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ABSTRACT
We study the problem of PAC learning the class of DNF formu-
las with a type of natural pairwise query specific to the DNF rep-
resentation. Specifically, given a pair of positive examples from
a polynomial-sized sample, we consider boolean queries that ask
whether the two examples satisfy at least one term in common in
the target DNF, and numerical queries that ask howmanyterms in
common the two examples satisfy. We provide both positive and
negative results for learning with these queries under both uniform
and general distributions.

For boolean queries, we show that the problem of learning an
arbitrary DNF target under an arbitrary distribution is no easier than
in the traditional PAC model. However, on the positive side, we
show that under the uniform distribution, we can properly learn any
DNF formula withO(log(n)) relevant variables, any DNF formula
where each variable appears in at mostO(log(n)) terms, and any

DNF formula having at most2O(
√

log(n)) terms. Under general
distributions, we show that 2-term DNFs are efficiently properly
learnable as are disjoint DNFs.

For numerical queries, we show we can learn arbitrary DNF for-
mulas under the uniform distribution; in the process, we give an
algorithm for learning a sum of monotone terms from labeled data
only. Numerical-valued queries also allow us to properly learn any
DNF with O(log(n)) relevant variables under arbitrary distribu-
tions, as well as DNF havingO(log(n)) terms, and DNF for which
each example can satisfy at mostO(1) terms.

Other possible generalizations of the query include allowing the
algorithm to ask the query for an arbitrary number of examples from
the sample at once (rather than just two), or allowing the algorithm
to ask the query for examples of its own construction; we show that
both of these generalizations allow for efficient proper learnability
of arbitrary DNF functions under arbitrary distributions.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity—General
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1. INTRODUCTION
Consider a bank aiming to use machine learning to identify new

instances of financial fraud. To do so, the bank would ask financial
experts to label past transactions as fraudulent or not, and then run
a learning algorithm on the resulting labeled data. However, this
learning problem might be quite difficult because of the existence
of multiple intrinsic types of fraud, with each positive example per-
haps involving multiple types of fradulent behavior. For instance,
the fraud may involve identity theft, unauthorized account access,
security-code violations, overdraft and/or insider security breaches.
That is, the target concept would be in the general case a DNF for-
mula, a class for which no efficient algorithms are known.

Yet in such cases, perhaps the experts performing the labeling
could be called on to provide a bit more information. In particu-
lar, suppose that given two positive examples of fraud, the experts
could indicate whether or not the two examples aresimilar in the
sense of having at least one intrinsic type of fraud (at least one term)
in common, such as both involving unauthorized account access, or
both involving internal blockage of account monitoring (inside job).
Or perhaps the experts could indicatehowsimilar the examples are
(how many terms in common they satisfy), stating the number of
common ways in which the fraud occurred. This is certainly sub-
stantially more information. Can it be used to learn DNF formulas
and their natural subclasses efficiently?

Fraud detection is just one of many potential applications of DNF
learning in which pairwise queries are natural. Others applications
include medical multi-factor medical diagnosis, where patients suf-
fer from several ailments and a full diagnosis is required to select
optimal treamtent, and not aggravate one condition while treating
another.

In our work, we study the problem of learning DNF formulas and
other function classes using such pairwise, representation-dependent
queries. Specifically, we consider queries of the form, “Do these
two positive examples satisfy at least one term in common in the
target DNF formula?” (we call theseboolean similarity queries)
and “How many terms in common do these two positive examples
satisfy?” (we call thesenumerical similarity queries).

These queries must be over data in a labeled sample drawn from
the distribution; we assume membership queries arenot allowed.
Our motivation comes from scenarios such as fraud detection, where



the boolean-vector representation of an example is just a projection
of the actual data object (the fraudulent transaction), so that the hu-
man oracle cannot necessarily make sense of artificially-constructed
boolean vectors, as they need to observe the actual data objects in
order to answer the query. Similarly, in the problem of drug design,
the span of constructable examples is highly constrained, so that
general membership queries may not be feasible.

We show, for these types of queries, a number of both positive
and negative results for learning DNF formulas and interesting sub-
classes of them. For example, we show that under the uniform dis-
tribution, with the boolean-valued queries, we can properly learn
any DNF withO(log(n)) relevant variables, any DNF where each
relevant variable appears in at mostO(log(n)) terms, and any DNF

having at most2O(
√

log(n)) terms. Under arbitrary distributions,
we can properly learn2-term DNF and disjoint DNF, but we find
that the general problem of learning an arbitrary DNF target un-
der an arbitrary distribution is no easier than in the traditional PAC
model. With numerical queries, under the uniform distribution we
can learn arbitrary DNF formulas, and under arbitrary distributions
we can can properly learn any DNF with eitherO(log(n)) relevant
variables,O(log(n)) terms, or for which each example can satisfy
at mostO(1) terms.

Our model can also be viewed in the context of the paradigm
of learning with kernels. A kernel is a pairwise numerical similar-
ity function over examples that is presumed to be available at both
training and test time. However, suppose this kernel is computa-
tionally expensive to run, or even is a human expert, and so will not
be available when the learned hypothesis is fielded. Can one use
this kernel to produce a good hypothesis defined only over the base
features? Our model can be viewed as addressing this question in
the context of DNF, for a particular type of kernel function.

1.1 Model
In this setting, we suppose there is a DNF formulaf : {0, 1}n →

{−1, +1}, wheref = T1∨. . .∨Tt for conjunctionsTi : {0, 1}n →
{−1, +1}. There is additionally a distributionD over {0, 1}n;
some of our results deal specifically withD uniform, while others
leaveD to be arbitrary. The learning algorithm is given parameters
ǫ andδ, and is allowed access to apoly(n)-sized i.i.d. sample of
data points (examples)x1, x2, . . . , xpoly(n) drawn fromD, along
with their target labelsf(x1), f(x2), . . . , f(xpoly(n)).

The algorithm can additionally make certainqueries, which vary
in type among the results below. The two main types of queries
we study are boolean-valued queries and numerical-valued queries,
defined as follows. For anyxi, xj in the data set, the boolean-
valued queryk(xi, xj) takes value1 if ∃ℓ ≤ t such thatTℓ(xi) =
Tℓ(xj) = 1, and otherwise takes value0. Similarly, for anyxi, xj

in the data set, the numerical-valued query

K(xi, xj) =
X

ℓ≤t

I[Tℓ(xi) = Tℓ(xj) = 1].

Thus, the boolean-valued query indicates whether the two examples
satisfy some term in common, while the numerical-valued query
indicates the precise number of terms they satisfy in common.

We say it is possible to learn a family of DNF formulasH with
a given type of query if there exists an algorithm that uses the
random data and the given type of query and, for anyf ∈ H,
in time polynomial inn, 1/ǫ, andlog(1/δ), produces a classifier
h : {0, 1}n → {−1, +1} such that, with probability at least1 − δ,
err(h) = Px∼D(h(x) 6= f(x)) ≤ ǫ. We further say it is possible
to properlylearnH with the given type of query if there exists such
an algorithm for whichh is guaranteed to be an element ofH.

Note that we do not allow membership queries in our main re-
sults below (membership queries allow an algorithm to generate
its own example and ask the oracle the label of it). We do have
one general result (learning arbitrary DNF under arbitrary distribu-
tions) based on an analogue of membership queries in this model
(see Appendix A).

1.2 Related Work
There have been many positive results on learningpoly(n)-term

DNF formulas with membership queries. Two landmark results are
[Ang88] showing that monotone DNF formulas can be properly
learned under arbitrary distributions using membership queries, and
[Jac94] giving an efficient membership-query algorithm for the (im-
proper) learning of DNF formulas under the uniform distribution.

The problem of learning DNF from random examples without
queries has remained open over decades since Valiant introduced
the PAC (Probably Approximately Correct) learning model [Val84].
It is not known whether we can efficiently learn DNF from random
examples alone and there are known hardness results for properly
learning DNF. In fact, [PV88] showed that even2-term DNF for-
mulas are not properly learnable from labeled data alone unless NP
= RP. The fastest algorithms so far for learningpoly(n)-term DNF

formulas in the PAC model requires time2Õ(n1/3) [KS01].
For the problem of PAC learning DNF formulas under the uni-

form distribution, no polynomial-time algorithms are known. The
fastest known algorithm for learningpoly(n)-term DNF under the
uniform distribution requires timenO(log n) [Ver90]. At the heart
of this problem lies the problem of efficiently learningk-juntas
(an arbitrary boolean function depending on an unknown set of
only k out of n boolean variables) fork = O(log n). The best
known algorithm for learningk-juntas from uniform random ex-
amples is given by [Val12], building on [MOS04], which requires
time roughlyn0.6k.

Some partial positive results have been obtained for special cases
of monotone DNF formulas. [Ser04] provided an algorithm that
learns any2O(

√
log n)-term monotone DNF under the uniform dis-

tribution to any constant accuracy inpoly(n) time, and [OS07] gave
an algorithm that learns any monotone boolean function under the
uniform distribution to any constant accuracy, in time polynomial
in n and in thedecision tree sizeof the target function.

Recent work on restricted access learning [WDYR12] of DNF is
related to our work at the high level: both our work and [WDYR12]
give the learner more power with the goal of being able to learn
DNF using this extra power.

1.3 Our Results
We begin with a somewhat surprising negative result: that learn-

ing general DNF formulas under arbitrary distributions from boolean
similarity queries is as hard as PAC-learning DNF formulas with-
out them. This result uses the equivalence between group learning,
weak learning, and strong learning.

Under the uniform distribution, we show that if we are allowed
to ask numerical pairwise queries, we can efficiently learnarbi-
trary DNF formulas. If we are restricted to boolean-valued queries,
we can properly learn any DNF formula for which each variable
appears inO(log(n)) terms, as well as any DNF formula with
O(log(n)) relevant variables. We can also learn any DNF hav-
ing at most2O(

√
log n) terms. Specifically, we use Servedio’s re-

sults [Ser04] in the context of learning thek(xi, ·) DNF, which
is a monotone DNF after appropriate transformation of the feature
space; if we do this for enough randomxi points, themaxi k(xi, ·)
function will agree with the target DNF with high probability.



For the more general case of learning under arbitrary distribu-
tions, we show that with numerical-valued queries we can prop-
erly learn any DNF formula havingO(log(n)) terms, or any DNF
formula havingO(log(n)) relevant variables. In this case, with
boolean-valued queries, we can easily learn disjoint DNF (a class
that contains decision trees). We in addition show that we can prop-
erly learn any “parsimonious” DNF formula (a formula for which
no term can be deleted without appreciably changing the function)
as well as any 2-term DNF, a class known to be NP-Hard to properly
learn from labeled data alone.

If we are allowed to ask “Do thesek examples satisfy any term in
common?” for arbitrary (poly-sized)k, we can even properly learn
arbitrary DNF formulas under arbitrary distributions.

2. HARDNESS RESULTS
To illustrate why pairwise similarity queries do not trivialize the

DNF learning problem, we begin with two hardness results.

THEOREM 2.1. Learning DNF from random data under arbi-
trary distributions with boolean similarity queries is as hard as
learning DNF from random data under arbitrary distributions with
only the labels (no queries).

PROOF. [Kea89] and [KLV94] proved that “group learning" is
equivalent to “weak learning".

In group learning, at each round we are givenpoly(n) examples
that are either all iid fromD+ or all iid from D− (i.e. all positive
or all negative) and our goal is to identify which case it is. Subse-
quently, Schapire [Sch90] proved that weak-learning is equivalent
to strong-learning. So, if DNF is hard to PAC-learn, then DNF is
also hard to group-learn.

Now, consider the following reduction from group-learning DNF
in the standard model to learning DNF in the boolean similarity
queries model. In particular, given an algorithmA for learning
from a polynomial number of examples in the boolean similarity
queries model, we show how to useA to group-learn as follows:

Given a setS of m = poly(n) examplesx1, x2, ...,xm (we will
usem = tn wheret is the number of terms in the target), construct
a new example by just concatenating them together. So overall we
now havenm variables. We present this concatenated example toA
with label equal to the label ofS. If A makes a similarity query be-
tween two positive examples[x1, x2, ..., xm] and[x′

1, x
′
2, ..., x

′
m],

we simply outputyes(i.e., that they do indeed share a term in com-
mon).

We now argue that with high probability, the labels and our re-
sponses toA are all fully consistent with some DNF formula of
sizemt. In particular, we claim they will be consistent with a tar-
get function that is just the OR ofm copies of the original target
function.

First of all, note that the OR ofm copies of the original tar-
get function will produce the correct labels since by assumption
either allxi ∈ S are positive or allxi ∈ S are negative. Next,
we claim that whp, any two of these concatenated positive exam-
ples will share a term in common. Specifically, if the original DNF
formula hast terms, then for two random positive examples from
D+ there is probability at least1/t that they share a common term.
So, the chance of failure for two concatenated examples is at most
(1 − 1/t)m. (Because the only way that two of these big con-
catenated examples[x1, x2, ..., xm] and[x′

1, x
′
2, ..., x

′
m] can fail to

share a term in common is ifx1 andx′
1 fail, x2 andx′

2 fail, etc.).
Settingm = tn, the probability of failure for any given query is at
most1/en. Applying the union bound over all polynomially-many
pairs of positive examples inA’s sample yields that with high prob-
ability all our responses are consistent. Therefore, by assumption,

A will produce a low-error hypothesis under the distribution over
concatenated examples, which yields a low-error hypothesis for the
group-learning problem.

We can extend the above result to “approximate numerical” queries
that give the correct answer up to a1 ± τ factor, for some constant
τ > 0 (or evenτ ≥ 1/poly(n)).

THEOREM 2.2. Learning DNF from random data under arbi-
trary distributions with approximate-numerical-valued queries is
as hard as learning DNF from random data under arbitrary dis-
tributions with only the labels (no queries). Specifically, ifC is the
number of termsxi andxj satisfy in common, the oracle returns a
value in the range[(1 − τ)C, (1 + τ)C].

PROOF. Assume we have an algorithmA that learns to errorǫ/2
given an oracle for approximate numerical queries.

Now we do the reduction from group learning as before, forming
higher-dimensional examples by concatenating groupsx1, · · · , xm,
all of the same class, but this time withm = 2n(t4)(1+τ/2)2/τ2.
Suppose, for now, that we know for the original DNF formula, the
expected number of termsα that two random positive examples
would have in common (we discharge this assumption later). In
that case, when queried byA for the similarity between two pos-
itive examplesx, x′, we simply answer with the closest integer to
αm. As before, we argue that with high probability, our answers
are consistent with a DNF formulag consisting of justm shifted
copies of the original DNF.

Note that for a random pair of the concatenated examples com-
posed of positive sub-examples, the expected number of terms in
common ing is mα. Furthermore, the number of terms in common
is a sum ofm independent samples of the original random vari-
able of meanα, each of which is bounded in the range[0, t]. So
Hoeffding’s inequality implies that with probability

1 − 2e−2m2α2(τ/2)2/(m(t2)(1+τ/2)2) ≥ 1 − 2e−n

(sinceα ≥ 1/t), the numberC of terms in common satisfies|C −
mα| ≤ mα(τ/2)/(1+τ/2), which implies(1−τ/2)C ≤ mα ≤
(1 + τ/2)C.

Thus, for apoly(n)-sized sample of data points, with high prob-
ability, all of the pairs of positive concatenated examples have the
nearest integer tomα within these factors of their true number of
terms in common. It therefore suffices to respond toA’s similarity
queries with the nearest integer tomα.

Now the only difficulty is that we do not knowα. So we just
try all positive integersi from 1 to mt and then use a validation
set to select among the hypotheses produced. That is, we runA on
the constructed data set and respond to all similarity queries with a
single valuei, getting back a classifier for these concatenated exam-
ples, and then repeat for eachi. Then we takeO((1/ǫ) log(mt/δ))
additional higher-dimensional samples (with labels) and choose the
classifier among thesemt returned classifiers, having the smallest
number of mistakes on that validation set. At least one of these
mt values ofi is the closest integer tomα, so at least one of these
mt classifiers isǫ/2-good, and our validation set will identify one
whose error is at mostǫ. So we can use this classifier to identify
whether a randomm-sized group of examples is composed of all
positives or all negatives, with error rateǫ: i.e., we can do group
learning.

If the algorithm A only has a “high probability" guarantee of suc-
cess, we can repeat this several times with independent data sets, to
boost the confidence that there will be a good classifier among those
we choose from at the end, and slightly increase the size of the val-
idation set to compensate for this larger number of classifiers.



3. LEARNING DNF UNDER THE UNIFORM
DISTRIBUTION

In this section, we investigate the problem of learning DNF un-
der a uniform distribution on{0, 1}n. We begin with a result show-
ing how to learn general DNF formulas from numerical similar-
ity queries. For boolean similarity queries, we show how to learn
several natural classes of DNF formulas, including2O(

√
log n)-term

DNF, DNF withO(log n) relevant variables (juntas), and DNF for-
mulas in which each variable appears in at mostO(log n) terms.
First, however, we give an algorithm for learning a sum of mono-
tone terms in the standard (no queries) PAC model under the uni-
form distribution.

3.1 A useful subroutine: Learning a sum of
monotone terms

In this section we give an algorithm for learning a sum of mono-
tone terms over the uniform distribution (without pairwise queries).
That is, the target is a (not necessarily boolean) functionf(x) =
T1(x) + T2(x) + . . . + Tt(x) where theTi are monotone con-
junctions (outputting 1 ifx satisfiesTi and 0 if x does not) and
t = poly(n). This will then be used in our algorithm for learning
general DNF formulas over the uniform distribution from pairwise
queries.

THEOREM 3.1. We can efficiently learn a sum oft monotone
terms over the uniform distribution, without pairwise queries, using
time and samplespoly(t, n, 1/ǫ).

PROOF. Let f(x) = T1(x) + T2(x) + . . . + Tt(x) denote the
target function. Our algorithm is based on the following facts:

1. The Fourier representation (using the parity basis) for a single
termT (viewed as a{0, 1} function) has a particularly simple
form. In particular,T̂S = E[T (x)φS(x)] = 0 if S 6⊆ T and
T̂S = 2−|T |(−1)|S|+1 if S ⊆ T . See, e.g., [BFJ+94].

2. This implies that for any given setS, the associated Fourier
coefficient off is f̂S = (−1)|S|+1 P

i:S⊆Ti
2−|Ti|. This

further implies that ifS′ ⊆ S, then|f̂S′ | ≥ |f̂S |. Note that
we are using here the fact that theTi are monotone, so that
all terms inside the summation have the same sign.

3. Since for each termTi, its L1 length in the Fourier represen-
tation is exactly 1, we haveL1(f) ≤ t. This implies that
for any given thresholdθ there are at mostt/θ coefficients of
magnitude at leastθ.

We can use the above facts to identify all Fourier coefficients off
of magnitude at leastθ = ǫ/(8t) in time polynomial inn, t, and
1/ǫ as follows.

We begin by examining each parity function of size 1 and esti-
mating its Fourier coefficient from data (up to accuracyθ/4). We
place all coefficients of magnitude at leastθ/2 into a listL1.

For j = 2, 3, . . . we repeat the following: for each parity func-
tion φS in list Lj−1 and eachxi 6∈ S, estimate the Fourier coeffi-
cient ofSi = S ∪ {xi}. If the estimated value is at leastθ/2 then
add it to listLj (if it is not in the list already). Note that by ob-
servation (2) above, we maintain by induction that listLj contains
all parity functions of sizej whose coefficients have magnitude at
leastθ.

Lastly, note that by observation (3), each listLj can have length
at mostO(t/θ), so the overall total time is polynomial inn, t, and
1/θ.

We now construct a functiong consisting of the weighted sum of
parities for all coefficients identified in the above procedure. Since
g includes all coefficients off of magnitude at leastǫ/(8L1(f)),
this implies that we have

〈f − g, f − g〉 ≤
X

S:|f̂S |<ǫ/(8L1(f))

(f̂S)2 ≤ ǫ/8

[Man94]. The above assumes we have measured the large Fourier
coefficients precisely; adding in measurement error, by measuring
coefficients topoly(t/ǫ) accuracy, we have〈f − g, f − g〉 ≤ ǫ/4.
In particular, this implies thatE[(f(x) − g(x))2] ≤ ǫ/4. Finally,
we output the functionh(x) = [g(x)] where “[.]” is rounding to
the nearest integer. Each mistake ofh on some examplex implies
that(f(x)− g(x))2 ≥ 1/4, soh has error at mostǫ with respect to
f .

Feldman, Kothari, and Vondrak (personal communication) have
recently independently proven a result related to this theorem. Note
that the above result holds just as well forunatesums of terms (a
sum of terms in which no variable appears both positively and nega-
tively). In particular, the only place where monotonicity was used in
the proof was in observation (2), which applies just as well to unate
sums, since they still have the property that|f̂S | =

P

i:S⊆Ti
2−|Ti|,

implying that ifS′ ⊆ S, then|f̂S′ | ≥ |f̂S |. Therefore, we have:

THEOREM 3.2. We can efficiently learn a unate sum oft terms
over the uniform distribution, using time and samplespoly(t, n, 1/ǫ).

In the case that all termsTi have size at mosts = O(log(t/ǫ)),
we can convert the above procedure into a proper learning algorithm
by setting the thresholdθ to O(1/2s) and outputting terms for the
maximal setsS found having large Fourier coefficients.

3.2 Learning DNF over the uniform distribu-
tion from numerical pairwise queries

We now use Theorem 3.2 to learn general DNF formulas over the
uniform distribution from numerical pairwise queries.

THEOREM 3.3. Under the uniform distribution, with numerical
pairwise queries, we can learn anypoly(n)-term DNF.

PROOF. Let t be the number of terms in the target. Sample
m = O((t/ǫ) log(t/ǫδ)) “landmark” pointsx1, x2, . . . , xm. If xi

is a positive example, defineFi(·) = K(xi, ·), whereK is the pair-
wise numerical query function. That is,Fi(x) is the sum-of-terms
function for the target DNF formula in which all terms not satisfied
by xi have been removed. This sum-of-terms is unate, since every
variable that appears must be in agreement withxi. Therefore, we
can use Theorem 3.2 to learn a hypothesishi(x) with error at most
ǫ/(2m) with respect toFi.

We now combine all hypotheseshi produced to a single boolean
functionh defined as:h(x) = 0 if hi(x) = 0 for all i, elseh(x) =
1. By the union bound,h has error at mostǫ/2 with respect to the
functionf ′ consisting of all terms of the target satisfied by at least
one landmarkxi. Finally, the number of landmarks is sufficiently
large thatf ′ has error at mostǫ/2 with respect to the target, so
by the triangle inequality,h has error at mostǫ with respect to the
target.

3.3 Learning DNF over the uniform distribu-
tion from boolean pairwise queries

DEFINITION 3.4. Fix a constantc ∈ (0,∞). We say a termT
in the target DNF is “relatively distinct” if it contains a variablev



which occurs in at mostc log(n) other terms. We sayv is a witness
to T being relatively distinct.

DEFINITION 3.5. For a termT in the target DNF, and a vari-
ablev in T , we sayv is “sometimes nonredundant” forT if, given
a random example that satisfiesT , there is at least anǫ probability
that every term in the target DNF that the example satisfies also
containsv.

THEOREM 3.6. Suppose no term in the target DNF is logically
entailed by any other term in the target DNF, every termT is rela-
tively distinct, and that some variablev that is a witness toT being
relatively distinct is sometimes nonredundant forT . Then we can
properly learn any monotone DNF of this type under a uniform dis-
tribution on{0, 1}n with boolean pairwise queries.

PROOF. By Lemma 4.1, it suffices to show that every term hav-
ing at leastǫ/(2t) probability of being satisfied will, with high
probability, have some example satisfying only that term, given a
polynomial-sized data set.

Consider a given termT in the target DNF, and choose thev that
witnesses relative distinctness which is sometimes nonredundant.
Note that every other term in the target DNF contains some vari-
able not present inT , and in particular this is true for the (at most)
c log(n) terms containingv. So under the conditional distribution
given thatT is satisfied and thatv is nonredundant, with probability
at least2−c log(n) = n−c, none of these other terms containingv
are satisfied, so thatT is the only term satisfied. Thus, sinceT has
probability at leastǫ/(2t) of being satisfied, andv has probability
at leastǫ of being nonredundant given thatT is satisfied, we have
that with probability at least(ǫ2/t)n−c, a random example satisfies
T and no other terms in the target DNF.

Since this is the case for all terms in the target, a sample of
sizeO((t/ǫ2)nc log(t/δ)) guarantees every term has some exam-
ple satisfying only that term, with probability at least1 − δ.

We can also consider the class of DNF formulas having only a
small number of relevant variables. In this context, it is interesting
to observe that if theith variable is irrelevant, thenP (k(x, y) =
1 andxi 6= yi) = P (k(x, y) = 1 andxi = yi), wherex andy
are independent uniformly-distributed samples, andk(x, y) = 1
iff x andy are positive examples that satisfy at least one term in
common. However, as the following lemma shows, this is not true
for relevant variables.

LEMMA 3.7. For x andy independent uniformly-distributed ex-
amples, if the target function hasr relevant variables, and theith

variable is relevant to the target function, thenP (k(x, y) = 1 and
xi = yi) − P (k(x, y) = 1 andxi 6= yi) ≥ (1/4)r.

PROOF. For each pair(x, y) with xi 6= yi, there is a unique
corresponding pair(x′, y) with x′

j = xj for j 6= i, andx′
i = yi. Let

Mi be the number ofx, y pairs withxi 6= yi andk(x, y) = 1. Then
note that for everyx, y pair withxi 6= yi andk(x, y) = 1, we also
havek(x′, y) = 1, since whatever termx andy satisfy in common
cannot contain variablei anyway, so flipping that feature inx does
not change whetherx andy share a term or not. In particular, this
implies the number ofx, y pairs withxi = yi andk(x, y) = 1
is at leastMi. However, we can also argue it is strictly larger, as
follows. By definition of “relevant”, each of the2r settings of the
relevant variables corresponds to an equivalence class of feature
vectors, all of which have the same label, and if that label is positive,
then all of which have the same profile. Since variablei is relevant,
at least one of the2r settings of the relevant variables yields an
equivalence class of positive examples whose profile contains only

terms with variablei in them (these are positive examples such that
flipping variablei makes them negative). The probability that both
x andy (chosen at random) are in this equivalence class is(1/4)r.
Note that for the(x, y) pairs of this type, we havek(x, y) = 1;
however, if we flip featurexi, thenx would become negative, and
hencek(x, y) would no longer be1; this means this(x, y) pair is
not included among thoseMi pairs constructed above by flipping
xi starting from some(x, y) with xi 6= yi andk(x, y) = 1. So
P (k(x, y) = 1 andxi = yi) − P (k(x, y) = 1 andxi 6= yi) ≥
(Mi/4n + (1/4)r) − Mi/4n = (1/4)r.

THEOREM 3.8. Under the uniform distribution, with boolean
pairwise queries, we can properly learn any DNF havingO(log(n))
relevant variables.

PROOF. We can use the property in Lemma 3.7 to design an al-
gorithm as follows. For eachi, sampleΩ(8r log(n/δ)) random
pairs (x, y), and evaluatek(x, y) for each pair. Then calculate
the difference of empirical probabilities (fraction of pairs(x, y) for
which k(x, y) = 1 and xi = yi minus fraction of pairs(x, y)
for which k(x, y) = 1 and xi 6= yi). If this difference is>
(1/2)(1/4)r, decide variablei is relevant, and otherwise decide
variablei is irrelevant. By Hoeffding and union bounds, with prob-
ability 1 − δ/2, this will find exactly ther relevant variables. Now
enumerate all2r = poly(n) possible conjunctions that can be
formed from using all of theser relevant variables. Considering this
as a2r-dimensional feature space, takeΩ((2r/ǫ)log(1/δ)) random
labeled data points and learn a disjunction over this2r-dimensional
feature space; since the VC dimension of this set of disjunctions is
2r, the usual PAC analysis implies this will learn anǫ-good disjunc-
tion with probability1 − δ/2. A union bound implies both stages
(finding variables and learning the disjunction) will succeed with
probability at least1 − δ.

An alternative approach to the second stage in the proof would be
to takeΩ(2r log(2r/δ)) random samples, so that with probability
at least1 − δ/2, we have at least one data point satisfying each
of the2r possible conjunctions on the relevant variables; then for
each of the conjunctions, we check the label of the example that
satisfies it, and if that label is positive, we include that conjunction
as a term in our DNF, and otherwise we do not include it. This has
the property that, altogether, with probability1 − δ, we construct a
DNF that has error ratezero.

Another family of DNF studied in the literature are those with a
sublinear number of terms. Specifically, [Ser04] proved that the
class of2O(

√
log n)-term monotoneDNF are learnable under the

uniform distribution from labeled data alone. As the following the-
orem states, we can extend this result to include general2O(

√
logn)-

term DNF (including non-monotone) given access to our boolean
pairwise queries.

THEOREM 3.9. Under the uniform distribution, with boolean
pairwise queries, we can learn any2O(

√
log n)-term DNF (suppos-

ing ǫ to be a constant).

First, we review some known results from [Ser04]. For any func-
tion g : {0, 1}n → {−1, +1}, define thegi,1 andgi,0 functions
by the property that anyx with xi = 1 hasgi,1(x) = g(x), and
gi,0(x) = g(y), whereyj = xj for j 6= i andyi = 0. Then de-
fine the influence functionIi(g) = P (gi,0(x) 6= gi,1(x)). [Ser04]
developed a procedure,FindVariable, which uses apoly(n, 1/γ,
log(1/η)) number of random labeled samples, labeled according to
any monotone DNFg having at mostt terms, and with probability
1 − η, returns a setS of variables (indices in{1, . . . , n}) such that



everyi /∈ S hasIi(g) ≤ γ and everyi ∈ S hasIi(g) ≥ γ/2 and
theith variable is contained in some term ing with at mostlog 32tn

γ

variables in it.
Furthermore, [Ser04] showed that, for anyt-term DNFf , if we

are provided with a setSf ⊆ {1, . . . , n} such that everyi /∈
Sf hasIi(f) ≤ ǫ/4n, then we can learnf in time polynomial

in n, |Sf |O(log t
ǫ

log 1

ǫ
), and log(1/δ). In particular, for|Sf | =

O(t log tn
ǫ

) and t = 2O(
√

log n), this is polynomial inn (though
not necessarily inǫ). Given the setSf , the learning procedure sim-
ply estimates the Fourier coefficients for small subsets ofSf .

PROOF OFTHEOREM 3.9. To prove Theorem 3.9, we consider
the following procedure. First drawm random labeled examples
x(1), . . . , x(m). Then, for eachj ≤ m, definekj(·) = k(x(j), ·).
Now note that, if we defineϕj(y) = (ϕj1(y), . . . , ϕjn(y)) by
ϕji(y) = 2I[yi = x

(j)
i ] − 1, then we can representkj(·) =

(k′
j(ϕj(·)) + 1)/2, wherek′

j is a monotone DNF (mapping into
{−1, +1}); specifically, the terms ink′

j correspond to the terms in
the target satisfied byx(j), except none of the literals are negated.
We then runFindVariable for each of thesek′

j , with γ = ǫ/m
andη = δ/2m. Let Sf denote the union (overj ≤ m) of the re-
turned sets of variables. It remains only to show thisSf satisfies
the requirements for the procedure of [Ser04], including the size
requirement.

Takingm = Ω( ct
ǫ

log t
δ
), with probability at least1−δ/4, every

term in the target having probability at leastǫ/2ct will have at least
one of them examples satisfying it. Suppose this event happens. In
particular, this meanserror(maxj kj) < ǫ/2c. Note that

Ii(f) = P (fi,0(x) 6= fi,1(x))

≤ 2P (maxj kj(x) 6= f(x)) +

P ((maxj kj)i,0(x) 6= (maxj kj)i,1(x))

< ǫ/c +
X

j

P ((k′
j)i,0(x) 6= (k′

j)i,1(x))

= ǫ/c +
X

j

Ij(k
′
j).

Thus, by a union bound, with probability1 − δ/2, any variable
i /∈ Sf hasIi(f) < ǫ/c + mγ, and any variablei ∈ Sf appears
in a term in somek′

j of size at mostlog 32tn
γ

, and therefore also
appears in a corresponding term of this size inf . Suppose this
happens. Lettingc = 8n andγ = ǫ/8nm, we have that anyi /∈ Sf

hasIi(f) < ǫ/4n, while anyi ∈ Sf appears in a term of size at

mostlog 256tn2m
ǫ

= O(log tn log(1/δ)
ǫ

). In particular, this implies

|Sf | = O(t log tn log(1/δ)
ǫ

), andSf satisfies the requirements of
the method of [Ser04].

Thus, running the procedure from [Ser04] with confidence pa-
rameterδ/4, a union bound implies the total probability of success-
fully producing anǫ-good classifier is at least1 − δ. The above
process of constructingSf is clearly polynomial-time. Then, if
t = 2O(

√
log n), the procedure of [Ser04] runs in time polynomial

in n, log(1/δ), and|Sf |O(log(t/ǫ) log(1/ǫ)), which is polynomial in
n andlog(1/δ) (though not necessarily inǫ).

One interesting observation is that the above is a general reduc-
tion. In particular, given any method for learning monotone DNF
under the uniform distribution in time poly(n, 1/ǫ, log(1/δ)) from
random labeled data, we have a method for learning general DNF
under the uniform distribution in time poly(n, 1/ǫ, log(1/δ)) us-
ing boolean-valued queries: simply sampleO(t/ǫ) random exam-
plesxi, and for each learn the monotone (with respect toxi) DNF

k(xi, ·) to errorǫ2/t, and return the resulting estimate of the hy-
pothesismaxi k(xi, ·). This points out that one advantage of learn-
ing with boolean-valued queries is that it allows us to convert re-
sults that hold for monotone DNF into results that hold for general
DNF, due to the monotone landmark DNFs that compose to form
the target function.

4. LEARNING DNF UNDER GENERAL DIS-
TRIBUTIONS : POSITIVE RESULTS

Our methods are described below, split based on the type of query
they use (boolean vs numerical). We will see that the method for
boolean queries (called the “neighborhood method” below) is ef-
fective for anyparsimoniousDNF: a target DNF for which, on
the given data set, removing any term from the target DNF would
change the label of some example in the data. Note that ordinarily
one can assume without loss of generality that a DNF target is parsi-
monious, but that is not the case with pairwise queries. The method
based on numerical-valued queries (called the “common profiles
approach” below) will turn out to be effective under conditions on
the target DNF that implycommon profiles; that is, if we partition
the data into equivalence classes based on equality of the set of all
terms they satisfy in the target DNF, then each equivalence class
haspoly(n) examples in it; for instance, this is the case as long
as we are guaranteed there are at most apoly(n) number of such
equivalence classes (independent of the number of data points).

4.1 Methods

4.1.1 The Neighborhood Method
We refer to the following simple procedure as the “neighbor-

hood method”. Takem = poly(n, 1/ǫ, log(1/δ)) samples. First,
among the positive examples, query all pairs (with the boolean-
valued query) to construct a graph, in which examples are adjacent
if they satisfy a term in common. For each positive example, con-
struct a minimal conjunction consistent with that example and all of
its neighbors (i.e., the consistent conjunction having largest number
of literals in it). Next, discard any of these conjunctions that make
mistakes on any negative examples. Then sequentially remove any
conjunctionc1 such that some other remaining conjunctionc2 sub-
sumes it (contains a subset of the variables). Form a DNF from the
remaining conjunctions. Produce this resultant DNF as the output
hypothesis.

LEMMA 4.1. Suppose the target DNF hast = poly(n) terms.
For an appropriate (t-dependent) polynomial sample sizem, the
neighborhood method will, with probability at least1 − δ, produce
an ǫ-accurate DNF if, for each termTi in the target DNF having
a probability of satisfaction at leastǫ/2t, there is at least ap =
1/poly(n, 1/ǫ) probability that a random example satisfies term
Ti and no other term (we call such an example a “nice seed” for
Ti).

PROOF. Under these conditions we have that

m = O((1/p) log(t/δ) + (t/ǫ) log(1/ǫδ))

samples suffice to guarantee eachTi with probability of satisfaction
at leastǫ/2t has at least one nice seed, with probability at least
1 − δ/2.

In the second phase, we remove any conjunction inconsistent
with the negative examples. The conjunctions guarnateed by the
above argument survive this pruning due to their minimality, and
the fact that they are learned from a set of examples that actually
are consistent with some term in the target DNF (due to the nice



seed). The final pruning step, which removes any redundancies in
the set of conjunctions, leaves at mostt conjunctions.

The terms that do not have nice seeds compose at mostǫ/2 total
probability mass, andm is large enough so that with probability
at least1 − δ/4, at most a3ǫ/4-fraction of the data satisfy these
terms. Thus, since the result of the neighborhood method is a DNF
formula with at mostt terms, which correctly labels a1 − 3ǫ/4
fraction of them examples, the standard PAC bounds imply that
with probability at least1 − δ/4, the resulting DNF has error rate
at mostǫ. A union bound over the above events implies this holds
with probability at least1 − δ.

4.1.2 The Common Profile Approach
In the case of numerical queries, we have some additional flexi-

bility in designing a method. In this context, we refer to the follow-
ing procedure as the “common profiles approach”.

Consider a sample ofm = poly(n, 1/ǫ, log(1/δ)) random la-
beled examples, and for each pair of positive examplesx, y, we
request the numberK(x, y) of terms they satisfy in common; we
additionally requestK(x, x) for each positive examplex. For each
positive examplex, we identify the setS of examplesy such that
the numerical value ofK(x, y) is equalK(x, x). So these points
satisfy at least all the termsx satisfies. For each such setS, we
learn a minimal conjunction consistent with these examples. Then
for each of these conjunctions, if it is a specialization of some other
one of the conjunctions, we discard it. Then we form our hypothesis
DNF with the remaining conjunctions as the terms.

For any examplex, relative to a particular target DNF, we refer
to the “profile” ofx as the set of termsTi in the target DNF satisfied
by x.

LEMMA 4.2. If the target DNF has at mostp = poly(n) possi-
ble profiles, then the common profile approach, with an appropriate
(p-dependent) sample sizem, will with probability at least1 − δ,
produce a DNF having error rate at mostǫ.

PROOF. Note that this procedure produces a DNF that correctly
labels the entire data set, sinceK(x, y) = K(x, x) impliesx and
y have the same profiles, so that in particular the setS has some
term in common to all the examples. If there are only apoly(n)
number of possible profiles, then the above will only produce at
most as many distinct terms in its hypothesis DNF, so that a suffi-
ciently largepoly(n)-sized data set will be sufficient to guarantee
good generalization error. Specifically,m = O((pn/ǫ) log(1/ǫδ))
examples are enough to guarantee with probability at least1 − δ,
any DNF consistent with the data having at mostp terms will have
error rate at mostǫ, so this is sufficient for the common profile ap-
proach.

4.2 Positive Results

THEOREM 4.3. If it happens that the target DNF is parsimo-
nious (no redundant terms) for some randomΩ((tn/ǫ) log(1/ǫ) +
(1/ǫ) log(1/δ))-sized data set (for any distribution), then we can
efficiently produce a DNF consistent with it having at mostt terms
using boolean-valued queries.

PROOF. Parsimonious, in this case, means that we cannot re-
move any terms without changing some labels. But this means that
every term has some example that satisfies only that term (i.e., a
nice seed). So as described in the proof of Lemma 4.1 above, the
“neighborhood method,” produces a DNF with terms for the neigh-
borhoods of each of these nice seeds, which in the parsimonious
case, covers all of the positive examples.

COROLLARY 4.4. We can properly learn any 2-term DNF with
boolean-valued queries.

PROOF. TakeO((n/ǫ) log(1/ǫ) + (1/ǫ) log(1/δ)) random la-
beled examples and make the boolean query for all pairs of positive
examples. First, find a minimal conjunction consistent with all of
the positive examples; if this conjunction does not misclassify any
negative examples, return it. By classic PAC bounds, a conjunc-
tion consistent with this many random labeled examples will, with
probabiliy at least1−δ, have error rate at mostǫ. Otherwise, if this
conjunction misclassifies some negatives, then we are assured the
target DNF is parsimonious for this data set, and thus Theorem 4.3
guarantees we can efficiently identify a2-term DNF consistent with
it using the boolean-valued queries. Again, the classic PAC bounds
imply the sample size is large enough to, with probability at least
1 − δ, guarantee that any consistent2-term DNF has error rate at
mostǫ.

Corollary 4.4 gives a concrete result where using this type of
query overturns a known hardness result for supervised learning.

COROLLARY 4.5. With numerical-valued queries, we can prop-
erly learn any DNF havingO(log(n)) relevant variables, under
arbitrary distributions.

PROOF. These targets havepoly(n) possible profiles, so the com-
mon profiles approach will be successful.

COROLLARY 4.6. If the target DNF has onlyO(log(n)) terms,
then we can efficiently properly learn from random data under any
distribution using numerical-valued queries.

PROOF. There are onlypoly(n) number of possible profiles, so
the “common profiles” approach will work.

The above result is interesting particularly because proper learning
(even for 2-term DNF) is known to be hard from labeled data alone.

COROLLARY 4.7. If the target DNF hast = poly(n) terms,
and is such that any example can satisfy at mostO(1) terms, then
we can efficiently properly learn from random data using numerical-
valued queries.

PROOF. There are at mostpoly(t) = poly(n) possible profiles,
so the “common profiles” approach will work.

COROLLARY 4.8. If the DNF is such that any example can sat-
isfy at most1 term (a so-called “disjoint” DNF), then we can ef-
ficiently properly learn from random data using boolean-valued
queries.

PROOF. A numerical query whose value can be at most1 is just
a boolean query anyway.

In particular, Decision Trees can be thought of as a DNF where
each example satisfies at most1 term.

5. MORE POWERFUL QUERIES
If we can ask about k-tuples of examples (do they all jointly sat-

isfy a term in common?), we have the following result:

THEOREM 5.1. If we can use query sets of arbitrary sizes (in-
stead of just 2 points), then under any distribution we can efficiently
properly learn DNF using boolean-valued queries from random
data.



PROOF. We take any set of examples and ask the oracle the num-
ber of terms all examples in the set have in common. Let S be the
query set. The idea is to greedily add the examples to S while keep-
ing some terms in common.
Algorithm:
0. Input : datasetD
1. InitializeS to be an empty set
2. Do{
3. Do{
4. rmax ← 0
5. For each examplex in the datasetD
6. addx to the setS
7. query the combined setS, and letr = Oracle(S),

rmax ← max{rmax, r}
8. If r = 0, removex from S, and otherwise leave it inS

and removex from D
9. } Until(rmax = 0)
10. Learn a “most-specific" conjunction fromS and add that term

to the hypothesis DNF
11. ResetS to empty set
12. }Until (|D| = 0)

Each time we add a term to the DNF, the examples inS satisfy
some term in the target DNF, because we only add each example
if by adding it S still has at least one term in common. So the
"most-specific" conjunction consistent withS (i.e., the one with
most literals in it, still labeling all ofS positive) will not misclassify
any negative point as positive. Since whenever we add a new term,
there were no additional examples inD that could have satisfied a
term in common with the examples inS, after adding the term we
have removed fromD all examples that satisfy the termS has in
common. Therefore, the number of terms in our learnt DNF is at
most the number of termsT in the true DNF. If the total number
of examples is≫ nT (and sayT is poly(n)), it will get us a DNF
that has at most T terms and correctly labels apoly(n) ≫ nT sized
dataset. Since the training dataset size is much larger than the size
of the classifier, by the Occam bound, the learnt DNF will have
small generalization error.

6. OPEN QUESTIONS

• Is it possible to efficiently learn an arbitrary DNF from ran-
dom data under the uniform distribution with boolean-valued
queries?

• Is it possible to efficiently learn an arbitrary DNF from ran-
dom data under arbitrary distributions with numerical-valued
queries? To establish this, in light of the general reduction
used to prove Theorem 3.9, it would suffice to show that
the class of sums of monotone terms are efficiently learn-
able from random data under arbitrary distributions. Or, al-
ternatively, can Theorem 2.2 be extended to apply toexact
numerical queries?
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APPENDIX

A. QUERYING WITH POINTS OF OUR OWN
CONSTRUCTION

THEOREM A.1. If we can construct our own feature vectors in
addition to getting random data, then under any distribution we can
efficiently properly learn DNF using boolean-valued queries.

PROOF. Suppose we can adaptively construct our own exam-
ples. Suppose the target DNF hasT = poly(n) terms. Oracle(x,



x′) gives the number of terms thatx andx′ have in common. For
anyx, letx−i be x but with the ith bit flipped. Let̄x be the negative
of x.

Below is an algorithm. Move(x, x′) movesx′ away fromx
by one bit, while trying to maintain at least one common term.
LearnTerm(x) returns a term in the target function.

0. Move(x, x′)
1. x′′ ← x̄
2. For i = 1, 2, ..., n s.t.xi = x′

i

3. If (Oracle(x, x′′) ≤ Oracle(x, x′
−i))

4. x′′ ← x′
−i

5. Returnx′′

0. LearnTerm(x)
1. Replicate x to getx′

2. While (Oracle(x, Move(x, x′)) ! = ∅)
3. x′ ← Move(x, x′)
4. LetI ← {i : Oracle(x, x′

−i) = ∅}
5. ReturnxI (i.e. a conjunction with the literals indexed byI,

either positive or negative so thatx satisfies it)

0. LearnDNF
1. Initialize all-negative DNF̂h
2. TakeM = poly(n) ≫ nT random examplesS
3. For eachx ∈ S
4. If Oracle(x,x) > 0 (positive example) and̂h(x) = negative
5. Add term LearnTerm(x) to ĥ
6. Return̂h (a DNF with at mostT terms, consistent with allM

examples)

When we reachx′ such that we can’t flip any more bits (not al-
ready flipped) without making it so they don’t satisfy any terms in
common anymore, then the bits these two have in common must
form a term in the target DNF, so LearnTerm(x) should still find a
term in the target DNF.


