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Notation

Instance space X = R"
Concept space C of classifiers h: X -> {0,1}

- Assume C has VC dimension vc < oo

Data Distribution D on X

Unknown target function h*: the true
labeling function (Realizable case: h* in C)
Assume 0 (h, g)=P,~p[h(x) # g(x)] for any
classifiers h, g, is a metric on C

Err (h) = P, [h(x) # h*(x)]
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Transfer Learning

* Principle: solving a new learning problem is easier
given that we've solved several already !
* How does it help?

- New task directly “related” to previous task
[e.g., Ben-David & Schuller 03; Evgeniou, Micchelli, & Pontil 2005]
- Previous tasks give us useful sub-concepts [e.g., Thrun 96]
- Can gather statistical info on the variety of concepts
[ [e.g., Baxter 97; Ando & Zhang 04] ]

¢ Example: Speech Recognition
- After training a few times, figured out the dialects.
- Next time, just identify the dialect.
- Much easier than training a recognizer from scratch

Model of Transfer Learning
Motivation: Learners often Not Too Altruistic

Layer 1: draw
task i.i.d. from
unknown prior

Task 1 Task T

Bettér Estimg

1 \

Layer 2: per
task, draw data
i.i.d. from target
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Identifiability of priors from
joint distribs
Let prior m be any distribution on C
- example: (w, b) ~ multivariate normal
Target h*, ~ @
Data X = (X;, X,, ...) i.i.d. D indep h*
Z(ﬂ) = ((xll h*n (Xl)l (le h*" (Xz)/ )
Let [m] = {1, ..., m}.
Denote X; = {X} ., ; (I : subset of natural numbers)

Z, (m) = {(X, h*, (XN} in 1

Theorem: Zy¢ (1)) =4 Zpy (11,) iff m = m,.

Identifiability of priors by
VC-dim joint distri.

————————————————————— |[++++++++++++++++
i 1

* Threshold:

- for two points x; x,, if x; < X, then

Pr(+,+)=Pr(+.), Pr(-,-)=Pr(.-), Pr(+,-)=0,

So Pr(-,+)=Pr(.+)-Pr(++) = Pr(.+)-Pr(+.)

- for any k > 1 points, can directly to reduce number of labels in the
joint prob from k to 1

P(-----—-——-- (~+)+++++++++++++++++)

= P( (-+) )

= P( (+) ) -~ (++) )
= P( (+) ) -~ (+) )
+ P( (+-) ) (unrealized labeling 1)

= P( (+) ) -~ (+) )

4/25/12



* Theorem: Z; () =, Zyq (,) iff m, = m,.
Proof Sketch

* Let o,(hg)=1/m 2 _™ II(h(X,) # 9(X,)
Then vc < oo implies w.p.1 forall h, g in C with h # g
lim, ., » ©n(hg) = 0(hg)>0

* 0 is a metric on C by assumption,
so w.p.l each h in C labels c0-seq (X, X, ...)
distinctly (h(X,), h(X,), ...)

* => w.p.l conditional distribution of the label seq
Z(m)IX identifies m
=> distrib of Z(m) identifies m

i.e. Z, (m) =4 Z, (m,) implies m, = m,

Identifiability of Priors from Joint Distributions

Theorem: Z[ (ﬂl)iZ[VC] (m2) & 71 = .

Proof Sketch:

Fix any m > ve, 21, ..., Tm € X, y1,---,ym € {0,1}.

Note C cannot shatter (x1,...,Zy,).

Let 41,...,9m € {0,1} be s.t. #h € C with Vi, h(z;) = ;.
Clearly P (Z[m] (m) = {(@i, 9i) biepm) ‘X[m] = {xi}ie[m]) = 0.

If 3k s.t. yr # Ux, then letting y; = y; for i # k, and y;, = U,

P (Zim(m) = {(@,13) Vit [ Kpm = {2 i) ) loWer-dim con st

= I]P (Z[m]\{k}(f) = (@i, yi) Viepmp (1} | Kpmp\ (1) = {xi}ie[m]\{k})

P (Z[m] (ﬂ—) - {(.I‘Z, y;)}ie[m] X[m] = {J:Z}ze[m])

Induction: P (Z[m](w) = -|X[m]> function of P (Z[VC] (m) = -‘X[VC]).
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Identifiability of Priors from Joint Distributions

Theorem: 7, (Wl)iZ[VC] (mg) & T = .

Proof Sketch:

By the above,

Zpe (1) 2 Zpyey (m2) = Vm € N, Zip) (11) 2 Z gy (7).

Classic result:

set of distribs of Zj,,)(7) : m € N identify distrib of Z(7), so
Zian] (1) Zpyy (2), Ym € N = Z(1) 2 Z(103).

Showefii above that
Z(ﬂ'l):Z(ﬂ'g) = T = Ta.

Identifiability of Priors from Joint Distributions

Theorem: Z, (Wl)iZ[VC] (mg) & T = .

Theorem: 3D, 1 # w2 s.t. Vm < ve, Zpy (ﬂl)iZ[m] (m2).
Proof Sketch:

Let (z1,...,%v.) be shattered by H = {hy,...,how} C C.
Let D be uniform on {z1,
let w1 be uniform on H.
Let H' = {h},..., how_:} C H shatter (z1,...,%vc—1)
s.t. hi(zye) = Parity({hl(x1), ..., hi(Zye—1))-

Let 7o be uniform on H’'.

Clearly m # ms.

But for m < ve, Zj, (Wl)iZ[m] (m2):
unif cond on labels given distinct Xq,..., X,,. O

ce oy Tve g,
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Transfer Learning Setting

Collection TI of distribs on C. (known)

Target distrib * in TT. (unknown)

Indep target fns h* .., h;* ~ 7* (unknown)

Indep i.i.d. D data sets XM = (X®, X,M, ...), +in [T].
Define zM = ((X,®, h,*(X,M)), (X,®, h,*(X,M)), ...).
Learning alg. “gets” ZU, then produces h, then
“gets” z(3, then produces h,, etc. in sequence.
Interested in: values of 0 (h,, h*(1)), and the
number of h*, (X,") value alg. needs to access.

Estimating the prior

* Principle: learning would be easier if know m*
* Fact: m* is identifiable by distrib of Z®

* Strategy: Take samples Z;, ) from past tasks 1,
.., -1, use them to estimate distrib of Z;,,
convert that into an estimate rr'* , of 1%

* Use 1’ in a prior-dependent lea_rning alg for
t *
new task h,
* Assume TI is totally bounded in total variation
* Can estimate 7 at a bounded rate:
|| m* - 11'*||< 8, converges to O (holds whp)
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Main Theorem

Theorem 1 There exists an estimator éT,L = éT(Z 1d(0.),- -, Zra4(6,)), and functions R : Ny x
(0,1 — [0,00) and 6 : Ny x (0,1] — [0,1], such that for any o > 0, Tlim R(T,a) =
—00

Tlim 6(T,a) = 0and forany T € Ny and 0, € ©,
—00

P (nr‘ém — 7|l > R(T, a)) <5(T,a) < .

Pf Idea: relate convergence of estimator for d-dim joint to convergence

of estimator for the prior
[j q Y £ N\

Prior (co-dim joint) | | k-dim joints || k-dim conditionals

1

d-dim joints = | d-dim conditionals
T

Standard result: exist a converging estimator
for distrib. on d ex.s, for totally bounded families

/

Transfer Learning

* Given a prior-dependent learning A( &, m), with
E[# labels accessed] =\ (&, m) and producing h
with E[o (h, h*)]ce

(rort=1,.T N\
If 8,,> € /4,
run prior-indep learning on Zy,,.{" to get h,

Else let m"} = argmin, i, g, 5, N(€ /2, 1)
" ) h
N and run A(€ /2, i f) on ZM to get h, y

~

[ Theorem: Forall t, E[o(h,, h*¥)] ¢ €, and

| limsup; _, E[#labels accessed])/T <A(€ /2, n*) + vc.
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Relate Prior to k-dim joint

Lemma: There exists a sequence 1, = o(1) such that ¥tk € N, V6,0’ € ©,

IPz,.0) — Pzl < lIme — mor ||l < Pz, 0) — Pznonll + 7k

Proof: - The left inequality follows from, for any 6,8’ in © and t (natural
num), |l pz*k(e) - psz(e') <l pzf(g) - pzf(g') =1 Mg~ Ty I
- To show the right inequality: Fix 8,0’ in ©, let y>0,let B subseteq
(Xx{-1, +1})* be a measurable set s.t.
76 — mor || = Pz, (0) — Pz.0r)ll < Pz,(6)(B) — Pz, (6ry(B) +®

- Carathéodory’s extention theorem implies there exist disjoint sets {A}; i,

where A, is an event for finite number of data pts, s.t. B C Uien A

Pz*(e)(B) -P z,,(e')(B) <ZiiniN sz(e)(Ai) = ZiiniN PZT(O’)(Ai)"'@

- Since these sums are bounded, there must exist n in IN s.1.
Ziin INPz,@(AXV+Zit" Pz 6)(A)

Relate Prior to k-dim joint

So that > Pz )(A) =Y Pz p)(Ai) <7+ ZPz,w ZPz,w

ieN ieN
=@ Pz (U Az‘) —Pz,0) (U A«’) :
i=1 i=1

-As U, A; € A, there exists k' (natural num) & measurable A" subset of
(X x{-1, 1Pk st Ur, A= A x (X x {1, +1})

Thus P, (U Ai) =Pz, (U ) Pz,,.0)(4) — Pz, (A

i=1 i=1

<Pz, 0 — Pz, < Jim [Pz, 0) — Pzl
In sum, |m — || < limpseo [Pz, 0) — Pz, 00 + 37
- Taking the limit as y-> O implies |7y — 7| < klim IPz,,(6) — Pzl
c— 00

- Particularly, it implies there exists a sequence r.(9,6') = o(1) s.t.

Vk €N, |mg — mor|| < [Pz, (0) — Pzl + 72(6,6). QED
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Relate k-dim Joint to k-dim Cond.

* Want to bound between tvd of k-dim joints

* Easier to bound diff between tvd of k-dim
cond. Distri.s

* Use Jensens ineqn to relate tvd of k-dim joint
distri. fo k-dim cond. distri. :

” psz(e) - psz(g’) ” SE [”prk(e) |x‘|‘k_ pyfk(e’) |><1_k”]

© Liu Yang 2012 17

Relate k-dim Cond.to d-dim Cond.

- By def of total variation dist.
Py, oy — Praoymell = (1/2) D Py, oyx, (@) — Pyyox, @),
gke{—1,+1}*

- By Sauer's Lemma this is < (¢k)? m

) , ey o ak
. aj\”k_ml’ykw)\xk(y ) = Py, 0%, (7)),

1,+
- Notations:

IC{l,..., k}, fix z; € X and g7 € {—1,+1}/7]. Then the j; € {—1,+1}/!! for which no
h € Chas h(zy) = yy for which |77 — yr||; is minimal, has ||y; — yr||; < d+ 1,and foranyi € I
with g; # ¥;, letting §; = y; for j € I\ {i} and ¢/ = 7;, we have

Py, )%, (@11Z1) = Py, 1y @)%y O3 120 G3y) — Pysoyx, (@1120),

(By P(A and B) = P(A) - P(A and not B). Two terms, one reduce dim by 1, the other
brought y vector closer to the unrealizable labeling by one bit)

- Apply this to theta and theta’, interested in the tvd between the cond. Prob.
Py, @)%, @1171) — Py, oy, (5|21))
< Py @i NG 20D = Py @i One 2ne)l
+ Py, o), (¥1|Z1) — Py, o) x, (711 Z1)]-

© Liu Yang 2012 18
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Tree Argument: Combinatorics

- Consider these two terms inductively define a binary tree

- Branch based on modification to the y vector

Branches left once, Branches right once, gefs a
gets a diff. of prob.s difference of prob.s

for set I of one less for a Yrone closer to anyr
element. unrealized  than parent.
[M any level, left fo

right nodes have
decreasing |I| values

- )
AN

00 006 - O 0 00 0600
- Any path can branch left < k - d times (total) before reaching a set I
w/ only d elements; can branch right < d + 1 times in a row before
reaching a , s.t. both prob.s zero, so the diff is zero.

Stop branching upon
reaching a set I and a yr
s.t. either Y1 is an

unrealized labeling, or |I|
=d.

Tree Argument: Conclusions

* Bound original (root node) diff of prob.s by sum of the
diff of prob.s for leaf nodes with |I| = d.

* Depth of any leaf node with |I| = d is at most (k - d)d.
* Maximum width of the tree is at most k - d.
* So total #leaf nodes with |I| = d is at most d (k - d)2.
- For any g e {-1, +1}, zc a*
Py, 0)x, (71T) — Py, o) %, (71Z)]

<(k—d)*d- max max |P 79zp) — Py, g%, (7%1ZD)|.
<( ) gde{—l??-)-l}dDe{llja:k}“' va(0)%4 (F°1ZD) — Py, (0n)x, (577 D)|

4/25/12
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Relate k-dim Joint to d-dim Joint

nax
gle{—1,+1}d De{1,.k

< Z Z E [|Pyd(9)|x,,(§d) - Pyd(e'nxn(ﬂdﬂ]

gie{—1,41}4 De{1,....k}4

- Note E [ 1 max Py, o), (7%) — Pvd(9')|x,)(3?d)|]

< (2k)¢ « E|P 7% — Py (o T
< (2k) e X e [| v,0)1%p (7°) — Py, 0%, (7 )|]

- By exchangeability, the last line equals
(2k)4 gde{n—lill.)-({—l}d]E [|PY4(9)|xd(27d) - Pvd(a'nxd(ﬂdﬂ] .

- Want d-dim joint instead of d-dim cond.

Claim: [E [)PYd(0)|Xd(37d|Xd) - PYd(O’)|Xd(27d|Xd)” < 44/1IPz,,0) — Pz, 09 l;

© Liu Yang 2012

Proof of the Claim

Proof:
Suppose E HPY,,(onx,,(ﬂdlxd) - PYd(9')|xd(l7d|Xd)H >,

for some 7. Then either
P (P (#4Xq) — Py, onx, (59Xa) > €/4) > /4
Vq(0)%, (Y |2 v (00)%, (Y1 Xa) 2 >e/4,

or
P (Py, 0. (571%0) — Py oy, (51%a) > £/4) > /4.

For which ever is the case, let A denote the corresponding measurable subset of X%, of probability

at least /4. Then

IPz,u0) — Pza@)l = [Pzae)(Ac X {5}) — Pz,y(0)(Ac x {ﬂd})‘
> (g/4)Px,(Ac) > £2/16.

E [lﬂ’yd(snxd(?}dlxd) - Pvd(o'nx,,(ildlxd)u < 4/IIPz,,0) — Pz ,0)l;

© Liu Yang 2012

Therefore,
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Reflect the Path of Proof

Carathéodory’s extention
Thm in general form

Earlier, |lmg - ﬂe,llsllpsz(9)—szk(9/)ll + T
Just showed

”pz*(g) —pzf(g')HSHPZH((9)—psz(9')”
(tree) $9IPz,, (6)~Pz,, (81]1) + T
where ”psz(e)—psz(ef)” <4 (22k)2d+2“/” pzfd(e) - pzfd(el)“

So in total
For any Kk in IN, llmg - mall<4 (2ek)22Vl P, 6 = Pz, (o9l + 1y

In particular, ri->0 as k-> co. Let g(€) = min(4 (2ek)?*2/€ +r, ).
Claim: g(g)-> 0 as €->0.

(Why? Let g,= (r/(4 (2ek)2d+2))2. e=0(1). g(ey) <4 (2ek)2d+2 Jg) * ry =2ry

g is monotonic in e=> limg_yo, g(€) = limy_,o0 g(gk) = limy_yoo 2ri = 0.)

Distri. Estimation Rate

* The last component: rate of conv. of our estimate of

- N(g) is the € -covering number B, , :0c 0}

- Taking 67y, as the minimum distance skeleton estimate of Yatracos (1985)
achieves expected tvd € frorm. , for someT = O((1/%)log N(s/4)).
Solving for eps in terms of T implies E[tvd of d-dim] -> 0 as T-> oo

* Conclusion for prior estimation:
- Pick the sequence of R, s.t. R, -> 0, but with E[w,]/R,-> 0
- Let w, be E[tvd of d-dim]. For any 1, apply Markov ineq. => P(w, > R,) < E[w,J/R,
- Since E[tvd of d-dim] -> O, Markov’s ineq. => there is a bound on tvd -> O which
holds with prob. that -> 1, as T-> e
- If tvd of d-dim joints -> O, plugging into g() (just proved), tvd of priors -> O.

* Together we just proved the theorem

Theorem 1 There exists an estimator éTg' = éT(Z 1d(0s),-- -, Z74(0,)), and functions R : Ny x
(0,1 — [0,00) and 6 : Ng x (0,1] — [0,1], such that for any o > 0, Tlim R(T,a) =
—00

lim §(T,a) = 0andforany T € Ngand 6, € O,
T—o0

P (nném — |l > R(T.a)) < 8(T,a) < a.

4/25/12
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Rate of Conv. under Holder-Smooth

efinition: For I € (0,00) and « € (0, 1], a function f : C — R is (L, ov)-Holder smooth if
Vh,g € C,|f(h) — f(g)| < Lp(h, g)*.

heorem. For Ilg any class of priors on C having (L, «)-Holder smooth densities { fo : 0 € ©},
forany T € N, there exists an estimator 0y = 0p(Z14(6), . . ., Zr4(0)) such that

- 2
sup E|jm; —mp, || =0 (LT"m) .
0.6 !

r. = O(L(d/K log(k/d))?)

© Liu Yang 2012 25

Rate of Conv. under Holder-Smooth

efinition: For I € (0,00) and a € (0,1], a function f : C — R is (L, «)-Holder smooth if
Vh,g € C,|f(h) — f(g)| < Lp(h,g)*.

Theorem. For Ilg any class of priors on C having (L, «)-Holder smooth densities { fp : 6 € ©},
forany T € N, there exists an estimator 69 = 07(Z214(0), . . ., Zra4(0)) such that

~ _ o?
gsu%E”ﬂéT — T, ” =0 (LT 2(d+2a)(a+2(d+1)) .
4 €

Proof:

- By PAC bound, for any y>0, w.p.>1-Y, a sample of 'k = O((d/v)log(1/v)) partition C
into regions of width <.

- For any 0 € ©, 7y denote a (conditional on X1, ..., X.) distribution

f4 denote the (conditional on X1, ..., X}.) density function of 7 with respect to

- C, _ mo({heCVigkh(X:)=g(X:)})
For any g < folg) = ﬁg({hEC:Vigk.h(Xg):g(.\';)})

(or0if mo({h € C : Vi < k, h(X;) = g(X:)}) = O).

- By smoothness, w. p. >1-y, we have everywhere |fg(h) — f3(h)| < Ly".

© Liu Yang 2012 26
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Rate of Conv. under Holder-Smooth

- Thus for any 6,0 € O, w.p.>1-Y,
Ima = 7ol = (1/2) [ 160 frldmo < L4 + 1/2) [ 115~ fyldmo
- Since the regions that define f; and f}, are the same,
1/2) [ 153 - fyldmo

=(1/2) Z [mo({h € C: Vi < k,h(X;) = y;}) — mg({h € C: Vi <k h(X;) = y:})|
Y1,y €{—1,+1}

= Py, 0)1x, — Py,or)xll-

- Thus, w.p. 2 1-Y, ||mg — 7o || < Py, 0)1x, — Py, l-

- Proceed as before, we get

7o — mar|| < (L + 1)7v* +4(2ek)*2 [Pz, (g) — Bz, (1l
d 1 2d+2
- Plug in k = c(d/v)log(1/7), get (L +1)y*+4 (2@: log (;)) VIPz,0) = Pzyonll- (¥

Rate of Conv. under Holder-Smooth

* Rate of conv. of estimate of m

- & -cover size bounded by grid-argument under holder-
smooth, plug that into the SC of Yachocos (1985), get T =
O(e2 (L/€)¥= log(1/¢)) for €. Solving for €, we get

€ = O(L (log(TL)/T )/ (d+2a)),
- Plug this into (*), get the follow (hold for any Y)

d. (1)) log(TL) \ ¥+
]EH?.'@T —mp, || < (L+1)v*+4 (28(‘; log (r’)) O(L (%) )

-~ o ~ 02
- With v=0 (T—m) Ellms, — 7.l = O (LT*mT)

QED

4/25/12
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Is this Better than without
Transfer ?

¢ The question becomes:
- How much does knowledge of target distrib m*help?

* There are some (constant factor) gains for passive
learning [e.g. HKS1992]

* It really helps in Active learning:
- Earlier, we showed can get o(1/ €) for all m
* For many C (e.g. linear separators), no prior-indep
alg has this guarantee.
* Plugging in that method, transfer method
accesses o(1/ €) labels on avg.

An Example of
Prior-Dependent Learning

Self-verifying Bayesian Active Learning
(a special type of stopping criterion)

- Given €, adaptively decides # of query,
then halts

- has the property that E[err] <& when halts

Question: Can you do with E[#query] = o1/
€) ? (passive learning need 1/ € labels)

15



Example: Intervals

Verification Lower Bound

In non-Bayesian setting, supposing h* is empty interval.

Given any classifier h,
just to verify err(h) < ¢,
Need to verify h* is not an interval of width 2s.

Need an example in Q(1/¢) regions to verify this fact.

2g2€2€2¢ 2¢ 2e 2€ 28 2€ 2€ 2¢ 2¢ 2¢ 2€ 28 2€ 2€ 2¢ 2¢ 2¢ 2¢€ 2 2€ 2€ 2¢ 2¢ 2¢ 2€ 2€ 2€ 2¢ 2¢

oy o A e A, oy oy ey oy ey ey Ay Ay o o i, o, (o, oy oy oy oy ey oy oy oy o i, i A,

B S ™ e e e o e I O I O R

Suppose h* is empty interval, D is uniform on [0,1]

Interval Example with prior

R B
* Algorithm: Query random pts till find first +, do

binary search to find end-pts. Halt when reach a pre-
specified prior-based query budget. Output posteriors
Bayes classifier.

* Let budget N be high enough so E[err] < €

- N = o(1/ €) sufficient for E[errlw*>0] < €: if w* > 0,
even prior-independent analysis needs only
E[#queries|w*] = O(1/w* + log(l/ €)) = o(1/ €).

- N = o(l/ €) sufficient for E[errlw*=0] < €: if
P(w*=0)>0, then after some L = O(log(l/ €)) queries, w.p.>
1- £, most prob. mass on empty interval, so posteriors
Bayes classifier has O error rate

4/25/12
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Can do o(1/eps) for any VC-class

Theorem: With the prior, can get o(l/ ) QC

* There are methods that find a good
classifier in o(1/eps) queries (though they
arent self-verifying) [BHWO8]

* Need set a stopping criterion for those alg
* The stop criterion we use : budget

* Set the budget to be just large enough so
Elerr] < €.

4/25/12
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