
The Connection Between Manifold Learning and
Distance Metric Learning

Liu Yang

October 28, 2007

Manifold Learning learns a low-dimensional embedding of the latent manifold. In
this report, we give the definition of distance metric learning, provide the categorization
of manifold learning, and describe the essential connection between manifold learning
and distance metric learning, with special emphasis on nonlinear manifold learning,
including ISOMAP, Laplacian Eigenamp (LE), and Locally Linear Embedding (LLE).

1 Distance Metric Learning and Linear Projective Map-
ping

The distance between pointsx ∈ RM andy ∈ RM is defined as

d(x,y) = (x − y)>A(x − y) (1)

The typical problem of distance metric learning is the learning of theA ∈ <M×M .
We can further write Equation (1) as

d(x,y) = (x − y)>A
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= (Px − Py)>(Px − Py) (2)

with P = A
1

2 . It is clear that the learning ofA is equivalent to the learning of a linear
projective mappingP in the feature space.

The linear manifold learning methods, which learn a linear transformation, can be
interpreted as learning the projectiveA

1

2 matrix as above, and essentially solving the
exact problem as distance metric learning. Therefore, any linear manifold learning
algorithm that is able to learn an explicit projective mapping has the equivalent goal of
learning a distance metric.
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Methods Linear Nonlinear
Global Principal Component Analysis (PCA) [4] ISOMAP [8]
structure Multidimensional Scaling (MDS) [3]
preserved Independent Components Analysis (ICA) [2]
Local
structure Locality Preserving Projections (LPP) [5] Laplacian Eigenamp (LE) [1]
preserved Neighborhood Preserving Embedding (NPE) [6]Locally Linear Embedding (LLE) [7]

Table 1: Categorization of Manifold Learning Methods

2 Manifold Learning Methods and their connections to
Distance Metric Learning

Manifold Learning approaches can be categorized along the following two dimensions:
first, the learnt embedding is linear or nonlinear; and second, the structure to be pre-
served is global or local (see Table 1). Based on the analysisin section 1, all the linear
methods in Table 1 except Multidimensional Scaling (MDS), learn an explicit linear
projective mapping and can be interpreted as the problem of distance metric learning.
MDS finds the low-rank projection that best preserves the inter-point distance matrix
E. This low-rank projection has its intrinsic relation to thePCA linear mapping :
V pca = XV mds. HereX is the data matrix,V pcaare the principle eigenvectors of
the PCA covariance matrix; andV mdsare the principle eigenvectors ofHEH (H is
the centering matrix).

The nonlinear manifold learning methods, with no explicit projective mapping to
be learnt, generate nonlinear Embedding (e.g. ISOMAP, LLE,and LE). To analy-
sis their connection to distance metric learning, first, we should realize the common
nature of preserving distance constraints, although the specific forms of distance con-
straints may vary. Distance metric learning methods preserve the binary distance (1
as must-link and0 as cannot-link), for instance, pairwise constraints and chunklets.
ISOMAP preserves the geodesic distance between pairs of data points, which is esti-
mated by computing shortest paths through large sublattices of data (ISOMAP applies
MDS to the geodesic distance matrix). LLE preserves distance based on locally linear
combination of neighborhood. And LE preserves the distancedescribed by a weighted
connected graph constructed from neighborhood. Second, the nonlinear representa-
tion computed by ISOMAP, LLE, and LE, can be interpreted as the data representation
(xi −xj)A

1

2 obtained in distance metric learning. Third, and more importantly, linear
mappings that approximate Locally Linear Embedding (LLE) and Laplacian Eigenamp
can be computed. In particular, Neighborhood Preserving Embedding (NPE) is a linear
approximation of Locally Linear Embedding (LLE); and Locality Preserving Projec-
tion (LPP) is a linear approximation to Laplacian Eigenmaps(LE). Below provides the
details.

DenoteW as the weight matrix,X = (x1, · · · ,xN ) ∈ <M×N as the data matrix
containingN data points in the original feature space, andY = (y1, · · · ,yN ) ∈
<m×N as the nonlinear embedding matrix, withm ≤ M .

Locally Linear Embedding (LLE) constructs a neighbor-preserving mapping by
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minimizing the cost functionΦ(Y) =
∑

i ‖yi−
∑K

i=1
W∗

ijyij‖ = ‖Y>MY‖2, where
M = (I − W∗)>(I − W∗), andW∗ = argmin

∑
i ‖xi −

∑
j Wijxj‖

2. Neighbor-
hood Preserving Embedding (NPE) introduces a linear transformationB ∈ <M×m

so thatY = B>X. Then the above minimization problem reduces to findingB =
argmin

B>XX>B=1
B>XMX>B. The transformation matrixB is the minimum eigen

solution to the generalized eigenvector problem:XMX>B = λXX>B. The matrix
M provides a discrete approximation to the Laplace Beltramioperator on the mani-
fold [6]. This indicates NPE provides a way to linearly approximate the eigenfunctions
of the Laplace Beltrami operator on the manifold.

Laplacian Eigenamp (LE) computes the nonlinear embeddingy by solving the gen-
eral eigen problemLy = λDy, whereD is a diagonal matrix whose entries are column
sums of the weight matrixW, andL = D − W is the Laplacian matrix. Local-
ity Preserving Projections (LPP) introduces a linear transformationC<M×m, so that
y = C>x. Then the eigen problem in LE can be reduced to the solution ofa general-
ized eigen problemXLX>C = λXDX>C.

From the above analysis, we can see that LLE and LE are both associated with
distance metric learning through their linear approximation.

Conclusively, linear manifold learning is solving the similar problem as distance
metric learning; and nonlinear manifold learning also has its essentially connections to
distance metric learning.
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