

Identifiability of priors from joint distribs

- Let prior π be any distribution on C

 example: (w, b) ~ multivariate normal
- Target h^{*}_π ~ π
- Data X = (X₁, X₂, ...) i.i.d. D indep h_{π}^*
- $Z(\pi) = ((X_1, h_{\pi}^* (X_1), (X_2, h_{\pi}^* (X_2), ...)).$
- Let [m] = {1, ..., m}.
- Denote X_I = {X_i}_{i in I} (I : subset of natural numbers)
- $Z_{I}(\pi) = \{(X_{i}, h_{\pi}^{*}(X_{i}))\}_{I \text{ in } I}$

Theorem: $Z_{[VC]}(\pi_1) =_d Z_{[VC]}(\pi_2)$ iff $\pi_1 = \pi_2$.

© Liu Yang 2012

Identifiability of Priors from Joint Distributions $\boxed{\mathbf{Theorem:} \ Z_{[vc]}(\pi_1) \stackrel{d}{=} Z_{[vc]}(\pi_2) \Leftrightarrow \pi_1 = \pi_2.}$ Proof Sketch: Fix any $m > vc, x_1, \dots, x_m \in \mathcal{X}, y_1, \dots, y_m \in \{0, 1\}.$ Note \mathbb{C} cannot shatter $(x_1, \dots, x_m).$ Let $\tilde{y}_1, \dots, \tilde{y}_m \in \{0, 1\}$ be s.t. $\nexists h \in \mathbb{C}$ with $\forall i, h(x_i) = \tilde{y}_i.$ Clearly $\mathbb{P}\left(Z_{[m]}(\pi) = \{(x_i, \tilde{y}_i)\}_{i\in[m]} | \mathbb{X}_{[m]} = \{x_i\}_{i\in[m]}\right) = 0.$ If $\exists k$ s.t. $y_k \neq \tilde{y}_k$, then letting $y'_i = y_i$ for $i \neq k$, and $y'_k = \tilde{y}_k,$ $\mathbb{P}\left(Z_{[m]}(\pi) = \{(x_i, y_i)\}_{i\in[m]} | \mathbb{X}_{[m]} = \{x_i\}_{i\in[m]}\right)$ lower-dim cond distrib $= \mathbb{P}\left(Z_{[m]\setminus\{k\}}(\pi) = \{(x_i, y_i)\}_{i\in[m]\setminus\{k\}} | \mathbb{X}_{[m]\setminus\{k\}} = \{x_i\}_{i\in[m]\setminus\{k\}}\right)$ $-\mathbb{P}\left(Z_{[m]}(\pi) = \{(x_i, y'_i)\}_{i\in[m]} | \mathbb{X}_{[m]} = \{x_i\}_{i\in[m]}\right)$. \forall closer to \tilde{y} Induction: $\mathbb{P}\left(Z_{[m]}(\pi) = \cdot | \mathbb{X}_{[m]}\right)$ function of $\mathbb{P}\left(Z_{[vc]}(\pi) = \cdot | \mathbb{X}_{[vc]}\right).$

Identifiability of Priors from Joint Distributions $\mathbf{D}_{ext} = \mathbf{D}_{ext} = \mathbf{D}_{ext}$ **Theorem:** $Z_{[vc]}(\pi_1) \stackrel{d}{=} Z_{[vc]}(\pi_2) \Leftrightarrow \pi_1 = \pi_2$. **Proof Sketch:** By the above, $Z_{[vc]}(\pi_1) \stackrel{d}{=} Z_{[vc]}(\pi_2) \Rightarrow \forall m \in \mathbb{N}, Z_{[m]}(\pi_1) \stackrel{d}{=} Z_{[m]}(\pi_2)$. Classic result: set of distribs of $Z_{[m]}(\pi) : m \in \mathbb{N}$ identify distrib of $Z(\pi)$, so $Z_{[m]}(\pi_1) \stackrel{d}{=} Z_{[m]}(\pi_2), \forall m \in \mathbb{N} \Rightarrow Z(\pi_1) \stackrel{d}{=} Z(\pi_2)$. Showed above that $Z(\pi_1) \stackrel{d}{=} Z(\pi_2) \Rightarrow \pi_1 = \pi_2$.

Identifiability of Priors from Joint Distributions Theorem: $Z_{[vc]}(\pi_1) \stackrel{d}{=} Z_{[vc]}(\pi_2) \Leftrightarrow \pi_1 = \pi_2$. Theorem: $\exists \mathcal{D}, \pi_1 \neq \pi_2 \text{ s.t. } \forall m < vc, Z_{[m]}(\pi_1) \stackrel{d}{=} Z_{[m]}(\pi_2)$. Proof Sketch: Let (x_1, \ldots, x_{vc}) be shattered by $\mathcal{H} = \{h_1, \ldots, h_{2^{vc}}\} \subseteq \mathbb{C}$. Let \mathcal{D} be uniform on $\{x_1, \ldots, x_{vc}\}$, let π_1 be uniform on \mathcal{H} . Let $\mathcal{H}' = \{h'_1, \ldots, h'_{2^{vc-1}}\} \subset \mathcal{H}$ shatter (x_1, \ldots, x_{vc-1}) s.t. $h'_i(x_{vc}) = \text{Parity}(\{h'_i(x_1), \ldots, h'_i(x_{vc-1}))$. Let π_2 be uniform on \mathcal{H}' . Clearly $\pi_1 \neq \pi_2$. But for $m < vc, Z_{[m]}(\pi_1) \stackrel{d}{=} Z_{[m]}(\pi_2)$: unif cond on labels given distinct X_1, \ldots, X_m .

11

Transfer Learning Setting

- Collection Π of distribs on C. (known)
- Target distrib π^* in Π . (unknown)
- Indep target fns h_1^* , ..., $h_T^* \sim \pi^*$ (unknown)
- Indep i.i.d. D data sets $X^{(t)} = (X_1^{(t)}, X_2^{(t)}, ...), t$ in [T].
- Define $Z^{(t)} = ((X_1^{(t)}, h_t^*(X_1^{(t)})), (X_2^{(t)}, h_t^*(X_2^{(t)})), ...).$
- Learning alg. "gets" $Z^{(1)}$, then produces \hat{h}_1 , then "gets" $Z^{(2)}$, then produces \hat{h}_2 , etc. in sequence.
- Interested in: values of $\rho(\hat{h}_t, h^*(t))$, and the number of $h^*_t(X_i^{(t)})$ value alg. needs to access.

© Liu Yang 2012

Estimating the prior Principle: learning would be easier if know π* Fact: π* is identifiable by distrib of Z_[VC]^(f) Strategy: Take samples Z_[VC]^(f) from past tasks 1, ..., t-1, use them to estimate distrib of Z_[VC]^(f), convert that into an estimate π' of π*, Use π' in a prior-dependent learning alg for new task h_t*. Assume Π is totally bounded in total variation Can estimate π* at a bounded rate: || π* - π* ||< δ* converges to 0 (holds whp)

Prove the set of the

9

<text><text><text><text><text><text><text><text>

Rate of Conv. under Hölder-Smooth **Definition:** For $L \in (0,\infty)$ and $\alpha \in (0,1]$, a function $f : \mathbb{C} \to \mathbb{R}$ is (L,α) -Hölder smooth if $\forall h, g \in \mathbb{C}, |f(h) - f(g)| \le L\rho(h, g)^{\alpha}.$ **Theorem.** For Π_{Θ} any class of priors on \mathbb{C} having (L, α) -Hölder smooth densities $\{f_{\theta} : \theta \in \Theta\}$, for any $T \in \mathbb{N}$, there exists an estimator $\hat{\theta}_{T\theta} = \hat{\theta}_T(\mathcal{Z}_{1d}(\theta), \dots, \mathcal{Z}_{Td}(\theta))$ such that $\sup_{\theta_{\star}\in\Theta}\mathbb{E}\|\pi_{\hat{\theta}_{T}}-\pi_{\theta_{\star}}\|=\tilde{O}\left(LT^{-\frac{\alpha^{2}}{2(d+2\alpha)(\alpha+2(d+1))}}\right).$ **Proof:** - By PAC bound, for any $\gamma>0$, w.p.>1- γ , a sample of $k = O((d/\gamma)\log(1/\gamma))$ partition C into regions of width < γ . - For any $\theta \in \Theta, \pi'_{\theta}$ denote a (conditional on X_1, \ldots, X_k) distribution f'_{θ} denote the (conditional on X_1, \ldots, X_k) density function of π'_{θ} with respect to π_0 . $f_{\theta}'(g) = \frac{\pi_{\theta}(\{h \in \mathbb{C}: \forall i \leq k, h(X_i) = g(X_i)\})}{\pi_0(\{h \in \mathbb{C}: \forall i \leq k, h(X_i) = g(X_i)\})}$ - For any $g \in \mathbb{C}$, (or 0 if $\pi_0(\{h \in \mathbb{C} : \forall i \le k, h(X_i) = g(X_i)\}) = 0$). - By smoothness, w. p. >1- γ , we have everywhere $|f_{\theta}(h) - f'_{\theta}(h)| < L\gamma^{\alpha}$. © Liu Yang 2012 26

<equation-block><list-item><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Is this Better than without Transfer ?

- The question becomes:
 - How much does knowledge of target distrib π^* help?
- There are some (constant factor) gains for passive learning [e.g. HKS1992]
- It really helps in Active learning:
 - Earlier, we showed can get o(1/ ε) for all π
- For many C (e.g. linear separators), no prior-indep alg has this guarantee.
- Plugging in that method, transfer method accesses $o(1/\varepsilon)$ labels on avg.

29

