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Manifold Learning learns a low-dimensional embedding &f itent manifold. In
this report, we give the definition of distance metric leagaiprovide the categorization
of manifold learning, and describe the essential conne&@ween manifold learning
and distance metric learning, with special emphasis onimeal manifold learning,
including ISOMAP, Laplacian Eigenamp (LE), and Locally ear Embedding (LLE).

1 DistanceMetricLearningand Linear Projective M ap-
ping
The distance between pointse R andy € RM is defined as

dx,y) = (x-y) Ax-y) (1)

The typical problem of distance metric learning is the laggrof theA € RM>*M
We can further write Equation (1) as

dxy) = (x—y) A} Ab(x—y)
= (A%X—A%y)T(A%x—A%y)
= (Px-—Py)' (Px—Py) @)

with P = Az. Itis clear that the learning Ak is equivalent to the learning of a linear
projective mappind in the feature space.

The linear manifold learning methods, which learn a lineansformation, can be
interpreted as learning the projectixhe% matrix as above, and essentially solving the
exact problem as distance metric learning. Therefore, em@at manifold learning
algorithm that is able to learn an explicit projective maggphas the equivalent goal of
learning a distance metric.



Methods | Linear Nonlinear
Global Principal Component Analysis (PCA) [4] ISOMAP [8]
structure | Multidimensional Scaling (MDS) [3]
preserved| Independent Components Analysis (ICA) [2]

Local
structure | Locality Preserving Projections (LPP) [5] Laplacian Eigenamp (LE) [1]
preserved| Neighborhood Preserving Embedding (NPE) [6).ocally Linear Embedding (LLE) [7]

Table 1: Categorization of Manifold Learning Methods

2 Manifold Learning M ethods and their connectionsto
Distance Metric Learning

Manifold Learning approaches can be categorized alongtleing two dimensions:
first, the learnt embedding is linear or nonlinear; and sd¢ctime structure to be pre-
served is global or local (see Table 1). Based on the analysiction 1, all the linear
methods in Table 1 except Multidimensional Scaling (MD®arh an explicit linear
projective mapping and can be interpreted as the problenst#rite metric learning.
MDS finds the low-rank projection that best preserves theripbint distance matrix
E. This low-rank projection has its intrinsic relation to tRE€A linear mapping :
yPca_ xyMds Here X is the data matrix)’PC@are the principle eigenvectors of
the PCA covariance matrix; aridMdS are the principle eigenvectors BEEH (H is
the centering matrix).

The nonlinear manifold learning methods, with no explicibjpctive mapping to
be learnt, generate nonlinear Embedding (e.g. ISOMAP, Larg] LE). To analy-
sis their connection to distance metric learning, first, Wweuwd realize the common
nature of preserving distance constraints, although tkeiip forms of distance con-
straints may vary. Distance metric learning methods pwvestite binary distancel (
as must-link and) as cannot-link), for instance, pairwise constraints anghklets.
ISOMAP preserves the geodesic distance between pairs afpdatts, which is esti-
mated by computing shortest paths through large sublattitdata (ISOMAP applies
MDS to the geodesic distance matrix). LLE preserves digtérased on locally linear
combination of neighborhood. And LE preserves the distaleseribed by a weighted
connected graph constructed from neighborhood. Secoerdhdhlinear representa-
tion computed by ISOMAP, LLE, and LE, can be interpreted agi#ta representation
(x; — xj)A% obtained in distance metric learning. Third, and more irtgudty, linear
mappings that approximate Locally Linear Embedding (LLE] &aplacian Eigenamp
can be computed. In particular, Neighborhood Preservingdtiding (NPE) is a linear
approximation of Locally Linear Embedding (LLE); and LoitalPreserving Projec-
tion (LPP) is a linear approximation to Laplacian Eigenm@ts). Below provides the
details.

DenoteW as the weight matrixX = (x,--- ,xy) € RM*V as the data matrix
containing N data points in the original feature space, d= (yi, - ,yn) €
Rm*N as the nonlinear embedding matrix, with< M.

Locally Linear Embedding (LLE) constructs a neighbor-presg mapping by




minimizing the cost functio®(Y) = >, ||yi—zl.K:1 Wil = [[Y TMY|?, where
M = (I-W*)"(I- W), andW* = argminy_, [|x; — >, Wi;x;|*>. Neighbor-
hood Preserving Embedding (NPE) introduces a linear toamsdtionB ¢ RM*™
so thatY = BTX. Then the above minimization problem reduces to findBig=
argmingrxxrp_; B' XMX " B. The transformation matriB is the minimum eigen
solution to the generalized eigenvector probl&MX 'B = AXX " B. The matrix
M provides a discrete approximation to the Laplace Beltrap@rator on the mani-
fold [6]. This indicates NPE provides a way to linearly appnoate the eigenfunctions
of the Laplace Beltrami operator on the manifold.

Laplacian Eigenamp (LE) computes the nonlinear embedgimgsolving the gen-
eral eigen problerhy = ADy, whereD is a diagonal matrix whose entries are column
sums of the weight matriW, andL. = D — W s the Laplacian matrix. Local-
ity Preserving Projections (LPP) introduces a linear tiamsationCRM*™ so that
y = C"x. Then the eigen problem in LE can be reduced to the solutiengeneral-
ized eigen problerXLX "C = AXDX ' C.

From the above analysis, we can see that LLE and LE are botitiagsd with
distance metric learning through their linear approxiomati

Conclusively, linear manifold learning is solving the dianiproblem as distance
metric learning; and nonlinear manifold learning also hees$sentially connections to
distance metric learning.
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