cally, for a VC Hull classF = Bconv(C) with d = v¢(C), if £ is classification-
calibrated and Lipschitzf* € F, and Pxy satisfies Conditiorii0 and Con-
dition 11, then the conditions of Theoreican be satisfied with the probabil-

ity bound being at least — §, for someu = O <(9€a)ﬁ \Ifg(s)d%’z) and

n=0 <(<9»s°‘)2ddT+22 \1’5(6)%_2>. Under ConditiorB, with g as in Lemmal2, the

conditions of Corollary® can be satisfied with the probability bound being at least
S 1 0> 1_% S O™ 2_%

1 -4, for someu = O ((w(@) (W) > andn = O <<@6(5)> >

However, it is not clear whether these results for VC Hull classes hayeracti-

cal implications, since we do not know of any examples of VC Hull classesavh

these results reflect an improvement over a more direct analyBiR bf, for these

scenarios.

APPENDIX A: PROOFS

PROOF OFTHEOREM 7. The proof has two main components: first, showing
that, with high probability,/* € V is maintained as an invariant, and second,
showing that, with high probability, the sitwill be sufficiently reduced to provide
the guarantee oh after at most the stated number of label requests, given the value
of u is as large as stated. Both of these components are served by the following
application of Lemma.

Let K denote the set of values bfc N obtained in Algorithm 1. LeS denote
the set of pairgk’, m’) such thatt’ € K and Algorithm 1 reaches the value =
m’ in Step 2 whilek = k. For eachk € K, let V(¥ denote the value of
upon obtaining that value d@f in Algorithm 1 (either in Step 0 or Step 8), and let
Dy, = DIS(V®). For eachk, m) € S, letQ,, denote the value af in Step 5 on
the round that Algorithm 1 obtains that valueraf

Consider any(k,m) € S. LetL,, = {(my +1,Yp,+1),...,(m,Yy)}. Note
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thatVh, g € V),

(44) (‘Qm| \ 1) (Rf(h§ Qm) - RZ(Q; Qm))
= (m —myg) (Re(hpy; Lm) — Re(9Dy s £m)) 5

and furthermore that

45) (|Qu!|V )U(V™); Q. 5(3n, m — my))
= (m — mp)Ue(V; Lon, 85, m — my)).
Applying Lemma4 under the conditional distribution givel, V), m,,, and

Ak, we have :[hat for anyn > my, on an event of (conditional) probability at
leastl — 6e=*(wm=mx) if f* ¢ V() and (k,m) € S, then lettingay,,, =

Ui (VJS’?; L, 8 (Y, m — mk)), everyhp, € V" has

(46) Ry(hp,) —Re(f*) < Re(hp,; L) — Re(f*5 L) + Uom,
(47)  Ry(hp,; Lm) — mln( )Re(ng, L) < Re(hp,) — Re(f*) + U m,

ngEVDk
and furthermore
(48) g < Uy (Vg,?;PXYum — e, § (G, M — mk)) :

Letjr = |logs(1/4%)] for values ofk € K. Then (L2) impliess (5§, m—my) =
s, (m — my). By a union bound and the law of total probability, on an event of
probability at least

keK:AR>2Te(e)/2 =1

N, and f* € V¥, the inequalities46), (47), and @8) hold. Call this eventF.
Note thaty;, > I'y(e)/2 impliesj, < [logs(2/T(¢))]. Furthermore, since each
k € K with k > 1 has¥, < Ax_1/2, and4y; = £, we havejp 1 > jr + 1
andjy > k — [logy(20)]. This impliesY e s, ory o) Sorr 9 6e ) <

Z]UOgQ[(fé Feé NI §loB2(t) Ge—s;(27) | 5o that events has probability at least
=—Ilo 2

for every (k,m) € S with 45, > T'y(e)/2, m < my + u;,, logy(m — my) €

[loga(2/Te(e))] loga (u;)

-y > 6e% (2,

j=—[logy()] =1
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For the remainder of this proof, we will suppose the evérmiccurs.
Definejyo = —oo andmg = u;, = 0. We proceed by induction, establishing the
following claims for allk € K U {0} havingj, < |log,(2/I's(¢))].
Claim 1: max{m € N: (k,m) € S}U{mi} < my+u;,. If equality is obtained,
thenwe also have + 1 € K.
Claim2: If k+1 € K, thenvh € VD Ry(hp,,,) — Re(f*) < 24541
Claim 3: If k+1 € K, thenf* ¢ V{+1),

We can think ofk = 0 as a base case for this inductive proof, since then the first
claim is trivially satisfied, while the second claim is satisfied du®tohp,) <
¢ < 241, and the third claim is satisfied by assumption (sifi¢® = F). Now
suppose these three claims hold foequalk’ — 1, for somek’ € Nwith k' € K

andjp < [logy(2/T¢(e))].
If it happens thatk’, my +u;,,) € S, then by definition of.;,, and monotonic-

ity of m — Uy(-, -;-,m, -), we have

Uy (fjk,,217]"“’;73Xy,ujk,,5jk, (ujk,)) < 27w T2,
Plugging in the definition o/, by (12) and (7), this implies
(49) U (Fis 2903 Py g5 (s ug,, ) < Ane /2.

Furthermore, sincg* € F, Claim 2 and the definition of,(-) imply 1% C

k/

[F] (€ (293) ;01). Since Claim 3 and the definition @by, imply sign(hp,,)
sign(h) for all h € V*), we haveer(h) = er(hp,,) for all h € V), so that
V) C [F] (& (29) ;01); we also havé’¥ C F, so that together these imply

(50) V) C F (&0 (29);01) C F (&0 (25799 ;01) .

This also impliesD;, C DIS (F (& (2'77%) ;01)). Combined with 49) and (7),
these imply

e E) oz A (2 .
Uy (Vl(?k/)’ 29k Pxy s ug,,» 5 (s um)) < Aw /2.
Together with 6), this implies
Uy (V[()i,) (293 0) s Pxy s w8 (B ujk/)) < A /2.
i imnliec8) — v/ (E) 9z . i
Claim 2 impliesVy, * =V, 7 (29 ), which means

7 K A (A ~
U[ (Vék,)a PXY) Ujk,,ﬁ (’Yk’vujk/)) < ’Yk’/2
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Sincelog,(uj,,) € N, jir < |logy(2/T())], and Claim 3 impliest* € V*),
combining the above with@) implies that on the everft,

W@MIWMM(W%M%ﬁWZ

By (45), this also means

~ |Qm rtuy, | V1 R
Uy (V 7ka/+u3k,7 (’Yk’ ujk/)> ku—jk < ’Vk//Q'
Ik’
The left hand side of this inequality is precisely the value

Ty (VI3 Qo e 5 W) =,

so that the condition in Step 5 of Algorithm 1 will be satisfied if and whkea £’
andm = my + uj,,. In summary, we have shown that(#’, m; + u;_,) € S,
thenmax{m € N : (¥',m) € S} U {mp} = mp + u;, andk’ +1 € K.
Furthermore, sincém € N : (k',m) € S} U {my } is a sequence afonsecutive
integers includingny, if (', myp + uj,,) ¢ S, thenmax{m € N : (¥',m) €
Sy U{mp} < myp +uj,. In either case, we have established Claim lfequal
to k'.

Next we consider Claim 2 and Claim 3.4f + 1 ¢ K, then Claim 2 and Claim
3 are trivially satisfied fork equal tok’. Otherwise, supposk’ + 1 € K. Let
m’ = max{m € N: (k',m) € S}U{my }. By Claim 1, we haven’ < my +u;,,.
Furthermoref’ + 1 € K implies that the condition in Step 5 in Algorithm 1 is
satisfied fork equalk’ andm equalm’, so thaflog, (m’ — m.) € N and

VW4U:{heVW%

Re(hi Q) = min, Re(g: Que) < U (v<’f’>;@m/,s~(%/,m'—mkf))}.

geV (k)

By (44) and the definition ofy . 1, this is equivalently expressed as
(51)

V(k/+1) =qhe V(kl) : RZ(th/aﬁm ) - Hxl/'l(% Rg(ngnEm’) < ’AYk’+1} .
g€

By Claim 3, f* € V(*); thus, @6) implies that on the everif, everyh € V*'+1)
has

Re(hp,,) — Re(f*) < A1 + Ue (ngl,); Ly, § (Y, m’ — mk’)) :
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By (45), this is equivalently expressed as
Re(hp,,) — Re(f*) < 2941

SinceRg(th,H) < Ry(hp,,), we have established Claim 2 fbrequal tok’.

Furthermore, Claim 3 implieg* € V()| so that by 47), on the eveni®, we
have

Re(f*s L) = it Relgn,yi Lne) < O (Vi3 £ Guosin’ =) )
By (45) and the definition ofy4/, 1, the right hand side of this inequality is equal to
4w +1. In particular, combined with51), this impliesf* € V"1 which estab-
lishes Claim 3 fork equal tok’.

Finally, note thatj;, is nondecreasing, so that the valuescof K U {0} with
Jr < [logy(2/T(g))| form a sequence of consecutive integers starting with
Thus, by the principle of induction, these three claims hold (on e¥grfor all
k € K for which ji < |logy(2/T(¢))].

Now note that, by Claim 2, for alt € K with j;,_1 < [logy(2/T(¢))],

(52) VED C F* (80 (29) s01).

Since everyh € V) hassign(h(z)) = sign(f*(z)) = sign(hp, (x)) for all
x ¢ Dy, we have thath € V), er(h) = er(hp,). Thus, sincd/*) C F and
f* e F, (52 implies

(53) V® C F (& (29k);01) .

In particular, lettingk* = max{k € K : ji < |logs(2/T¢(e))]}, If k* +
1 € K, thenji«11 > [logy(2/T(g))], so thatyy«11 < I's(¢)/2, which means
€0(291+11) < e. Together with §3), this impliesV(*"+1) C F*(; ). Since the
update in Step 7 always keeps at least one elemeWt, ithe functionk in Step
9 exists, and hag € Vmaxk) — N, _ vk C vE+D C (g 0), so that
er (h) —er (f*) < ¢, as claimed.

All that remains is to bound the sizeswindn sufficient to guarantek* +1 €
K. By Claim 1,k* + 1 € K would be guaranteed as long as

k* L k*—1 mg41

G u>d u, and n> > Ip.(Xp)+ Y. D> 1p(Xm)

k=1 m=mpx—+1 k=1 m=my+1
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Since every: < k* has—[logy ()] < ji < |logy(2/T(e))], and (as noted above)
Jr > jk—1 + 1, we have that

E* [logs(2/T¢(e))]
(55) dup < )
k=1 j=—Tog,(D)]

Furthermore, for alk < k*, (53) and monotonicity imply that

Dy, C DIS (F (& (2'77%) ;01)) = DIS (Fj,) = U;,

so that
Mgex Ui E*—1 mpgq1
S Ipe (X)) + Y. Y 1p,(Xm)
m=mypx+1 k=1 m=mp+1
Tgex U E*—1 mpqa
< > Ly (Xm)+ D 3 g (Xm).
m=mpx+1 k=1 m=mp+1

Sincel; is nonincreasing i, we have thatly, (X,,) in nonincreasing iry for all
m. Combining this with Claim 1 and the above propertiegofwe have

M +Uj, o k*—1 mMg4+1
D L (XD Y L, (Xu)
m=mypx+1 k=1 m=mp+1

loga(2/Te(e))] Lt fiogy(ey %

< > > Ly, (Xom).-

j=—[logy (£ = i1 g
j=—MNog2(O m=14+33"" | 7y

In summary, we have

Mpx g, o k*—1 mMmg4+1
56) > Ip.(Xm)+ > > 1p(Xm)
m=mpx*+1 k=1 m=mp+1

loga(2/Te(e)] Lt fiogy(ey %

> > Ly, (Xm).-

j=—[logy (£ = i1 g
j=—Nog2(O m=1433"" | 7y

IN

Note that the indicators,, (X,,) in the summation on the right hand side 66)
are independent, so that a Chernoff bound implies that on an EVefprobability
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at leastl — 279,

(57) |
[logy (2/Te(e))]  Zi=—Tosy (01 % [log(2/T¢(e)))
Z Z Iy, (Xm) < s+ 2e Z P(Uj)u;.
Jj=— ﬂng(Zﬂ m:l—i-zg;i Moga ()] U; Jj=- f10g2(zﬂ

Combining 64), (55), (56), and &7) implies that, foru andn as in the statement
of Theorem?, on the even¥ N E’, we havek* + 1 € K. A union bound implies
that the evenfy N E’ has probability at least

[loga(2/Te(¢))] loga (u;)

195 _ Z Z 6675]‘(27:)7

j=—[logy(0)] =1
as required. Ol

PROOF OFLEMMA 8. If P (DISF(H)) = 0, theng,(H;m, P) = 0, so that in

this caseg, trivially satisfies B). Otherwise, SupposE (DISF(#)) > 0. By the
classic symmetrization inequaltiy [e.§5, Lemma 2.3.1],

Gu(H,m, P) < 2E [|0(H: Q. Zpm)]

where@ ~ P™ and=Z,,) = {&1,...,&m} ~ Uniform({-1,+1}"™) are indepen-
dent. Fix any measurablé O DISF(#). Then

4 = 2 - QNuU
8 E HW(H;Q’:[W])H =k U@(H;Qmu’:[mm])‘ | - } :
whereZ ) = {&1,...,&} foranyq € {0,...,m}. By the classic desymmetriza-

tion inequality [see e.g24], applied under the conditional distribution givep N
U|, the right hand side oB5@) is at most
(59)

E[Vi@nd]

EPW@LWWULEOWQUW

—— |+ sup IR¢(h; Py) — Relg; Pu)l

h,geH
By Jensen’s inequality, the second term58)(is at most

s IRa(hs )~ ol 0l L < 006 P < pyrs 1

Decomposing based a@ N |, the first term in $9) is at most

QNU|
m

60) E 26,7 1@ nul, B) 9241 o nug ><1/2>P<u>m@

+2PUP(|QNU| < (1/2)PU)m).
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Since|lQNU| > (1/2)P(U)m = |QNU| > [(1/2)P(U)m], ande,(H, q, Py) is
nonincreasing iy, the first term in 60) is at most

QNu|
m

260(H, [(1/2) PU)m], Pi)E [ ] — 264(H. [(1/2) PU)m], Pu) P(U),

while a Chernoff bound implies the second term6@)(is at most

2P(U) exp {— PUym/8} < %E
Plugging back intog9), we have

(61) )
Ge(H,m, P) < 4¢e(H, [(1/2)P(U)m], Py)P(U) + %% + 2Dy (H; P)\/g-

Next, note that, for any > D,(H; P), \/% > Dy(H; Py). Also, ifUd =U"x Y

for somel/’ O DISF(H), thenfy, = fp, so thatiffy € H, (5) implies

(62)  de(H, [(1/2)PU)m], Pu) < é¢ (;f(u),’H; [(1/2)P(U)m1’Pu> :

Combining 61) with (62), we see thaﬁlé satisfies the conditiorb} of Definition 5.
Furthermore, by the fact tha}g satisfies 4) of Definition 5, combined with the
monotonicity imposed by the infimum in the definition&}ﬁ itis easy to check that
JS’K also satisfiesA) of Definition 5. In particular, note that arjt” € #' C [F] and
U" C X haveDISF(#;},) C DISF(#'), so that the range @f in the infimum is
never smaller fof{ = H,,, relative to that forH = #'. O

PROOF OFCOROLLARY 9. Let ¢, be as in Lemma, and define for anyn e
N, s € [1,00), ¢ € [0, 00], andH C [F],

Uové(Hv Cv 7DXYa m, S)

= R (PG00 M Pay) + DG O[5 42 )

m - m

That is, U} is the functionl, that would result from using, in place of¢y. Let
U = DISF(H), and suppos&® (i) > 0. Then sinceDISF([H]) = DISF(H)
implies
De([H)(¢;€)) = De([H](C 0); Pu) v/ PU)
= De([HI(C/PU); L, Pu); Pu) vV PU),
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a little algebra reveals that fon > 2P (/) 1,
(63) Ui(H, ¢ Pxy,m,s) < 33PUULH,C/PU); Pu, [(1/2)PU)m], ).

In particular, forj > —[log,(£)], takingH = F;, we have (from the definition of
F;)U = DISF(H) = DIS(H) = U;, so that wherP(U;) > 0, any

272
33P(U;)" P(U;)

21—J

m > QP(Uj)_1Mg ( ;~7'—j773uja5j(m))

suffices to make the right side d3) (with s = s;(m) and¢ = 2!77) at most
27772 in particular, this means taking equal to any such (with log,(m) € N)
suffices to satisfyA3) (with the M, in (13) defined with respect to thg, function);

monotonicity of¢ — M, (C, %;fj,?]jj7ﬁj(m)> implies (15) is a sufficient
condition for this. In the special case wheP€(;) = 0, Uj(F;,2'~7; Pxy,m, s)
= K, so that takingy; > K/0s;(u;)2/*2 suffices to satisfyX3) (again, with the
M, in (13) defined in terms of/). Plugging these values into Theor@mompletes
the proof. O

PROOF OFTHEOREM 16. For —[log,(¢)] < j < |logy(2/W(e))], lets; =
Log (48(Llog2(8/glle(e))H)2)1 and defina;; = oMog2(u))1 \where

(64) u; = (b2j(2_5) + 572]) (Vc (Gr) Log (ng) + sj) ,

for an appropriate universal constahte [1,00). Note that, by 82), (8), and 9),
we can choose the constafiso that these; satisfy (L3) when we define

,nk+5ﬂnw::Log<12k%20®w/W02H§%2@/WA8»J—:ﬁ2>'

Additionally, lets = log,(2/9).
Next, note that

[log2(2/T'e(e))]

>y

j=—[logy(0)]
8b

[log2(2/W(e)))

.Y

Jj==Tlog,(0)]

<2 (g

(65) 2b

tad <w

o) ot i (4)

0 Y. 2Log(|logy(8/Ws(e))) - 4)-

[loga(2/%(e))]
+ e)
j=—Tlog,(0)]
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We can bound this last summation by noting that

[log (2/We(e))]
(66) > 27Log([logx(8/W(e))] — 5)
j=—[logy(D)]
< 2 Hosal N 90852/ V()] 00 (|1 v ;
el > ) og ([logy(8/Te(e))] — J)
J:—rlog2< )1
< 2 ZZ Log (2 +1i) < 3 i+ 1) g
= T(e) T (o)

1=0 =0

Plugging this into §5), we have thad Uoggﬂi/ngEéﬂ))J uj is at most

2b

(s aly) (roonmtn i (55).

Thus, by choosing > 160¢, anyw satisfying 83) hasu > 3 logQ(Ii/g F‘EX]))J uj, as
required by Theorer.
Forl{; as in Theoren?, note that by Conditiod0 and the definition of,

P () = P (DIS (F (€ (27) 500))) < P (D18 (B (7,08, (2'7)")))
< f max {aé’g (21_j)(l ,aso‘} < @ max {a\Ilg_l (21_j)a ,aeo‘} )

Becausel, is strictly increasing orf0, 1), for j < |logy(2/%,(c))], ¥, " (2'77)
> ¢, so that this last expression is equabtol, ' (21-7)“. This implies

[loga(2/Te(e))] [loga (2/ ()]
Yo PUYu < DY PU S
=—[log,(0)] Jj=—log, ()]
(67)
[logy (2/We(e)))
> awpt(2) (5709 4 227) (Ar + Log(Lloga(8/W())] 1)
j=—[logy(£)]

We can change the order of summation in the above expression by letting

|log(2/W,(g))| — j and summing frond to N = [log,y(£)] + |logy(2/T(e))].

In particular, sincelloe(2/Ye(©)] < 2/w,(¢), (67) is at most

(68)
N

N [ 4b212) opo—i
=1 (91—[logy(2/W,(e))] oi ‘
;ae% (2 i ) (\115(5)2—/3 " \Ife(€)> (A1 + Log(i +2)).
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Sincez — ¥, ' (z)/z is nonincreasing ofn, oo), ¥, ' (21 los2(2/¥e(=)]27) <
20, 1 (27 oe2(2/%e(ED]) and sincel; ! is increasing, this latter expression is
at mos 1w, ! (Wy(e)) = 2i*le. Thus,

N . - .

poila+B—2) f2ila—1)
69 4abe”
©9)  datet ) ( W@ e
In generalLog(i+2) < Log(N+2),sothafy " , 2:e+5-2) (A; + Log(i + 2)) <
(A1 +Log(N+2))(N+1) and>" N 2ie=1 (4, +Log(z+2)) (Aj+Log(N+
2))(N + 1). Whena + 3 < 2, we also havé Y 2i(a+6-2) < s~ gila+i-2)
= W and Yo%, 2+~ Log (i 4 2) < Z‘X’ 2i(o+h- 2)Log(l +2) <

- 2(a+ﬁ 2)L0g(1 2(a+ﬁ 2)> Similarly, if a < 1, Z 2i(a—1) < %% 9i(a—1)
= {5ty and “keW'SeZz 02 DLog(i + 2) < 32,2~ 1>Log(z +2) <

- 2(a iy Log (1 o= 1)) By combining these observations (along with a conven-

) (A1 + Log(i +2)).

tion thatW = oo Whena =1, andm = oo Whena = g = 1), we
find that @9) is
Ay +Log(B1))By  0(A; +L
< afe b(Ar + Log(B1))B1 | £(A1 + Log(C1))Ch )
Wy(e)*? Wy(e)
Thus, for an appropriately large numerical constaminy» satisfying @4) has
[logs (2/T¢(e))]
n>s+2e Z P(Uj)u;,
j=—log5(0)]

as required by Theorei
Finally, we need to show the success probability from Thedteat least — 6,
for 5; ands as above. Toward this end, note that

[loga(2/T(e))] loga (u;)

>3 et

j=—[logy(0)] =1

log, (2/ W (e))) loga () 5
= Z 2 (log, (4u;) — log, (8/ ¥ —j)?

= Tloay(®] =1 gy (4u;) — i)? (|logy(8/We(e))] — )

log, (2/We(e))) loga () 5

j:_%Q(ﬂ 2t +1)2(|logy(8/ ()] — j)°

log, (2/W(c))] 5

=8
L (Llog (8/ ()| — ) ; 212 o/2

j=—Tlog,(0)] 2
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Noting that2—* = §/2, we find that indeed

[logy(2/T'¢(z))] loga (u;)

1-27- Y > 6e%(2) > 14
1=1

j=—[logy ()]

Thus, by takings to be the function satisfyingl@) such tha&(277,-) = s;(-) for
all j € Z, Theorem7 now implies the stated result. Ol

PROOF SKETCH OF THEOREM 17. The proof follows analogously to that of
Theorem16, with the exception that now, for each integewith —[log, (/)] <
j < |logy(2/¥y(e)) ], we replace the definition af; from (64) with the following

definition. Lettingc; = ve(Gr)Log ((E/b) (a92j\¥;1(21—j)°‘)5), define

uy=c (b2j(2fﬁ) (aH\Ile_l(T*j)a)l_B

+027) (5 +5),

whered € [1,00) is an appropriate universal constant, ands as in the proof
of Theorem16. With this substitution in place, the values ands, and functions
s; ands, are then defined as in the proof of Theoré& By (35), (9), (8), and
Lemmal2, we can choose the constatitso that these:; satisfy (L5). By an
identical argument to that used in Theor&6) we have

[loga(2/Te(e))] loga (u;)

1—275— Z Z 6e5(2) > 16

j=—[logy(0)] =1

It remains only to show that any valueswéndn satisfying 86) and @7), respec-
tively, necessarily also satisfy the respective conditions.fandn in Corollary9.

Toward this end, note that sinee— ¥, '(1/z) is nondecreasing ofo), cc),
we have that

[log2(2/T(¢))] [loga(2/W(e))]
Z Uj S Z Uj
j=—Tlogy(€)] j=—[logy ()]

afee \ 178 [logo(2/We(e)))
5<b(q,f(€)) +6>(@f§€)+ > 2]Log<uog2<8/w<s>>u>)

j:—Hng(Zﬂ
a1-58 7
< (e e
y(e)2F Wy(e)

where this last inequality is due t66). Thus, for an appropriate choice @fanyu

satisfying 36) hasu > Z“"gjﬂ?{g Ff(ﬂ)” u;, as required by Corollar.
082
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Finally, note that fot{; as in Theoren?, andi; = [log,(2/Y,(¢))] — 7,

[loga(2/Te(e))] [loga (2/W ()] '
Z P(Uj)uj < Z afW,t(277)
j=—[logy ()] j=—[logy ()]

[logo(2/We(e))] ) 9
< Z b (a92]ql£—1<21—j)a) -5 (As + Log (i; + 2))
j=—Tlog,(0)]
[logs(2/% ()] ~ ) .
n Z &LQQJ\I;Zl(Ql_])a (As + Log (i; +2)) .
j=—T[logs(f)]

By changing the order of summation, now summing over values; dfom
0 to [logy(2/%e(e))| + [loga(£)], letting N = [logy(2¢/¥,(c))], and noting
2llogy(2/We(e))] < 2/W(e), andq;zl(gfllogz(?/‘l’z(f))J21+i) < 2z for i > 0,
this last expression is

N
(70) <D

<a92ﬂa—wga
1=0

2-p
7,00 ) (A2 + Log (i + 2))
N Zap2i0e-Dgo Aot Log (i 4.9
+§0w( 2+ Og(l+ ))

Considering these sums separately, we Bayg, 2/~ (2=5) (A4 Log(i+2)) <
(N +1)(A2+Log(N +2)) andz 2i(e—1) (A2 —|—L0g(2—|—2)) (N+1)(A2+
Log(N + 2)). Whena < 1, we also havey N, 2/~ DC=F) (A, + Log(i +

2)) < 32200 21" DA Ay 4 Log(i+2)) < mLOg (W>+
WAQ’ and S|m|lar|yZN 21 a-1) (Az + Log(l + 2)) > 1 2((1 i) A2 +
g Log (1_2<a—1>> Thus, generallp;" 2=V~ (A4, + Log(i + 2)) <
Bs(As + Log(By)) and "1 21~V (A + Log(i + 2)) < Ca(As + Log(Ch)).
Plugging this into 70), we find that for an appropriately large numerical constant
¢, anyn satisfying 87) hasn > ZUOg? 2/Te(0))] P(U;)uj, as required by Corol-

Mogy (€)]
lary 9. O
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