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Abstract

We extend the work of [YHC13] on estimating prior distributions over VC
classes to the case of real-valued functions in a VC subgraph classeWayhly
this technique to the problem of maximizing customer satisfaction using a minima
number of value queries in an online preference elicitation scenario.

1 Introduction

Consider an online travel agency, where customers go taotéheish some idea of what
type of travel they are interested in; the site then posesiassef questions to each
customer, and identifies a travel package that best suitsdigres, budget, and dates.
There are many options of travel packages, with options cation, site-seeing tours,
hotel and room quality, etc. Because of this, serving thelseéanarbitrary customer
might be a lengthy process, requiring many detailed questiBortunately, the stream
of customers is typically not a worst-case sequence, anarticplar obeys many statis-
tical regularities: in particular, it is not too far from tég to think of the customers as
being independent and identically distributed samplesh s assumption in mind, it
becomes desirable to identify some of these statisticallaeities so that we can pose
the questions that are typically most relevant, and therabye quickly identify the
travel package that best suits the needs of the typical mestoOne straightforward
way to do this is to directhestimate the distribution of customer value functions, and
optimize the questioning system to minimize the expectedber of questions needed
to find a suitable travel package.

One can model this problem in the style of Bayesian combiistauctions, in
which each customer has a value function for each possibldlewf items. However,
it is slightly different, in that we do not assume the disitibn of customers is known,
but rather are interested in estimating this distributitie; obtained estimate can then
be used in combination with methods based on Bayesian dediseéory. In contrast
to the literature on Bayesian auctions (and subjectivisteBan decision theory in



general), this technique is able to maintain general gteearon performance that hold
under an objective interpretation of the problem, rathantimerely guarantees holding
under an arbitrary assumed prior belief. This general idesoinetimes referred to as
Empirical Bayesian decision theory in the machine learning and statisticsdlitees.
The ideal result for an Empirical Bayesian algorithm is todmenpetitive with the
corresponding Bayesian methods based oma¢h@l distribution of the data (assuming
the data are random, with an unknown distribution); thagigjough the Empirical
Bayesian methods only operate with a data-based estiméte dfstribution, the aim
is to perform nearly as well as methods based on the true éanedible) distribution.
In this work, we present results of this type, in the contéxai abstraction of the
aforementioned online travel agency problem, where thesoreaof performance is
the expected number of questions to find a suitable package.

The technique we use here is rooted in the work of [YHC13{ransfer learning
with a VC class. The component of that work of interest hethésestimation of prior
distributions over VC classes. Essentially, there is argiekass of functions, from
which a sequence of functions is sampled i.i.d. accordirentanknown distribution.
We observe a number of values of each of these functiongjateal at points chosen
at random, and are then tasked with estimating the distoibaf these functions. This
is more challenging than the traditional problem of nonpeetic density estimation,
since we are not permitted direct access to these functimigather only a limited
number of evaluations of the function (i.e., a numberaff(z)) pairs). The work
of [YHC13] develops a technique for estimating the disttidnu of these functions,
given that the functions are binary-valued, the class oftions has finite VC dimen-
sion, and the class of distributions is totally bounded. His tvork, we extend this
technique to classes of real-valued functions having fpggudo-dimension, a natural
generalization of VC dimension for real-valued functioHaii92].

The specific application we are interested in here may beesgpd abstractly as
a kind of combinatorial auction with preference elicitatiocSpecifically, we suppose
there is a collection of items on a menu, and each possibldléwf items has an
associated fixed price. There is a stream of customers, eglchawaluation func-
tion that provides a value for each possible bundle of itefige objective is to serve
each customer a bundle of items that nearly-maximizes Higiosurplus value (value
minus price). However, we are not permitted direct obsématf the customer val-
uation functions; rather, we may query for the value of anyegibundle of items;
this is referred to as walue query in the literature on preference elicitation in combi-
natorial auctions (see Chapter 14 of [CSS06], [ZBS03]). @bjective is to achieve
this near-maximal surplus guarantee, while making only allsmumber of queries per
customer. We suppose the customer valuation function angled i.i.d. according
to an unknown distribution over a known (but arbitrary) sla$ real-valued functions
having finite pseudo-dimension. Reasoning that knowleddei®distribution should
allow one to make a smaller number of value queries per ciestome are interested in
estimating this unknown distribution, so that as we serveeraod more customers, the
number of queries per customer required to identify a neéirmal bundle should de-
crease. In this context, we in fact prove that in the limig, &xpected number of queries
per customer converges to the number required of a methdddhdirect knowledge
of the true distribution of valuation functions.



2 Notation

Let B denote as-algebra onY x R, let By denote thes-algebra onX. Also let
p(h,g9) = [|h — g|dPx, wherePx is a marginal distribution ove’. Let F be a
class of functionst’ — R with Borel o-algebral3» induced byp. Let © be a set of
parameters, and for eaéhe O, let 7y denote a probability measure O#, Br). We
suppose{my : 6 € O} is totally bounded in total variation distance, and tiats a
uniformly bounded VC subgraph class with pseudodimengioiVe also supposgis
ametric when restricted tor.

Let {X;}+ien be i.i.d. Px random variables. For ea¢he O, let {h},}.cy be
i.i.d. mg random variables, independent frdXy; }+ ;en. For eacht € N andd € ©,
let Y;;(0) = hjy(Xy) fori € N, and let2,(0) = {(Xu, Y (0)), (Xi2, Yi2(0)), ...},
X: = {Xu, Xe2,...}, andY.(0) = {¥11(0),Y:2(0),...}; for eachk € N, define
Zu(0) = {( X1, Y (0)), ..., (Xpr, Yar(0) }, Xiie = { X1, ..., Xer}, and Yy (0) =
(Y (0),....Yu(0)}.

For any probability measures ./, we denote the total variation distance by

| — ' = Sup u(A) — ' (A),

where A ranges over measurable sets.

Lemmal. Forany 6,6’ € ©andt € N,

o — 7or | = [Pz, 6) — Pz, (01 -

Proof. Fix0,60" € ©,¢t € N. LetX = { X1, Xy2,...}, Y(0) = {Y11(0),Yi2(6),.. .},
and fork € NletX, = {Xu,..., Xwu}. andYy(0) = {Y(6),...,Yw(0)}. For
h e F, |etCX(h) = {(th,h(th)), (th,h(th)), .. }

Forh,g € F, definepx(h,g) = lim LS (X)) — g(Xw)] (if the limit

exists), antx, (h,g) = %Zle |h(X+) — g(Xt:)|. Note that sinceF is a uniformly
bounded VC subgraph class, so is the collection of functiohs- g| : h,g € F},
so that the uniform strong law of large numbers implies thih yrobability one,
Vh,g € F, px(h, g) exists and hagx (h, g) = p(h, g) [Vap82].

Considerany, 0’ € ©,and anyA € Bx. Thenany: ¢ Ahasvg € A, p(h,g) >0
(by the metric assumption). Thusif(h, g) = p(h, g) forall h, g € F, thenVh ¢ A,

Vg € A px(h,g) = p(h,9) >0 = Vg € A,cx(h) # cx(g) = cx(h) & cx(A).
This impliescy ' (cx(A)) = A. Under these conditions,
Pz, 0)x(cx(A)) = mo(cx ' (cx(4))) = mo(A),

and similarly for6’.

Any measurable set' for the range of2;(6) can be expressed &5 = {cz(h) :
(h,z) € C'} for some appropriat€” € Br ® BY. LettingCL = {h : (h,z) € C"},
we have

P2,6)(C) = / o5 (ea (CL)) Py (di) = / 70(CLPx(dT) = Pz, 3)(C").
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Likewise, this reasoning holds féf. Then

IPz,0) = Pz.0nll = 1P, x) — Peaz,, 50
= swp | [(mlCh) — 7 (C)Pn)
C'eBrRBY
< [ sup [mo(t) = o (4) Pe(do) = 170 — 0]
AeBF

Sinceh}, andX are independent, fot € Br, mg(A) = Ppx (A) = Py, (A)Px(X>) =
Pz, x)(A x X°°). Analogous reasoning holds faf, . Thus, we have

o = 7or | = [Pz, 50 (- X X%F) = Ppe 0y (- x XF)|
S MPkz, %) = Pz, 50l = [IPz,0) — Pz, o1 l-
Combining the above, we hay@ z, () — Pz, (o) || = ||m9 — 7o/ |- O

Lemma 2. Thereexistsa sequencer;, = o(1) suchthat, V¢, k € N, V0,6’ € O,
Pz 0) = Pzuon|l < lImo — morll < [IPz,,.00) — Pzionll + 7k

Proof. This proof follows identically to a proof of [YHC13], but imicluded here for
completeness. Sindez,, g)(A) = Pz, ) (A x (X x R)*) for all measurabled C
(X x R)*, and similarly forg’, we have

IPz,,.0) — Pz, o) = sup Pz,.0)(4) — Pz, 6)(A)
= sup Pz, ) (A x (X xR)?) =Pz, 5 (A x (X x R)>)
AeB
< Sup. Pz, 0)(A) = Pz, (A) = [Pz,0) — Pz, 0 I,
eB

which implies the left inequality when combined with Lemma 1
Next, we focus on the right inequality. Fix6’ € © and~y > 0, and letB € B>
be such that

76 — mor || = Pz, 0) — Pz, 01| <Pz, 6)(B) —Pz,9)(B) +7-

Let A= {A x (¥ xR)>*: A € B¥ k € N}. Note thatA is an algebra that generates
B°°. Thus, CaratBodory’s extension theorem [Sch95] implies that theretehggoint
sets{4; }sen in A such thatB C J,. A; and

PZt (0)( ) Pzt < ZPZt(Q ZPZt 0’ )
1€EN i€N

Since thesed; sets are disjoint, each of these sums is bounded by a prithahilue,
which implies that there exists some= N such that

D Pz (A) <+ Pz e (),

ieN i=1



which implies

D Pz o) (Ai) =D Pz on(A) <+ Y Pzo)(Ai) = Y Pz, o) (A)
=1

€N ieN i=1

=7 + ]P)Zt(g) (U A2> - Pzt(gl) (U A1> .
i=1 1=1

As|J;_, A; € A, there existsn € N and measurabl®,, € B such that J;_, A; =
B, x (X x R)*, and therefore

Pz, (0 (U Ai) —Pz,0) (U Ai) =Pz, 0)(Bn) — Pz, ) (Bmn)
=1

i=1
< ||]P)Ztm(9) - PZm(e’)H < k:11>n<’>lo HPZtk(e) - sz(e’)u‘

Combining the above, we hajlerg — 7y || < limy o0 [Pz, 0) — Pz, 01|l + 37. By
letting v approach), we have

Imo —mo/|| < lim [Pz, 0) =Pz, (0-
So there exists a sequenggd, ') = o(1) such that
Vk €N, |lmg — mor || < [Pz, (6) — Pzo(onll + (6, 6).
Now lety > 0 and let©., be a minimaly-cover of©. Define the quantity(y) =
maxg g-co, 7k(0,0'). Then forany, ¢’ € O, letf., = argming.co_ || — 7o | and
0, = argming, cq_ ||mer — mo||. Then a triangle inequality implies thet € N,
g — mor | < |lmo — o, | + lImo., — mor || + [Imo, — 7o/ ||
<2y +75(04,05) + [Pz, 0,) — Pzior)ll
<2y +71(7) + Pz, 0,) — Pzincorll-
Triangle inequalities and the left inequality from the lemstatement (already estab-
lished) imply
IPz,0,) — Pziior)ll
< |Pz,,.0,) = Pzl + IPz,0) = Pzuion | + Pz, 07) — Pzypon)l
< llmo, = moll + Pz, 0) = Pzpu(ony | + ll7or, — mor||
<27 + [Pz 0) = Pzoionl

So in total we have
7o — mor || < 4y +71(7) + [Pz, 0) — Pz, 0n]l-

Since this holds for ally > 0, definingr, = inf,~o(4y + (7)), we have the right
inequality of the lemma statement. Furthermore, since eath 6’) = o(1), and
|©,] < oo, we havery(vy) = o(1) for eachy > 0, and thus we also have, =
o(1). O



Lemma 3. Vi, k € N, there exists a monotone function M, (z) = o(1) such that,
v6,0" € ©,

Pz, 6) = Pzosonll < M (IPz,400) — Pz,aionll) -
Proof. Fix anyt € N, and letX = {X;;, X4, ...} andY(0) = {Y:1(0), Yi2(0),. ..},

and fork € NletX, = {Xy1,..., Xu} andY(0) = {Y1(0), ..., Y (0)}.
If & <d, thenPz,, (5)(-) = Pz,,00)(- X (X x {=1,+1})%" ’“) so that

IPz,,.0) = Pz, 00l < IPz.0) — Pz,

and therefore the result trivially holds.
Now supposé > d. Fix anyy > 0, and letBy - C (X x R)* be a measurable set
such that

Pz,.0)(Boo) — Pz, 01 (Bog) <Pz, 0) — Pz, 00l
<Pz, 6)(Boo) — Pz, 0)(Boor) +7-

By Caratleodory’s extension theorem, there exists a disjoint sezpiehsets( B; } 2,
such that

Pz, 0)(Bo,o) — Pz, 0)(Boo) <7+ Z Pz,.0)(B Z Pz, (B

=1
and such that eacB; (0, ¢’) is representable as follows; for sorigd,0’) € N, and
SetSCij = (Aijl X (—OO,tijl]) X oo X (A”k X ( o) t”k]) forj < Y; (9 9/), where
eachA;;, € Bx, the setB;(6,¢’) is representable aUQES ﬂé 1(0,67) D;;s, where
Si € {0,...,26(9) 1}, eachDy, € {Ci;, C5;}, ands # s' = ") Dy n

ﬂj":(‘l”el) Dijs = 0. Since theB; (6, ¢') are disjoint, the above sums are bounded, so
that there exists (0, 0',~) € N such that everyn > m(60,6’,v) has

Pz,.0)(Boor) — Pz, 0)(Bo.or)

<27+ > Pz, 0)(Bi Z]P)ztk(e/ 1(0,0')),

i=1

Now defineMy,(v) = maxg gco, mi(0,0',7). Then for anyd, o’ € ©, letd,, 0!, €

Yoy
©, be such thafjmg — mg_ || < v and|me: — me, || < v, which implies||Pz,, ) —

Pz,.0.)l <vand||Pz, o) — Pz, o)l <~ byLemma2. Then
IPz.0) = Pzi(onll < IPzoi0,) — Pzl + 2
<Pz, 0,)(Bo,.0,) = Pz,01)(Bo,0,) + 37

My ()
< Z Pz, (0,)(Bi(0,0))) — Pz, 07)(Bi(65,0,)) + 57.



Again, since the; (0., 0") are disjoint, this equals

My () My ()
57+ Pz, | U Bil65.0)) | —=Pze) | U Bi6:.6))
=1 i=1
M () M ()

§77+]P’Ztk(9) U B 97,9; _]PZM(@’) U B; 0 9/

My ()
=77+ Y Pz, 0)(Bi(05,0,)) — Pz, (o) (Bi(65,6,))
=1
< Ty + My(v) <le\l4a>(( |Pz,.(0)(Bi(6,0,)) — Pz, (0(Bi(6,6,))] -

Thus, if we can show that ea¢Biz,, (g) (B;(6,,0,)) — Pz,, (o) (Bi(6,,0,))| is bounded
by ao(1) function of [Pz, — Pz, |, then the result will follow by substituting
this relaxation into the above expression and defidifigby minimizing the resulting
expression ovet > 0.

Toward this end, le€’;; be as above from the definition &% (6., 07 ), and note that

IBi((,W,@;) is representable as a function of the ; indicators, so that

Pz, 0)(Bi(6y,05)) — Pz, (0r)(Bi(6,,6.))|
=[P IBi(eﬂ,,siy)(Ztk(Q)) - ]P)IBi(G.Y,S,’Y)(Ztk(Q/))”

S P, @)ty o 0, @) ~ Plicy (Za@)tey, o0 Ea@)]

(H IC” Z,(0 > H (1 = Ic; (Ztk(a))>

< 9Li(0+.0))
- JC{1, ....i (9

v:0%) jeJ J¢J
- ( H Ic,; (Ztk(e/))> H <1 —lc, (Ztk(el))>]
JjeJ J¢J

< 9i(65,6) Z E H Ic,; (Zu:(0)) — H Ioy; (Zek (0
JC1,.. 250y | e et -

< 4ti(05,0%) max E H Ic,; (Zu:(0)) — H Ioy; (Zek (0
JC{1,...,2% 0%y jeJ jeJ

— 4ti(6,67) max Pz,.0) ﬂ Ci; Pz, (o ﬂ Cij
JC{1,...,25 07050y jed J€J

Note that"),. ; Ci; can be expressed as sof x (—o0, t1]) X - - x (A x (—00, x]),
where eachl,, € By andt, € R, sothat, letting = maxg g/co., max; i, () £i(6,0")
andCy, = {(A1 x (—o0,t1]) X -+ x (A x (—o0,tg]) : Vj < k,A; € Bx,tx, € R},



this last expression is at most

4% sup |]P’Ztk(9)(0) - sz(G/)(C>‘ :
CeCy

Next note that for any” = (A; x (—o0,t1]) X -+ X (A X (—o0,t;]) € Cy, letting
Cy=A; x - x A andCy = (—o0,t1] X -+ X (—00, tg],
Pz,,6)(C) = Pz,(61)(C) = E [(Py,(0)1%,, (C2) — Py (013, (C2)) Ioy (Xi)]
<E [Py, (0)x,. (C2) = Py, 0, (C2)]] -

Forp € {1,...,k}, letCy, = (—o0,t,]. Then note that, by definition af, for any
givenz = (z1,...,r), the classH, = {z, — Ic,,(h(z,)) : h € F}isaVC class
over{zy,...,x} with VC dimension at mos{. Furthremore, we have

Py, (001 (C2) — Py, 015, (C2)|
= ’P(Icm(h:e(th)),...,Iczk(h;‘e(th)))\Xm ({(,....})
— Plicy, (h2,, (Xe0)sTegy, (0, (X)) e { (L D]
Therefore, the results of [YHC13] (in the proof of their Lemi) imply that
Py, 0)x.1. (C2) — Py, (6%, (C2)|

< 2% max max
ye{0,1}4 De{1,....k}4

P{Icw (hfe(Xej))Yiep{Xtj}jen ({y})

= Plic,, (1, (X} ienliXe}en {U1)]-

Thus, we have
E [Py, (0)x: (C2) — Py, (61, (C2) ]

<2kEl max = max (b, (XY { X e ({U1)

ye{0,1}4 De{1,...,k}¢

- IP>{Ic2j (e (Xe5))}jep{Xt5}ien {v}) ”

p> Z

ye{0,1}4 De{1,..

’P{Icgj (hyo(XesN}Yiep{Xtjtien (v}

= Pic,, (h7, (X)}ienl{Xe;}ien ({y})”

< 24+FEd max max

B L ’P{Iczj (hia (XD }en {Xes}en ({U3)

o P{Iczj (R}, (Xei))}iep{ Xt }jen ({v}) ‘] :



Exchangeability implies this is at most

24k pd  max sup E
y€{0,1}4 ¢, ... t4eR

’P{Ipw,tﬂ(hzs(xtm};?:l|xm({y})

- P{uoo,tj](h:e,<X,,j>>}§_1|xtd({y})”

= 29FkLd  ma s E ‘IP ,
yeI?Oj(}d tl,...l,ltIzE]R o0,y (Vg ()} ¥ ea ({v})

B P{I(—x,tj](Ytj(e/))}?:ﬂxtd ({y}) ” :
[YHC13] argue that for aly € {0,1}¢ andt,...,tq € R,

E HP{IW,”](m(e))}?zl\Xm({y}) - P{um,tﬂ<Yu<9'))}7:1\xm({y}>H

< 4\/||P{I<m,tj](Ytjw))};gl,xm Pl o, sl
Noting that
1P 7 ey Vs 003y ia ™ PiI e 0s 003, X | S P 2000) = Pziaon)l
completes the proof. O

We can use the above lemmas to design an estimatey, ofSpecifically, we have
the following result.

Theorem 1. There exists an estimator 67g, = 61 (Z14(6,), - .., Zr4(6,)), and func-
tions R : Ny x (0,1] — [0,00) and 6 : Ny x (0,1] — [0, 1] such that, for any @ > 0,
lim R(T, o) = Tlim (T,a) =0andforanyT € Nyand 0, € O,

—00

T—o0

P (||7rém — .|| > R(T, a)) <5(T,0) < o

Proof. The estimatoréTg* we will use is precisely the minimum-distance skeleton
estimate of?z, ,(y, [Yat85,DLO1]. [Yat85] proved that ifV (¢) is thes-covering num-

ber of {Pz,,,) : & € ©}, then taking thiSéTg* estimator, then for somgé. =
O((1/e*)log N(g/4)), anyT > T. has
i [HPth(éTe*) - PZM(Q*)H} <E.

Thus, takingGr = inf{e > 0: T > T.}, we have

E[IP2,, 6., — Pzutonl]] < Gr = o(1).



Letting R/ (T, ) be any positive sequence wihy < R'(T,«) < 1 andR/(T,a) >
Gr/a,and lettingd(T, o) = Gr/R' (T, o) = o(1), Markov’s inequality implies
P (122,60, — Pz | > R(T,0)) < 6(T,0) < a. (1)
Letting R(T', o) = miny, (My, (R'(T, &) + ry), sinceR'(T, ) = o(1) andry, = o(1),
we haveR(T, ) = o(1). Furthermore, composing (1) with Lemmas 1, 2, and 3, we
have
P (||7T9T9 — .|| > R(T,a)) < (T, ) < a.

O

Remark: Although the above result makes use of the minimum-distaiedeton
estimator, which is typically not computationally efficteitis often possible to achieve
this same result (for certain families of distributions)ngsa simpler estimator, such
as the maximum likelihood estimator. All we require is tha tisk of the estimator
converges td at a known rate that is independentf For instance, see [vdGO00] for
conditions on the family of distributions sufficient for $hio be true of the maximum
likelihood estimator.

3 Maximizing Customer Satisfaction in Combinatorial
Auctions

We can use Theorem 1 in the context of various applicatiows.irfStance, consider
the following application to the problem of serving a sequeenf customers so as to
maximize their satisfaction.

Suppose there is a menu ofitems[n] = {1,...,n}, and each bundl® C [n]
has an associated prigg B) > 0. Suppose also there is a sequence of customers,
each with a valuation function, : 2"/ — R. We suppose thesg functions are i.i.d.
samples. We can then calculate the satisfaction functipedoh customer as (z),
wherez € {0,1}", ands;(x) = v:(B,) — p(B:), whereB, C [n] contains element
i€ [n]iff 2, = 1.

Now suppose we are able to ask each customer a number ofanselséfore serv-
ing up a bundleB;, to that customer. More specifically, we are able to ask for the
values;(x) foranyz € {0,1}". This is referred to as\alue query in the literature on
preference elicitation in combinatorial auctions (seef@ial4 of [CSS06], [ZBS03]).
We are interested in asking as few questions as possiblés gdtisfying the guarantee
thatE[s;(3:) — max, s¢(z)] < e.

Now suppose, for every ande, we have a method\(r, ¢) such that, given that
w is the actual distribution of the, functions, A(r, ¢) guarantees that thig value it
selects ha&[max, s:(x) — s:(2+)] < e; also IetNt(n,g) denote the actual (random)
number of queries the methot(, £) would ask for thes; function, and leQ)(r, ¢) =
E[N,(,¢)]. We suppose the method never queriesafty) value twice for a given,
so that its number of queries for any giveis bounded.
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Also supposeF is a VC subgraph class of functions mappitig= {0, 1}" into
[—1, 1] with pseudodimensiod, and that{ry : 6 € ©} is a known totally bounded
family of distributions ovetF such that the; functions have distribution,, for some
unknownd, € O. Foranyd € © andy > 0, letB(0,v) = {0’ € O : ||mg— 7o/ || < v}.

Suppose, in addition td, we have another methodf (¢) that is notr-dependent,
but still provides the-correctness guarantee, and makes a bounded number cdgjueri
(e.g., inthe worst case, we could consider querying'afioints, but in most cases there
are more clever-independent methods that use far fewer queries, suéh( B&?)).
Consider the following method; the quantitiésy, , R(T’, a), and§ (T, ) from Theo-
rem 1 are here considered with respBgttaken as the uniform distribution d, 1}".

Algorithm 1 An algorithm for sequentially maximizing expected custorsatisfac-
tion.
fort=1,2,...,7do
Pick pointsX;;, Xyo, . . ., Xiq uniformly at random fron{0, 1}"
if R(t —1,¢/2) > ¢/8 then

RunA4’(e)
Takei; as the returned value
else . .
Letf,p, € B (Q(t_l)g*,R(t - 1,5/2)) be such that
Q(rg,, . €/4) < min Q(mo,e/4) + 1/t

0€B(0(s—1y6, R(t—1,6/2))
RunA(mg,, ,e/4) and letz, be its return value
end if
end for

The following theorem indicates that this method is corraod furthermore that
the long-run average number of queries is not much worsetttatrof a method that
has direct knowledge ofy, .

Theorem 2. For theabove method, V¢t < T, E[max, s:(x)—s:(Z+)] < e. Furthermore,
if St (e) isthe total number of queries made by the method, then

lim sup ElSz(e)] < Q(mp,,e/4) + d.
T—o00 T

Proof. By Theorem 1, forany < T, if R(t — 1,¢/2) < /8, then with probability at
leastl — /2, ||my, — T 10 I < R(t—1,e/2), so that a triangle inequality implies
Im9, — 74, | <2R(t—1,6/2) <e/4. Thus,

E {Ingx se(x) — st(a“:t)}

<E []E [m;lx se(x) — (i) éw*} 1 [Hwéw* | < 5/2H Ye/2. (2)

Ford € ©, let,y denote the point that would be returned by(m;,, ,£/4) when
queries are answered by somg ~ my instead ofs; (and supposing; = s, ). If

11



75, — .|| < £/4, then

E {mﬁx se(x) — s¢(24) Qw*} =K {mfx 519, () — 10, (T4)

b
<E[maxsy,, () = s, (@,,,)|0.] +limg,, — 7ol Se/a+eja=c/2.
Plugging into (2), we have
E [max se(x) — st(fct)} <e.
x

For the result onSy(¢), first note thatR(t — 1,£/2) > ¢/8 only finitely many
times (due taR(t, «) = o(1)), so that we can ignore those values of the asymptotic
calculation (as the number of queries is always bounded)rely on the correctness
guarantee ofd’ for correctness. For the remainingalues, letV; denote the number
of queries made byi(r;,, ,&/4). then

E
limsupM < d—|—hmbupZE N /T.
T— 00 T T— o0 =1
Since
Jim ZE [Nt o — Tl > RE-1, 5/2)]]
< lim Zz P (H To e, — 0.1l > R(E=1,6/2))
< 2" —
2" lim — 25 —1,6/2) =
we have

T
hmsupZE N T = hmsup ZE [Nt ||7r9(t e —mo, || < R(t—1,¢/2)]] .

T—)oot1

For anyt < T, let N;(;0,) denote the number of queriem,,, ,£/4) would make
if queries were answered with);  instead ofs;. On the event|7ré(t_l>9* — 7, || <
R(t —1,e/2), we have
E[Ni|0i0. | < E [Nu(Buo,)|f. | +2R(—1,/2)
= Q(mg,, -€/4) +2R(t — 1,6/2) < Q(mo,,/4) + 2R(t — 1,¢/2) + 1/1.
Therefore,

T
lim sup — ZE [Nt H7T9( —my, || < R(t—1,e/2)]

T—o00

< Q(mg,,e/4) + limsup — ZQRt—l e/2)+ 1/t = Q(my,,c/4).

T—o0 t 1

12
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Note that in many cases, this result will even continue talheith an infinite
number of goodsr{ = ~0), since the general results of the previous section have no
dependence on the cardinality of the spate
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