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In our previous comprehensive survey [41], we have categorized the disparate is-
sues in distance metric learning. Within each of the four categories, we have summa-
rized existing work, disclosed their essential connections, strengths and weaknesses.
The first category is supervised distance metric learning, which contains supervised
global distance metric learning, local adaptive supervised distance metric learning,
Neighborhood Component Analysis (NCA) [13], and Relevant Components Analy-
sis (RCA) [1]. The second category is unsupervised distancemetric learning, cov-
ering linear (Principal Component Analysis (PCA) [14], Multidimensional Scaling
(MDS) [5]) and nonlinear embedding methods (ISOMAP [35], Locally Linear Em-
bedding (LLE) [30], and Laplacian Eigenamp (LE) [2]). We further unify these al-
gorithms into a common framework based on the embedding computation. The third
category, which is maximum margin based distance metric learning approaches, in-
cludes the large margin nearest neighbor based distance metric learning methods and
semi-definite Programming (SDP) methods to solve the kernelized margin maximiza-
tion problem. And the fourth category discussing kernel methods towards learning
distance metrics, covers kernel alignment [28] and its SDP approaches [26], and also
the extension work of learning the idealized kernel [25].

In addition to this survey [41], here we provide a complete and updated summariza-
tion of the related work on both unsupervised distance metric learning and supervised
distance metric learning, including the most recent work inthe area of distance metric
learning.

Many unsupervised distance metric learning algorithms areessentially for the pur-
pose of unsupervised dimensionality reduction, i.e. learning a low-dimensional embed-
ding of the original feature space. This group of methods canbe divided into nonlinear
and linear methods. The well known algorithms for nonlinearunsupervised dimension-
ality reduction are ISOMAP [35], Locally Linear Embedding (LLE) [30], and Lapla-
cian Eigenamp (LE) [2]. ISOMAP seeks the subspace that best preserves the geodesic
distances between any two data points, while LLE and LE focuson the preservation of
local neighbor structure. An improved and stable version ofLLE is achieved in [45], by
introducing multiple linearly independent local weight vectors for each neighborhood.
Among the linear methods, Principal Component Analysis (PCA) [14] finds the sub-
space that best preserves the variance of the data; Multidimensional Scaling (MDS) [5]
finds the low-rank projection that best preserves the inter-point distance given by the
pairwise distance matrix; Independent components analysis (ICA) [4] seeks a linear
transformation to coordinates in which the data are maximally statistically indepen-
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dent. Locality Preserving Projections (LPP) [17] and Neighborhood Preserving Em-
bedding (NPE) [18] are the linear approximation to LE and LLE, respectively. Note
that although LPP and NPE are developed originally for the unsupervised dimensional-
ity reduction, they can also be extend to the setup of supervised distance metric learn-
ing where the label information is used to construct the weight matrix. In addition,
several efforts have been made to achieve good generalization properties of manifold
learning, i.e., the robustness to noise and nonlinear transformation. Locally Smooth
Manifold Learning (LSML)[22] is able to recover a manifold from noisy data using
weighted local linear smoothing, and effectively handle outliers. As an extension of
LSML,[9] learns a representation of non-isometric and nonlinear manifold, which en-
ables the manipulation of new-coming data points, under theconcept of “generalization
beyond the training data”. In the effort of discovering low dimensional representations
through constructing a semidefinite programs (SDPs) with low rank solutions, differ-
ing from previous approaches, [39] conducts matrix factorization that respects local
distance constraints, and yields smaller SDPs than previous work and achieves good
approximations to the original problem.

In this study, we limited ourselves to supervised distance metric learning, i.e. learn-
ing a distance metric from side information that is typically presented in a set of pair-
wise constraints. The optimal distance metric is found by keeping objects in equiva-
lence constraints close, and at the same time, objects in inequivalence constraints well
separated. In the past, a number of algorithms have been developed for supervised
distance metric learning. [40] formulates distance metriclearning into a constrained
convex programming problem by minimizing the distance between the data points in
the same classes under the constraint that the data points from different classes are well
separated. This algorithm is extended to the nonlinear casein [25] by the introduction
of kernels. Local linear discriminative analysis [16] estimates a local distance metric
using the local linear discriminant analysis. Relevant Components Analysis (RCA) [1]
learns a global linear transformation from the equivalenceconstraints. The learned
linear transformation can be used directly to compute distance between any two ex-
amples. Discriminative Component Analysis (DCA) and Kernel DCA [20] improve
RCA by exploring negative constraints and aiming to capturenonlinear relationships
using contextual information. Essentially, Relevant Components Analysis (RCA) [1]
and Discriminative Component Analysis (DCA) [20] can be viewed as extensions of
Linear Discriminant Analysis (LDA) [10] by exploiting the must-link constraints and
cannot-link constraints. Local Fisher Discriminant Analysis (LFDA) [34] extends LDA
by assigning greater weights to those connecting examples that are nearby rather than
distant. [23] provides an efficient incremental learning method for LDA, by adopting
sufficient spanning set approximation for each update step.[33] extends the support
vector machine to distance metric learning by encoding the pairwise constraints into
a set of linear inequalities. Neighborhood Component Analysis (NCA) [13] learns a
distance metric by extending the nearest neighbor classifier. The maximum-margin
nearest neighbor (LMNN) classifier [38] extends NCA througha maximum margin
framework. [12] learns a Mahalanobis distance that tries tocollapse examples in the
same class to a single point, and in the meantime keep examples from different classes
far away. Local Distance Metric (LDM) algorithm [43] addresses multimodal data
distributions in distance metric learning by optimizing local compactness and local
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separability in a probabilistic framework. [42] estimatesa posterior distribution for
the estimated distance metric through a full bayesian treatment; and actively selects
unlabeled example pairs for labeling with the greatest uncertainty in relative distance.
[32] learns a distance metric from relative comparison through SVM-like convex opti-
mization. Locally Linear Metric Adaptation (LLMA) [15] presents a semi-supervised
clustering approach that performs nonlinear transformation globally but linear trans-
formation locally. [8] presents an LDA based approach as an efficient eigen problem.
Previous study [38] has shown the LMNN algorithm delivered the state-of-the-art per-
formance among all the distance metric learning algorithms.

A group of most recent work focuses on examining and exploring the relationship
among metric learning, dimensionality reduction, kernel learning, and semi-supservied
learning. [36] unifies the goals of dimensionality reduction and metric learning, in
order to reduce the risks of overfitting. [21] studies the connections between statistical
translation, heat kernels on manifolds and graphs, and expected distances, specifically
for high dimensional structured data. [27] studies the connection between distance
metric learning in a transductive framework and nonlinear dimensionality reduction.

Several information-theoretic approaches towards distance learning have been re-
cently proposed, in addition to traditional distance metric learning that assumes a
quadratic form for the distance between any two vectors. [7]expresses the learning a
Mahalanobis distance function as a Bregman optimization problem, by minimizing the
differential relative entropy (the LogDet divergence) between two multivariate Gaus-
sians subject to linear constraints on the distance function. [19] defines the similarity as
the gain in coding length by shifting from pairwise independent encoding to joint en-
coding. It has been shown in [19] that, in a certain large sample limit, coding similarity
converges to the Mahalanobis metric estimated by the Relevant Components Analysis
algorithm (RCA) [1].

There are some interesting pattern recognition literatureon distance metric learn-
ing [24, 44, 6, 37, 29, 31]. [24] essentially is a metric learning method that imple-
ments a nonlinear mapping function by optimizing the parameters under a separability
criterion. [44] propose a parametric learning method that finds a regression mapping
of the input space, through which between-class dissimilarity is always larger than
within-class dissimilarity. In [44], parameters are learnt iteratively by the majorization
algorithm.

In the context of visual recognition, the recent development of distance learning
includes the following. [11] learns a local perceptual distance function for each training
example by combining elementary distances in the patch level. [3] measures similarity
between two signals by composition, i.e. how easy it is to compose one signal from
few large contiguous chunks of another.

As a summary to the above related work, Table and Table illustrate the key related
approaches to unsupervised distance metric learning and supervised distance metric
learning, respectively. Both Table and Table specify a few general properties for
distance metric learning (for instance, linear or nonlinear, global or local) and describe
the learning strategies.
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Methods Properties

Principal Component Analysis global structure preserved, linear,
(PCA) [14] best preserve the variance of the data

Multidimensional Scaling global structure preserved, linear,
(MDS) [5] best preserve inter-point distance in low-rank

Independent Components global structure preserved, linear,
Analysis (ICA) [4] transformed data are maximally statistically independent

Locality Preserving Projections local structure preserved, linear,
(LPP) [17] approximation to LE

Neighborhood Preserving local structure preserved, linear,
Embedding (NPE) [18] approximation to LLE

ISOMAP [35] global structure preserved, nonlinear,
glopreserve the geodesic distances

Locally Linear Embedding local structure preserved, nonlinear,
(LLE) [30] preserve local neighbor structure

Laplacian Eigenamp local structure preserved, nonlinear,
(LE) [2] preserve local neighbor structure

Locally Smooth Manifold local structure preserved, nonlinear,
Learning (LSML) [22] manifold recovery by weighted local linear smoothing

Table 1: Unsupervised distance metric learning methods. This group of methods es-
sentially learn a low-dimensional embedding of the original feature space; and can be
categorized along two dimensions: preserving glocal structure vs. preserving local
structure; and linear vs. nonlinear
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Methods Properties

Local Linear Discriminative local, linear, estimate a local distance metric using
Analysis [16] the local linear discriminant analysis

Global Distance Metric global, linear,
Learning [40] constrained convex programming problem

Relevant Components global, linear, learn a global linear transformation
Analysis (RCA) [1] from equivalence constraints

Discriminative Component global, linear,
Analysis (DCA) and improve RCA by exploring negative constraints
Kernel DCA [20]
Local Fisher Discriminant local, linear, extend LDA by assigning greater
Analysis (LFDA) [34] weights to closer connecting examples

Neighborhood Component local, linear, extend the nearest neighbor
Analysis (NCA) [13] classifier to metric learning

Maximum-Margin Nearest local, linear, extend NCA through a
Neighbor (LMNN) Classifier [38] maximum margin framework

Localized Distance local, linear, optimize local compactness and local
Metric Learning (LDM) [43] separability in a probabilistic framework

Baysian Active Distance global, linear, select example pairs with the greatest uncertainty,
Metric Learning [42] posterior estimation with a full Bayesian treatment

Table 2: Supervised distance metric learning methods

8


