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Abstract

We extend the work of [YHC13] on estimating prior distributions over VC
classes to the case of real-valued functions in a VC subgraph class. We then apply
this technique to the problem of maximizing customer satisfaction using a minimal
number of value queries in an online preference elicitation scenario.

1 Introduction

Consider an online travel agency, where customers go to the site with some idea of what
type of travel they are interested in; the site then poses a series of questions to each
customer, and identifies a travel package that best suits their desires, budget, and dates.
There are many options of travel packages, with options on location, site-seeing tours,
hotel and room quality, etc. Because of this, serving the needs of anarbitrary customer
might be a lengthy process, requiring many detailed questions. Fortunately, the stream
of customers is typically not a worst-case sequence, and in particular obeys many statis-
tical regularities: in particular, it is not too far from reality to think of the customers as
being independent and identically distributed samples. With this assumption in mind, it
becomes desirable to identify some of these statistical regularities so that we can pose
the questions that are typically most relevant, and therebymore quickly identify the
travel package that best suits the needs of the typical customer. One straightforward
way to do this is to directlyestimate the distribution of customer value functions, and
optimize the questioning system to minimize the expected number of questions needed
to find a suitable travel package.

One can model this problem in the style of Bayesian combinatorial auctions, in
which each customer has a value function for each possible bundle of items. However,
it is slightly different, in that we do not assume the distribution of customers is known,
but rather are interested in estimating this distribution;the obtained estimate can then
be used in combination with methods based on Bayesian decision theory. In contrast
to the literature on Bayesian auctions (and subjectivist Bayesian decision theory in
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general), this technique is able to maintain general guarantees on performance that hold
under an objective interpretation of the problem, rather than merely guarantees holding
under an arbitrary assumed prior belief. This general idea is sometimes referred to as
Empirical Bayesian decision theory in the machine learning and statistics literatures.
The ideal result for an Empirical Bayesian algorithm is to becompetitive with the
corresponding Bayesian methods based on theactual distribution of the data (assuming
the data are random, with an unknown distribution); that is,although the Empirical
Bayesian methods only operate with a data-based estimate ofthe distribution, the aim
is to perform nearly as well as methods based on the true (unobservable) distribution.
In this work, we present results of this type, in the context of an abstraction of the
aforementioned online travel agency problem, where the measure of performance is
the expected number of questions to find a suitable package.

The technique we use here is rooted in the work of [YHC13] ontransfer learning
with a VC class. The component of that work of interest here isthe estimation of prior
distributions over VC classes. Essentially, there is a given class of functions, from
which a sequence of functions is sampled i.i.d. according toan unknown distribution.
We observe a number of values of each of these functions, evaluated at points chosen
at random, and are then tasked with estimating the distribution of these functions. This
is more challenging than the traditional problem of nonparametric density estimation,
since we are not permitted direct access to these functions,but rather only a limited
number of evaluations of the function (i.e., a number of(x, f(x)) pairs). The work
of [YHC13] develops a technique for estimating the distribution of these functions,
given that the functions are binary-valued, the class of functions has finite VC dimen-
sion, and the class of distributions is totally bounded. In this work, we extend this
technique to classes of real-valued functions having finitepseudo-dimension, a natural
generalization of VC dimension for real-valued functions [Hau92].

The specific application we are interested in here may be expressed abstractly as
a kind of combinatorial auction with preference elicitation. Specifically, we suppose
there is a collection of items on a menu, and each possible bundle of items has an
associated fixed price. There is a stream of customers, each with a valuation func-
tion that provides a value for each possible bundle of items.The objective is to serve
each customer a bundle of items that nearly-maximizes his orher surplus value (value
minus price). However, we are not permitted direct observation of the customer val-
uation functions; rather, we may query for the value of any given bundle of items;
this is referred to as avalue query in the literature on preference elicitation in combi-
natorial auctions (see Chapter 14 of [CSS06], [ZBS03]). Theobjective is to achieve
this near-maximal surplus guarantee, while making only a small number of queries per
customer. We suppose the customer valuation function are sampled i.i.d. according
to an unknown distribution over a known (but arbitrary) class of real-valued functions
having finite pseudo-dimension. Reasoning that knowledge of this distribution should
allow one to make a smaller number of value queries per customer, we are interested in
estimating this unknown distribution, so that as we serve more and more customers, the
number of queries per customer required to identify a near-optimal bundle should de-
crease. In this context, we in fact prove that in the limit, the expected number of queries
per customer converges to the number required of a method having direct knowledge
of the true distribution of valuation functions.
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2 Notation

Let B denote aσ-algebra onX × R, let BX denote theσ-algebra onX . Also let
ρ(h, g) =

∫

|h − g|dPX , wherePX is a marginal distribution overX . Let F be a
class of functionsX → R with Borel σ-algebraBF induced byρ. Let Θ be a set of
parameters, and for eachθ ∈ Θ, let πθ denote a probability measure on(F ,BF ). We
suppose{πθ : θ ∈ Θ} is totally bounded in total variation distance, and thatF is a
uniformly bounded VC subgraph class with pseudodimensiond. We also supposeρ is
a metric when restricted toF .

Let {Xti}t,i∈N be i.i.d. PX random variables. For eachθ ∈ Θ, let {h∗
tθ}t∈N be

i.i.d. πθ random variables, independent from{Xti}t,i∈N. For eacht ∈ N andθ ∈ Θ,
let Yti(θ) = h∗

tθ(Xti) for i ∈ N, and letZt(θ) = {(Xt1, Yt1(θ)), (Xt2, Yt2(θ)), . . .},
Xt = {Xt1, Xt2, . . .}, andYt(θ) = {Yt1(θ), Yt2(θ), . . .}; for eachk ∈ N, define
Ztk(θ) = {(Xt1, Yt1(θ)), . . . , (Xtk, Ytk(θ))}, Xtk = {Xt1, . . . , Xtk}, andYtk(θ) =
{Yt1(θ), . . . , Ytk(θ)}.

For any probability measuresµ, µ′, we denote the total variation distance by

‖µ− µ′‖ = sup
A

µ(A)− µ′(A),

whereA ranges over measurable sets.

Lemma 1. For any θ, θ′ ∈ Θ and t ∈ N,

‖πθ − πθ′‖ = ‖PZt(θ) − PZt(θ′)‖.

Proof. Fix θ, θ′ ∈ Θ, t ∈ N. LetX = {Xt1, Xt2, . . .}, Y(θ) = {Yt1(θ), Yt2(θ), . . .},
and fork ∈ N let Xk = {Xt1, . . . , Xtk}. andYk(θ) = {Yt1(θ), . . . , Ytk(θ)}. For
h ∈ F , let cX(h) = {(Xt1, h(Xt1)), (Xt2, h(Xt2)), . . .}.

For h, g ∈ F , defineρX(h, g) = lim
m→∞

1
m

∑m
i=1 |h(Xti) − g(Xti)| (if the limit

exists), andρXk
(h, g) = 1

k

∑k
i=1 |h(Xti) − g(Xti)|. Note that sinceF is a uniformly

bounded VC subgraph class, so is the collection of functions{|h − g| : h, g ∈ F},
so that the uniform strong law of large numbers implies that with probability one,
∀h, g ∈ F , ρX(h, g) exists and hasρX(h, g) = ρ(h, g) [Vap82].

Consider anyθ, θ′ ∈ Θ, and anyA ∈ BF . Then anyh /∈ A has∀g ∈ A, ρ(h, g) > 0
(by the metric assumption). Thus, ifρX(h, g) = ρ(h, g) for all h, g ∈ F , then∀h /∈ A,

∀g ∈ A, ρX(h, g) = ρ(h, g) > 0 =⇒ ∀g ∈ A, cX(h) 6= cX(g) =⇒ cX(h) /∈ cX(A).

This impliesc−1
X

(cX(A)) = A. Under these conditions,

PZt(θ)|X(cX(A)) = πθ(c
−1
X

(cX(A))) = πθ(A),

and similarly forθ′.
Any measurable setC for the range ofZt(θ) can be expressed asC = {cx̄(h) :

(h, x̄) ∈ C ′} for some appropriateC ′ ∈ BF ⊗ B∞
X . LettingC ′

x̄ = {h : (h, x̄) ∈ C ′},
we have

PZt(θ)(C) =

∫

πθ(c
−1
x̄ (cx̄(C

′
x̄)))PX(dx̄) =

∫

πθ(C
′
x̄)PX(dx̄) = P(h∗

tθ
,X)(C

′).
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Likewise, this reasoning holds forθ′. Then

‖PZt(θ) − PZt(θ′)‖ = ‖P(h∗
tθ
,X) − P(h∗

tθ′
,X)‖

= sup
C′∈BF⊗B∞

X

∣

∣

∣

∣

∫

(πθ(C
′
x̄)− πθ′(C ′

x̄))PX(dx̄)

∣

∣

∣

∣

≤

∫

sup
A∈BF

|πθ(A)− πθ′(A)|PX(dx̄) = ‖πθ − πθ′‖.

Sinceh∗
tθ andX are independent, forA ∈ BF , πθ(A) = Ph∗

tθ
(A) = Ph∗

tθ
(A)PX(X

∞) =
P(h∗

tθ
,X)(A×X∞). Analogous reasoning holds forh∗

tθ′ . Thus, we have

‖πθ − πθ′‖ = ‖P(h∗
tθ
,X)(· × X∞)− P(h∗

tθ′
,X)(· × X∞)‖

≤ ‖P(h∗
tθ
,X) − P(h∗

tθ′
,X)‖ = ‖PZt(θ) − PZt(θ′)‖.

Combining the above, we have‖PZt(θ) − PZt(θ′)‖ = ‖πθ − πθ′‖.

Lemma 2. There exists a sequence rk = o(1) such that, ∀t, k ∈ N, ∀θ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖πθ − πθ′‖ ≤ ‖PZtk(θ) − PZtk(θ′)‖+ rk.

Proof. This proof follows identically to a proof of [YHC13], but is included here for
completeness. SincePZtk(θ)(A) = PZt(θ)(A × (X × R)∞) for all measurableA ⊆

(X × R)k, and similarly forθ′, we have

‖PZtk(θ) − PZtk(θ′)‖ = sup
A∈Bk

PZtk(θ)(A)− PZtk(θ′)(A)

= sup
A∈Bk

PZt(θ)(A× (X × R)∞)− PZt(θ′)(A× (X × R)∞)

≤ sup
A∈B∞

PZt(θ)(A)− PZt(θ′)(A) = ‖PZt(θ) − PZt(θ′)‖,

which implies the left inequality when combined with Lemma 1.
Next, we focus on the right inequality. Fixθ, θ′ ∈ Θ andγ > 0, and letB ∈ B∞

be such that

‖πθ − πθ′‖ = ‖PZt(θ) − PZt(θ′)‖ < PZt(θ)(B)− PZt(θ′)(B) + γ.

Let A = {A× (X × R)∞ : A ∈ Bk, k ∈ N}. Note thatA is an algebra that generates
B∞. Thus, Carath́eodory’s extension theorem [Sch95] implies that there exist disjoint
sets{Ai}i∈N in A such thatB ⊆

⋃

i∈N
Ai and

PZt(θ)(B)− PZt(θ′)(B) <
∑

i∈N

PZt(θ)(Ai)−
∑

i∈N

PZt(θ′)(Ai) + γ.

Since theseAi sets are disjoint, each of these sums is bounded by a probability value,
which implies that there exists somen ∈ N such that

∑

i∈N

PZt(θ)(Ai) < γ +

n
∑

i=1

PZt(θ)(Ai),
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which implies

∑

i∈N

PZt(θ)(Ai)−
∑

i∈N

PZt(θ′)(Ai) < γ +
n
∑

i=1

PZt(θ)(Ai)−
n
∑

i=1

PZt(θ′)(Ai)

= γ + PZt(θ)

(

n
⋃

i=1

Ai

)

− PZt(θ′)

(

n
⋃

i=1

Ai

)

.

As
⋃n

i=1 Ai ∈ A, there existsm ∈ N and measurableBm ∈ Bm such that
⋃n

i=1 Ai =
Bm × (X × R)∞, and therefore

PZt(θ)

(

n
⋃

i=1

Ai

)

− PZt(θ′)

(

n
⋃

i=1

Ai

)

= PZtm(θ)(Bm)− PZtm(θ′)(Bm)

≤ ‖PZtm(θ) − PZtm(θ′)‖ ≤ lim
k→∞

‖PZtk(θ) − PZtk(θ′)‖.

Combining the above, we have‖πθ − πθ′‖ ≤ limk→∞ ‖PZtk(θ) − PZtk(θ′)‖+ 3γ. By
lettingγ approach0, we have

‖πθ − πθ′‖ ≤ lim
k→∞

‖PZtk(θ) − PZtk(θ′)‖.

So there exists a sequencerk(θ, θ
′) = o(1) such that

∀k ∈ N, ‖πθ − πθ′‖ ≤ ‖PZtk(θ) − PZtk(θ′)‖+ rk(θ, θ
′).

Now let γ > 0 and letΘγ be a minimalγ-cover ofΘ. Define the quantityrk(γ) =
maxθ,θ′∈Θγ

rk(θ, θ
′). Then for anyθ, θ′ ∈ Θ, let θγ = argminθ′′∈Θγ

‖πθ − πθ′′‖ and
θ′γ = argminθ′′∈Θγ

‖πθ′ − πθ′′‖. Then a triangle inequality implies that∀k ∈ N,

‖πθ − πθ′‖ ≤ ‖πθ − πθγ‖+ ‖πθγ − πθ′
γ
‖+ ‖πθ′

γ
− πθ′‖

< 2γ + rk(θγ , θ
′
γ) + ‖PZtk(θγ) − PZtk(θ′

γ)
‖

≤ 2γ + rk(γ) + ‖PZtk(θγ) − PZtk(θ′
γ)
‖.

Triangle inequalities and the left inequality from the lemma statement (already estab-
lished) imply

‖PZtk(θγ) − PZtk(θ′
γ)
‖

≤ ‖PZtk(θγ) − PZtk(θ)‖+ ‖PZtk(θ) − PZtk(θ′)‖+ ‖PZtk(θ′
γ)

− PZtk(θ′)‖

≤ ‖πθγ − πθ‖+ ‖PZtk(θ) − PZtk(θ′)‖+ ‖πθ′
γ
− πθ′‖

< 2γ + ‖PZtk(θ) − PZtk(θ′)‖.

So in total we have

‖πθ − πθ′‖ ≤ 4γ + rk(γ) + ‖PZtk(θ) − PZtk(θ′)‖.

Since this holds for allγ > 0, definingrk = infγ>0(4γ + rk(γ)), we have the right
inequality of the lemma statement. Furthermore, since eachrk(θ, θ

′) = o(1), and
|Θγ | < ∞, we haverk(γ) = o(1) for eachγ > 0, and thus we also haverk =
o(1).
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Lemma 3. ∀t, k ∈ N, there exists a monotone function Mk(x) = o(1) such that,
∀θ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖ ≤ Mk

(

‖PZtd(θ) − PZtd(θ′)‖
)

.

Proof. Fix any t ∈ N, and letX = {Xt1, Xt2, . . .} andY(θ) = {Yt1(θ), Yt2(θ), . . .},
and fork ∈ N letXk = {Xt1, . . . , Xtk} andYk(θ) = {Yt1(θ), . . . , Ytk(θ)}.

If k ≤ d, thenPZtk(θ)(·) = PZtd(θ)(· × (X × {−1,+1})d−k), so that

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖PZtd(θ) − PZtd(θ′)‖,

and therefore the result trivially holds.
Now supposek > d. Fix anyγ > 0, and letBθ,θ′ ⊆ (X ×R)k be a measurable set

such that

PZtk(θ)(Bθ,θ′)− PZtk(θ′)(Bθ,θ′) ≤ ‖PZtk(θ) − PZtk(θ′)‖

≤ PZtk(θ)(Bθ,θ′)− PZtk(θ′)(Bθ,θ′) + γ.

By Carath́eodory’s extension theorem, there exists a disjoint sequence of sets{Bi}
∞
i=1

such that

PZtk(θ)(Bθ,θ′)− PZtk(θ′)(Bθ,θ′) < γ +
∞
∑

i=1

PZtk(θ)(Bi)−
∞
∑

i=1

PZtk(θ′)(Bi),

and such that eachBi(θ, θ
′) is representable as follows; for someℓi(θ, θ′) ∈ N, and

setsCij = (Aij1 × (−∞, tij1])× · · · × (Aijk × (−∞, tijk]), for j ≤ ℓi(θ, θ
′), where

eachAijp ∈ BX , the setBi(θ, θ
′) is representable as

⋃

s∈Si

⋂ℓi(θ,θ
′)

j=1 Dijs, where

Si ⊆ {0, . . . , 2ℓi(θ,θ
′) − 1}, eachDijs ∈ {Cij , C

c
ij}, ands 6= s′ ⇒

⋂ℓi(θ,θ
′)

j=1 Dijs ∩
⋂ℓi(θ,θ

′)
j=1 Dijs′ = ∅. Since theBi(θ, θ

′) are disjoint, the above sums are bounded, so
that there existsmk(θ, θ

′, γ) ∈ N such that everym ≥ mk(θ, θ
′, γ) has

PZtk(θ)(Bθ,θ′)− PZtk(θ′)(Bθ,θ′)

< 2γ +

m
∑

i=1

PZtk(θ)(Bi(θ, θ
′))−

m
∑

i=1

PZtk(θ′)(Bi(θ, θ
′)),

Now defineM̃k(γ) = maxθ,θ′∈Θγ
mk(θ, θ

′, γ). Then for anyθ, θ′ ∈ Θ, let θγ , θ′γ ∈
Θγ be such that‖πθ − πθγ‖ < γ and‖πθ′ − πθ′

γ
‖ < γ, which implies‖PZtk(θ) −

PZtk(θγ)‖ < γ and‖PZtk(θ′) − PZtk(θ′
γ)
‖ < γ by Lemma 2. Then

‖PZtk(θ) − PZtk(θ′)‖ < ‖PZtk(θγ) − PZtk(θ′
γ)
‖+ 2γ

≤ PZtk(θγ)(Bθγ ,θ′
γ
)− PZtk(θ′

γ)
(Bθγ ,θ′

γ
) + 3γ

≤

M̃k(γ)
∑

i=1

PZtk(θγ)(Bi(θγ , θ
′
γ))− PZtk(θ′

γ)
(Bi(θγ , θ

′
γ)) + 5γ.
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Again, since theBi(θγ , θ
′
γ) are disjoint, this equals

5γ + PZtk(θγ)





M̃k(γ)
⋃

i=1

Bi(θγ , θ
′
γ)



− PZtk(θ′
γ)





M̃k(γ)
⋃

i=1

Bi(θγ , θ
′
γ)





≤ 7γ + PZtk(θ)





M̃k(γ)
⋃

i=1

Bi(θγ , θ
′
γ)



− PZtk(θ′)





M̃k(γ)
⋃

i=1

Bi(θγ , θ
′
γ)





= 7γ +

M̃k(γ)
∑

i=1

PZtk(θ)(Bi(θγ , θ
′
γ))− PZtk(θ′)(Bi(θγ , θ

′
γ))

≤ 7γ + M̃k(γ) max
i≤M̃k(γ)

∣

∣PZtk(θ)(Bi(θγ , θ
′
γ))− PZtk(θ′)(Bi(θγ , θ

′
γ))
∣

∣ .

Thus, if we can show that each
∣

∣PZtk(θ)(Bi(θγ , θ
′
γ))− PZtk(θ′)(Bi(θγ , θ

′
γ))
∣

∣ is bounded
by ao(1) function of‖PZtd(θ) − PZtd(θ′)‖, then the result will follow by substituting
this relaxation into the above expression and definingMk by minimizing the resulting
expression overγ > 0.

Toward this end, letCij be as above from the definition ofBi(θγ , θ
′
γ), and note that

IBi(θγ ,θ′
γ)

is representable as a function of theICij
indicators, so that

∣

∣PZtk(θ)(Bi(θγ , θ
′
γ))− PZtk(θ′)(Bi(θγ , θ

′
γ))
∣

∣

= ‖PIBi(θγ,θ′γ )(Ztk(θ)) − PIBi(θγ,θ′γ )(Ztk(θ′))‖

≤ ‖P(ICi1
(Ztk(θ)),...,IC

iℓi(θγ,θ′γ )
(Ztk(θ))) − P(ICi1

(Ztk(θ′)),...,IC
iℓi(θγ,θ′γ )

(Ztk(θ′)))‖

≤ 2ℓi(θγ ,θ
′

γ) max
J⊆{1,...,ℓi(θγ ,θ′

γ)}
E

[(

∏

j∈J

ICij
(Ztk(θ))

)

∏

j /∈J

(

1− ICij
(Ztk(θ))

)

−

(

∏

j∈J

ICij
(Ztk(θ

′))

)

∏

j /∈J

(

1− ICij
(Ztk(θ

′))

)]

≤ 2ℓi(θγ ,θ
′

γ)
∑

J⊆{1,...,2
ℓi(θγ,θ′γ )

}

∣

∣

∣

∣

∣

∣

E





∏

j∈J

ICij
(Ztk(θ))−

∏

j∈J

ICij
(Ztk(θ

′))





∣

∣

∣

∣

∣

∣

≤ 4ℓi(θγ ,θ
′

γ) max
J⊆{1,...,2

ℓi(θγ,θ′γ )
}

∣

∣

∣

∣

∣

∣

E





∏

j∈J

ICij
(Ztk(θ))−

∏

j∈J

ICij
(Ztk(θ

′))





∣

∣

∣

∣

∣

∣

= 4ℓi(θγ ,θ
′

γ) max
J⊆{1,...,2

ℓi(θγ,θ′γ )
}

∣

∣

∣

∣

∣

∣

PZtk(θ)





⋂

j∈J

Cij



− PZtk(θ′)





⋂

j∈J

Cij





∣

∣

∣

∣

∣

∣

.

Note that
⋂

j∈J Cij can be expressed as some(A1×(−∞, t1])×· · ·×(Ak×(−∞, tk]),

where eachAp ∈ BX andtp ∈ R, so that, lettinĝℓ = maxθ,θ′∈Θγ
maxi≤M̃k(γ)

ℓi(θ, θ
′)

andCk = {(A1 × (−∞, t1]) × · · · × (Ak × (−∞, tk]) : ∀j ≤ k,Aj ∈ BX , tk ∈ R},
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this last expression is at most

4ℓ̂ sup
C∈Ck

∣

∣PZtk(θ)(C)− PZtk(θ′)(C)
∣

∣ .

Next note that for anyC = (A1 × (−∞, t1]) × · · · × (Ak × (−∞, tk]) ∈ Ck, letting
C1 = A1 × · · · ×Ak andC2 = (−∞, t1]× · · · × (−∞, tk],

PZtk(θ)(C)− PZtk(θ′)(C) = E
[(

PYtk(θ)|Xtk
(C2)− PYtk(θ′)|Xtk

(C2)
)

IC1
(Xtk)

]

≤ E
[∣

∣PYtk(θ)|Xtk
(C2)− PYtk(θ′)|Xtk

(C2)
∣

∣

]

.

For p ∈ {1, . . . , k}, let C2p = (−∞, tp]. Then note that, by definition ofd, for any
givenx = (x1, . . . , xk), the classHx = {xp 7→ IC2p

(h(xp)) : h ∈ F} is a VC class
over{x1, . . . , xk} with VC dimension at mostd. Furthremore, we have
∣

∣PYtk(θ)|Xtk
(C2)− PYtk(θ′)|Xtk

(C2)
∣

∣

=
∣

∣

∣
P(IC21

(h∗
tθ
(Xt1)),...,IC2k

(h∗
tθ
(Xtk)))|Xtk

({(1, . . . , 1)})

− P(IC21
(h∗

tθ′
(Xt1)),...,IC2k

(h∗

tθ′
(Xtk)))|Xtk

({(1, . . . , 1)})
∣

∣

∣.

Therefore, the results of [YHC13] (in the proof of their Lemma 3) imply that
∣

∣PYtk(θ)|Xtk
(C2)− PYtk(θ′)|Xtk

(C2)
∣

∣

≤ 2k max
y∈{0,1}d

max
D∈{1,...,k}d

∣

∣

∣P{IC2j
(h∗

tθ
(Xtj))}j∈D|{Xtj}j∈D

({y})

− P{IC2j
(h∗

tθ′
(Xtj))}j∈D|{Xtj}j∈D

({y})
∣

∣

∣
.

Thus, we have

E
[∣

∣PYtk(θ)|Xtk
(C2)− PYtk(θ′)|Xtk

(C2)
∣

∣

]

≤ 2kE

[

max
y∈{0,1}d

max
D∈{1,...,k}d

∣

∣

∣P{IC2j
(h∗

tθ
(Xtj))}j∈D|{Xtj}j∈D

({y})

− P{IC2j
(h∗

tθ′
(Xtj))}j∈D|{Xtj}j∈D

({y})
∣

∣

∣

]

≤ 2k
∑

y∈{0,1}d

∑

D∈{1,...,k}d

E

[

∣

∣

∣
P{IC2j

(h∗
tθ
(Xtj))}j∈D|{Xtj}j∈D

({y})

− P{IC2j
(h∗

tθ′
(Xtj))}j∈D|{Xtj}j∈D

({y})
∣

∣

∣

]

≤ 2d+kkd max
y∈{0,1}d

max
D∈{1,...,k}d

E

[

∣

∣

∣
P{IC2j

(h∗
tθ
(Xtj))}j∈D|{Xtj}j∈D

({y})

− P{IC2j
(h∗

tθ′
(Xtj))}j∈D|{Xtj}j∈D

({y})
∣

∣

∣

]

.
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Exchangeability implies this is at most

2d+kkd max
y∈{0,1}d

sup
t1,...,td∈R

E

[

∣

∣

∣
P{I(−∞,tj ]

(h∗
tθ
(Xtj))}d

j=1|Xtd
({y})

− P{I(−∞,tj ]
(h∗

tθ′
(Xtj))}d

j=1|Xtd
({y})

∣

∣

∣

]

= 2d+kkd max
y∈{0,1}d

sup
t1,...,td∈R

E

[

∣

∣

∣P{I(−∞,tj ]
(Ytj(θ))}d

j=1|Xtd
({y})

− P{I(−∞,tj ]
(Ytj(θ′))}d

j=1|Xtd
({y})

∣

∣

∣

]

.

[YHC13] argue that for ally ∈ {0, 1}d andt1, . . . , td ∈ R,

E

[∣

∣

∣P{I(−∞,tj ]
(Ytj(θ))}d

j=1|Xtd
({y})− P{I(−∞,tj ]

(Ytj(θ′))}d
j=1|Xtd

({y})
∣

∣

∣

]

≤ 4
√

‖P{I(−∞,tj ]
(Ytj(θ))}d

j=1,Xtd
− P{I(−∞,tj ]

(Ytj(θ′))}d
j=1,Xtd

‖.

Noting that

‖P{I(−∞,tj ]
(Ytj(θ))}d

j=1,Xtd
− P{I(−∞,tj ]

(Ytj(θ′))}d
j=1,Xtd

‖ ≤ ‖PZtd(θ) − PZtd(θ′)‖

completes the proof.

We can use the above lemmas to design an estimator ofπθ⋆ . Specifically, we have
the following result.

Theorem 1. There exists an estimator θ̂Tθ⋆ = θ̂T (Z1d(θ⋆), . . . ,ZTd(θ⋆)), and func-
tions R : N0 × (0, 1] → [0,∞) and δ : N0 × (0, 1] → [0, 1] such that, for any α > 0,
lim

T→∞
R(T, α) = lim

T→∞
δ(T, α) = 0 and for any T ∈ N0 and θ⋆ ∈ Θ,

P

(

‖πθ̂Tθ⋆
− πθ⋆‖ > R(T, α)

)

≤ δ(T, α) ≤ α.

Proof. The estimator̂θTθ⋆ we will use is precisely the minimum-distance skeleton
estimate ofPZtd(θ⋆) [Yat85,DL01]. [Yat85] proved that ifN(ε) is theε-covering num-

ber of {PZtd(θ⋆) : θ ∈ Θ}, then taking thisθ̂Tθ⋆ estimator, then for someTε =
O((1/ε2) logN(ε/4)), anyT ≥ Tε has

E

[

‖PZtd(θ̂Tθ⋆ )
− PZtd(θ⋆)‖

]

< ε.

Thus, takingGT = inf{ε > 0 : T ≥ Tε}, we have

E

[

‖PZtd(θ̂Tθ⋆ )
− PZtd(θ⋆)‖

]

≤ GT = o(1).

9



LettingR′(T, α) be any positive sequence withGT ≪ R′(T, α) ≪ 1 andR′(T, α) ≥
GT /α, and lettingδ(T, α) = GT /R

′(T, α) = o(1), Markov’s inequality implies

P

(

‖PZtd(θ̂Tθ⋆ )
− PZtd(θ⋆)‖ > R′(T, α)

)

≤ δ(T, α) ≤ α. (1)

LettingR(T, α) = mink (Mk (R
′(T, α)) + rk), sinceR′(T, α) = o(1) andrk = o(1),

we haveR(T, α) = o(1). Furthermore, composing (1) with Lemmas 1, 2, and 3, we
have

P

(

‖πθ̂Tθ⋆
− πθ⋆‖ > R(T, α)

)

≤ δ(T, α) ≤ α.

Remark: Although the above result makes use of the minimum-distanceskeleton
estimator, which is typically not computationally efficient, it is often possible to achieve
this same result (for certain families of distributions) using a simpler estimator, such
as the maximum likelihood estimator. All we require is that the risk of the estimator
converges to0 at a known rate that is independent ofθ⋆. For instance, see [vdG00] for
conditions on the family of distributions sufficient for this to be true of the maximum
likelihood estimator.

3 Maximizing Customer Satisfaction in Combinatorial
Auctions

We can use Theorem 1 in the context of various applications. For instance, consider
the following application to the problem of serving a sequence of customers so as to
maximize their satisfaction.

Suppose there is a menu ofn items [n] = {1, . . . , n}, and each bundleB ⊆ [n]
has an associated pricep(B) ≥ 0. Suppose also there is a sequence of customers,
each with a valuation functionvt : 2[n] → R. We suppose thesevt functions are i.i.d.
samples. We can then calculate the satisfaction function for each customer asst(x),
wherex ∈ {0, 1}n, andst(x) = vt(Bx) − p(Bx), whereBx ⊆ [n] contains element
i ∈ [n] iff xi = 1.

Now suppose we are able to ask each customer a number of questions before serv-
ing up a bundleBx̂t

to that customer. More specifically, we are able to ask for the
valuest(x) for anyx ∈ {0, 1}n. This is referred to as avalue query in the literature on
preference elicitation in combinatorial auctions (see Chapter 14 of [CSS06], [ZBS03]).
We are interested in asking as few questions as possible, while satisfying the guarantee
thatE[st(x̂t)−maxx st(x)] ≤ ε.

Now suppose, for everyπ andε, we have a methodA(π, ε) such that, given that
π is the actual distribution of thest functions,A(π, ε) guarantees that thêxt value it
selects hasE[maxx st(x) − st(x̂t)] ≤ ε; also letN̂t(π, ε) denote the actual (random)
number of queries the methodA(π, ε) would ask for thest function, and letQ(π, ε) =
E[N̂t(π, ε)]. We suppose the method never queries anyst(x) value twice for a givent,
so that its number of queries for any givent is bounded.
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Also supposeF is a VC subgraph class of functions mappingX = {0, 1}n into
[−1, 1] with pseudodimensiond, and that{πθ : θ ∈ Θ} is a known totally bounded
family of distributions overF such that thest functions have distributionπθ⋆ for some
unknownθ⋆ ∈ Θ. For anyθ ∈ Θ andγ > 0, letB(θ, γ) = {θ′ ∈ Θ : ‖πθ−πθ′‖ ≤ γ}.

Suppose, in addition toA, we have another methodA′(ε) that is notπ-dependent,
but still provides theε-correctness guarantee, and makes a bounded number of queries
(e.g., in the worst case, we could consider querying all2n points, but in most cases there
are more cleverπ-independent methods that use far fewer queries, such asO(1/ε2)).
Consider the following method; the quantitiesθ̂Tθ⋆ , R(T, α), andδ(T, α) from Theo-
rem 1 are here considered with respectPX taken as the uniform distribution on{0, 1}n.

Algorithm 1 An algorithm for sequentially maximizing expected customer satisfac-
tion.

for t = 1, 2, . . . , T do
Pick pointsXt1, Xt2, . . . , Xtd uniformly at random from{0, 1}n

if R(t− 1, ε/2) > ε/8 then
RunA′(ε)
Takex̂t as the returned value

else
Let θ̌tθ⋆ ∈ B

(

θ̂(t−1)θ⋆ , R(t− 1, ε/2)
)

be such that

Q(πθ̌tθ⋆
, ε/4) ≤ min

θ∈B(θ̂(t−1)θ⋆ ,R(t−1,ε/2))
Q(πθ, ε/4) + 1/t

RunA(πθ̌tθ⋆
, ε/4) and letx̂t be its return value

end if
end for

The following theorem indicates that this method is correct, and furthermore that
the long-run average number of queries is not much worse thanthat of a method that
has direct knowledge ofπθ⋆ .

Theorem 2. For the above method, ∀t ≤ T,E[maxx st(x)−st(x̂t)] ≤ ε. Furthermore,
if ST (ε) is the total number of queries made by the method, then

lim sup
T→∞

E[ST (ε)]

T
≤ Q(πθ⋆ , ε/4) + d.

Proof. By Theorem 1, for anyt ≤ T , if R(t− 1, ε/2) ≤ ε/8, then with probability at
least1− ε/2, ‖πθ⋆ − πθ̂(t−1)θ⋆

‖ ≤ R(t− 1, ε/2), so that a triangle inequality implies

‖πθ⋆ − πθ̌tθ⋆
‖ ≤ 2R(t− 1, ε/2) ≤ ε/4. Thus,

E

[

max
x

st(x)− st(x̂t)
]

≤ E

[

E

[

max
x

st(x)− st(x̂t)
∣

∣

∣θ̌tθ⋆

]

1
[

‖πθ̌tθ⋆
− πθ⋆‖ ≤ ε/2

]]

+ ε/2. (2)

For θ ∈ Θ, let x̂tθ denote the pointx that would be returned byA(πθ̌tθ⋆
, ε/4) when

queries are answered by somestθ ∼ πθ instead ofst (and supposingst = stθ⋆ ). If
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‖πθ̌tθ⋆
− πθ⋆‖ ≤ ε/4, then

E

[

max
x

st(x)− st(x̂t)
∣

∣

∣
θ̌tθ⋆

]

= E

[

max
x

stθ⋆(x)− stθ⋆(x̂t)
∣

∣

∣
θ̌tθ⋆

]

≤ E

[

max
x

stθ̌tθ⋆ (x)− stθ̌tθ⋆ (x̂tθ̌tθ⋆
)
∣

∣

∣θ̌tθ⋆

]

+ ‖πθ̌tθ⋆
− πθ⋆‖ ≤ ε/4 + ε/4 = ε/2.

Plugging into (2), we have

E

[

max
x

st(x)− st(x̂t)
]

≤ ε.

For the result onST (ε), first note thatR(t − 1, ε/2) > ε/8 only finitely many
times (due toR(t, α) = o(1)), so that we can ignore those values oft in the asymptotic
calculation (as the number of queries is always bounded), and rely on the correctness
guarantee ofA′ for correctness. For the remainingt values, letNt denote the number
of queries made byA(πθ̌tθ⋆

, ε/4). then

lim sup
T→∞

E[ST (ε)]

T
≤ d+ lim sup

T→∞

T
∑

t=1

E [Nt] /T.

Since

lim
T→∞

1

T

T
∑

t=1

E

[

Nt1[‖πθ̂(t−1)θ⋆
− πθ⋆‖ > R(t− 1, ε/2)]

]

≤ lim
T→∞

1

T

T
∑

t=1

2nP
(

‖πθ̂(t−1)θ⋆
− πθ⋆‖ > R(t− 1, ε/2)

)

≤ 2n lim
T→∞

1

T

T
∑

t=1

δ(t− 1, ε/2) = 0,

we have

lim sup
T→∞

T
∑

t=1

E [Nt] /T = lim sup
T→∞

1

T

T
∑

t=1

E

[

Nt1[‖πθ̂(t−1)θ⋆
− πθ⋆‖ ≤ R(t− 1, ε/2)]

]

.

For anyt ≤ T , let Nt(θ̌tθ⋆) denote the number of queriesA(πθ̌tθ⋆
, ε/4) would make

if queries were answered withstθ̌tθ⋆ instead ofst. On the event‖πθ̂(t−1)θ⋆
− πθ⋆‖ ≤

R(t− 1, ε/2), we have

E

[

Nt

∣

∣

∣
θ̌tθ⋆

]

≤ E

[

Nt(θ̌tθ⋆)
∣

∣

∣
θ̌tθ⋆

]

+ 2R(t− 1, ε/2)

= Q(πθ̌tθ⋆
, ε/4) + 2R(t− 1, ε/2) ≤ Q(πθ⋆ , ε/4) + 2R(t− 1, ε/2) + 1/t.

Therefore,

lim sup
T→∞

1

T

T
∑

t=1

E

[

Nt1[‖πθ̂(t−1)θ⋆
− πθ⋆‖ ≤ R(t− 1, ε/2)]

]

≤ Q(πθ⋆ , ε/4) + lim sup
T→∞

1

T

T
∑

t=1

2R(t− 1, ε/2) + 1/t = Q(πθ⋆ , ε/4).
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Note that in many cases, this result will even continue to hold with an infinite
number of goods (n = ∞), since the general results of the previous section have no
dependence on the cardinality of the spaceX .
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