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ABSTRACT

The goal of interactive search-assisted diagnosis (ISAD) is to enable doctors to make more informed decisions about a
given case by providing a selection of similar annotated cases. For instance, a radiologist examining a suspicious mass
could study labeled mammograms with similar conditions and weigh the outcome of their biopsy results before deter-
mining whether to recommend a biopsy. The fundamental challenge in developing ISAD systems is the identification
of similar cases, not simply in terms of superficial image characteristics, but in a medically-relevant sense. This task
involves three aspects: extraction of a representative set of features, identifying an appropriate measure of similarity in
the high-dimensional feature space, and return the most similar matches at interactive speed. The first has been an active
research area for several decades. The second has largely been ignored by the medical imaging community. The third can
be achieved using the Diamond framework, an open-source platform that enables efficient exploration of large distributed
complex data repositories. This paper focuses on the second aspect. We show that the choice of distance metric affects
the accuracy of an ISAD system and that machine learning enables the construction of effective domain-specific distance
metrics. In the learned distance, data points with the same labels (e.g., malignant masses) are closer than data points
with different labels (e.g., malignant vs. benign). Thus, the labels of the near neighbors of a new case are likely to be
informative. We present and evaluate several novel methods for distance metric learning and evaluate them on a database
involving 2522 mass regions of interest (ROI) extracted from digital mammograms, with ground truth defined by biopsy
results (1800 malignant, 722 benign). Our results show that learned distance metrics improve both classification (ROC
curve) and retrieval performance.

Keywords: methods: classification and classifier design; modalities: mammography; diagnostic task: diagnosis (mass
classification); CAD/ISAD; machine learning: (distance metrics, boosting); Diamond.

1. INTRODUCTION

Computer-aided detection (CAD) of breast cancer is rapidly becoming a well-accepted clinical practice to assist radiologists
in interpreting screening mammograms.*> A number of studies have determined that radiologists’ attitude toward and
acceptance of CAD-cued micro-calcification clusters and masses were substantially different.>* Due to the high detection
rate for micro-calcification clusters (i.e., > 98%°), radiologists rely heavily on CAD-cued results. In such cases, CAD
can substantially improve the efficiency of radiologists in interpreting screening mammograms and also helps them detect
more subtle cancers.” However, for masses, current CAD schemes have a lower detection rate. For example, Brem et
al. reported that CAD detected 65% (80 of 123) of cancers in which the masses were considered visible in retrospective
reviews;® while Warren Burhenne et al. reported a 77% (89 of 115) detection rate for false-negative cancers.” Although
CAD schemes can detect a substantial fraction of masses missed by radiologists in their initial interpretation, users in a
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busy clinical environment frequently discard CAD-cued detections for two reasons: (1) CAD systems are known to have
a high false positive rate; (2) subtle masses are typically cued by CAD only on one of the views. In one prospective
study involving 6,111 screening examinations radiologists discarded 7 of 8 CAD-cued false-negative masses (cancers).'?
In another recent prospective study, radiologists detected 43 of 48 cancers without using CAD. CAD detected 3 of the 5
missed cancers (two were micro-calcifications and one was a mass). Because the mass was detected only on one view, it
was ultimately discarded by the radiologist and the two micro-calcification clusters were retained. As a result, radiologists
detected 45 cancers (4.7% increase in sensitivity) with 15% increase in detection rate by using CAD.!!

In order to improve CAD performance for mass detection and increase radiologists’ confidence in CAD-cued mass
regions, the development of interactive computer-aided diagnosis (ICAD) schemes has been attracting wide research in-
terest.!>”!> The purpose of developing ICAD systems is to provide radiologists “visual aids” and increase their confidence
in accepting CAD-cued subtle masses. For the development of ICAD systems, a large and diverse image reference library
with verified pathology results is first assembled. Each selected region of interest (ROI) depicts a verified mass (either
malignant or benign). In the application of ICAD systems, once a suspected mass region is identified or queried by the
radiologist, the CAD scheme computes a set of features to characterize the region and its surrounding tissue. Then, the
scheme searches for and identifies a set of reference regions that are considered “most similar” to the queried ROI. Sev-
eral approaches have been investigated for automated similarity measurement, including the use of computer-extracted
image features,'? content-based image retrieval using a neural network,'® multi-feature based k-nearest neighbor (KNN)
algorithm,'* and information theory (e.g., pixel value based mutual information).'> The CAD-generated detection and/or
classification scores, as well as the CAD-selected similar reference regions along with their verified outcome (malignant
or benign) are displayed side by side with the queried image (or region) on an ICAD workstation.'>!* By comparing
the queried (suspected mass) region to the set of CAD-retrieved “similar” reference regions, radiologists can incorporate
CAD-generated detection and classification scores into their decision making.

Previous studies have shown that CAD schemes with good performance can enhance radiologists’ abilities whereas
CAD schemes with poor performance can actually detract from them.!®!” Therefore, a key step in the development of
ICAD schemes for mammography is to improve their performance in classifying between malignant and benign mass
regions. We show that the choice of distance metric affects the performance of an ICAD system and that machine learning
enables the construction of effective domain-specific distance metrics. In the learned distance, data points with the same
labels (e.g., malignant masses) are closer than data points with different labels (e.g., malignant vs. benign). Thus, the labels
of the near neighbors of a new case are likely to be informative. We present and evaluate several novel methods for distance
metric learning and evaluate them on a large and diverse image database using ROC and precision rank retrieval analysis.

The paper is organized as follows. Section 2 introduces the idea of interactive-search based diagnosis (ISAD) and
outlines the challenge of learning similarity from data. Section 3 details the idea of supervised distance metric learning and
presents three algorithms. Section 4 describes our implementation, including the UPMC dataset, choice of features and
the search system. Section 5 presents experimental evaluations of distance metric learning against traditional Euclidean
distance metrics. Section 6 concludes the paper.

2. INTERACTIVE SEARCH-ASSISTED DIAGNOSIS

Interactive search-assisted diagnosis (ISAD) is a form of interactive computer-aided diagnosis (ICAD) that focuses on
retrieving medically-relevant annotated images from a large reference repository. Unlike traditional ICAD systems that
primarily cue the radiologist with suspicious masses, ISAD aims to improve medical diagnosis by presenting a small set of
medically-relevant cases with outcomes. The goal of ISAD is not to automatically suggest diagnoses, but to enable medical
professionals to make more informed decisions by providing similar cases for comparison. For instance, a radiologist
examining a suspicious mass could study labeled mammograms with similar conditions and weigh the outcome of their
biopsy results before determining whether to recommend a biopsy. ISAD is conceptually similar to content-based image
retrieval (CBIR),'® where the goal is to retrieve images that match a particular semantic concept; an ISAD query consists
of an image and the result is a set of textual annotations along with the corresponding similar images from the repository.

ISAD poses three research challenges. First, how should one characterize the image content? Second, what criterion
should be used to define similarity between two images? Third, how can we efficiently perform near-neighbor searches
over large repositories for novel queries? The first has been an active research problem in medical imaging for decades.
This paper makes no contributions in that area; for our experiments, we employ the feature set proposed by Zheng et al.'’
for CAD.
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Figure 1: The goal of Interactive Search Assisted Diagnosis (ISAD) is to enable radiologists to make better decisions about
a given case by presenting relevant annotated cases from large medical repositories.

The second challenge is the primary focus of this paper. Traditionally, one maps an ROI described using a set of m
features to a point in m-dimensional space, R™. In such a representation, the ROIs in the reference library generate a
high-dimensional cloud of points. Given a novel query ROI, the ISAD system can perform feature extraction and map the
query into a new point in the feature space. Similar ROIs in the reference library should correspond to near-neighbors of the
query in feature space. A natural choice of distance metric in this space is the Euclidean distance. However, recent research
in machine learning has shown that one can develop specialized distance metrics that improve classification and retrieval
accuracy by exploiting side information (i.e., relationships between elements in the training data that are not expressed in
the feature set, such as matching labels). We explore several methods for learning effective distances for ISAD.

The third challenge is to make near-neighbor search in large repositories efficient enough for interactive queries. The
standard approach to efficient search (e.g., in web search) has been to employ indexing. Unfortunately, standard indexing
techniques such as KD-trees,?° fail in high-dimensional feature spaces due to the curse of dimensionality.* When indexing
fails, the only alternative today is brute force search. Ihis is so slow on a large body of data that it is only performed in the
context of data mining, typically as a batch job that runs overnight. Consequently, practical systems have eschewed the use
of near-neighbor searches for interactive query applications involving large, high-dimensional repositories.

Fortunately, near-neighbor searches are amenable to parallel execution. Diamond?? is an open-source software system
jointly created by Intel Research and Carnegie Mellon University to provide this capability. It embodies a new software
architecture for rapidly scanning large volumes of distributed data and filtering that data with domain-specific software.
Central to the Diamond architecture is the concept of early discard: the ability to reject irrelevant data items very close
to their point of storage, thus incurring low data transmission overhead. This architecture can be mapped to a variety of
storage back-ends such as SANs (storage area networks), blade servers on LANs (local area networks), Internet servers,
and distributed file systems. Our ISAD application, described in Section 4, is implemented using Diamond. By partitioning
the ROI image repository over a set of servers, Diamond can parallelize the search and provide timely results for each ISAD

query.

3. DISTANCE METRIC LEARNING

Supervised distance metric learning has recently become an active area of research in machine learning.>>->® In this
framework, the feature data is supplemented by side information in the form of pairwise “similarity” and “dissimilarity”
relationships between objects. For instance, two ROI images that were visually similar to a radiologist could be tagged as
“similar”. In the absence of human labeling, we can tag reference cases with the same biopsy label (i.e., “benign” or “ma-
lignant”) as being similar, and those with different biopsy labels as dissimilar. The goal is then to learn a distance function



that best satisfies these constraints. In other words, a good distance function should ensure that the local neighborhood
of a given object contains similar rather than dissimilar objects. Specifically, we expect that the local neighborhood of a
suspicious mass will be dominated by malignant reference ROIs, if the query mass is malignant.

A variety of algorithms have been proposed for supervised distance metric learning. In general, these techniques
formulate distance metric learning as an optimization problem (e.g., minimize error on the training set subject to the
pairwise constraints). We briefly review some of these algorithms and present our novel approach, boosted distance metric
learning (BDM) below.

3.1. Global Distance Metric Learning

The intuition behind global distance metric learning?® (GDM) is straightforward: keep all of the “similar” data pairs close
while separating pairs that are “dissimilar”. This can be formulated as a optimization problem where the objective is to
minimize the distance between “similar” pairs subject to the constraint that “dissimilar” pairs are well separated.

Thus, we formulate distance metric learning as follows. Let C = {x1,Xa2, ..., X,, } be a collection of data points, where
n is the number of samples and each x; € R™ is a vector of m features. Let the set of similarity constraints and the set of
dissimilarity constraints denoted by

S = {(xi,x;)| x; and x; belong to the same class — i.e., both malignant or both benign},

D = {(xi,x;)|x; and x; belong to different classes},

respectively. Let the distance metric be denoted by matrix A € R™>™, and the distance between two points x and y be
expressed by
da(x,y) =|x —yl[a = (x—y) Ax —y).

Then, our goal is to solve the optimization problem:

: w12
aduin Y0 [k - xR (1)
(xi,x5)€S
st Y aexlazt
(xi,x;)€D
A >0.

An attractive property of GDM is that Eqn. 1 is a convex problem, which means that it has a single global optimum and
can be solved efficiently using standard techniques.

Unfortunately, multimodal data distributions in the feature space can lead to problems for GDM. In such cases, when
data points from one class are interleaved with those from another, it may be impossible to simultaneously satisfy the
goals of separating dissimilar examples and contracting similar ones. In such cases, the global distance metric may simply
collapse the data into a lower-dimensional space — resulting in a detrimental impact on classification accuracy, as shown
in Fig. 2. This observation has stimulated interest in algorithms for local distance metric learning.

3.2. Local Distance Metric Learning

As discussed above, for many realistic data distributions, simultaneously satisfying all of the given similarity/dissimilarity
constraints may be impossible. Local distance metric learning (LDM)?* is a conceptual modification of GDM where greater
importance is given to satisfying local constraints (i.e., those constraints between nearby data points). Thus, by weighting
constraints based on the distances between pairs of data points, the algorithm attempts to ensure that the local neighborhood
of each data point will contain similar points. Clearly, employing the notion of “locality” in distance metric learning leads
to a circular definition: the weights on each constraint depend upon the learned metric, but learning the metric requires that
these weights be specified.

m

Consider a data point x that is involved in one of the constraints in the set S and the set D. Let ®g(x) = {x;|(x, x;)
S} include all of the data points that pair with x in the similarity constraints. Similarly, let ®p(x) = {x;|(x,x;) € D}
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Figure 2: GDM performs poorly on multi-modal data distributions because it cannot simultaneously satisfy similarity and
dissimilarity constraints. In such cases, the data collapses into a lower-dimensional space resulting in poorer classification
accuracy.

include all of the data points that pair with x in the dissimilarity constraints. Now, according to the kernel-based KNN, the
probability of making the right prediction for x, denoted by Pr(+|x), can be written as

Z f(xa Xi)
%, EPg(x)
Pr(+[x) = )
Z f(vai)+ Z f(X,Xj)
%, EPg(x) x;€Pp(x)
where the kernel function f(x,x’) is defined as
fx,x") = exp (=[lx —x[|A) - 3)
Using leave-one-out estimation and Eqn. 2, we can write the log likelihood for both S and D as
Li(A) = > logPr(+]x) )
xeT
Z f(xa Xi)
= Z log xi €25 (x)
zeT Z f(X, Xi) + Z f(X,Xj)
- x;€P 5 (x) x;€Pp(x)
where the set 7 = {x3,...,X,} includes all of the data points involved in the constraints given in sets S and D. Using
maximum likelihood estimation, we cast local distance metric estimation into the following optimization problem
min Li(A)
AeRanl
s. t. A >0 5)

Remark: Note that in Eqn. 5, it is the ratio between the kernel function f(x, x;) evaluated at different data points x; that
determines the probability Pr(+|x). When a data point x; is relatively far from x compared to other data points in ®(x)g
and ®(x)p, its kernel value f(x,x;) will be relatively smaller than the kernel value of other data points. Hence, local
constraints (those involving data pairs that are close) will have a much greater impact on the objective function £;(A) than
constraints involving distant data points.

We solve this optimization problem efficiently using the iterative algorithm described in Yang et al.>* In a manner
analogous to Expectation-Maximization (EM),?’ the algorithm is initialized using a randomly-generated distance metric



(corresponding to a legal positive semi-definite matrix A). In each iteration, the algorithm alternates between: (1) com-
puting weights on each constraint based on the current distance metric; and (2) re-estimating the parameters for a better
distance metric by solving an optimization problem. As with EM, the algorithm is guaranteed to converge to a locally-
optimal solution (but not to a global optimum).

3.3. Boosted Distance Metric Learning

Boosted distance metric (BDM) learning is a novel approach to supervised distance metric learning. Unlike standard
algorithms that learn variants on the Euclidean distance, the BDM generates a weighted Hamming distance (i.e., a weighted
sum of binary features). The approach is motivated by the recent success of boosted classifiers in machine learning. The
key idea behind boosting?® is that one can construct a very accurate classifier using an ensemble of appropriately-selected
weak classifiers, where each weak classifier need only be slightly better than random chance. Boosting works in an iterative
manner as follows. First, the ensemble is initialized with a weak classifier trained on the original dataset. Next, at the start
of each iteration, the training data is re-weighted to increase the worth of any (previously-)misclassified exemplars and
used to train a new weak classifier. As a result of the weighting, the new classifier has an incentive to focus on solving
misclassified cases. The new classifier is added to the ensemble and the procedure repeated until the desired level of
accuracy (on the training set) has been obtained. The output of the classifier ensemble is simply a weighted combination
of the outputs of individual classifiers.

Whereas boosting is traditionally used to train classifiers (i.e., the input is a single data point and the output is a label),
BDM employs boosting to learn a distance function (i.e., the input is a pair of data points and the output is a positive real
number). The intuition behind BDM is that it projects the data into a space of binary features (Hamming space), where
each dimension corresponds to the output of a weak classifier. Ideally, two data objects that are very similar will generate
the same (binary) outputs from many of the weak classifiers and will therefore project to nearby regions in Hamming space.
In other words, the binary features corresponding to semantically-similar data objects are likely to match in many bits. And
while no single binary feature is particularly reliable, the output of the ensemble can become an accurate measure of the
semantic distance between data objects. In each iteration, we first identify the subset of data points that should be near
(based on label information) but are far apart in the current representation. We then identify a best binary projection that
moves these points closer while keeping data points from different classes well separated. Each projection generates one
bit in the representation, and the iterative procedure is repeated until either desired accuracy or storage constraints have
been reached.

BDM is formalized as follows. As in LDM, the goal is to move the data points from the same classes close to each
other while keeping data from different classes well separated. Let the set of labeled example pairs be denoted by P =
{(xi;%,v:5)|%xi € D,x; € D,y; ; € {—1,0,+1}} where the class label y; ; is defined as follows:

+1 x; and x; belong to the same class;
_ —1 x; and x; belong to different classes;
Yii = 0 the relationship between the class
labels of x; and x; is unknown.

Since our goal is to move the data points from same classes close to each other while keeping the data points from different
classes well separated, we use the following objective function for the BDM framework:

F(P) = > 6(yij—1)6(yik, +1) exp (d(x;, xx) — d(x;,%;)) (6)
i k=1

Each term in this function is evaluated based on the difference between d(x;, x;) and d(x;, x;). The former is the distance
between two data points from different classes, and the latter is the distance between two data points from the same class.
Hence, by minimizing the objective function F'(P), we can ensure that data points from the same classes will be kept
closer to each other compared to data points of different classes. Note that naive approaches to this optimization problem
are computationally expensive since the number of terms in the objective function is on the order of O(n?). This motivates
the need for efficient approaches to the problem.

To minimize the objective function in Eqn. 6, we need to define a distance function d(x;, x;) that (1) is non-negative,
and (2) satisfies the triangle inequality. Let f(x) : R™ — {—1,+1} denote the classification model that will be used to



construct the distance function. For each example x, the classifier f(-) will assign x to either the negative class (i.e., —1)
or the positive class (i.e., +1). Let f;,¢ = 1,2,...,T denote the binary classifiers that are learned in successive iterations
of the boosting algorithm. We then construct the distance function as a weighted Hamming distance:

T
d(Xian):Zat (ft(xi)—ft(xj))Q» )
t=1
where oy > 0,t = 1,2,...,T are the combination weights. Clearly, d(x,,X;) in Eqn. 7 is non-negative and also satisfies
the triangle inequality.
Given the distance function in Eqn. 7, our goal is to learn appropriate classifiers f;(x),t = 1,2,...,7T and combination
weights ay,t = 1,2,...,T. In order to efficiently learn the parameters and functions, we follow the idea of boosting

and take the greedy approach for optimization. More specifically, we start with a constant function for distance, i.e.,
do(x4,%;) = 0, and learn a distance function d, (x;,%;) = do(xi,x;) + a1 (f1(x;) — f1(x;))>. Using this distance
function, the objective function in Eqn. 6 becomes a function of «; and f;(x), and can be optimized efficiently using
bound optimization. Given distance function d; (x;, x;), we then proceed to learn cp and f(x) by considering da(x;, X;)
that is computed as

da(xi,%;) = 0+ o (fr(x:) — f1(x5))° + o (fi(x:) — fa(x;))" da(xi,%;) + a2 (f1(x:) — fa(x;))7.

In general, given a distance function d;_ (x;,x;) that is learned in iteration ¢ — 1, we will learn o, and f;(x) by using the
following distance function:

de(xi,%5) = di1(xi,%5) + o (fr(x:) — fo(x5)).

Using the above expression for distance function, the objective function in Eqn. 6 becomes a function of a; and f;(x), i.e.,

n

F(P) = Z {6(ij,—1) 6(yin, 1) exp(dip — dij + a(f(x:) — f(xx))* — a(f(xi) = f(x;))°)} (8)

i\j k=1

where d; j, @ and f(.) denote d¢—1(x;, X;), a; and f(.), respectively. Hence, the key question is how to find the classifier
f(x) and weight .. Appendix A details our efficient optimization algorithm for solving the problem.

4. IMPLEMENTATION
4.1. Image Database and Features

We use the UPMC dataset, which consists of 2522 regions of interest (ROIs) depicting verified masses from a reference
library established at the Radiographic Imaging Research Center, University of Pittsburgh. Among these, 1800 regions
are associated with pathology-proven malignant masses and the remaining 722 regions are associated with benign masses.
Each ROl is a 512x 512 pixel region extracted from a digitized mammogram (with each pixel mapping to 100um x 100um,).
The mass boundary contour was first automatically detected using an adaptive topographic region growth algorithm."”
Based on local contrast estimation, this region growth algorithm grows three topographic layers to define the final boundary
contour of the mass region. The growth region (segmentation result) was then visually examined and manually corrected
(if needed) by experienced observers. The computer scheme computed a set of 36 morphological and intensity (pixel
value) distribution based features to represent each selected mass region. Among these 36 features, 8 were computed from
the whole breast area (“global” features) and the remaining 24 were computed from the segmented mass region and its
surrounding tissue background (“local” features). More information on the features is available in Zheng et al.'* !

4.2. MassFind: A Prototype Application of ISAD for Breast Lesions

We have developed a prototype implementation of ISAD using the Diamond distributed search framework.?? Figure 3
shows some screenshots of an interactive search. In Fig. 3(a), the user selects a query ROI centered on a suspicious mass
from one of the mammograms in the left panel. The user selects the desired distance metric in Fig. 3(b) and the search
is sent to a set of Diamond servers. Each server manages a subset of the reference library and performs a near-neighbor



Figure 3: MassFind is an application that enables interactive search-assisted diagnosis on digitized mammograms. Once
a query ROI has been selected, MassFind performs an efficient near-neighbor search over a large repository of annotated
reference images, distributed over several Diamond?? nodes. The retrieved images and their associated metadata provide
radiologists with additional information about the current case. Our experiments show that learned distance metrics can
significantly improve retrieval accuracy.

search between the query ROI and candidate images from the library using the selected distance metric. A large fraction of
the images in the reference library can be discarded since they match poorly. Even though the large dimensionality of the
feature space prevents effective indexing, Diamond efficiently performs this retrieval task by distributing load over multiple
compute nodes, intelligently structuring the search and exploiting cached results from similar previous queries. Since the
computation is performed close to storage, Diamond can reject unlikely candidates at the source, enabling significant
savings in network resources. The set of images that match better than the specified threshold are returned to the MassFind
client. MassFind then aggregates the results from the Diamond nodes and sorts them in increasing order of distance for
display, as shown in Fig. 3(c). The user can then compare the query ROI against retrieved ROIs for visual similarity,
examine biopsy results for the reference ROIs and study the metadata associated with reference ROIs to determine the best
diagnosis for the query image.

5. EXPERIMENTAL RESULTS

This section presents a comparison of learned distance metrics against the standard Euclidean metric, both in terms of
classification performance and retrieval accuracy. The following methodology was employed.

e Dataset: 2522 ROIs from the UPMC dataset, described in Sec. 4.1.
Features: 36-dimensional feature vector, as described in Zheng et a
ized in each dimension.

Classifier: kernel-based KNN (varying the threshold on posterior probability generates ROC curves).

Training set: varied from 200 to 1200 ROls, in steps of 200, evenly distributed across malignant and benign cases.
Test set: 100 randomly-selected ROIs that were not employed in training.

All reported results are averages over 10 independent trials with different randomly-selected training and test sets.

l.14

Feature vectors were independently normal-

Classification and retrieval are different tasks, and are evaluated according to different established criteria. In classi-
fication, the goal is to determine whether a given ROI is malignant. Performance can be measured along two axes (1)
detection rate, and (2) false-positive rate. The former is the fraction of malignant masses that were correctly classified;
the latter is the fraction of benign cases that were incorrectly classified as malignant. An ideal classifier will be able to
achieve a perfect detection rate with zero false positives. In reality, there is always a trade-off: for a given classifier, one can
generally improve detection rate only at the expense of more false positives; conversely, reducing the false positive rate will
also cause the detection rate to suffer. Varying the acceptance threshold of the classifier generates an ROC curve. Figure 4
shows ROC curves for a set of classifiers employing different distance metrics: Euclidean, GDM, LDM and BDM. We see
that BDM outperforms the other distance metrics in all cases (small or large amounts of training data). The area under the
ROC curve (AUR) is frequently employed as a summary of classification performance, and classifiers with a high AUR are
preferred.

Table 1 summarizes the AUR for classifiers employing the set of distance metrics for a range of different training set
scenarios. We make several observations. First, as expected the AUR generally increases with additional training data
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Figure 4: Classification performance (ROC curves) for both small and large training set sizes for different distance metrics.
Similar results are obtained for other training set sizes (not shown). Area under ROC for these experiments is shown in
Table 1.

Training size 200 400 600 800 1000 1200
Euclidean 0.6506 0.6606 0.6666 0.6753 0.6807 0.6823

GDM 0.6544 0.6783 0.6628 0.6963 0.7019 0.7029
LDM 0.6602 0.6704 0.6973 0.7000 0.7018 0.7103
BDM 0.6819 0.7074 0.7187 0.7334 0.7375 0.7381

Table 1: Summary of classification performance (area under ROC curve) for different distance metrics with a variety of
training set sizes. Learned distance metrics show better classification performance under all conditions, and BDM clearly
outperforms the other learned distances.

for all of the classifiers. Second, we note that the learned distance metrics (GDM, LDM and BDM) all outperform the
standard Euclidean metric, indicating that learning distances is worthwhile from the standpoint of classification. Among
the distance metrics, the boosted distance metric (BDM) is clearly and consistently the best.

However, neither ROC curves nor the AUR measure appropriately characterize the desired performance of a distance
metric for the ISAD application. Recall that the goal in ISAD is not to automatically classify an ROI as either malignant
or benign but rather to provide the radiologist with a small set of similar ROIs from the reference library. Unlike in
classification, where the decision is made using (distance-weighted) contributions from every image in the ROI, ISAD
demands that the small set of displayed images be relevant. In other words, the proportion of malignant reference images
in the display set should be high if the query ROI depicts a malignant mass and low otherwise. This is captured by the
precision at the desired rank (termed precision at n or P@n). Precision is defined as the fraction of correct objects among
the retrieved objects. For instance, if the ISAD system displays the 8 most similar reference images and 6 of them are
correct, then P@n would be 0.75.

Figure 5 shows the P@n for ranks 1 to 20 for both small (200) and large (1200) numbers of training examples. Em-
ploying learned distance metrics for ISAD leads to small but consistent improvements in the precision of retrieved results.

6. CONCLUSION

This paper proposes a novel use model, interactive search-assisted diagnosis (ISAD) of masses in mammograms. ISAD is
a form of interactive computer-aided diagnosis where the system retrieves relevant data from a large reference collection
of ROI images to enable radiologists to make more informed decisions about the given case. Developing an ISAD system
entails three challenges: (1) the choice of visual features; (2) the criterion for defining similarity between ROI images;
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Figure 5: Precision against retrieval rank for small and large training set sizes. Learned distance metrics show a slight but
consistent improvement over the Euclidean distance. Since BDM dominates the other learned distance metrics, curves for
LDM and GDM are not shown here.

(3) efficient near-neighbor search in high dimensions on large data collections. We focus on the second challenge and
investigate a variety of novel techniques for improving the quality of similarity search for ISAD. Experimental results
on a large database of ROI images indicate that the boosted distance metric (BDM) algorithm outperforms other learned
distances and the standard Euclidean distance. We present a prototype system, MassFind, that enables ISAD on large
real-world datasets.

APPENDIX A. OPTIMIZATION ALGORITHM FOR BOOSTED DISTANCE METRIC LEARNING

The first step toward efficient optimization is to decouple the interaction between the classification function f(x) and the
combination weight a. This can be achieved using Jensen’s inequality and the convexity of exponential functions. The
resulting upper bound for the objective function F'(P) can be expressed as follows:

F(p) -~ F(p) < S®(Ba)7l Z{a Yigs — Dt exp(—di ;) (f(x:) — f(x;))%} +
i,j=1
)~ 1 Z{a (o Dty explds ;) (F(xi) — F(3))2), ©)
where
F(P) = > (i —1)0Wik 1) exp (~dij + dix)
i,j,k=1

pho= ) 0y, 1) exp(di )

W= 3 b1 expl—diy).

In the equations above, the quantity ﬂj indicates how far the data point x; is kept from those data points that share its class
label. Similarly, the quantity p; indicates how close the data point x; is kept from those data points with different class
labels. We can further rewrite the upper bound in Eqn. 9 in matrix form:

~ exp(—8a) — 1

F(P)—-F(P) < 3

exp(8a) — 1

fTLte+ fTLf, (10)



where £ = (f(x1), f(x2),.-., f(x,)) denote the class labels for all the examples. L~ and L% are the combinatorial
Laplacian that are built based on the similarity matrices S~ and S, which can be computed as follows

_ 1 _ _
Sm‘ = ié(yi,ja 1) exp(dm‘) (:ui + 1221 ) (1D
1
Sy = 50— exp(=dig) (1 + 1)) (12)

Since the similarity S~ only depends on the pairs of data points that share the same class labels, the quantity f L—f
in Eqn. 10 measures the consistency between the binary feature f and the correlation between the data points of the same
classes. Similarly, the quantity f " L7 f in Eqn. 10 measures the consistency between the binary feature f and the correlation
between the data points of different classes. Given the expression in Eqn. 10, we can efficiently compute the solution f and
« using standard optimization methods.
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