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Abstract

Many machine learning algorithms, such as K Nearest Neighbor (KNN), heav-
ily rely on the distance metric for the input data patterns. Distance Metric learning
is to learn a distance metric for the input space of data from a given collection
of pair of similar/dissimilar points that preserves the distance relation among the
training data. In recent years, many studies have demonstrated, both empirically
and theoretically, that a learned metric can significantly improve the performance
in classification, clustering and retrieval tasks. This paper surveys the field of dis-
tance metric learning from a principle perspective, and includes a broad selection
of recent work. In particular, distance metric learning is reviewed under different
learning conditions: supervised learning versus unsupervised learning, learning in
a global sense versus in a local sense; and the distance matrix based on linear kernel
versus nonlinear kernel. In addition, this paper discusses a number of techniques
that is central to distance metric learning, including convex programming, posi-
tive semi-definite programming, kernel learning, dimension reduction, K Nearest
Neighbor, large margin classification, and graph-based approaches.

1 Introduction
Learning a good distance metric in feature space is crucial in real-world application.
Good distance metrics are important to many computer vision tasks, such as image
classification and content-based image retrieval. For example, the retrieval quality of
content-based image retrieval (CBIR) systems is known to be highly dependant on the
criterion used to define similarity between images and has motivated significant re-
search in learning good distance metrics from training data. Distance metrics are also
critical in image classification applications. For instance, in the K-nearest-neighbor
(KNN) classifier, the key is to identify the set of labeled images that are closest to a
given test image in the space of visual features — again involving the estimation of a
distance metric. Previous work [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] has shown that appropriately-
designed distance metrics can significantly benefit KNN classification accuracy com-
pared to the standard Euclidean distance.

There has been considerable research on distance metric learning over the past few
years. Depending on the availability of the training examples, algorithms for distance
metric learning can be divided into two categories: supervised distance metric learn-
ing and unsupervised distance metric learning. Unlike most supervised learning
algorithms where training examples are given class labels, the training examples of
supervised distance metric learning is cast into pairwise constraints: the equivalence
constraints where pairs of data points that belong to the same classes, and inequiva-
lence constraints where pairs of data points belong to different classes. The supervised
distance metric learning can be further divided into two categories: the global dis-
tance metric learning, and the local distance metric learning. The first one learns
the distance metric in a global sense, i.e., to satisfy all the pairwise constraints simulta-
neously. The second approach is to learn a distance metric in a local setting, i.e., only
to satisfy local pairwise constraints. This is particularly useful for information retrieval
and the KNN classifiers since both methods are influenced most by the data instances
that are close to the test/query examples. Section 2 and Section 3 are devoted to the
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review of the supervised distance metric learning. The existing work for unsupervised
distance metric learning methods is presented in section 4. In section 5, we will discuss
the maximum margin based distance metric learning approaches. The kernel methods
towards distance metrics is summarized in Section 6.

2 Supervised Global Distance Metric Learning
Approaches in this category attempt to learn metrics that keep all the data points within
the same classes close, while separating all the data points from different classes far
apart. The most representative work in this category is [11], which formulates dis-
tance metric learning as a constrained convex programming problem. It learns a global
distance metric that minimizes the distance between the data pairs in the equivalence
constraints subject to the constraint that the data pairs in the inequivalence constraints
are well separated. This section is organized as the following. We start with the intro-
duction of pairwise constraints. Then, we will review [11] in a framework of global
distance metric learning. Finally, a probabilistic framework for global distance metric
learning will be represented by the end of this section.

2.1 Pairwise Constraints
Unlike typical supervised learning, where each training example is annotated with
its class label, the label information in distance metric learning is usually specified
in the form of pairwise constraints on the data: (1) equivalence constraints, which
state that the given pair are semantically-similar and should be close together in the
learned metric; and (2) inequivalence constraints, which indicate that the given points
are semantically-dissimilar and should not be near in the learned metric. Most learning
algorithms try to find a distance metric that keeps all the data pairs in the equivalence
constraints close while separating those in the inequivalence constraints. In [7], fea-
tures weights are adjusted adaptively for each test point to reflect the importance of
features in determining the class label of the test point. In [12], the distance function
of a information geometry is learned from labeled examples to reflect the geometric
relationship among labeled examples. In [11] and [13], the distance metric is explicitly
learned to minimize the distance between data points within the equivalence constraints
and maximize the distance between data points in the inequivalence constraints.

Let C = {x1,x2, ...,xn} be a collection of data points, where n is the number of
samples in the collection. Each xi ∈ Rm is a data vector where m is the number of
features. Let the set of equivalence constraints denoted by

S = {(xi,xj | xi and to xj belong to the same class}
and the set of inequivalence constraints denoted by

D = {(xi,xj | xi and xj belong to different classes}
Let the distance metric denoted by matrix A ∈ Rm×m, and the distance between any
two data points x and y expressed by

d2
A(x,y) = ‖x− y‖2A = (x− y)T A(x− y)
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2.2 Global Distance Metric Learning by Convex Programming
Given the equivalence constraints in S and the inequivalence constraints in D, [11]
formulated the problem of metric learning into the following convex programming
problem [14]:

min
A∈Rm×m

∑

(xi,xj)∈S
‖xi − xj‖2A

s.t. A º 0,
∑

(xi,xj)∈D
‖xi − xj‖2A ≥ 1

Note that the positive semi-definitive constraint A º 0 is needed to ensure the negative
distance between any two data points and the triangle inequality. Although the problem
in (1) falls into the category of convex programming, it may not be solved efficiently
because of the following two reasons: First, it does not fall into any special class of
convex programming, such as quadratic programming [15] and semi-definite program-
ming [14]. As a result, it can only be solved by the generic approach, which is unable
to take advantage of the special structure of the problem. Second, as pointed in [16],
the number of parameters in (1) is almost quadratic in the number of features. This
property makes (1) difficult to scale to a large number of features. Another disadvan-
tage with (1) is that it is unable to estimate the probability for any data points to share
the same class. This algorithm is further extended to the nonlinear case in [17] by the
introduction of kernels. The authors also presented the dual formulism to reduce the
computation complexity of the original optimization problem in [11]. We will discuss
its kernel version in section 6.

2.3 A Probabilistic Approach for Global Distance Metric Learning
Given the computation complexity of the original optimization problem in [11], to
simplify the calculation, a probabilistic framework for global distance metric can be
set up based on the formulism in (1).

Following the idea of [12], we assume a logistic regression model when estimating
the probability for any two data points xi and xj to share the same class, i.e.,

Pr(yi,j |xi,xj) =
1

1 + exp (−yi,j(‖xi − xj‖2A − µ))
(1)

where

yi,j =
{

1 (xi,xj) ∈ S
−1 (xi,xj) ∈ D

Parameter µ is the threshold. Two data points xi and xj will have the same class label
only when their distance ‖xi − xj‖2 is less than the threshold µ. Then, the overall log
likelihood for both the equivalence constraints S and the inequivalence constraints D
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is written as:

Lg(A, µ) = log Pr(S) + log Pr(D)

= −
∑

(xi,xj)∈S
log

(
1 + exp

(−‖xi − xj‖2A + µ
))

−
∑

(xi,xj)∈D
log

(
1 + exp

(‖xi − xj‖2A − µ
))

(2)

Using the maximum likelihood estimation, we will cast the problem of distance metric
learning into the following optimization problem

min
A∈Rm×m,µ∈R

Lg(A, µ)

s. t. A º 0, µ ≥ 0 (3)

The difficulty with solving (3) lies in positive semi-definitive constraint A º 0.
To simplify our computation, we will model the matrix A using the eigenspace of
training instances xs. Let T = (x1, . . . ,xn) include all the training instances used by
the constraints in S and D. Let M = 1

n

∑n
i=1 xixT

i include the pairwise correlation
between any two features. Let {vi}K

i=1 are the top K (K ≤ m) eigenvectors of matrix
M. We then assume that A is a linear combination of the top K eigenvectors

A =
K∑

i=1

γivivT
i , γi ≥ 0, i = 1, . . . , K (4)

where (γi, . . . , γK) are the non-negative weights for linear combination.
Using the parametric form in (4), we have (1) written as

Pr(yi,j |xi,xj) =
1

1 + exp
(
−yi,j(

∑K
k=1 γkwk

i,j − µ)
) (5)

where

wk
i,j = (xi − xj)T A(xi − xj)

Then, the log-likelihood function L(A, µ) in (2) becomes

Le
g({γi}K

i=1, µ) =

−
∑

(xi,xj)∈S
log

(
1 + exp

(
−

K∑

k=1

γkwk
i,j + µ

))

−
∑

(xi,xj)∈D
log

(
1 + exp

(
K∑

k=1

γkwk
i,j − µ

))
(6)

Finally, the optimization problem in (3) is simplified into the following form:

min
{γi∈R}K

i=1,µ∈R
Le

g({γi}K
i=1, µ)

s. t. µ ≥ 0, γi ≥ 0, i = 1, . . . ,K (7)
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Notice that the above optimization problem is a convex programming problem, and
can be solved directly using the Newton’s method. Furthermore, the above framework
allows for the incorporation of unlabeled data. This is because matrix M can be con-
structed using both the labeled data and the unlabeled data.

3 Supervised Local Distance Metric Learning

3.1 Local Adaptive Distance Metric Learning
In addition to general purpose algorithms for distance metric learning, several papers
[7, 18, 16, 19, 6, 8] presented approaches to learn appropriate distance metrics for
the KNN classifier. More specifically, these approaches tried to find feature weights
that are adapted to individual test examples. We refer to these approaches as “Local
Adaptive Distance Metric Learning”.

3.1.1 Problem Setting

Consider a discrimination problem with J classes and n training data samples. The
training dataset is S = {x1, · · · ,xn}, with the known class labels denoted as {y1, · · · , yn},
where xi ∈ Rm, and yi ∈ {1, · · · , J}. Cj is used to represent the set of training sam-
ples in class j. The goal is to predict the class label of a given testing sample with
predictor vector x0.

Assume the data is generated from an unknown distribution P (x, y). For a given
testing sample x0, the task reduces to estimating the class posterior probabilitiesP (j|x0)

J
j=1.

Essentially speaking, the K-nearest neighbor approach assumes that P (j|(x0+δx0)) '
P (j|x0), when δ is small enough. Then, P (j|x0) ' (

∑
x∈N(x0)

P (j|x))/|N(x0)|,
where N(x0) is a neighborhood of x0, and |N(x0)| denotes the number of points in
N(x0). The simplest estimate is to use an indicator function as below:

P̂ (j|x0) =

n∑
i=1

θ(xi ∈ N(x0))θ(yi = j)

n∑
i=1

θ(xi ∈ N(x0))

where θ(x) is an indicator function that returns 1 when the input argument is true, and
0 otherwise.

However, the assumption of smoothness within the neighborhood will not hold
when the input observations approach class boundaries or when the dimensionality is
large. Consequently, a modified local neighborhood where the posterior probabilities
are approximately constant, need to be produced by locally adaptive metric techniques
in the nearest neighbor classification setting.

3.1.2 Methodology

The k nearest neighbor method classifies x0 as the most frequent class among its k
neighbors in the training set. It is an extremely flexible method, and does not make
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any assumption about the training data. Furthermore, the k nearest neighbor method
is supported by the theoretical argument [20, 21], i.e., the asymptotic error rate of one
nearest neighbor is at most twice the Bayes error rate, independent of the distance
metric used. We refer the more detailed discussion of KNN to [20, 22, 23]. However,
in the case when we have finite samples in a high dimensional space, the curse of
dimensionality can hurt the nearest neighbor rule.

According to [6] and [18], a crucial assumption made by the KNN approach is
that the class conditional probabilities in the local nearest neighbor is constant. This
assumption can be relaxed by assuming that the conditional probabilities in the neigh-
borhood of test examples is smooth, or a slow changing function. However, this is
not necessarily true. For instance, for the area close to the decision boundary between
two classes, we expect the class labels to change dramatically even within a range of
short distance. In order to preserve the smoothness of neighborhood in terms of class
conditional probability, we can elongate the distance where the change of label tends
to be large such that the data points having inconsistent labeling as the query point
are excluded from the neighbor of the query example. In the meantime, we can also
squeeze the distance to include more points into the neighborhood of the query point if
they share the same class labels as the query point . In other words, the goal of adap-
tive feature relevance learning is to obtain a neighborhood for a given testing point that
have high consistency in assigning class labels.

Below gives two cases that may cause the inconsistency of the class conditional
probabilities in the local neighborhood. The first case is the data sparseness caused by
the curse of dimension, and the second case is bumpy class distribution in the local
neighborhood when the query point is close to the decision boundary. Research has
been motivated by the two cases, and significant work has been done on learning local
distance metrics adaptive to each query point with modified spacial resolution. For the
first case (e.g. [24]), local adaptive distance metric learning essentially determines the
feature relevance for each query. The resulting neighborhood is elongated along less
relevant feature dimensions and constricted along most influential ones. Consequently,
the dimension with low feature relevance value will eventually be eliminated, which is
similar to the feature selection adapted to each query point. For the second case (e.g.
[25]), given a discriminative function learned by algorithms (e.g. SVM), we learn a
distance metric to increase the spatial resolution around the decision surface, and in
the meantime decrease the spatial resolution elsewhere. More specifically, along the
direction that is perpendicular to the decision boundary, class labels are more likely
to change dramatically and thus distance will be elongated to exclude the points that
are likely to have inconsistent class labels in the neighborhood of query point; while
in the direction along the decision boundary, class labels are less likely to change and
therefore distance will be shrunk.

The concept of ”local feature relevance” originated from [18], which learns a flex-
ible metrics to capture local feature relevance. Specifically, it uses a recursive parti-
tioning strategy to adaptively shrink and shape rectangular neighborhood around the
test point. Therefore, the learning approach they use combines the strength of the
KNN method and the recursive partitioning method. [6] proposes another adaptive
nearest-neighbor classification method based on the local Linear Discriminative Anal-
ysis (LDA). More specifically, the LDA analysis is applied for each query data point
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by weighting the training examples based on their distance to the query point. Then,
only the discriminative directions identified by the local LDA are used for distance
measurement. Interestingly, [6] illustrated the relationship between chi-square statis-
tics and the local LDA, namely the local LDA can be viewed as an approximation of
chi-square statistics if we assume a mixture Gaussian distribution for each class. A
similar idea is proposed in [26, 27], in which the discriminative direction is computed
as the line joining the centriods of the training examples in two different classes that
are close to the given test example. [24] developed unified theory for adaptive metric
that encompasses the strength of [18] and [6]. Inspired by the similar observation as
[24], [8] developed a kernel version of adaptive local distance measurement. [28] pre-
sented a distance metric learning method to improve SVM, which increases the spatial
resolution around the decision surface based on a Riemannian geometry. A parallel
work of [28] is done by [25], which computes a local flexible metric using SVMs.

In the rest of this section, we will first review the concept of ”local feature rele-
vance” defined in [18]. We will then reveal the work in [6] in more details. Next, we
will introduce the unified framework of Local Adaptive Distance Metric Learning that
is presented in [24] and its kernel extension [8]. Finally, we also review algorithm for
adaptive local distance metric using SVM in [25].

3.1.3 Local Feature Relevance

The concept of local feature relevance is first introduced by [18]. The motivation of
feature relevance estimation comes from the need to exploit the differential relevance
of the input measurement variables for class assignment. We briefly review the idea as
below.

The least-squares estimate for predicting f(x) is just its expected value over the
joint probability density, i.e. Ef =

∫
f(x)p(x)dx. Then under the restriction that

xi = z, the least-squares prediction for f(x) is

E[f |xi = z] =
∫

f(x)p(x|xi = z)dx.

Here p(x|xi = z) represents the probability density distribution of the input variables
other than the ith variable, or

p(x|xi = z) =
p(x)δ(xi − z)∫
p(x′)δ(x′i − z)dx

where δ(xi − z) is the Dirac “delta” function with the property δ(x− z) = 0 if x 6= z
and

∫∞
−∞ δ(x− z)dx = 1.

Then the improvement in squared prediction error I2
i (z) associated with knowing

the value z of the ith input variable xi = z is the following:

I2
i (z) = E[(f(x)− Ef)2|xi = z]− E[(f(x)− E[f(x)|xi = z])2|xi = z]

= (Ef − E[f |xi = z])2 (8)

Clearly, with assumptions p(x) = Πp
i=1pi(xi) and f(x) = a0 +

∑p
i=1 aixi, (8) can be

easily calculated. In this case, I2
i (z) = a2

i (z − x̄i)2 with x̄i =
∫

xip(xi)dxi being the
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average value of the ith input variable. To be more general, suppose f(x) =
p∑

i=1

fi(xi),

we get I2
i (z) = [fi(z)−Efi]2. (8) reflects the influence of the ith input variable on the

variation of f(x) at the point xi = z.
Consider an arbitrary point z = (z1, · · · , zn) in the m-dimensional feature space.

A measure of the relevance of the ith input variable xi to the variation of f(x) at x = z
is,

r2
i (z) =

I2
i (zi)

m∑
k=1

I2
k(zk)

(9)

r2
i (z) = 0 when f(x) is independent of xi at z; and r2

i (z) = 1 when f(x) only depends
on xi at z.

We can generalized the definition of local feature relevance in (9) by changing
the conditioning from a single point z to a subregion R(x) that includes z. More
specifically, we define r2

i (R(x)) as

r2
i (R(x)) =

∫
r2
i (x)p(x|R(x))dz

where

p(x|x ∈ R(z)) =
p(x)1(x ∈ R(z))∫

p(x′)1(x′ ∈ R(z))dx′)
.

Here function 1(·) = 1 when its input argument is true and 0 otherwise. Thus r2
i (R(z))

measures the relevance of the ith dimension to the variation of f(x) within the region
R(z).

3.1.4 Local Linear Discriminative Analysis

To make the posterior probabilities in the neighborhood be more homogenous, [6]
modifies the neighborhood by distance metric estimation, called Local Linear Dis-
criminative Analysis. The estimated distance metric shrinks neighborhoods in direc-
tions orthogonal to these local decision boundaries, and elongates them parallel to the
boundaries. Moreover, this paper discovers the elegant connection between local LDA
and the chi-squared distance between the true and estimated posterior, which justify
the the proposed metric for computing neighborhood. Details are given below.

Let us first briefly review the standard linear discriminant Analysis(LDA) classi-
fication procedure with J classes. As a discriminative feature transform, LDA finds
eigenvectors of matrix T = Sw

−1Sb. Here Sb denotes the between-class covariance
matrix, i.e., the covariance matrix of class means, and Sw denotes the within-class
covariance matrix, i.e. the weighted sum of covariance matrices of each class. S−1

w

captures the compactness of each class, and Sb represents the separation of the class
means. Thus the principle eigenvectors of T will keep data points from the same
classes close and meanwhile separate data points from different classes far apart. We
then form a transform matrix ST by stacking principle eigenvectors of T together, and
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the discriminative features y is computed as y = Swx where the x is the original input
patterns of the test example.

Based on the standard LDA, [6] proposed to localize both Sb and Sw through a
iterative procedure: It initializes the distance metric Σ as an identical matrix, i.e., a
Euclidean distance metric. At the first step, it calculates Sb and Sw using the points
that are in the neighborhood of the testing point x0 measured by the distance metric Σ.
At the second step, the estimated Sb and Sw are used to update distance metric Σ as
follows:

Σ = Sw
− 1

2 [Sw
− 1

2 SbSw
− 1

2 + εI]Sw
− 1

2

= Sw
− 1

2 [Sb
∗ + εI]Sw

− 1
2 (10)

The steps of computing local LDA and updating local distance metric will be iterated
alternatively until Σ converges. Note that (10) essentially comes from the following
equation

Σ = Sw
−1SbSw

−1

= Sw
− 1

2 (Sw
− 1

2 SbSw
− 1

2 Sw
− 1

2 )

= Sw
− 1

2 Sb
∗Sw

− 1
2 (11)

ε is introduced to prevent the neighborhood to be infinitely long in the complement
of the sphered space. We denote S∗b as the projection of Sb on the sphered space
Sw. Essentially, Sw is used to obtain the projection of the distance upon the sphered
space, and Sb in the local neighborhood discloses the consistency of the class centroids.
Consequently, the metric defined in (10), shrinks the neighborhood in directions in
which the local centroids differs, and elongates the neighborhood in directions where
the class centroids are close to each other. In this sense, the goal of [6] is consistent
with the general goal of Local Adaptive Distance Metric Learning.

Furthermore, [6] justifies the proposed metric by showing that the first item in (11)
approximates the Chi-squared distance r(X,x0) between the true and estimated poste-
rior at the test point x0. Let X represent the neighborhood of a test point x0. Let p(j|x)
be the true probability of class j at point x. Then, the Chi-square distance between the
true estimation and approximate estimation of the posterior class probabilities at loca-
tion x0, i.e., r(X,x0), is expressed as

r(X,x0) =
J∑

j=1

[p(j|X)− p(j|x0)]2

p(j|x0)
(12)

We assume the class conditional density to be Gaussian distribution with mean uj

(j = 1, · · · , J), and a same covariance matrix Σ for each class. A first-order Taylor
approximation of Pr(j|X) at point x0 is:

Pr(j|X) ≈ Pr(j|x0)− Pr(j|x0)(µj − µ̄)T Σ−1(X− x0)

11



where µ̄ =
∑

j Pr(j|x0)µj . Using this approximation, we have (12) simplified as

r(X,x0) =
J∑

j=1

Pr(j|x0)[(µj − µ̄)Σ−1(X− x0))]2

= (X− x0)T Σ−1
∑

j

Pr(j|x0)(µj − µ̄)(µj − µ̄)T Σ−1(X− x0)

Thus the approximated distance metric is Σ−1
∑
j

Pr(j|x0)(µj− µ̄)(µj− µ̄)T Σ−1. Let

Sw
− 1

2 = Σ−1 and Sb
∗ =

∑
j

Pr(j|x0)(µj − µ̄)(µj − µ̄)T . This metric can be written

into the exact form in (11). By assuming µj ∼ N(νj , εI) in the sphered space, (10)
can be obtained.

3.1.5 Locally Adaptive Feature Relevance Analysis

(12) computes the distance between the true and estimated posteriors. Consider x as a
neighbor of the testing sample x0. [24] found that the Chi-squared distance can also
tell us the extent to which the ith dimension can be relied on for predicting Pr(j|x).
This is achieved by computing the expectation of Pr(j|x) conditioned at x0 along
the ith dimension, and estimating the relevance of the ith dimension by its ability of
predicting the class posterior probabilities locally at x0. More specifically, [24] defines
the measure of feature relevance for the testing point x0, i.e., ri(z), as follows

ri(z) =
J∑

j=1

[Pr(j|z)− Pr(j|xi = zi)]2

Pr(j|xi = zi)

where Pr(j|xi = zi), i.e., the conditional expectation of Pr(j|x), is calculated as:

Pr(j|xi = zi) = E(Pr(j|x)|xi = zi) =
∫

Pr(j|x)p(x|xi = zi)dx

As indicated by the above definition, the feature relevance ri(x) measures the distance
between Pr(j|z) and the conditional expectation of Pr(j|x) at location z. The closer
Pr(j|xi = zi) is to Pr(j|z), the more information the ith dimension provides for
predicting the class posterior probabilities locally at z. Furthermore, [24] defined the
expected relevance value for the ith feature by averaging ri(z) in the vicinity of query
point x0, i.e.,

r̄i(x0) =
1

|N(x0)|
∑

z∈N(x0)

ri(z),

where N(x0) denotes the neighborhood of x0 according to a given metric. Similarly,
a small r̄i(x0) implies that the class posterior of the test example can be well approxi-
mated along the ith dimension in the vicinity of x0.
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Based on the above definition of r̄i(x0), the relative relevance of the ith feature can
be defined by

wi(x0) =
Ri(x0)t

q∑
l=1

Rl(x0)t

where Ri(x0) = (maxq
j=1r̄j(x0))− r̄i(x0). Parameter t can be set to be either 1 or 2,

which corresponds to linear and quadratic weighting. We also can define the relative
relevance using the exponential weighting, i.e.,

wi(x0) =
exp(cRi(x0))

q∑
l=1

exp(cRl(x0))
(13)

where c is chosen to adjust the influence of r̄i on the relative relevance wi. Com-
pared to the polynomial weighting, the exponential weighting is more sensitive to the
changes in the local feature relevance. Finally, the distance is computed by D(x, y) =√

q∑
i=1

wi(xi − yi)2, where weights wi enable the neighborhood to elongate less impor-

tant feature dimensions and, to constrict the most influential ones.

3.1.6 Adaptive Kernel Metric Nearest Neighbor Classification

As an extension of [24], [8] proposed a new kernel (Quasiconformal kernel) for nearest
neighbor classification. In particular, the proposed Quasiconformal kernel adjusts the
RBF kernel by introducing weights based on the both local consistency of class labels
and labeling uncertainty.

First, the quasiconformal mapping is defined as:

K̂(x,x0) = c(x)c(x0)K(x,x0) (14)

where x is a sample and x0 is a testing sample, and c(x) is a positive function of x.
Assuming K(x,x) = 1 for any x, the corresponding quaciconformal kernel distance
is,

D(x,x0) = c(x)2 − 2c(x)c(x0)K(x,x0) + c(x0)2

= (c(x)− c(x0))2 + 2c(x)c(x0)(1−K(x,x0)) (15)

In [8], the weight function c(x) is defined as

c(x) =
Pr(jm̄|x)
Pr(jm|x0)

(16)

where jm = arg max
j

Pr(j|x0) and jm̄ = 1− jm.

Using the above distance of c(x), (15) can be written as follows

D(x,x0) =
(

Pr(jm|x0)− Pr(jm|x)
Pr(jm|x0)

)2

+ 2c(x)c(x0)(1−K(x,x0)) (17)
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For computational efficiency, the RBF kernel in (17) is replaced by its Taylor expansion
at the second order.

K(x,x0) = exp
(
−1

2
(x− x0)T Σ−1(x− x0)

)
≈ 1− 1

2
(x− x0)T Σ−1(x− x0)

This simplification leads to a weighted combination of Chi-squared distance and Ma-
halanobis distance.

D(x,x0) ≈
(

Pr(jm|x0)− Pr(jm|x)
Pr(jm|x0)

)2

+ c(x)c(x0)(x− x0)T Σ−1(x− x0) (18)

c(x) ≈ c(x0) makes the first term in above expression to be zero, which reduces the
distance D(x,x0) to the Mahalanobis distance that is weighted by c(x)c(x0). It is
interesting to note the different roles that weighting functions c(x) and c(x0) play on
the distance measure. In particular, c(x) measures the consistency of class labels in the
vicinity of x0; the smaller the c(x) is, the more consistency the class labels are in the
neighborhood of x0. c(x0) measures the labeling uncertainty; the smaller the c(x0)
is, the less uncertain the class label is for x0. Thus, the product of c(x) and c(x0)
measures both the labeling uncertainty and the label consistency in the neighborhood
of x0.

Essentially, the sample risk r(x0,x) defined by [24] and c(x) defined by [8] both
represent class-consistency. r∗(x0) defined by [24] and c(x0) defined by [8] both
measure the degree of uncertainty in labeling x0 with its maximum likelihood class.
However, the shortage of the Chi-squared distance adopted by [24] is that it ignores the
direction of variation of Pr(j|x) from Pr(j|x0). As disclosed by (19), this information
is captured by c(x0) and c(x) in [8]. (19) shows that the dilation or contraction of
the Mahalnobis distance due to the variation in c(x), is proportional to the square root
of the Chi-squared distance. The direction of variation of Pr(j|x) from Pr(j|x0) is
further used to decide to which degree the Mahalanobis distance should be modified to
drive the neighborhood in the modified distance measure closer to homogeneous class
posterior probabilities, or say to determine the dilation or contraction.

c(x) = c(x0)±
√(

Pr(jm|x0)− Pr(jm|x)
Pr(jm|x)

)2

(19)

Here ± represents the sign of (Pr(jm|x0)− Pr(jm|x)).

3.1.7 Local Adaptive Distance Metric Learning using SVM

[25] proposed a technique that computes a locally flexible distance metric using SVMs.
Similar to the work [24, 7], [25] weights the features based on their relevance to the
class conditional probabilities for the query example. However, unlike [24] where the
feature relevance is computed based on the Chi-square distance, [25] measures the
feature relevance based on the discriminative directions that are identified by SVMs.
Specifically, the decision function constructed by SVMs is used to determine the most
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discriminative direction in the neighborhood of the query example. The identified di-
rection is then used to provide a local feature weighting scheme. Furthermore, the
learned distance metric can be fed back to SVMs to further increase the performance
of maximum margin classifers. Empirically, by combining the strength of [24] in local
adaptive metric learning and the local discriminative direction obtained by SVMs, [25]
improves the classification performance of SVM. By elongating the distance along the
direction that is parallel to the decision boundary, and constricting the distance along
the direction perpendicular to the decision boundary, the class conditional probabilities
in the resulting neighbor tend to be constant.

Recall that SVMs classify patterns based on the classification function

f(x) =
ns∑

i=1

αiyiK(xi,x)− b

where ns is the number of support vectors. The kernel function K(x,y) is defined as
K(x,y) = φT (x) · φ(y), where φ : Rm → RM (m ≤ M) is a mapping of the input
space into a higher dimensional feature space. The class label of a test example x is
determined by the sign of the classification function f(x), and the decision boundary
is determined by the equation f(x) = 0. The gradient vector nd = 5df computed
at any point d of the level curve f(x) = 0, gives the perpendicular direction to the
decision boundary in input space at d. The vector nd identifies the orientation in the
input space on which the projected training data are well separated, locally over d’s
neighborhood. Hence, this information can be used to define a local measure of feature
relevance.

We now review the definition of feature relevance measurement based on local
discriminative direction given by [25]. Consider x0, a query point that is close to
the decision boundary. Let d be the closest point to x0 on the boundary f(x) = 0.
Given that the class conditional probabilities are likely to change significantly along
the direction nd, we need to increase the distance measurement for any direction that
is close to nd in order to exclude points that are likely to have different class labels
as that of the query example x0. In the meantime, distance should be reduced where
the direction is away from nd because the class labels along those direction tends to be
uniform. To this end, we follow the measure of feature relevance defined in (13), and
define

Ri(x0) = |uT
i · nd| = |nd,i|

where nd = (nd,1, · · · , nd,n)T , and ui is the all-zero vector with the ith element being
1. Similar to the previous discussion, weights Ri(x0) elongate the dimensions that are
not informative, and constrict the dimensions that are critical to the prediction of class
labels.

Below listed the detailed steps for the Local Flexible Metric Classification based
on SVMs:

• Computer the approximated closest point d to x0 on the boundary

• Computer the gradient vector nd = 5df
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• Set feature relevance values Ri(x0) = |nd,i| for i = 1, . . . ,m

• Estimate the distance of x0 from the boundary as follows:

B(x0) = min
Si

‖x0 − Si‖

• Compute the feature relevance as:

wi(x0) =
exp(ARi(x0))

m∑
i=1

exp(ARi(x0))
, j = 1, . . . , m

where Sis are nonzero support vectors, i.e., 0 < αi < C. Variable A is defined
as A = D − B(x0), where D is the averaged minimum distance to the nonzero
support vectors across the entire training dataset that is computed as follows:

D =
1
ns

∑
xk

min
Si

‖xk − Si‖

Note that the introduction of factor A will determine if the query example x0 is
close to the decision boundary. More specifically, the larger the A, the closer the
query example x0 is to the decision boundary.

• Use the resulting w(x0) = (w1(x0), w2(x0), . . . , wm(x0)) for the KNN classi-
fication at the query point x0.

3.1.8 Discussions

Below provide some discussions about the local adaptive distance metric learning ap-
proaches we have reviewed above.

• Although both [18] and [24] define relevance measure for features, they are
driven by different motivation. [18] identify the dimensions along which the
expected variation of class posterior probability is maximized, while [24] aims
to find a dimension to minimize the difference between the true class probability
distribution for a given query example and its estimation by the training exam-
ples in the neighborhood of the query example.

• The major difference between [6] and [24] is the following. The metric com-
puted by [6] approximates the weighted Chi-squared distance by a Tylor series
expansion, given the assumption that the class densities are Gaussian and have
the same covariance matrix (which are not practical in real world application).
Whereas [24] does not make such assumptions, but approximates the weighted
Chi-squared distance using the Taylor expansion.

3.2 Neighborhood Components Analysis
Neighborhood Component Analysis (NCA) algorithm proposed in [9] learns a Maha-
lanobis distance metric for the KNN classifier by maximizing the leave-one-out cross
validation. Below we briefly review the central idea of NCA.
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Let the labeled data set denoted by L = {(x1, c1), . . . , (xn, cn)}. To ensure the
learned distance matrix to be symmetric positive semi-definite, [9] assumes the distance
metric Q in the form Q = AT A where A can be any matrix. This parametric form
will guarantees that distance between any two data points x and y to be positive, given
the fact that d(x,y) = (x− y)T Q(x− y) = (Ax−Ay)T (Ax−Ay).

Given a point xi, a ”soft” neighbor of xi is defined by pij , which is the probability
for xj to be selected as the neighbor of xi, and shares the same class label with xi.
in [9], the probability pi,j is defined as:

pij =
exp(−‖Axi −Axj‖2)∑

k 6=i

exp(−‖Axi −Axk‖2)

Let the set of points that share the same class with xi denoted by Ci = {j|ci = cj}.
Then, the probability of classifying xi correctly is expressed pi =

∑
j∈Ci

pij , and
the expected number of correctly classified points is f(A) =

∑n
i=1 pi. Taking the

first-order derivative of f(A) with respect to A, we have

∂f

∂A
= 2A

n∑

i=1


pi

∑

k 6=i

pi,k(xi − xk)(xi − xk)T −
∑

j∈Cj

pi,j(xi − xj)(xi − xj)T




Instead of using the average classification accuracy, [9] suggests using the leave-one-
out cross validation to be the objective function f(A), i.e.,

f(A) =
n∑

i=1

log(
∑

j∈Ci

pi,j))

NCA has the following three drawbacks:
• NCA suffers from the scalability problem because its objective function is differ-

entiated w.r.t. the distance matrix and the number of parameters in A is quadratic
in the number of features. Therefore, updating the distance matrix will become
intractable with large dimensionality.

• The gradient ascent algorithm proposed by NCA does not guarantee to converge
the local maxima.

• NCA tends to overfit the training data if the number of training examples is
insufficient for learning a distance metric. This happens often when data points
are represented in the high dimensional space.

3.3 Relevant Component Analysis
RCA is developed for unsupervised learning using equivalence relations. Founded on
an information theoretic basis, and using only closed form expressions of the data,
RCA algorithm [29] is a simple and efficient algorithm for learning a full ranked Ma-
halanobis distance metric. It constructs a Mahalanobis distance metric based on a
weighted sum of in-class covariance matrices [29]. It is similar to PCA and linear
discriminant analysis in that they depend on the second-order statistics. A number of
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studies have shown the success of learning distance metric learning using RCA.(e.g.
[13] [9]). In this section, we will first give a brief review of RCA, followed by its ap-
plication in distance metric learning. We will then discuss the kernel version of RCA
based on the study ([30]).

3.3.1 A Brief Review of RCA

Relevant Component Analysis (RCA) applies a global linear transformation to assign
large weights to relevant dimensions and low weights to irrelevant dimensions. These
”relevant dimensions” are estimated using chunklets. In RCA, a chunklet is defined as
a subset of points that are known to belong to the same although unknown class. The
detailed steps of RCA is the following:

• Substract the chunklet’s mean from all of the points in a given chunklet
• Compute the covariance matrix of all the centered data points in the chunklets.

If there are p points in k chunklets, and each chunklet j contains points {xji}nj

i=1

with mean as m̂j , the covariance matrix in RCA is computed:

Ĉ =
1
p

k∑

j=1

nj∑

i=1

(xji − m̂j)(xji − m̂j)T

• Apply the whitening transformation W = Ĉ− 1
2 associated with this covariance

matrix, to the original data points, xnew = Wx. The inverse of Ĉ can be used
as a Mahalanobis distance.

Information maximization under chunklet constraints [13] formulates the problem
of RCA as a constrained optimization problem. Their work follows an information
theoretic criterion proposed by [31]. It searches for y, a transformation of input patterns
x, that maximizes the mutual information I(X,Y) between X and transformed Y
under suitable constraints. Accordingly, a set X = {xl}n

l=1 of data points in RN

is transformed into the set of points Y = {f(xl)}n
l=1 in RM . The goal is to find a

function f(·) in the family of F that maximizes I(X,Y). In addition, transformation
function f(·) is required to keep all the data points in the chunklets close to each other.
Consequently, the overall problem can be cast into the following optimization problem:

max
f∈F

I(X,Y) (20)

s.t.
1
p

k∑

j=1

nj∑

i=1

‖yji −my
j ‖2 ≤ K

where my
j denotes the mean of data points in the jth chunklet after the transforma-

tion, p is the total number of points in chunklets, and K is threshold constant. Given
transformation function f(·) is deterministic, there will be no uncertainty regarding Y
given X, and therefore maximizing mutual information I(X,Y) is equivalent to max-
imizing the entropy H(Y). Let |J(x)| be the Jacobian of the transformation, and we
have py(y)dy = px(x)/|J(x)|dx. Thus, H(Y) can be expressed in terms of H(X) as
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follows:

H(Y) = −
∫

y

p(y) log(p(y))dy = −
∫

x

p(x) log
p(x)
|J(x)|dx

= H(X) + 〈log |J(x)|〉x
In I(X,Y), the only term that depends on the transformation A is the Jacobian. The
Jacobian is |A| for a linear transformation Y = AX. Thus, (20) is written as:

max
A

|A| (21)

s.t.
1
p

k∑

j=1

nj∑

i=1

‖xji −mj‖2AT A ≤ K

Denote a Mahalanobis distance matrix as B = AT A, where B is positive definite, and
log(|A|) = 1

2 log |B|. In this way, (21) can be further written into

max
B

|B| (22)

s.t.
1
p

k∑

j=1

nj∑

i=1

‖xji −mj‖2B ≤ K,B Â 0

Solving for the Lagrangian gives us the solution of RCA: B = K
N Ĉ−1, where Ĉ is the

average chunklets covariance matrix and N is the dimension of the feature space.
Apply RCA to Distance Metric Learning [13] addresses the problem of learning

distance metrics with side-information using the RCA algorithm, which is a simple
but efficient algorithm for learning a full ranked Mahalanobis metric [29]. This work
demonstrates that with the permission of singular Mahalanobis matrix, RCA on the top
of Fisher’s linear discriminant is the optimal dimensionality reduction algorithm under
the same criterion. [9] is another recent work related to RCA, and it will be reviewed
in details in the later sections.

3.3.2 Kernel Relevant Component Analysis

Similar to the kernel PCA, [30] shows that RCA can be kernelized by some ele-
gant matrix manipulations. Their experiments shows significant improvements can be
achieved over the linear version, especially when nonlinearities are needed. Besides,
[30] presents a learning algorithm for the incremental setting.

Assume that C chunklets are given, and each chunklet cj comprises of nj data
points {xj,1, · · · , xj,nj}. Each data point xj,i ∈ Rm. Denote 1j be the n-dimensional
vertor with

[1j ]i = { 1, pattern i ∈ Cj

0, otherwise

and Ij be the n× n diagnal matrix diag(1j). Also the chunklet patterns are stacked in
a m × n matrix as: X = [x1,1,x1,2, · · · ,x1,n1, · · · ,xj,1,xj,2,xj,nj ]. Then C can be
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written in below matrix form,

C =
1
n

C∑

j=1

nj∑

i=1

(xj,i − 1
nj

(X1j))(xj,i − 1
nj

(X1j))T

=
1
n

C∑

j=1

X(Ij − 2
nj

1j1T
j +

1
nj

1j1T
j )XT

=
1
n
XHXT

where

H =
C∑

j=1

(Ij − 1
nj

1j1T
j ) (23)

H ∈ Rn×n is symmetric, block diagonal, and positive semi-definite. It plays similar
role as the centering matrix (I− 1

n11T ) in PCA.
Note that C in the above can be singular when n ≤ m. To solve this problem, a

regularizer εI is introduced to C, where ε is a small positive constant. This leads to the
following expression:

Ĉ = εI + C = εI +
1
n
XHXT (24)

Using the Woodbury formula, i.e.,

(A + BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1

the inverse of C can be computed efficiently as follows:

Ĉ−1 = (εI +
1
n
XHXT )−1 =

1
ε
I− 1

nε2
XH(I +

1
nε

XT XH)−1XT

To extend the RCA to the kernelized version, we first compute the dot product between
two patterns x and y as:

(Ĉ− 1
2 x)T (Ĉ− 1

2 y) = xT Ĉ−1y

= xT

[
1
ε
I− 1

nε2
XH(I +

1
nε

XT XH)−1XT

]
y

Given a nonlinear mapping ϕ(·) and the kernel function k(x,y) = ϕ(x)ϕ(y), the
dot-product between ϕ(x) and ϕ(y) is calculated as:

k(x,y) =
1
ε
k(x,y)− kT

x

[
1

nε2
H(I +

1
nε

KH)−1

]
ky (25)

where K = [k(xi,xj)]ij is the n × n kernel matrix defined on the chunkelt patterns,
kx = [k(x1,1,x), · · · , k(xj,nj ,x)]T and ky = [k(y1,1,y), · · · , k(yj,nj ,y)]T .
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3.3.3 Incremental Learning

Equation (25) requires computing H(I+ 1
nεKH)−1 whenever there is a new chuncklet,

which is often computationally expensive. [30] presents an efficient learning algorithm
for incremental updating without having to recompute the inverse of the large matrix.

By defining the value of ε, (24) can be written as Ĉ = 1
n (XHXT + εI). Using

the Woodbury formula, Ĉ−1 = n
ε I − n

ε2 XH(I + 1
εKH)−1XT . Below, the set of all

processed chunklets are denoted by A containing nA patterns, and the new chunklet
as B containing nB patterns. The corresponding X matrices are XA ∈ Rd×nA and
XB ∈ Rd×nB , respectively. Then K and H can be decomposed as:

K =
[

KAA KAB

KT
AB KBB

]

H =
[

HA 0
0 HB

]

where
KAA = XT

AXA

KAB = XT
AXB

KBB = XT
BXB

HA is H in (23) that corresponds to all the processed chunklets, and HB = I− 1
nB

11T ,
where 1 ∈ RnB is a all-one vector.

Denote ZA = (I + 1
εKAAHA)−1, and given the fact that

(
A B
C D

)
=

(
A−1 0
0 0

)
+

(
A−1B
I

)
P−1[−CA−1 I]

where P = D−CA−1B, we get,

(I +
1
ε
KH)−1 =

(
I +

1
ε

(
KAAHA KABHB

KT
ABHA KBBHB

))−1

=
(

I + 1
εKAAHA

1
εKABHB

1
εK

T
ABHA I + 1

εKBBHB

)−1

=
(

ZA 0
0 0

)

+
( − 1

εZAKABHB

I

)
(I +

1
ε
KBBHB − 1

ε2
KT

ABHAZAKABHB)−1
( − 1

εK
T
ABHAZA I

)

Denote YA = HAZA, then

H(I +
1
nε

KH)−1 =
(

YA 0
0 0

)

+
( − 1

εYAKABHB

HB

)
(I +

1
ε
KBBHB − 1

ε2
KT

ABYAKABHB)−1
( − 1

εK
T
ABYA I

)
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The complexity of this algorithm has been fully discussed in [30]. The total compu-
tational complexity is o(n2

AnB + nAn2
B + n3

B). Given the fact that nB ¿ nA, the
complexity is much less than that of the naive approach, which is o((nA + nB)3).
Conclusively, the kernelized RCA extends the ability of RCA to produce nonlinear
transforms of the input space. Moreover, the incremental update procedure allows the
kernel RCA transform to be computed efficiently in an adaptive environment.

4 Unsupervised Distance Metric Learning
For unsupervised distance metric learning or called manifold learning, the main idea is
to learn an underlying low-dimensional manifold where geometric relationships (e.g.
distance) between most of the observed data are preserved. There is deep connec-
tion between unsupervised distance metric learning and dimension reduction. Ev-
ery dimension reduction approach is essentially to learn a distance metric without
label information. For example, as a classical dimension reduction approach, Prin-
ciple Component Analysis (PCA) can be viewed as a special distance metric. Specif-
ically, using the principle eigenvectors ui of the covariance matrix, we can construct
a distance metric A =

∑
i uiuT

i , and the distance between x and y is measured by
d = (x− y)T A(x− y). Given this essential connection, our emphasis in this section
is the review of dimension reduction.

4.1 Problem Setting
The dimension reduction problem is, given a data set D = {x1, · · · ,xn} ∈ RM ,
to find a set of points {y1, · · · ,yn} ∈ Rn (M À m), such that each yi “repre-
sents” its counterpart xi. For the convenience of presentation, we denote the matrix
X = [x1, · · · ,xn] and correspondingly the matrix Y = [y1, · · · ,yn]. Here, we only
consider the special case that {x1, . . . ,xn} ∈ M, where M is a manifold embedded
in Rm.

Many dimension reduction algorithms have been proposed. Table 4.1 summarizes
dimension reduction algorithms based on whether they are linear or nonlinear, global
or local. We start our discussion with the linear dimension reduction approach, includ-
ing Principle Component Analysis (PCA) and Multiple Dimension Scaling (MDS),
followed by the discussion of nonlinear approaches, including ISOMAP [32], Local
Linear Embedding (LLE) [33], and the Laplacian Eigenmap [34]. At the end of this
section, we will present a unified framework for dimension reduction algorithms.

Linear nonlinear
Global PCA, MDS ISOMAP
Local LLP , LLE, Laplacian Eigenmap

Table 1: Algorithms for dimension reduction

22



4.2 Linear Methods
The task of dimensionality reduction is to find a small number of features to repre-
sent a large number of observed dimensions. The classical linear algorithms includes
Principle Component Analysis (PCA) and Multidimensional Scaling (MDS).

Principal Component Analysis (PCA) finds the subspace that best preserves the
variance of the data. Formally speaking, to find the orthonormal basis U = [u1, · · · ,um]
that maximize the variance of yi = UT xi. Here xi (i = 1 · · ·n) has been centered by
the mean of the input space

Var(Y) = Var(UT X)
= E[(UT X)(UT X)T ]
= E[UT XXT U]
= UT E[XXT ]U
= UT ΣU

where Σ = Var(X). Assume [Vpca,Λpca] = eig(Σ), where Vpca is the eigen matrix
containing eigenvectors of Σ as columns, and Λpca is a diagonal matrix whose diagonal
elements are the corresponding eigenvalues of Σ. Then the matrix U that maximizes
UT ΣU is composed by the first m eigenvectors of Σ, denoted as Vpca

m , and the cor-
responding eigenvalues are denoted as Λpca

m . Consequently, the PCA projections of X
with a rank of m is Y = Vpca

m X.
Multidimensional Scaling (MDS) [35] finds the rank m projection that best pre-

serves the inter-point distance (dissimilarity) given by the pairwise distance matrix D.
The detailed steps are the following:

• From D, calculate B = XT X = − 1
2HDH, where H = I − 1

N 11T is the
centering matrix, and 1 ∈ Rm is an all-one vector.

• Spectrally decompose B = VmdsΛmds(Vmds)T , where [Vmds,Λmds] =
eig(B).

• X = Vmds(Λmds)
1
2 .

• Rank m projections Y closet to X is Y = Vm(Λmds
m )

1
2 . Here Vmds

m and
Λmds

m ) are the top m eigenvectors and eigenvalues, respectively.
Relations between PCA and MDS can be revealed by the following equations:

Vpca = XVmds,Λpca = Λmds

Ypca = (Λpca)
1
2 Ymds

Conclusively, in the Euclidean case, MDS only differs from PCA by starting with D
and calculating X. Starting with D is useful when D is not Euclidean, but a dissimi-
larity function of the data.

PCA and Euclidean MDS are simple, efficient, and guarantee to optimize their
criterions. However, as linear approaches, they cannot find nonlinear structure in the
data. This motivates a series of nonlinear dimension reduction methods.
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4.3 Nonlinear Methods
Significant research has been done on nonlinear dimension reduction. We follow the
categorization scheme in [36] and divide these algorithms into below four categories.

• Embedding Methods Embedding algorithms can be divided as global and local.
As a global algorithm, ISOMAP [32] assumes that isometric properties should be
preserved in both the observation space and the intrinsic embedding space in the
affine sense. According to this assumption, ISOMAP finds the subspace that best
preserves the geodesic interpoint distances. Extensions of ISOMPA to conformal
mappings is also discussed in [37]. Unlike ISOMAP that tries to preserve the
geodesic distance for any pair of data points, Locally Linear Embedding (LLE)
[38] and Laplacian Eigenamp [34] focus on the preservation of local neighbor
structure. As an extension of [34], Locality Preserving Projection (LPP) [39]
finds linear projective maps that optimally preserve the neighborhood structure
of the data set. It is an optimal linear approximation to the eigen functions of the
Laplace-Beltrami Operator on the manifold. Here Laplace-Beltrami Operator is
a self-adjoint elliptic differential operator defined as ∆ = dδ + δd, where d is
the exterior derivative (df =

∑
i

∂f
∂xi

dxi written in a coordinate chart) and d and

δ are adjoint to each other with respect to the inner product.
• Mutual information methods This group of methods assumes that the mu-

tual information is a measurement of the differences of probability distribution
between the observed space and the embedded space. Related work includes
stochastic nearest neighborhood (SNE) [40] and manifold charting [41].

• Projection methods This group of methods is geometrically intuitive. The goal
is to find principal surfaces passing through the middle of data, for example,
the principal curves [42, 43]. Its difficulty lies in how to generalize the global
variable-arc-length parameter into higher dimensional surface.

• Generative methods This group of methods adopts generative topology mod-
els [44, 45, 46], and hypothesizes that observed data are generated from the
evenly spaced low dimensional latent nodes. Then the mapping relationship be-
tween the observation space and the latent space can be modeled. However, EM
(Expectation-Maximization) algorithms makes the generative models easily fall
into local minimum and have slow convergence rates.

In this survey, we will emphasize on nonlinear embedding methods, including the
ISOMAP, LLE and Laplacian Eigenamp. We will first review each of these methods,
and then discuss their underlying connections.

4.3.1 LLE(Locally Linear Embedding)

The locally linear embedding (LLE) algorithm [38] is a local method to establish the
mapping relationship between the observed data and the corresponding low-dimensional
data. The principle of the LLE algorithm is to preserve local order relation of data in
both the embedding space and the intrinsic space. Each sample in the observation space
is a linearly weighted average of its neighbors. The basic LLE algorithm based on local
covering numbers can be described as follows:
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• Find the n nearest neighbor for each xi in the dataset. By assuming that each
data point and its neighbors lie on a locally linear patch of the manifold, the
local geometry of these patches can be characterized by linear coefficients that
reconstruct each data point from its neighbors. Based on this assumption, the
reconstruction error can be measured by adding up the squared distance between
all the data points and their reconstructions, i.e.,

ϕ(W) = ‖xi −
K∑

j=1

Wijxij‖2

where the weight matrix W = [Wij ]n×n summarizes the contribution of the jth
data point to the ith reconstruction.
The weighted matrix W can be obtained by solving this least square problem.
There are two constraints regarding W. One is

∑n
j=1 Wij = 1 for any data

point xi. The other is Wij = 0 if xj is not a neighbor of xi. These two con-
straints are important because the solution under these constraints characterizes
the intrinsic geometric properties of each neighborhood, and is invariant to rota-
tions, rescalings, and translations of a given data point and its neighbors.

• Construct the approximation matrix. Choose Wij by minimizing
n∑

i=1

‖xi −
n∑

j=1

Wijxij‖

under the condition that
∑

j Wij = 1 for each xi.
• Construct a neighbor-preserving mapping. The idea is, the reconstruction weights

Wij reflect intrinsic geometric properties of the data, and are invariant to the
linear transformation from a high dimensional (M ) coordinates of each neigh-
borhood to global internal coordinates on a low dimensional (m, M À m) man-
ifold. Therefore, the expectation is that Wij that reconstruct the ith data point
in M dimensions should reconstruct its embedded manifold coordinated in m
dimensions. This is equivalent to approximate the nonlinear manifold around
point xi by the linear hyperplane that passes through its neighbors xi1, · · · , xik.

Therefore, by minimizing the cost function Φ(Y) = ‖yi −
K∑

j=1

W∗
ijyij‖, where

W∗ = argmin
W

ϕ(W), we get Y∗ = argmin
Y

Φ(Y). Here we have two con-

straints. One is
∑
i

yi = 0 enforcing that the objective Φ(Y) is invariant to

translation in Y. The other is
∑
i

yiyT
i /r = I to avoid the degenerate solution of

Y = 0, where r is the number of local covering set.
Y∗ = argmin

Y
Φ(Y) can be further reduced to an eigenvector decomposition

problem as argmin
Y

‖YT (I−W)T (I−W)Y‖2. Therefore to minimize the cost

function, we only need to compute the embedding by eigen analysis of the sym-
metric positive semdefinite matrix(I −W)T (I −W). Only the m + 1 lowest
eigenvalues will be taken and the smallest eigenvector will be discarded consid-
ering the constraint terms. Thus, each high-dimensional xi ∈ RM is mapped to a
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Figure 1: The Swiss roll data set, illustrating how ISOMAP exploits geodesic paths for
nonlinear dimensionality reduction.

low-dimensional vector yi ∈ Rm. And yi represents global internal coordinates
on the manifold.

Disadvantage of LLE and Related Improvement LLE algorithm requires re-
computing the eigen spectrum of the entire matrix (I − W )T (I − W ) for every test
example, which could be computationally expensive. An corresponding improvement
has been made by [36]. According to weierstrass approximation theorem, any con-
tinuous function on a closed and bounded interval can be uniformly approximated on
that interval by polynomials to any degree of accuracy. Based on this theorem, the
MLA algorithm, [36] uses the gaussian RBF kernel to approximate the relationship.
Given a testing point x′, its internal coordinates on the manifold can be computed by

y′ =
n∑

i=1

αiK(xi,x′) where K(xi;x′) = exp(−‖xi−x′‖2
2σ2 ), and α can be computed by

the complete data (X;Y).

4.3.2 ISOMAP

The challenge of nonlinear dimension reduction is illustrated in [32] by the example
with data lying on a two-dimensional Swiss roll. The leftmost picture in figure 1 shows
that, for two arbitrary points (circled) on a nonlinear manifold, their Euclidean distance
in the high dimensional input space (length of dashed line) may not accurately reflect
their intrinsic similarity, as measured by geodesic distance along the low-dimensional
manifold (length of solid curve). Points far apart on the underlying manifold, as mea-
sured by their geodesic distances (i.e., the length of shortest path), may appear de-
ceptively close in the high-dimensional input space, as measured by their straight-line
Euclidean distance.

Only the geodesic distance is capable of revealing the true low-dimensional ge-
ometry of the manifold. However, both PCA and MDS can only see the Euclidean
structure and fail to detect the intrinsic two dimensionality. To address the challenge,
[32] propose an approach, named ISOMAP, to exploit the eigen analysis for nonlinear
embedding. The detailed steps of the ISOMAP algorithm are given as follows:

• Set up neighbor relations on the manifold M based on the pairwise Euclidean
distance dX(i, j) in the input space X. This can be realized either by a fixed
neighbor size or by a fixed distance range. The identified neighbor relations are
further represented by a weighted Graph G over the data points, with weight
dX(i, j) assigned to the corresponding edges. The picture in the middle of figure
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1 shows the neighborhood graph G constructed in this step allows an approxima-
tion (solid segments) to the true geodesic path to be computed efficiently in the
next step, as the shortest path in G.

• Estimate the pairwise geodesic distance dM(i, j) on the manifold M. The
geodesic distance is defined as the distance of the shortest path dG(i, j) in the
graph G. For neighboring points, input distance is a good approximation to
geodesic distance; for far away points, geodesic distance adding up a sequence
of ”short hops” between neighboring points which is actually the shortest paths
in a graph with edges connecting neighboring data points.

• Apply MDS to the matrix of geodesic distance DG , where [DG ]i,j = dG(i, j),
to construct an embedding of the data in a m-dimensional Euclidean space Y
that can best preserve the estimated intrinsic geometry of the manifold. The
rightmost picture in figure 1 shows the two-dimensional embedding recovered
by ISOMAP in this step, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding now represent
simpler and cleaner approximations to the true geodesic paths than do the corre-
sponding graph paths (curves).

4.3.3 Laplacian Eigenmaps

Laplacian Eigenmaps method [34] is a locality-preserving nonlinear dimension reduc-
tion method. The eigenmaps are provided by the eigenvectors of the graph Laplacian,
and the eigenfunctions of Laplace Beltrami operator on the manifold. And the map
generated is a discrete approximation to a continuous map. Specifically, given a data
set {x1, · · · ,xn} ∈ RM , we construct a weighted graph with n nodes, one for each
point, and a set of edges by connecting neighboring points. Then the eigenvectors of
the graph Laplacian is used to construct the embedding map from the input space to
the embedded manifold. The detailed steps are listed as below:

• Constructing Adjacency Graph. Two nodes xi and xj are connected if they are
close. ”Closeness” criterions can be ‖xi−xj‖22 < ε or n-nearest-neighbor (Node
i and node j are connected by an edge if node i is among n nearest neighbors of
node j or node j is among n nearest neighbor of node i)

• Weighting the edges. It could be rigid weighting and soft weighting. For rigid
weighting, Wij = 1 if nodes i and j are connected; and Wij = 0, otherwise.

For soft weighting, if nodes i and j are connected, Wij = e−
‖xi−xj‖2

τ , otherwise
Wij = 0. Here τ need to be chosen carefully.

• Calculate Eigenmap. Given the connected graph G (if the graph G is not con-
nected, go through each connected components of G), solve a generalized eigen
decomposition problem: Lf = λDf . Here D is a diagonal weight matrix,
the entries of which are column sums of W, i.e. Dii =

∑
j

Wji, and L is

the laplacian matrix. Let 0 = λ0 ≤ · · · ≤ λk−1 be the eigenvalues, and
f0, · · · , fk−1 be the corresponding eigenvectors. By leaving the zero eigenvalue
out, and using the top m eigenvectors, we obtain the following embedded map-
ping xi → (f1(i), · · · , fm(i))

27



Justification in the Simplest Case To reveals the scheme used by Laplacian Eigen-
map to preserve locality in the dimension reduction process, [34] suggests the following
simplest case. Given a dataset {x1, · · · ,xn} ∈ RM and the connected weighted graph
G = (V,E). Imagine mapping the weighted graph G to a line and get the correspond-
ing map y = (y1, y2, · · · , yn)T , so that connected points stay as close as possible. In
this case, minimizing the objective function

∑

i,j

(yi − yj)2Wij

ensures that if xi and xj are close then yi and yj are close as well. Precisely, if Wij

is large, which means xi and xj are close, the minimization of the objective function
will force (yi − yj) to be small, which means yi and yj are close as well.

In this simplest case, [34] also shows that, for any y, 1
2

∑
i,j

(yi − yj)2Wij can be

further written into yTLy, given L = D −W, Therefore, the minimization problem
can be reduced to:

argmin
y

yTLy

s.t. yT Dy = 1,

yT D1 = 0.

The first constraint yT Dy = 1 can prevent the minimization problem go to a trivial
solution because of the scaling factors, because Dii represents the importance of vertex
i. For the second constraint,yT D1 = 0 can remove a translation invariance of y, to be
sure that the solution is given by the eigenvectors with the smallest nonzero eigenvalue.

Generalization The above problem of embedding the graph G into a line can be
further generalized into the problem of embedding the graph G into m-dimensional Eu-
clidean space. Suppose Y = [y1 y2, · · · ,ym], where the ith row y(i) is m-dimension
representation of xi. Minimizing

∑

i,j

‖y(i) − y(j)‖2Wij

can be reduced to find
argmin

YT DY=I

traceYTLY)

For the m-dimensional case, the constraint YT DY = I prevents collapse onto a sub-
space of dimension less than (m − 1). The solution of this optimization problem is
provided by the matrix of eigenvectors corresponding to the lowest nonzero eigenval-
ues of the generalized eigenvalue problem Ly = λDy.

4.3.4 Connections among ISOMAP, LLE, Laplacian Eigenmaps and Spectral
Clustering

• One important observation from [34] is that, the process of dimensionality re-
duction that preserves locality yields the same solution as clustering. Essentially,
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local approaches such as LLE and Laplacian Eigenmaps only attempts to pre-
serve neighborhood information, which can be interpreted as a soft clustering of
the data. Therefore, local approaches to dimension reduction can also be deemed
as a natural clustering of the data. And the solutions of both LLE and Laplacian
Eigenmaps are closely tied to spectral clustering. Differently, as a global strat-
egy, ISOMAP [32] attempts to approximate all the geodesic distances on the
manifold.

• The strong connection between LLE [38] and Laplacian Eigenmaps [34]. De-
note as the semi-definite matrix E = (I − W)T (I − W) in LLE. And E and
L are deemed as operators acting on functions defined on the data points. [34]
has proved that, under certain conditions, Ef = 1

2L2f , where the eigenvec-
tors of 1

2L2 coincide with those of L. Consequently, LLE’s attempts to min-
imize fT (I − W)T (I − W)f can be reduced to find the eigenfunctions of
(I−W)T (I−W), which is essentially to find the eigenfunctions of the iterated
Laplacian L.

4.4 A Unified Framework for Dimension Reduction Algorithms
Several unsupervised learning algorithms use an eigendecomposition for obtaining a
lower-dimensional embedding of data lying on a non-linear manifold. Inspired by
[47], we unify these algorithms into a common framework, based on the computation
of an embedding for the training points obtained from the principal eigenvectors of a
symmetric matrix. Given a data set D = {x1, · · · ,xn} and xi ∈ RM , a n× n affinity
matrix is first constructed and denoted as H. Let Si be the ith row sum of the affinity
matrix H:

Si =
∑

j

Hij (26)

Then normalizing H by Si gives us Ĥ. We further compute the m largest positive
eigenvalues λt and eigenvector vt of Ĥ. Then the embedding of xi has two alternative
solutions:

4.4.1 Solution 1

The embedding of xi is ei with eit =
√

λtvit, and 〈ei, ej〉 is the best approximation
of Ĥij in the squared error sense. MDS(Multi-Dimensional Scaling) and ISOMAP
belong to this category.

Multi-Dimensional Scaling(MDS) In Multi-Dimensional Scaling [35], a distance
or affinity matrix is first computed between each pair of training examples. Then we
normalize H to convert distances to equivalent dot-products by the ”double-centering”

Ĥij = −1
2
(Hij − 1

n
Si − 1

n
Sj +

1
n2

∑

k

Sk) (27)

The embedding eit of example xi is given by
√

λtvti.
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ISOMAP [32] simply generalizes MDS to non-linear manifolds. It replaces the
Euclidean distance with an approximation of the geodesic distance on the manifold.
It computes Mij as the squared geodesic distance, then applies to this matrix the
distance-to-dot-product transformation in (27), as for MDS. Similar with MDS, the
embedding is

√
λtvti instead of yit = vti.

4.4.2 Solution 2

The embedding of xi is yi whose t-th element yit is the i-th element of vt. Spectral
clustering, Laplacian Eigenmap and LLE belong to this category.

Spectral Clustering In spectral clustering [48], normalization is done in the fol-
lowing way:

Ĥij =
Hij√
SiSj

The first m principal eigenvectors of Ĥ are computed. Then for clustering purpose,
K-means is applied on the new unit-norm coordinates, obtained from the embedding
yit = vti.

Laplacian Eigenmap In the Laplacian Eigenmap algorithm [34], the Laplacian
operator is approximated by heat kernel or simple-minded matrix whose element is
one if the two vertices are connected and zero otherwise. Laplacian Eigenmap method
solve a generalized eigenproblem:

(S−H)vj = λjSvj

with eigenvalues λj , eigenvectors vj and S a diagonal matrix whose entries are given
by Si in (26). Those bottom eigenvectors except the smallest one are used for embed-
ding.

Local Linear Embedding LLE [38] seeks an embedding to preserve the local ge-
ometry in the neighborhood of each data point. In this method, local predictive matrix
W is first computed, subject to

∑
j Wij = 1, and Wij = 0 if xj is not a k-nearest-

neighbor of xi. Then minimizing ‖∑
j Wijxj−xi‖2 gives us H = (I−W)T (I−W).

From the lowest eigenvectors of H (except for the smallest one with zero eigenvalue)
vt, t = 1, · · · ,m, we get the embedding yit = vti, where vt.

4.5 Out-of-Sample Extensions
In this section, the reviewed unsupervised learning algorithms based on eigendecom-
position, provide an embedding only for given training points, with no direct extension
for testing examples short of recomputing eigenvectors. [47] have presented an ex-
tension to five unsupervised learning algorithms based on a spectral embedding of the
data: MDS, spectral clustering, Laplacian eigenmaps, ISOMAP and LLE. This exten-
sion allows us to apply a trained model to testing points without having to recompute
eigenvectors.
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5 Distance Metric Learning based on SVM
To achieve good generalization in classification setting, a good distance metric should
not only achieve high consistency in the neighborhood, but also maintain large margin
at the boundaries between different classes. [25] and [10] both incorporate maxi-
mization margin into the process of distance metric learning. Moreover, to simplify
computation, SVMs can be reformulated into a semidefinite programming problem
(SDP). [49] provides discussion for systematically applying SDP methods to solve the
kernelized margin maximization problem. In this section, we first give a brief review
of SVM. Then we will describe the Large Margin Nearest Neighbor based distance
metric learning methods [25, 10]. Finally, the SDP methods provided by [49] to solve
the kernel version margin maximization problem will be summarized.

5.1 A Review of SVM
Consider a binary classification problem. We are given a labeled dataset {xi, yi}n

i=1,
where the class label yi ∈ {−1, +1}. The support vector machines [50, 51] require the
solution of the following optimization problem:

min
w,b,ξ

‖w‖22
2

+ C

n∑

i=1

ξi,

s.t. yi(wT φ(xi) + b) ≥ 1− ξi,

ξi ≥ 0. (28)

The training vectors xi are mapped into a higher dimensional space by the function φ.
Then SVM finds a linear separating hyperplane with the maximal margin in this higher
dimensional space. C > 0 is the penalty parameter of the error term. The dual problem
of (28) is:

max
α

−1
2

N∑

i,j=1

yiyjK(xi,xj)αiαj +
N∑

j=1

αj (29)

s.t.
N∑

i=1

αiyi = 0,

0 ≤ αi ≤ C, ∀i.
with kernel trick K(xi,xj) = φ(xi)T φ(xj). Here αis (i = 1, · · · , n) defined over the
hypercube [0, C]n are the lagrange coefficients. The goal is to learn a set of parameters
α that maximize the objective function in (29). And the obtained classifier is y(x) =
f(x, α) = sign(

∑
i

αiyiK(xi,x) + b), and b is computed from data.

SVM have many desirable properties, and we address a few of them in the follow-
ing.

Bounding issue and Maximum Margin Property Different form traditional meth-
ods whose aim is minimizing the empirical risk, SVMs aim at minimizing an upper
bound of the generalization error. Specifically, SVMs learn the αs in f(x, α) to make
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the trained machine to satisfy the maximum margin property, i.e., the decision bound-
ary it represents has the maximum minimum distance from the closest training point.
By defining the expected risk (expectation of the test error) for a training machine α as

R(α) =
∫

1
2
|y − f(x, α)|dP (x, y)

and the empirical risk(mean error rate measured over the training set) Remp(α) as

Remp(α) =
1
2l

l∑

i=1

|yi − f(xi, α)|

we have the following bounds:

R(α) ≤ Remp(α) + Conf(h)

Here R(α) represents the accuracy attained on a particular training set; and Conf(h)
represents the ability of the machine to learn any training set without error. These two
items drive the bias and variance of the generalization error, respectively. It is a tradeoff
between Remp(α) and Conf(h) to get best generalization error.

The goal of SVM is to minimize an upper bound on the generalization error. For
linearly separable case, SVM computes the hyperplane w · x − b = 0 that has the
minimum distance from the closest training point; while for the nonseparable case,
SVM looks for the hyperplane that maximizes the margin and minimizes an upper
bound of the error simultaneously.

Sparseness Representation SVMs has the sparseness representation of the deci-
sion function. Precisely, those training examples that lie far away from the hyperplane
receive zero weight and do not participate in its specification and therefore. And only
Training examples that lie close to the decision boundary(called support vectors) re-
ceive nonzero weights. Since the majority of the training examples will be safely ig-
nored, SVMs can classify new examples efficiently. A small number of support vectors
indicates that the two classes can be well separated.

5.2 Large Margin Nearest Neighbor Based Distance Metric Learn-
ing

Recent work [10] learns a Mahanalobis distance metric in the kNN classification set-
ting by semidefinite programming. The learned distance metric enforces the k-nearest
neighbors to always belong to the same class while examples from different classes are
separated by a large margin. This algorithm makes no assumptions about the distribu-
tion of the data.

5.2.1 Objective Function

Given a training set of n labeled samples and the corresponding class labels {xi, yi}n
i=1.

Let yij ∈ {0, 1} indicate whether or not the label yi and yj match. Beyond the class
label information, the Euclidean distance based K-nearest-neighbor approach is used
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to specify k target neighbors for each input xi. And ηij ∈ {0, 1} is used to indicate
whether xj is a target neighbor of xi. Both yij and ηij are fixed binary matrices during
training. The goal is to learn a linear transformation L : Rm → R that optimizes
k-Nearest-Neighbor classification. This transformation is used to compute squared
distance as

D(xi,xj) = ‖L(xi,xj)‖2 (30)

On one hand, large distances between each input and its target neighbors should be
penalized; on the other, small distances between each input and all other differently
labeled inputs should also be penalized. Consequently, the cost function is given by:

ε(L) =
∑

ij

ηij‖L(xi − xj)‖22 + C
∑

ijl

ηij(1− yil)[1 + ‖L(xi − xj)‖2 − ‖L(xi − xl)‖2]+ (31)

[z]+ = max(z, 0) denotes the standard hinge loss and the constant C > 0. The first
term only penalizes large pairwise distances, instead of all similarly labeled examples.
The second term in the cost function incorporates the idea of a margin. In particular, for
each input xi, the hinge loss is incurred by differently labeled inputs whose distances
do not exceed the distance from input xi to any of its target neighbors by one absolute
unit of distance (those exceed have no contribution to the cost function). The cost
function thereby favors distance metrics in which differently labeled inputs maintain a
large margin of distance and do not threaten to invade each other’s neighborhoods.

The similarity of the cost function between this method and SVMs is two-fold:
• In both cost functions, one term penalizes the norm of the linear transformation

L in the distance metric, while the other incurs the hinge loss for examples that
violate the condition of unit margin.

• In SVMs, the hinge loss is only triggered by examples near the decision bound-
ary, similarly, the hinge loss in (31) is only triggered by differently labeled ex-
amples that do not invade each other’s neighborhoods.

5.2.2 Reformulation as SDP

To efficiently compute the global minimum of (31), [10] further reformulated it into
a SDP problem, First, (30) is rewritten as D(xi,xj) = (xi − xj)T M(xi,xj), where
the the Mahalanobis distance metric M is induced by the linear transformation L as
M = LT L. In this way, the first term is already linear in M. For the second item, a
slack variables ξij is introduced for all pairs labeled differently. And the resulting SDP
is:

min
M

∑

ij

ηij(xi − xj)T M(xi − xj) + C
∑

ijl

ηij(1− yil)ξijl

s.t. (xi − xj)T M(xi − xj)− (xi − xl)T M(xi − xl) ≥ 1− ξijl,

ξijl ≥ 0,

M º 0.

[25] (reviewed in section 3.1) purposes a margin based approach in the context of
Local Adaptive Distance Metric Learning, which is comparable to [10]. It suggests
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to use the decision boundaries of SVMs to induce a locally adaptive distance metric
for kNN classification. Specifically, around each testing point, the decision function is
constructed by SVMs to determine the most discriminant direction in its neighborhood.
Based on this direction, a local feature weighting scheme is constructed to keep class
conditional probabilities in the neighbor to be consistent. Comparing [25] and [10], we
may find that, although they both hinge the distance metric learning on large margin,
[10] does not involve the training of SVMs; but [25] need to train SVMs at the first
place. In this sense [10] is more efficient than [25].

5.3 Cast Kernel Margin Maximization into a SDP Problem
Margin has been considered as a criterion to measure the separation of the labeled data.
We first give a brief review of both hard margin and soft margin, then we present the
kernelized margin maximization problem. Finally, the SDP methods used to solve the
kernelized margin maximization problem, which is proposed by [49], will be reviewed
in detail.

5.3.1 Definition of Margin

Hard Margin Given a labeled sample set Sl = {(x1, y1), · · · , (xn, yn)}, the maximal
margin classifier with geometric margin γ = 1

‖w∗‖2 can be realized by finding the
hyperplane (w∗, b∗) that solves the optimization problem

min
w,b

〈w,w〉 (32)

s.t. yi(〈w, Φ(xi)〉+ b) ≥ 1, , i = 1, · · · , n

Here Φ maps xi to a high dimensional space. γ corresponds to the distance between
the convex hulls, i.e. the smallest convex sets that contain the data in each class. Its
Lagrangian dual problem is given by:

w(K) =
1
γ2

= 〈w∗,w∗〉

= max
α

2αT e− αT G(K)α : α > 0, αT y = 0

where e ∈ Rn is the vector of ones. α ∈ Rn. G(K) is defined by Gij = k(xi,xj)yiyj .
Soft Margin The hard margin solution exists only when the labeled sample is lin-

early separable in feature space. Therefore soft margin are defined for a nonlinearly
separable labeled sample set Sl. Here we consider both the 1-norm and the 2-norm
soft margins. In this section, we use wS1 and wSs to represent the cost functions for
1-Norm Soft Margin and 2-Norm Soft Margin, respectively.

1-norm Soft Margin Given a labeled sample set Sl = {(x1, y1), · · · , (xn, yn)},
the 1-norm soft margin classifier with geometric margin γ = 1

‖w∗‖2 can be realized by
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solving the optimization problem

min
w,b

〈w,w〉 (33)

s.t. yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, i = 1, · · · , n,

ξi ≥ 0, i = 1, · · · , n.

Its corresponding Lagrangian dual problem is:

wS1(K) = 〈w∗,w∗〉+ C

n∑

i=1

ξi,∗ (34)

= max
α

2αT e− αT G(K)α : C ≥ α ≥ 0, αT y = 0

2-norm Soft Margin Given a labeled sample set Sl = {(x1, y1), · · · , (xn, yn)},
the 1-norm soft margin classifier with geometric margin γ = 1

‖w∗‖2 can be realized by
solving the optimization problem

min
w,b

〈w,w〉
s.t. yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, , i = 1, · · · , n

ξi ≥ 0, i = 1, · · · , n

Its corresponding Lagrangian dual problem is:

wS2(K) = 〈w∗,w∗〉+ C

n∑

i=1

ξ2
i,∗

= max
α

2αT e− αT (G(K) +
1
C

In)α : α ≥ 0, αT y = 0

The difference between 1-norm Soft Margin and 2-norm Soft Margin is two-fold. First,
for the error tolerance item about ξ, they use different norm of ξ: 1-norm and 2-norm.
Second, the upper bound of lagrange multiplier α is introduced directly by C ≥ α ≥ 0
in the 1-norm soft margin and indirectly by the item 1

C In in the 2-norm soft margin.

5.3.2 Cast into SDP problem

First, semidefinite programming can be adopted to minimize the generalized perfor-
mance measure

wC,τ (K) = max
α

2αT e− αT (G(K) + τI)α : C ≥ α ≥ 0, αT y = 0 (35)

with τ ≥ 0 on the training data w.r.t the kernel matrix K, where K is in the positive
semidefinite cone (K) with constraint trace(K) = c, i.e.

min
k∈K

wC,τ (Ktr) (36)

s.t. trace(K) = c
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Below we will show how to realize the optimization problem in (35) in a semidefinite
programming framework.

Proposition 1 wC,τ (K) = max
α

2αT e−αT (G(K)+τI)α : C ≥ α ≥ 0, αT y = 0

is convex in K, because that max
α

2αT e − αT (G(K) + τI)α is a convex objective

function. And the constraints C ≥ α ≥ 0, αT y = 0 are also convex. Therefore (35) is
a convex optimization problem.

Theorem A Given a labeled sample set Sntr = {(x1, y1), · · · , (xntr , yntr )} with
the set of labels denoted by y ∈ Rntr , the kernel matrix K ∈ K that optimizes (35),
with τ ≥ 0, can be found by solving the following convex optimization problem:

min
K,t,λ,ν,δ

t (37)

s.t. trace(K) = c,

K ∈ K, ν ≥ 0, δ ≥ 0,(
G(Ktr + τIntr ) e + ν − δ + λy
(e + ν − δ + λy)T t− 2CδT e

)
º 0.

Theorem B Given a labeled sample set Sntr = {(x1, y1), · · · , (xntr , yntr )} with

the set of labels denoted by y ∈ Rntr , the kernel matrix K =
g∑

i=1

µiKi (Ki is some

initial guess of K) that optimizes (35), with τ ≥ 0, under the additional constraint µ ≥
0 can be found by solving the following convex optimization problem, and considering
its dual solution

max
α,t

2αT e− ταT α− ct

s.t. t ≥ 1
ri

αT G(Ki,tr)α, i = 1, · · · , m

αT y = 0, C ≥ α ≥ 0

where r ∈ Rm with trace(Ki) = ri.

5.3.3 Apply to Hard Margin

Maximizing the margin of a hard margin SVMs with respect to the kernel matrix can
be realized as a special case of the semidefinite programming framework derived in
Theorem A.

min
K∈K

w(Ktr) s.t. trace(K) = c (38)

Here w(Ktr) = w∞,0(Ktr).
Theorem C Given a linearly separable labeled sample set Sntr = {(x1, y1), · · · ,

(xntr , yntr)} with the set of labels denoted by y ∈ Rntr , the kernel matrix K ∈ K that
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optimizes (38) can be found by solving the following problem:

min
K,t,λ,µ

t

s.t. trace(K) = c,

K ∈ K, µ ≥ 0,(
G(Ktr) e + µ + λy
(e + µ + λy)T t

)
º 0.

Cast into QCQP For the specific case in which the Ki are rank-one matrices Ki =
vivT

i , with vi orthonormal (e.g., the normalized eigenvectors of an initial kernel ma-
trix K0), the semidefinite program reduces to a QCQP:

max
α,t

2αT e− ct

s.t. t ≥ (v̂T
i α)2, i = 1, · · · ,m,

αT y = 0,

α ≥ 0.

with v̂i = diag(yvi(1 : ntr)), given the fact that for Ki = vivT
i with vT

i vi = δij ,
m∑

i=1

µiKi º 0 ⇐⇒ µ ≥ 0; and 1
ri

αT G(Ki,trα) = (v̂T
i α)2 by applying Theorem B

with τ = 0 and C = ∞.
The benefits provided by the restriction K =

m∑
i=1

µiKi, µ ≥ 0 are three-fold: First,

positive weights µi yields a smaller set of kernel matrices, Second, the general SDP can
be reduced to a QCQP. Third, the constraint can result in improved numerical stability,
because that it prevents the algorithm from using large weights with opposite sign that
cancel.

Theorem D Given a linearly separable labeled sample set Sntr = {(x1, y1), · · · ,
(xntr , yntr)} with the set of labels denoted by y ∈ Rntr , the kernel matrix K =
m∑

i=1

µiKi that optimizes (35) with τ ≥ 0, under the additional constrain µ ≥ 0 can be

found by solving the following convex optimization problem, and considering its dual
solution:

max
K,t,λ,µ

2αT e− ct

s.t. t ≥ 1
ri

αT G(Ki,tr)α,

αT y = 0, α ≥ 0.

where r ∈ Rm with trace(Ki) = ri. This can be proved by applying Theorem B for
C = ∞ and τ = 0.

5.3.4 Apply to Soft Margin

Apply to 1-Norm Soft Margin For the case of nonlinearly separable data, we can
consider the 1-norm soft margin cost function. The goal is to optimize this quantity
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with respect to the kernel matrix K, i.e.

min
K∈K

wS1(Ktr) s.t. trace(K) = c (39)

This is again a convex optimization problem.
Theorem E Given a labeled sample set Sntr

= {(x1, y1), · · · , (xntr
, yntr

)} with
the set of labels denoted by y ∈ Rntr , the kernel matrix K ∈ K that optimizes (39),
can be found by solving the following convex optimization problem:

max
K,t,λ,µ,δ

t

s.t. trace(K) = c,

k ∈ K,(
G(Ktr) e + ν − δ + λy
(e + ν − δ + λy)T t− 2CδT e º 0

)

ν ≥ 0,

δ ≥ 0.

Here wS1(Ktr) = wC,0(Ktr). The above formula can be obtained y applying Theorem
A for τ = 0. Adding the additional constraint that K is a linear combination of fixed
kernel matrices leads to the following SDP:

min
µi,t,λ,ν,δ

t

s.t. trace(
m∑

i=1

µiKi) = c,

m∑

i=1

µiKi º 0,


 G(

m∑
i=1

µiKi,tr e + ν − δ + λy

(e + ν − δ + λy)T t− 2Cδte


 º 0,

ν, δ ≥ 0.

In the case that Ki = vivT
i , with vi orthonormal, the SDP reduces to a QCQP using

Theorem B, with τ = 0, similar to the hard margin case:

max
α,t

2αT e− ct

s.t. t ≥ (v̂T
i α)2, i = 1, · · · ,m,

αT y = 0,

C ≥ α ≥ 0.

with v̂i = diag(y)vi(1 : ntr)).
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Apply to 2-Norm Soft Margin For the case of nonlinearly separable data, we can
also consider the 2-norm soft margin cost function. Optimize this quantity with respect
to the kernel matrix K

min
K∈K

wS2(Ktr) s.t. trace(K) = c (40)

is again a convex optimization problem, and can be restated as follows.
Theorem F Given a labeled sample set Sntr

= {(x1, y1), · · · , (xntr
, yntr

)} with
the set of labels denoted by y ∈ Rntr , the kernel matrix K ∈ K that optimizes (40)
with τ ≥ 0 can be found by solving the following convex optimization problem:

min
K,t,λ,µ

t

s.t. trace(K) = c,

K ∈ K,(
G(Ktr) + 1

C Intr
e + ν + λy

(e + ν + λy)T t

)
º 0,

ν ≥ 0.

Here wS2(Ktr) = w∞,τ (Ktr). The above formulas can be obtained by applying The-
orem A for C = ∞.
If K is restricted to be a linear combination of fixed kernel matrices, we obtain

min
µi,t,λ,ν

t

s.t. trace(
m∑

i=1

µiKi) = c,

m∑

i=1

µiKi º 0,


 G(

m∑
i=1

µiKi,tr + 1
C Intr ) e + ν + λy

(e + ν + λy)T t


 º 0,

ν ≥ 0.

Further, in the case that Kis are rank-one matrices, Ki = vivT
i , with vi orthonormal,

we obtain a QCQP:

max
α,t

2αT e− 1
C

αT α− ct (41)

s.t. t ≥ (v̂T
i α)2, i = 1, · · · ,m

αT y = 0
α ≥ 0
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6 Kernel Methods for Distance Metrics Learning
The last decade has witnessed substantial developments in kernel-based learning meth-
ods (e.g., [52]). Since an appropriate kernel choice can often generate dramatic im-
provements in classification accuracy, kernel learning has recently attracted significant
interest. Early work in this area assumed parametric forms for kernels and learned
optimal parameters for kernel functions by minimizing the classification error. For
these parametric kernels method, a brief description of the main ideas of kernel fea-
ture spaces can be found in [53]; and [54] also gives an introduction to kernel-based
learning algorithms. However, our emphasis in this survey is the more recent work on
non-parametric approaches that allow for any positive kernel matrix. Representative
work in this category includes kernel alignment [55] and its semi-definite program-
ming approach [49]. We first give a review of kernel methods. Then details of [55]
and [49]’s work are provided. In the end, we also consider learning the idealized kernel
[17], which is an extension of [55] and [49].

6.1 A Review of Kernel Methods
We first would like to provide the general idea of Kernel Methods. Detailed intro-
duction can be found in [56] and [57]. Kernel-based learning algorithms attempts to
embed the data into a Hilbert space, and searching for linear relations in such a space.
Performed implicitly, the embedding specifies the inner product between each pair of
points instead of giving their coordinates explicitly. The advantages of kernel meth-
ods come from the fact that often the inner product in the embedding space can be
computed much more easily than the coordinates of the points themselves.

Suppose we have a dataset X with n samples, and a map Φ : X → F, where F
is an embedding space. the kernel matrix is defined as K = (k(xi,xj))n

i,j=1, and
Kij = k(xi,xj) = 〈Φ(xi), Φ(xj)〉. In this way, K completely determines the relative
positions between those points in the embedding space.

Proposition: Every positive definite and symmetric matrix is a kernel matrix, that
is, an inner product matrix in some embedding space. Conversely, every kernel matrix
is symmetric and positive definite.

6.2 Kernel Alignment
Kernel Alignment, as a measure of similarity between two kernel functions or between
a kernel and a target function, is originally introduced by [55]. This quantity is designed
to capture the degree of agreement between a kernel and a given learning task. [55] also
proved that Kernel Alignment is sharply concentrated around its expected values.

Given an unlabeled sample set S = {xi}n
i=1 and xi ∈ Rm, we denote the inner

product between its two kernel matrices based on kernel k1 and kernel k2 as,

〈K1,K2〉F =
n∑

i,j=1

k1(xi,xj)k2(xi,xj)
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where Ki is the kernel matrix for the sample S using kernel ki. Then the alignment of
kernel k1 and kernel k2 with respect to the sample S is defined as:

Â(S, k1, k2) =
〈K1,K2〉F√〈K1,K1〉F 〈K2,K2〉F

(42)

When the label vector y (yi = ±1, i = 1, · · · , n) for the sample is known, K2 =
yyT can be considered as the target kernel where k2(xi;xj) = 1 if yi = yj and
k2(xi;xj) = −1 if yi 6= yj . The alignment of a kernel k1 with k2 with respect to the
sample set S can be considered as a quality measure for kernel k1:

Â(S,K1, yyT ) =
〈K1, yyT 〉√

〈K1,K1〉〈yyT , yyT 〉 =
〈K1, yyT 〉

m
√
〈K1,K1〉

since 〈yyT , yyT 〉 = m2.
Concentration and Generalization Concentration means the alignment is not too

dependent on the training set S, or say, the probability of an empirical estimate de-
viating from its mean can be bounded as an exponentially decaying function of that
deviation. This suggests that the alignment on a training set can be optimized and ex-
pected to keep high alignment and good performance on a test set. Details about the
proof of concentration and generalization for kernel alignment can be found in [55].

6.3 Kernel Alignment with SDP
Based on the concept of kernel alignment defined by [55], [49] considers to optimizing
the alignment between a set of labels and a kernel matrix using SDP in a transductive
setting. [49] also shows that, if K is a class of linear combinations of fixed kernel
matrices, this problem can still be cast as an SDP.

Suppose we work in a transduction setting, where the labeled training set is Sntr =
{(x1; y1), · · · , (xntr ; yntr)}, and the unlabeled testing set is Tnt = {(xntr+1, · · · ,xntr+nt)}.
The corresponding kernel matrix is

K =
(

Ktr Ktr,t

KT
tr,t K

)

where Kij = 〈Φ(xi), Φ(xj)〉, i, j = 1, · · · , ntr, ntr + 1, · · · , ntr + nt.
Consistent with the general goal of transductive learning, which is to label the un-

labeled data, our specific goal in this setting is to learn the optimal mixed block Ktr,t,
and the optimal testing data block Kt, by optimizing a cost function over the train-
ing data block Ktr. In this optimization problem, training and testing data blocks are
entangled, and optimizing the embedding of training data entries in K results in the
automatic tuning of testing data entries.

The capacity of the search space of possible kernel matrices should be controlled to
prevent overfitting and achieve good generalization on test data. Below we first provide
a general optimization problem in which the kernel matrix K is restricted to a convex
subset, the positive semidefinite cone. Then we consider a specific example, where the
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search space of K lies in the intersection of a low-dimensional linear subspace with the
positive semidefinite cone.

Case 1: The kernel matrix K is restricted to the positive semidefinite cone. We
denote K = {K º 0} as the set of all positive semidefinite matrices. The kernel
matrix K ∈ K which is maximally aligned with the label vector y ∈ Rntr can be
found by solving the following optimization problem:

max
K

Â(S,K1, yyT )

s.t. K ∈ K, trace(K) = 1.

which is equivalent to

max
A,K

〈Ktr,yyT 〉F (43)

s.t. trace(K) = 1,

K ∈ K, 〈K,K〉F = 1.

By introducing a matrix A that satisfies KT K ¹ A and trace(A) ≤ 1, (43) can be
equivalently written as

max
A,K

〈Ktr,yyT 〉F (44)

s.t. trace(A) ≤ 1,(
A KT

K In

)
º 0,

K ∈ K.

where In is the n× nidentity matrix.
Case 2: K belongs to the set of positive semidefinite matrices with bounded trace

that can be expressed as a linear combination of fixed kernel matrices from the set
{K1, · · · ,Kg}, and the parameters µi are constrained to be non-negative. In this way,
K is the subset satisfying

K =
g∑

i=1

µiKi (45)

K º 0
µi ≥ 0, i = 1, · · · , g

trace(K ≤ c)

The set {K1, · · · ,Kg} is the inintial guess of the kernel matrix K. It could be lin-
ear, Gaussian or polynomial kernels with different kernel parameter values. It can also
be rank-one matrices Ki = vivT

i , where vi some set of orthogonal vectors. Con-
sequently, the task turns out to be optimizing the weights in the linear combination
of the obtained kernel matrices. And as we can see, this optimization problem has
significantly reduced computational complexity.
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Adding the additional constraint (45) to (43) leads to

max
K

〈Ktr,yyT 〉F (46)

s.t. 〈K,K〉F ≤ 1,

K º 0,

K =
g∑

i=1

µiKi.

And (46) can be written in the standard form of a SDP, in a similar way as for (44).

max
A,µi

〈
g∑

i=1

µiKi,tr,yyT 〉
F

s.t. trace(A) ≤ 1,


A
g∑

i=1

µiKT
i

g∑
i=1

µiKi In


 º 0,

g∑

i=1

µiKi º 0.

For the specific case where Ki are rank-one matrices Ki = vivT
i , with vi orthnormal,

the semidefinite program reduces to a QCQP:

max
µi

g∑

i=1

µi(v̂T
i y)2

s.t.
g∑

i=1

µ2
i ≤ 1,

µi ≥ 0, i = 1, · · · , g.

with v̂i = vi(1 : ntr).

6.4 Learning with Idealized Kernel
Derived from the work in [55] and [49], [17] applys non-parametric kernel methods to
distance metric learning. Their intuition is, although obtaining the ideal kernel function
is infeasible, however, in classification problem, ideal kernel matrix can be defined on
the training patterns based on the provided label information. Then they idealize a
given kernel by making it more similar to the ideal kernel matrix. They formulate this
as a distance metric learning problem that searches for a suitable linear transform in
the kernel-induced feature space. The challenging issue is how to generalize this to
patterns outside the training dataset.
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6.4.1 Ideal Kernel

Kernel defines the pairwise similarity between patterns. For a two-class classfication
problem with training set (x1, y1), · · · , (xn, yn), where xi ∈ Rm and y ∈ {−1, +1}.
Ideally, two patterns should be considered similar iff they belong to the same class.
Therefore, [17] introduced the concept of ”ideal kernel” K∗ as below.

K∗
ij = K∗(xi, xj) =

{
1 y(xi) = y(xj)
0 y(xi) 6= y(xj)

(47)

[17] and uses ”alignment” to access the quality of a kernel. Following the definition of
kernel alignment in (42), the alignment of a kernel k1 with k2 w.r.t. the sample is

A(k1, k2) =
〈K1,K2〉√

〈K1,K1〉
√
〈K2,K2〉

where Ki is the corresponding kernel matrix of the kernel ki.
When K∗

2 is ideal, this kernel target alignment can be used to measure the similarity
between the kernel and the target, and we can idealize a given kernel K1 by making it
more similar to the ideal kernel. Moreover, if a high alignment on the training dataset
is obtained, we also expect a high alignment on the test dataset, which means high
alignment implies good generalization performance of the resulting classifier.

6.4.2 Idealized Kernel

To idealize a given kernel K means to make it more similar to the ideal kernel K∗. A
simple way to modify K is,

K̂ = K +
γ

2
K∗ (48)

where γ ≥ 0 is a parameter to be determined. For a two-class problem, this leads to

K̂ij =
{

Kij + γ
2 yi = yj

Kij yi 6= yj

As both K and K∗ are valid kernels, so is the idealized kernel K̂.
Proposition 1 Assume that γ > 0, then the alignment of the idealized kernel K̂

will be greater than that of the original kernel K if γ > − 〈K,K∗〉
n2

++n2
−

, where n+, n− are
the number of positive and negative examples in the training set respectively.

As γ > 0, so long as 〈K,K∗〉 ≥ 0 (i.e. K is aligned in the ”right” direction), or
slightly wrongly (〈K,K∗〉 is a small negative number, then the idealized kernel K̂ will
have an increased alignment.

Extending to C classes (C > 2), K∗ will take a form of block diagonal as below:

K∗ =




ll′n1
0 · · · 0

0 ll′n2
· · · 0

... · · · . . .
...

0 · · · 0 ll′nc



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where ni is the number of patterns belonging to the ith class, and ll′ni
is a ni×ni matrix

with all ones. Both K∗ and K̂ are valid kernels, and K̂ will have a higher alignment
than K if γ > − 〈K,K∗〉

CP
i=1

n2
i

.

6.4.3 Formulation as Distance Metric Learning

First, we look at the linear kernel case. Assume that the original inner product for
any two pattern xi, xj in input space Rm is defined as sij = Kij = xT

i Mxj , where
Mm×m is a positive semi-definite matrix. The the corresponding squared distance is
d2

ij = (xi − xj)T M(xi − xj). By changing K to K̂, this squared distance will be
changed to

K̂ii + K̂jj − 2K̂ij =
{

d2
ij yi = yj

d2
ij + γ yi 6= yj

(49)

We modify the inner product sij to ŝij = xiAAT xj , where Am×m = [a1, · · · ,am].
Here ai’s are a set of ”useful” directions in the input space. Consequently, the corre-
sponding distance metric becomes:

d̂2
ij = (xi − xj)T AA′(xi − xj) (50)

Here AAT is positive semi-definite, and d̂ is always a valid distance metric.
Now we search for a matrix A such that

d̂2
ij

{ ≤ d2
ij yi = yj

≥ d2
ij + γ yi 6= yj

(51)

In another word, patterns in different classes will be pulled apart by an amount at least
equal to γ under the modified distance metric, while those in the same class may get
close together. This is consistent with the slogan of ”reducing intra-class variability
and increasing inter-class variability”. To extend the above formulation to the case
where only similarity information is available, we denote the sets containing similar
and dissimilar pairs by S and D repectively. Then (51) can be modified to:

d̂2
ij − d2

ij

{ ≤ 0 (xi,xj) ∈ S,
≥ γ (xi,xj) ∈ D.

(52)

6.4.4 Primal and Dual

Matrix A performs a projection onto a set of useful features. This set should ideally
be small, which means that a small rank for A or AAT will be desirable (given that
rank(A) = rank(AAT )). Assume that the eigen decomposition of AAT is UΣUT .
Then rank(AAT ) = rank(Σ) = ‖Σ‖0. To simplify the problem, ‖Σ‖0 is approxi-
mated by the Euclidean norm ‖Σ‖2 = ‖AAT ‖2. This leads to the following primal
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problem:

min
A,γ,ξij

1
2
‖AAT ‖22 +

CS

NS

∑

(xi,xj)∈S

ξij + CD(−νγ +
1

ND

∑

(xi,xj)∈D

ξij)

s.t. d2
ij ≥ d̂2

ij − ξij , (xi,xj) ∈ S,

d̂2
ij − d2

ij ≥ γ − ξij , (xi,xj) ∈ D,

ξij ≥ 0,

γ ≥ 0.

Here NS and ND are the number of pairs in S and D respectively, and CS , CD, ν are
non-negative adjustable parameters. Its dual problem is,

max
αij

{−
∑

(xi,xj)∈S

αij(xi − xj)T M(xi − xj) +
∑

(xi,xj)∈D

αij(xi − xj)T M(xi − xj)

− 1
2

∑

(xi,xj),(xk,xl)∈S

αijαkl((xi − xj)T (xk,xl))2

− 1
2

∑

(xi,xj),(xk,xl)∈D

αijαkl((xi − xj)T (xk,xl))2

+
∑

(xi,xj)∈S

∑

(xk,xl)∈D

αijαkl((xi − xj)T (xk − xl))2}

s.t.
1

CD

∑

(xi,xj)∈D

αij ≥ ν,

0 ≤ αij ≤
{

CS

NS
(xi,xj) ∈ S

CD

ND
(xi,xj) ∈ D

where αij’s are the lagrangian multipliers. This is a standard quadratic programming
(QP) problem with NS + ND variables which is independent of the dimension of x,
and will not suffer from local optimum.

Comparable to [17], [11] is another distance metric learning algorithm that learns a
full distance matrix bases on similarity information. We have reviewed [11] in section
2. When a full matrix is used, [11]’s method leads to a convex programming problem
with m2 variables. It also involves an iterative procedure comprising projection and
eigen decomposition. When m is high, [11] is more costly, compared with the idealized
kernel learning method.

6.4.5 Kernelization

As we may notice, only inner products are required in [17]’s formulation. We replace
all the x with ϕ(x), where ϕ is the feature map corresponding to the original kernel K.
By applying the kernel trick, the idealized kernel K̂ is given by:

K̂(xa,xb) = −
∑

(xi,xj)∈S

αij(Kai−Kaj)(Kbi−Kjb)+
∑

(xi,xj)∈D

αij(Kai−Kaj)(Kbi−Kjb)
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and the distance metric is

d̂2(xa,xb) = −
∑

(xa,xb)∈S

αij(Kai −Kaj −Kbi + Kbj)2

+
∑

(xa,xb)∈D

αij(Kai −Kaj −Kbi + Kbj)2

7 Conclusions
This survey provides a comprehensive review of problems and algorithms in distance
metric learning that look particularly interesting from a principle point of view. We cat-
egorize the disparate issues in distance metric learning. Within each category, we sum-
marize existing work, disclose their essential connections, strengths and weaknesses.
Listed below are categories we have addressed:

• Supervised distance metric learning, which contains supervised global distance
metric learning, local adaptive supervised distance metric learning, Neighbor-
hood Components Analysis, and Relevant Component Analysis.

• Unsupervised distance metric learning, covering linear (PCA, MDS)and nonlin-
ear embedding methods (ISOMAP, LLE, and Laplacian Eigenmaps). We further
unify these algorithms into a common framework based on the embedding com-
putation.

• Maximum margin based distance metric learning approaches, including the large
margin nearest neighbor based distance metric learning methods and SDP meth-
ods to solve the kernelized margin maximization problem.

• Kernel methods towards distance metrics, covering kernel alignment and its SDP
approaches, and also the extension work of learning the idealized kernel.

Although significant work has been done in this field, a range of problems requiring
practical and feasible solution that is truly optimal, have not been well addressed. A
few of them are listed as below.

• Unsupervised distance metric learning. Although dimension reduction has been
well explored, unsupervised distance metric learning is a more general problem
than dimension reduction. Beyond dimension reduction, it has many other pur-
poses, such as clustering and maximizing margin. Currently, no general principle
framework has been set up to learn a distance metric without pairwise constraints
and side-information.

• Going local in a principle manner. Previous research on distance metric learn-
ing has mainly focused on finding a linear distance metric that optimizes the
data compactness and separability in a global sense, namely bringing all of the
data points from the same classes close together as well as separating all of the
data points from different classes. However, a global distance metric may not
be realistic given that the two optimization goals often conflict with each other
when classes exhibit multi-modal data distributions. Instead, focusing on local
compactness is an effective way to avoid this conflict and enhance metric qual-
ity. Local Adaptive methods in [18, 7] are a group of work trying to go local,
to find feature weights adapted to individual test examples. However, their local
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distance metrics are hand crafted and are therefore unable to take full advantage
of the available training data. Another related work NCA [9] suffers from the
scalability problem. Consequently, we need more principle approaches to learn
local distance metrics.

• Learn an explicit nonlinear distance metric in the local sense. No current non-
linear dimension reduction approaches can learn an explicit nonlinear metric.
Therefore, an interesting question to ask is how to learn an explicit nonlinear
distance metric from the local pairwise constraints by optimizing the local com-
pactness and local separability.

• Efficiency issue. Recall the global distance metric learning method [11], Neigh-
borhood Component Analysis (NCA) [9] and Large Margin Nearest Neighbor
classifier [10]. They all formulate distance metric learning as a constrained con-
vex programming problem, and attempt to learn complete distance metrics from
the training data. This is computationally expensive and prone to overfitting,
especially when applied to tasks with limited number of training samples, and
the feature dimension is large, e.g. online Medical Image retrieval. Therefore,
one tough problem of distance metric learning algorithms is, how to simplify the
learning problem while improving the performance with less training samples
and larger dimensions.

Conclusively, as an essential technique in machine learning research, distance metric
learning problem has not been well addressed so far. There is still much work to be
done and many interesting questions remaining.
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