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ABSTRACT

We study the problem of PAC learning the class of DNF formu-
las with a type of natural pairwise query specific to the DNF rep-
resentation. Specifically, given a pair of positive examples from

a polynomial-sized sample, we consider boolean queries that ask
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the target DNF, and numerical queries that ask neanyterms in
common the two examples satisfy. We provide both positive and
negative results for learning with these queries under both uniform
and general distributions.

For boolean queries, we show that the problem of learning an
arbitrary DNF target under an arbitrary distribution is no easier than
in the traditional PAC model. However, on the positive side, we
show that under the uniform distribution, we can properly learn any
DNF formula withO(log(n)) relevant variables, any DNF formula
where each variable appears in at mOgtog(n)) terms, and any

DNF formula having at mos2®(V!°2(™) terms. Under general
distributions, we show that 2-term DNFs are efficiently properly
learnable as are disjoint DNFs.

For numerical queries, we show we can learn arbitrary DNF for-
mulas under the uniform distribution; in the process, we give an
algorithm for learning a sum of monotone terms from labeled data
only. Numerical-valued queries also allow us to properly learn any
DNF with O(log(n)) relevant variables under arbitrary distribu-
tions, as well as DNF havin@(log(n)) terms, and DNF for which
each example can satisfy at moxtl) terms.

Other possible generalizations of the query include allowing the
algorithm to ask the query for an arbitrary number of examples from
the sample at once (rather than just two), or allowing the algorithm
to ask the query for examples of its own construction; we show that
both of these generalizations allow for efficient proper learnability
of arbitrary DNF functions under arbitrary distributions.

Categoriesand Subject Descriptors

F.2.0 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity—&eneral
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1. INTRODUCTION

Consider a bank aiming to use machine learning to identify new
instances of financial fraud. To do so, the bank would ask financial
experts to label past transactions as fraudulent or not, and then run
a learning algorithm on the resulting labeled data. However, this
learning problem might be quite difficult because of the existence
of multiple intrinsic types of fraud, with each positive example per-
haps involving multiple types of fradulent behavior. For instance,
the fraud may involve identity theft, unauthorized account access,
security-code violations, overdraft and/or insider security breaches
That is, the target concept would be in the general case a DNF for-
mula, a class for which no efficient algorithms are known.

Yet in such cases, perhaps the experts performing the labeling
could be called on to provide a bit more information. In particu-
lar, suppose that given two positive examples of fraud, the experts
could indicate whether or not the two examples similar in the
sense of having at least one intrinsic type of fraud (at least one term)
in common, such as both involving unauthorized account access, or
both involving internal blockage of account monitoring (inside job).
Or perhaps the experts could indichtwv similar the examples are
(how many terms in common they satisfy), stating the number of
common ways in which the fraud occurred. This is certainly sub-
stantially more information. Can it be used to learn DNF formulas
and their natural subclasses efficiently?

Fraud detection is just one of many potential applications of DNF
learning in which pairwise queries are natural. Others applications
include medical multi-factor medical diagnosis, where patients suf-
fer from several ailments and a full diagnosis is required to select
optimal treamtent, and not aggravate one condition while treating
another.

In our work, we study the problem of learning DNF formulas and
other function classes using such pairwise, representation-degenden
queries. Specifically, we consider queries of the form, “Do these
two positive examples satisfy at least one term in common in the
target DNF formula?” (we call thedaoolean similarity queriés
and “How many terms in common do these two positive examples
satisfy?” (we call thesaumerical similarity queries

These queries must be over data in a labeled sample drawn from
the distribution; we assume membership queriesnateallowed.

Our motivation comes from scenarios such as fraud detection, where



the boolean-vector representation of an example is just a projection Note that we do not allow membership queries in our main re-
of the actual data object (the fraudulent transaction), so that the hu-sults below (membership queries allow an algorithm to generate
man oracle cannot necessarily make sense of artificially-constructedits own example and ask the oracle the label of it). We do have
boolean vectors, as they need to observe the actual data objects imne general result (learning arbitrary DNF under arbitrary distribu-
order to answer the query. Similarly, in the problem of drug design, tions) based on an analogue of membership queries in this model
the span of constructable examples is highly constrained, so that(see Appendix A).
general membership queries may not be feasible.

We show, for these types of queries, a number of both positive 1.2 Related Work
and negative results f0r |eal’ning DNF formulas and interesting Sub' There have been many positive results on |earng(n)_term
classes of them. For example, we show that under the uniform dis- pNF formulas with membership queries. Two landmark results are
tribution, W!th the boolean-valued queries, we can properly learn [Ang88] showing that monotone DNF formulas can be properly
any DNF withO(log(n)) relevant variables, any DNF where each  |earned under arbitrary distributions using membership queries, and
relevant variable appears in at moflog(n)) terms, and any DNF  [3ac94] giving an efficient membership-query algorithm for the (im-
having at mos®(V°&(") terms. Under arbitrary distributions, ~ proper) learning of DNF formulas under the uniform distribution.
we can properly learg-term DNF and disjoint DNF, but we find The problem of learning DNF from random examples without
that the general problem of learning an arbitrary DNF target un- queries has remained open over decades since Valiant introduced
der an arbitrary distribution is no easier than in the traditional PAC the PAC (Probably Approximately Correct) learning model [Val84].
model. With numerical queries, under the uniform distribution we It is not known whether we can efficiently learn DNF from random
can learn arbitrary DNF formulas, and under arbitrary distributions €xamples alone and there are known hardness results for properly

we can can properly learn any DNF with eiti@(log(n)) relevant ~ learning DNF. In fact, [PV88] showed that everterm DNF for-
variables,O(log(n)) terms, or for which each example can satisfy Mmulas are not properly learnable from labeled data alone unless NP
at mostO(1) terms. = RP. The fastest algorithms so far for learnjrgy(n)-term DNF

Our model can also be viewed in the context of the paradigm formulas in the PAC model requires tira@ ' [KS01].

of learning with kernels. A kernel is a pairwise numerical similar- For the problem of PAC learning DNF formulas under the uni-

ity function over examples that is presumed to be available at both form distribution, no polynomial-time algorithms are known. The

training and test time. However, suppose this kernel is computa- fastest known algorithm for learningply(n)-term DNF under the

tionally expensive to run, or even is a human expert, and so will not |, \itorm distribution requires time(°¢™ [Ver90]. At the heart

bg available when the learned hypothgsis is fielded. Can one Us€y this problem lies the problem of efficiently learnirgjuntas

this kernel to produce a good hypothesis defined only over the base(an arbitrary boolean function depending on an unknown set of

features? Our model can be_viewed as addressing th_is guestion irbnly k out of n boolean variables) fok = O(logn). The best

the context of DNF, for a particular type of kernel function. known algorithm for learnings-juntas from uniform random ex-
amples is given by [Val12], building on [MOSO04], which requires

1.1 Model time roughlyn-*.

In this setting, we suppose there is a DNF formfila{0,1}" — Some partial positive results have been obtained for special cases
{—1,+1},wheref = T1 V.. .VT; for conjunctionsl; : {0,1}" — of monotone DNF formulas. [Ser04] provided an algorithm that
{=1,+1}. There is additionally a distributiod> over {0, 1}"; learns any2® (V™2 ™) _term monotone DNF under the uniform dis-

some of our resu_lts deal specific_ally with _unifo_rm,_while others tribution to any constant accuracyzinly(n) time, and [0S07] gave
leaveD to be arbitrary. The learning algorithm is given parameters gp algorithm that learns any monotone boolean function under the
e andd, and is allowed access topaly(n)-sized i.i.d. sample of  ynjiform distribution to any constant accuracy, in time polynomial

data points (examplesy:, 2, . .., Zpoly(n) drawn fromD, along in n and in thedecision tree sizef the target function.
with their target label§ (z1), f(z2), ..., f(®poty(n)). Recent work on restricted access learning [WDYR12] of DNF is
The algorithm can additionally make certajoeries which vary related to our work at the high level: both our work and [WDYR12]

in type among the results below. The two main types of queries gjve the learner more power with the goal of being able to learn
we study are boolean-valued queries and numerical-valued queriespNF using this extra power.

defined as follows. For any;,z; in the data set, the boolean-
valued queny(z;, z;) takes valud if 3¢ < ¢ such thatly(z;) = 1.3 Our Results
T,(z;) = 1, and otherwise takes valle Similarly, for anyz;, x;

in the data set, the numerical-valued query We begin with a somewhat surprising negative result: that learn-

ing general DNF formulas under arbitrary distributions from boolean
N N N similarity queries is as hard as PAC-learning DNF formulas with-

K (@i, z5) = Z ITe(@:) = Te(w;) =1]. out them. This result uses the equivalence between group learning,

weak learning, and strong learning.

Thus, the boolean-valued query indicates whether the two examples Under the uniform distribution, we show that if we are allowed

satisfy some term in common, while the numerical-valued query to ask numerical pairwise queries, we can efficiently legripi-

<t

indicates the precise number of terms they satisfy in common. trary DNF formulas. If we are restricted to boolea_m-valued qu_eries,
We say it is possible to learn a family of DNF formul&&with we can properly learn any DNF formula for which each variable
a given type of query if there exists an algorithm that uses the appears inO(log(n)) terms, as well as any DNF formula with
random data and the given type of query and, for énf H, O(log(n)) relevant variables. We can also learn any DNF hav-
in time polynomial inn, 1/¢, andlog(1/6), produces a classifier  ing at most2°(V1°s ™) terms. Specifically, we use Servedio’s re-
h:{0,1}" — {—1,+1} such that, with probability at lea$t— 4, sults [Ser04] in the context of learning ti€x;, ) DNF, which

err(h) = Pyp(h(z) # f(x)) < e. We further say itis possible  is a monotone DNF after appropriate transformation of the feature
to properlylearn H with the given type of query if there exists such  space; if we do this for enough randampoints, themax; k(z;, -)
an algorithm for whichh is guaranteed to be an elementfdf function will agree with the target DNF with high probability.



For the more general case of learning under arbitrary distribu-
tions, we show that with numerical-valued queries we can prop-
erly learn any DNF formula havin@(log(n)) terms, or any DNF
formula havingO(log(n)) relevant variables. In this case, with

boolean-valued queries, we can easily learn disjoint DNF (a class

A will produce a low-error hypothesis under the distribution over
concatenated examples, which yields a low-error hypothesis for the
group-learning problem. ]

We can extend the above result to “approximate numerical” queries

that contains decision trees). We in addition show that we can prop- that give the correct answer up td a- 7 factor, for some constant

erly learn any “parsimonious” DNF formula (a formula for which
no term can be deleted without appreciably changing the function)
as well as any 2-term DNF, a class known to be NP-Hard to properly
learn from labeled data alone.

If we are allowed to ask “Do theseexamples satisfy any term in
common?” for arbitrary (poly-sized), we can even properly learn
arbitrary DNF formulas under arbitrary distributions.

2. HARDNESSRESULTS

To illustrate why pairwise similarity queries do not trivialize the
DNF learning problem, we begin with two hardness results.

THEOREM 2.1. Learning DNF from random data under arbi-
trary distributions with boolean similarity queries is as hard as
learning DNF from random data under arbitrary distributions with
only the labels (no queries).

PrROOF [Kea89] and [KLV94] proved that “group learning" is
equivalent to “weak learning".

In group learning, at each round we are giyeiy(n) examples
that are either all iid fromD™ or all iid from D~ (i.e. all positive
or all negative) and our goal is to identify which case it is. Subse-
quently, Schapire [Sch90] proved that weak-learning is equivalent
to strong-learning. So, if DNF is hard to PAC-learn, then DNF is
also hard to group-learn.

Now, consider the following reduction from group-learning DNF
in the standard model to learning DNF in the boolean similarity
queries model. In particular, given an algorithifor learning
from a polynomial number of examples in the boolean similarity
queries model, we show how to ugkto group-learn as follows:

Given a sefS of m = poly(n) examplescy, x2, ..., Tm (We will
usem = tn wheret is the number of terms in the target), construct

T > 0 (or evenr > 1/poly(n)).

THEOREM 2.2. Learning DNF from random data under arbi-
trary distributions with approximate-numerical-valued queries is
as hard as learning DNF from random data under arbitrary dis-
tributions with only the labels (no queries). Specificallyifs the
number of terms:; andx; satisfy in common, the oracle returns a
value in the rangé(1 — 7)C, (1 + 7)C].

PROOF Assume we have an algorithehthat learns to error/2
given an oracle for approximate numerical queries.

Now we do the reduction from group learning as before, forming
higher-dimensional examples by concatenating graups: - , x,,
all of the same class, but this time with = 2n(t*)(14+71/2)?/72.
Suppose, for now, that we know for the original DNF formula, the
expected number of terms that two random positive examples
would have in common (we discharge this assumption later). In
that case, when queried b4 for the similarity between two pos-
itive examplese, z’, we simply answer with the closest integer to
am. As before, we argue that with high probability, our answers
are consistent with a DNF formula consisting of justn shifted
copies of the original DNF.

Note that for a random pair of the concatenated examples com-
posed of positive sub-examples, the expected number of terms in
common ing is ma. Furthermore, the number of terms in common
is a sum ofm independent samples of the original random vari-
able of meany, each of which is bounded in the ranffet]. So
Hoeffding’s inequality implies that with probability

1 — 2e-2me (/D () (A+7/2%) 5 | _ 9,

(sincea > 1/t), the numbeC of terms in common satisfid§' —
ma| < ma(r/2)/(147/2), which implies(1 —7/2)C < ma <

a new example by just concatenating them together. So overall we (1 + 7/2)C.

now havenm variables. We present this concatenated example to
with label equal to the label &f. If A makes a similarity query be-
tween two positive examplds 1, zo, ..., .| and[zl, x5, ..., T, ],

we simply outpuyes(i.e., that they do indeed share a term in com-
mon).

We now argue that with high probability, the labels and our re-
sponses ta4 are all fully consistent with some DNF formula of
sizemt. In particular, we claim they will be consistent with a tar-
get function that is just the OR of. copies of the original target
function.

First of all, note that the OR ofn copies of the original tar-
get function will produce the correct labels since by assumption
either allz; € S are positive or allz; € S are negative. Next,

we claim that whp, any two of these concatenated positive exam-

ples will share a term in common. Specifically, if the original DNF
formula hast terms, then for two random positive examples from
D™ there is probability at leadt/t that they share a common term.

Thus, for apoly(n)-sized sample of data points, with high prob-
ability, all of the pairs of positive concatenated examples have the
nearest integer tewa within these factors of their true number of
terms in common. It therefore suffices to respondite similarity
gueries with the nearest integeritax.

Now the only difficulty is that we do not know. So we just
try all positive integers from 1 to mt and then use a validation
set to select among the hypotheses produced. That is, wd nm
the constructed data set and respond to all similarity queries with a
single value, getting back a classifier for these concatenated exam-
ples, and then repeat for eachThen we take)((1/¢) log(mt/d))
additional higher-dimensional samples (with labels) and choose the
classifier among theset returned classifiers, having the smallest
number of mistakes on that validation set. At least one of these
mt values ofi is the closest integer tawc, So at least one of these
mt classifiers ix/2-good, and our validation set will identify one
whose error is at most So we can use this classifier to identify

So, the chance of failure for two concatenated examples is at mostWhether a random-sized group of examples is composed of all

(1 —1/t)™. (Because the only way that two of these big con-
catenated examplés:, z2, ..., z,,] and[z, x5, ..., z,] can fail to
share a term in common is if; andz fail, z» andx5 fail, etc.).
Settingm = tn, the probability of failure for any given query is at
mostl/e™. Applying the union bound over all polynomially-many
pairs of positive examples id's sample yields that with high prob-

ability all our responses are consistent. Therefore, by assumption,

positives or all negatives, with error ratei.e., we can do group
learning.

If the algorithm A only has a “high probability” guarantee of suc-
cess, we can repeat this several times with independent data sets, to
boost the confidence that there will be a good classifier among those
we choose from at the end, and slightly increase the size of the val-
idation set to compensate for this larger number of classifiers.



3. LEARNING DNF UNDER THE UNIFORM
DISTRIBUTION

In this section, we investigate the problem of learning DNF un-
der a uniform distribution o0, 1}". We begin with a result show-
ing how to learn general DNF formulas from numerical similar-
ity queries. For boolean similarity queries, we show how to learn
several natural classes of DNF formulas, includ¥@gv™& ™ -term
DNF, DNF withO(log n) relevant variables (juntas), and DNF for-
mulas in which each variable appears in at mOglog n) terms.
First, however, we give an algorithm for learning a sum of mono-

We now construct a functiog consisting of the weighted sum of
parities for all coefficients identified in the above procedure. Since
g includes all coefficients of of magnitude at least/(8L1(f)),
this implies that we have

>

(f=9,f—9) <
S:|fs|<e/(8L1(f))

[Man94]. The above assumes we have measured the large Fourier
coefficients precisely; adding in measurement error, by measuring
coefficients tgpoly(t/¢) accuracy, we havef — g, f — g) < €¢/4.

(fs)* <¢/8

tone terms in the standard (no queries) PAC model under the uni-In particular, this implies thak[(f(z) — g(z))?] < €/4. Finally,

form distribution.

3.1 A useful subroutine: Learning a sum of
monotoneterms

In this section we give an algorithm for learning a sum of mono-
tone terms over the uniform distribution (without pairwise queries).
That is, the target is a (not necessarily boolean) funcfipn) =
Ti(z) + T2(z) + ... + Ti(z) where theT; are monotone con-
junctions (outputting 1 ifr satisfiesT; and 0 if z does not) and
t = poly(n). This will then be used in our algorithm for learning
general DNF formulas over the uniform distribution from pairwise
queries.

THEOREM 3.1. We can efficiently learn a sum efmonotone
terms over the uniform distribution, without pairwise queries, using
time and samplegoly(t,n, 1/¢).

PrROOF Let f(z) = Ti(z) + T2(x) + ... + T:(z) denote the
target function. Our algorithm is based on the following facts:

we output the functiorh(z) = [g(z)] where {.]” is rounding to
the nearest integer. Each mistakehofn some example implies
that(f(z) — g(z))? > 1/4, soh has error at mostwith respect to
f.o O

Feldman, Kothari, and Vondrak (personal communication) have
recently independently proven a result related to this theorem. Note
that the above result holds just as well foratesums of terms (a
sum of terms in which no variable appears both positively and nega-
tively). In particular, the only place where monotonicity was used in
the proof was in observation (2), which applies just as well to unate
sums, since they still have the property thiat| = 3=, o 2717,
implying that if S C S, then|fs/| > | fs|. Therefore, we have:

THEOREM 3.2. We can efficiently learn a unate sumtaerms
over the uniform distribution, using time and sample&,(t, n, 1 /¢).

In the case that all ternik; have size at most = O(log(t/¢)),
we can convert the above procedure into a proper learning algorithm
by setting the threshold to O(1/2°) and outputting terms for the

1. The Fourier representation (using the parity basis) for a single maximal sets5 found having large Fourier coefficients.

termT (viewed as g0, 1} function) has a particularly simple
form. In particular,Ts = E[T(z)¢s(z)] = 0if S € T and
Tg =27 1TI(—1)ISI+Lif § C T. See, e.g., [BF194].

2. This implies that for any given sét, the associated Fourier
coefficient of f is fs = (—1)'*I"* 37, o, 27171 This

further implies that ifS” C S, then|fs/| > |fs|. Note that
we are using here the fact that tig are monotone, so that
all terms inside the summation have the same sign.

3. Since for each terr;, its L, length in the Fourier represen-
tation is exactly 1, we havé;(f) < ¢. This implies that
for any given threshold there are at most/6 coefficients of
magnitude at least.

We can use the above facts to identify all Fourier coefficientg of
of magnitude at least = ¢/(8t) in time polynomial inn, ¢, and
1/e as follows.

We begin by examining each parity function of size 1 and esti-
mating its Fourier coefficient from data (up to accurégy). We
place all coefficients of magnitude at ledg into a list L.

Forj = 2,3,... we repeat the following: for each parity func-
tion ¢s in list L' and eache; ¢ S, estimate the Fourier coeffi-
cient of S; = S U {z;}. If the estimated value is at least2 then
add it to list L7 (if it is not in the list already). Note that by ob-
servation (2) above, we maintain by induction that lidtcontains
all parity functions of sizg whose coefficients have magnitude at
leastd.

Lastly, note that by observation (3), each listcan have length
at mostO(¢/60), so the overall total time is polynomial im, ¢, and
1/6.

3.2 Learning DNF over the uniform distribu-
tion from numerical pairwise queries

We now use Theorem 3.2 to learn general DNF formulas over the
uniform distribution from numerical pairwise queries.

THEOREM 3.3. Under the uniform distribution, with numerical
pairwise queries, we can learn apyly(n)-term DNF.

PROOF Let t be the number of terms in the target. Sample
m = O((t/e) log(t/ed)) “landmark” pointszy, za, . . ., Tm. If x;
is a positive example, defin€ (-) = K (z, -), whereK is the pair-
wise numerical query function. That i8;(z) is the sum-of-terms
function for the target DNF formula in which all terms not satisfied
by x; have been removed. This sum-of-terms is unate, since every
variable that appears must be in agreement wjthTherefore, we
can use Theorem 3.2 to learn a hypothésis:) with error at most
€/ (2m) with respect taF;.

We now combine all hypothesés produced to a single boolean
functionh defined ash(z) = 0 if h;(z) = 0 for all 4, elseh(z) =
1. By the union boundh has error at most/2 with respect to the
function f’ consisting of all terms of the target satisfied by at least
one landmarkz;. Finally, the number of landmarks is sufficiently
large thatf’ has error at most/2 with respect to the target, so
by the triangle inequalityh has error at most with respect to the
target. [

3.3 Learning DNF over the uniform distribu-
tion from boolean pairwise queries

DEFINITION 3.4. Fix a constant € (0,00). We say a ternT’
in the target DNF is “relatively distinct” if it contains a variable



which occurs in at mostlog(n) other terms. We sayis a witness
to T being relatively distinct.

DEFINITION 3.5. For atermT in the target DNF, and a vari-
ablev in T, we sayv is “sometimes nonredundant” fdF if, given
a random example that satisfiés there is at least al probability

terms with variable in them (these are positive examples such that
flipping variablei makes them negative). The probability that both
x andy (chosen at random) are in this equivalence cla§s/fg)".
Note that for the(z, y) pairs of this type, we havé(z,y) = 1;
however, if we flip featurer;, thenxz would become negative, and
hencek(z, y) would no longer bd ; this means thigz, y) pair is

that every term in the target DNF that the example satisfies also not included among thos&/; pairs constructed above by flipping

containsv.

THEOREM 3.6. Suppose no term in the target DNF is logically
entailed by any other term in the target DNF, every téfris rela-
tively distinct, and that some variablethat is a witness td@” being
relatively distinct is sometimes nonredundant Tar Then we can
properly learn any monotone DNF of this type under a uniform dis-
tribution on{0, 1}" with boolean pairwise queries.

PROOF By Lemma 4.1, it suffices to show that every term hav-
ing at leaste/(2t) probability of being satisfied will, with high
probability, have some example satisfying only that term, given a
polynomial-sized data set.

Consider a given terri in the target DNF, and choose thé¢hat

x; starting from somézx, y) with z; # y; andk(z,y) = 1. So
P(k(z,y) = 1andz; = y;) — P(k(z,y) = 1andx; # y;) >
(M; /4" + (1/4)") = M /4" = (1/4)". 0

THEOREM 3.8. Under the uniform distribution, with boolean
pairwise queries, we can properly learn any DNF havingog(n))
relevant variables.

PrROOF We can use the property in Lemma 3.7 to design an al-
gorithm as follows. For each sampleQ(8" log(n/d)) random
pairs (z,y), and evaluate:(x,y) for each pair. Then calculate
the difference of empirical probabilities (fraction of pafs y) for
which k(z, y) 1 andz; = y; minus fraction of pairgz, y)
for which k(z,y) 1 andz; # y;). If this difference is>

witnesses relative distinctness which is sometimes nonredundant.(1/2)(1/4)", decide variable is relevant, and otherwise decide

Note that every other term in the target DNF contains some vari-
able not present iff’, and in particular this is true for the (at most)
clog(n) terms containing.. So under the conditional distribution
given thatT" is satisfied and thatis nonredundant, with probability

at least2~¢18(") = ¢ none of these other terms containing
are satisfied, so th&t is the only term satisfied. Thus, sin€ehas
probability at least/(2t) of being satisfied, and has probability

at leaste of being nonredundant given th@tis satisfied, we have
that with probability at leaste? /t)n ¢, a random example satisfies
T and no other terms in the target DNF.

variablei is irrelevant. By Hoeffding and union bounds, with prob-
ability 1 — /2, this will find exactly ther relevant variables. Now
enumerate alk™ = poly(n) possible conjunctions that can be
formed from using all of theserelevant variables. Considering this
as &"-dimensional feature space, tdR€&(2" /€)log(1/J)) random
labeled data points and learn a disjunction over2fislimensional
feature space; since the VC dimension of this set of disjunctions is
2", the usual PAC analysis implies this will learnagood disjunc-

tion with probabilityl — §/2. A union bound implies both stages
(finding variables and learning the disjunction) will succeed with

Since this is the case for all terms in the target, a sample of probability at least — §. [

size O((t/e*)n° log(t/5)) guarantees every term has some exam-
ple satisfying only that term, with probability at ledst- 6. [

We can also consider the class of DNF formulas having only a
small number of relevant variables. In this context, it is interesting
to observe that if thé'" variable is irrelevant, the® (k(z,y) =
landz; # vy;) = P(k(z,y) = 1andz; = y;), wherexz andy
are independent uniformly-distributed samples, &(d,y) = 1
iff x andy are positive examples that satisfy at least one term in
common. However, as the following lemma shows, this is not true
for relevant variables.

LEmMmA 3.7. For z andy independent uniformly-distributed ex-
amples, if the target function hasrelevant variables, and th&"
variable is relevant to the target function, thét{k(z,y) = 1 and
z; =yi) — P(k(z,y) = 1andz; # y;) > (1/4)".

PROOF For each paif(z,y) with x; # vy;, there is a unique
corresponding paitz’, y) with z; = z; for j # 4, andz; = y;. Let
M; be the number of, y pairs withz; # y; andk(x,y) = 1. Then
note that for every, y pair withz; # y; andk(z,y) = 1, we also
havek(z’,y) = 1, since whatever term andy satisfy in common
cannot contain variableanyway, so flipping that feature indoes
not change whether andy share a term or not. In particular, this
implies the number of, y pairs withz; = y; andk(z,y) = 1
is at leastM,;. However, we can also argue it is strictly larger, as
follows. By definition of “relevant”, each of thg" settings of the

An alternative approach to the second stage in the proof would be
to takeQ2(2" log(2"/§)) random samples, so that with probability
at leastl — ¢/2, we have at least one data point satisfying each
of the 2" possible conjunctions on the relevant variables; then for
each of the conjunctions, we check the label of the example that
satisfies it, and if that label is positive, we include that conjunction
as a term in our DNF, and otherwise we do not include it. This has
the property that, altogether, with probability— 6, we construct a
DNF that has error rateera

Another family of DNF studied in the literature are those with a
sublinear number of terms. Specifically, [Ser04] proved that the
class of2°(v1°8™)_term monotoneDNF are learnable under the
uniform distribution from labeled data alone. As the following the-
orem states, we can extend this result to include gea&fafos™ -
term DNF (including non-monotone) given access to our boolean
pairwise queries.

THEOREM 3.9. Under the uniform distribution, with boolean

pairwise queries, we can learn ag{’(V°s™)-term DNF (suppos-
ing € to be a constant).

First, we review some known results from [Ser04]. For any func-
tiong : {0,1}" — {—1,+1}, define theg; 1 andg; o functions
by the property that any with z; = 1 hasg;1(z) = g(z), and
gi,o(z) = g(y), wherey; = z; for j # ¢ andy; = 0. Then de-

relevant variables corresponds to an equivalence class of featurefine the influence functiot; (¢) = P(g:,0(x) # ¢:,1(x)). [Ser04]

vectors, all of which have the same label, and if that label is positive,
then all of which have the same profile. Since variaberelevant,
at least one of the@" settings of the relevant variables yields an

equivalence class of positive examples whose profile contains only 1 — #, returns a se$' of variables (indices if1, . ..

developed a procedur®indVariable, which uses aoly(n, 1/,
log(1/n)) number of random labeled samples, labeled according to
any monotone DNFg having at most terms, and with probability
,n}) such that



everyi ¢ S hasl;(g) < v and every; € S hasI;(g) > /2 and
thes*! variable is contained in some termgmwith at mostlog %
variables in it.

Furthermore, [Ser04] showed that, for anterm DNF f, if we
are provided with a sefy C {1,...,n} such that every ¢
Sy hasI;(f) < e/4n, then we can learrf in time polynomial
in n, |S;|C0&cle ) andlog(1/5). In particular, for|S;| =
O(tlog ) andt = 2°(VI°s™) this is polynomial inn (though
not necessarily im). Given the sefb, the learning procedure sim-
ply estimates the Fourier coefficients for small subsetS,of

PROOF OFTHEOREM 3.9. To prove Theorem 3.9, we consider
the following procedure. First dram random labeled examples
™ . 2™ Then, for eacly < m, definek;(-) = k(z%, ).
Now note that, if we define;(y) = (©;1(y),...,¢in(y)) by
wiily) = 2Iy; :ri”] — 1, then we can represeit () =
(K (¢;(-)) + 1)/2, wherek] is a monotone DNF (mapping into
{1, +1}); specifically, the terms i/ correspond to the terms in
the target satisfied by'”), except none of the literals are negated.
We then runFindVariable for each of thesé:;, with v = ¢/m
andn = 6/2m. Let .Sy denote the union (over < m) of the re-
turned sets of variables. It remains only to show thijssatisfies
the requirements for the procedure of [Ser04], including the size
requirement.

Takingm = Q(< log %), with probability at least — /4, every
term in the target having probability at leagRct will have at least
one of them examples satisfying it. Suppose this event happens. In
particular, this meansrror(max; k;) < ¢/2c. Note that

L(f) P(fio(x) # fii(z))

2P(max; k;j(x) # f(x)) +

P((max; kj)io(z) # (max; kj)i,1(z))
e/c+ Z P((K})io(z) # (Kj)in(z))

<

A

€/c+ ij(k;).

Thus, by a union bound, with probability — /2, any variable
1 ¢ Sy hasl;i(f) < e/c+ mr, and any variablé € Sy appears

in a term in somdc; of size at mostog 32, and therefore also

appears in a corresponding term of this sizefin Suppose this
happens. Letting = 8n andy = ¢/8nm, we have thatany ¢ Sy
hasI;(f) < e/4n, while any: € S; appears in a term of size at
mostlog 256tn°m — ((log t1ee0/9)) 1 particular, this implies
|Sy| = O(tlog 2181/%)) "and S, satisfies the requirements of
the method of [Ser04].

Thus, running the procedure from [Ser04] with confidence pa-
rameters /4, a union bound implies the total probability of success-
fully producing ane-good classifier is at leadt — 6. The above
process of constructingy is clearly polynomial-time. Then, if
t = 29W1en) the procedure of [Ser04] runs in time polynomial
in n, log(1/4), and|S|©Ueet/9)10e(1/<) "which is polynomial in
n andlog(1/6) (though not necessarily ). [

E(zs,-) to errore®/t, and return the resulting estimate of the hy-
pothesisnax; k(z;, -). This points out that one advantage of learn-
ing with boolean-valued queries is that it allows us to convert re-
sults that hold for monotone DNF into results that hold for general
DNF, due to the monotone landmark DNFs that compose to form
the target function.

4. LEARNING DNF UNDER GENERAL DIS
TRIBUTIONS: POSITIVE RESULTS

Our methods are described below, split based on the type of query
they use (boolean vs numerical). We will see that the method for
boolean queries (called the “neighborhood method” below) is ef-
fective for anyparsimoniousDNF: a target DNF for which, on
the given data set, removing any term from the target DNF would
change the label of some example in the data. Note that ordinarily
one can assume without loss of generality that a DNF target is parsi-
monious, but that is not the case with pairwise queries. The method
based on numerical-valued queries (called the “common profiles
approach” below) will turn out to be effective under conditions on
the target DNF that implgommon profilesthat is, if we partition
the data into equivalence classes based on equality of the set of all
terms they satisfy in the target DNF, then each equivalence class
haspoly(n) examples in it; for instance, this is the case as long
as we are guaranteed there are at mgstlg(n) number of such
equivalence classes (independent of the number of data points).

4.1 Methods
4.1.1 The Neighborhood Method

We refer to the following simple procedure as the “neighbor-
hood method”. Taken = poly(n, 1/¢,log(1/§)) samples. First,
among the positive examples, query all pairs (with the boolean-
valued query) to construct a graph, in which examples are adjacent
if they satisfy a term in common. For each positive example, con-
struct a minimal conjunction consistent with that example and all of
its neighbors (i.e., the consistent conjunction having largest number
of literals in it). Next, discard any of these conjunctions that make
mistakes on any negative examples. Then sequentially remove any
conjunctionc; such that some other remaining conjunctigrsub-
sumes it (contains a subset of the variables). Form a DNF from the
remaining conjunctions. Produce this resultant DNF as the output
hypothesis.

LEMMA 4.1. Suppose the target DNF has= poly(n) terms.
For an appropriate {-dependent) polynomial sample size the
neighborhood method will, with probability at lealst- ¢, produce
an e-accurate DNF if, for each terrff; in the target DNF having
a probability of satisfaction at least/2t, there is at least @ =
1/poly(n,1/¢) probability that a random example satisfies term
T; and no other term (we call such an example a “nice seed” for

).

ProOOF Under these conditions we have that

m = O((1/p)log(t/d) + (t/€) log(1/€d))
samples suffice to guarantee ed¢lwith probability of satisfaction

One interesting observation is that the above is a general reduc-at leaste/2¢ has at least one nice seed, with probability at least

tion. In particular, given any method for learning monotone DNF
under the uniform distribution in time poly(1/e¢,log(1/6§)) from

1-4/2.
In the second phase, we remove any conjunction inconsistent

random labeled data, we have a method for learning general DNFwith the negative examples. The conjunctions guarnateed by the

under the uniform distribution in time poly(1/¢,log(1/d)) us-
ing boolean-valued queries: simply samplét/¢) random exam-
plesz;, and for each learn the monotone (with respectoDNF

above argument survive this pruning due to their minimality, and
the fact that they are learned from a set of examples that actually
are consistent with some term in the target DNF (due to the nice



seed). The final pruning step, which removes any redundancies in

the set of conjunctions, leaves at mosbnjunctions.

The terms that do not have nice seeds compose atdyipsbtal
probability mass, anah is large enough so that with probability
at leastl — §/4, at most a3¢/4-fraction of the data satisfy these
terms. Thus, since the result of the neighborhood method is a DNF
formula with at mostt terms, which correctly labels & — 3¢/4
fraction of them examples, the standard PAC bounds imply that
with probability at least — §/4, the resulting DNF has error rate
at moste. A union bound over the above events implies this holds
with probability at least — §. [

4.1.2 The Common Profile Approach

In the case of numerical queries, we have some additional flexi-
bility in designing a method. In this context, we refer to the follow-
ing procedure as the “common profiles approach”.

Consider a sample ofi = poly(n,1/¢,log(1/§)) random la-
beled examples, and for each pair of positive examplas we
request the numbek (z, y) of terms they satisfy in common; we
additionally requesk (z, z) for each positive example. For each
positive exampler, we identify the sefS of examplesy such that
the numerical value of (z, y) is equalK (x, z). So these points
satisfy at least all the terms satisfies. For each such sgt we
learn a minimal conjunction consistent with these examples. Then
for each of these conjunctions, if it is a specialization of some other
one of the conjunctions, we discard it. Then we form our hypothesis
DNF with the remaining conjunctions as the terms.

For any exampler, relative to a particular target DNF, we refer
to the “profile” of x as the set of ternmis; in the target DNF satisfied
by z.

LEMMA 4.2. If the target DNF has at mogt = poly(n) possi-
ble profiles, then the common profile approach, with an appropriate
(p-dependent) sample size, will with probability at leastl — ¢,
produce a DNF having error rate at most

PROOF. Note that this procedure produces a DNF that correctly
labels the entire data set, sinBgz,y) = K(z,z) impliesz and
y have the same profiles, so that in particular theSéas some
term in common to all the examples. If there are onlyddy (n)
number of possible profiles, then the above will only produce at
most as many distinct terms in its hypothesis DNF, so that a suffi-
ciently largepoly(n)-sized data set will be sufficient to guarantee
good generalization error. Specificalty, = O((pn/e) log(1/€d))
examples are enough to guarantee with probability at [east,
any DNF consistent with the data having at mesérms will have
error rate at most, so this is sufficient for the common profile ap-
proach. [

4.2 Positive Results

THEOREM 4.3. If it happens that the target DNF is parsimo-
nious (no redundant terms) for some rand@{¢n/¢) log(1/¢) +
(1/€)log(1/9))-sized data set (for any distribution), then we can
efficiently produce a DNF consistent with it having at mosrms
using boolean-valued queries.

PrRooOFE Parsimonious, in this case, means that we cannot re-

COROLLARY 4.4. We can properly learn any 2-term DNF with
boolean-valued queries.

ProoOF TakeO((n/e€)log(1/e) 4+ (1/€)log(1/6)) random la-
beled examples and make the boolean query for all pairs of positive
examples. First, find a minimal conjunction consistent with all of
the positive examples; if this conjunction does not misclassify any
negative examples, return it. By classic PAC bounds, a conjunc-
tion consistent with this many random labeled examples will, with
probabiliy at least — §, have error rate at most Otherwise, if this
conjunction misclassifies some negatives, then we are assured the
target DNF is parsimonious for this data set, and thus Theorem 4.3
guarantees we can efficiently identifgdaerm DNF consistent with
it using the boolean-valued queries. Again, the classic PAC bounds
imply the sample size is large enough to, with probability at least
1 — 4, guarantee that any consisténterm DNF has error rate at
moste. [

Corollary 4.4 gives a concrete result where using this type of
query overturns a known hardness result for supervised learning.

COROLLARY 4.5. With numerical-valued queries, we can prop-
erly learn any DNF having)(log(n)) relevant variables, under
arbitrary distributions.

PROOF These targets hayly (n) possible profiles, so the com-
mon profiles approach will be successfull

COROLLARY 4.6. If the target DNF has only)(log(n)) terms,
then we can efficiently properly learn from random data under any
distribution using numerical-valued queries.

PROOF There are onlyoly(n) number of possible profiles, so
the “common profiles” approach will work.[]

The above result is interesting particularly because proper learning
(even for 2-term DNF) is known to be hard from labeled data alone.

COROLLARY 4.7. If the target DNF hag = poly(n) terms,
and is such that any example can satisfy at ni@&t) terms, then
we can efficiently properly learn from random data using numerical-
valued queries.

PROOF There are at mosfoly(¢) = poly(n) possible profiles,
so the “common profiles” approach will work.[]

COROLLARY 4.8. If the DNF is such that any example can sat-
isfy at mostl term (a so-called “disjoint” DNF), then we can ef-
ficiently properly learn from random data using boolean-valued
queries.

PROOF. A numerical query whose value can be at mbist just
a boolean query anyway.[]

In particular, Decision Trees can be thought of as a DNF where
each example satisfies at magerm.

5. MORE POWERFUL QUERIES

If we can ask about k-tuples of examples (do they all jointly sat-

move any terms without changing some labels. But this means that
every term has some example that satisfies only that term (i.e., a
nice seed). So as described in the proof of Lemma 4.1 above, the  Theorewm 5.1. If we can use query sets of arbitrary sizes (in-

“neighborhood method,” produces a DNF with terms for the neigh- stead of just 2 points), then under any distribution we can efficiently

borhoods of each of thesglnice seeds, which in the parsimoniouspropeny learn DNF using boolean-valued queries from random
case, covers all of the positive example§.] data.

isfy a term in common?), we have the following result:



PROOF. We take any set of examples and ask the oracle the num-[BFJ"94]
ber of terms all examples in the set have in common. Let S be the
query set. The idea is to greedily add the examples to S while keep-
ing some terms in common.
Algorithm:
0. Input : dataseD

1. Initialize S to be an empty set [Jac94]

2. Dof

3. Dof

4. Tmax < 0

5. For each example in the dataseD

6. addz to the setS [Kea89]

7. query the combined sét and letr = Oracle(S),
Tmax < MaxX{Tmax, I'}

8. If r = 0, removex from S, and otherwise leave it i [KLV94]
and remover from D

9. } Until(’l"maz = 0) [KSO].]

10. Learn a “most-specific” conjunction frofhand add that term

to the hypothesis DNF
11. ResefS to empty set
12. }Until (| D] = 0) [Man94]
Each time we add a term to the DNF, the exampleS$ watisfy [MOS04]

some term in the target DNF, because we only add each example
if by adding it S still has at least one term in common. So the
"most-specific" conjunction consistent with (i.e., the one with
most literals in it, still labeling all of positive) will not misclassify

any negative point as positive. Since whenever we add a new term,
there were no additional examplesiinthat could have satisfied a
term in common with the examples B after adding the term we
have removed fronD all examples that satisfy the terhas in
common. Therefore, the number of terms in our learnt DNF is at
most the number of termg in the true DNF. If the total number

of examples is> nT (and sayI’ is poly(n)), it will get us a DNF

that has at most T terms and correctly labelely(n) > nT sized [Ser04]
dataset. Since the training dataset size is much larger than the size

of the classifier, by the Occam bound, the learnt DNF will have
small generalization error.[]
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A. QUERYINGWITH POINTSOF OUR OWN
CONSTRUCTION

THEOREM A.1. If we can construct our own feature vectors in

addition to getting random data, then under any distribution we can

7. REFERENCES
[Ang88] D. Angluin. Queries and Concept Learnimgachine
Learning 2(4):319-D342, 1988.

efficiently properly learn DNF using boolean-valued queries.

PROOF Suppose we can adaptively construct our own exam-
ples. Suppose the target DNF HEs= poly(n) terms. Oraclet,



2') gives the number of terms thatandz’ have in common. For
anyz, letz_; be x but with the ith bit flipped. Let be the negative
of x.

Below is an algorithm. Move(z, ') movesz’ away fromzx
by one bit, while trying to maintain at least one common term.
LearnTerm(x) returns a term in the target function.

0. Move(z, =)

1. 2~z

2. Fori=1,2,...,nstx; =x}

3. If (Oracleg, =’') < Oraclef, z’_;))
4, 2" —

5. Returnz”

0. LearnTerm(x)

1. Replicate x to get’

2.  While (Oraclet, Move(z, z')) ! = 0))

3. z' — Move(r, =)

4. Letl «— {i:Oracle(z,z" ;) =0}

5. Returnz; (i.e. a conjunction with the literals indexed by
either positive or negative so thasatisfies it)

. LearnDNF .

Initialize all-negative DNF

TakeM = poly(n) > nT random example§
For eachx € S R

If Oracle,z) > 0 (positive example) and(z) = negative
Add term LearnTerm() to A

Returnk (a DNF with at most” terms, consistent with all/
examples)

L A

When we reach:’ such that we can't flip any more bits (not al-
ready flipped) without making it so they don't satisfy any terms in
common anymore, then the bits these two have in common must
form a term in the target DNF, so LearnTerh&hould still find a
term in the target DNF. [J



