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In our previous comprehensive survey [41], we have categdrihe disparate is-
sues in distance metric learning. Within each of the fouegaties, we have summa-
rized existing work, disclosed their essential conneg@trengths and weaknesses.
The first category is supervised distance metric learnirtychvcontains supervised
global distance metric learning, local adaptive supedridistance metric learning,
Neighborhood Component Analysis (NCA) [13], and Relevantmponents Analy-
sis (RCA) [1]. The second category is unsupervised distanegic learning, cov-
ering linear (Principal Component Analysis (PCA) [14], Mdimensional Scaling
(MDS) [5]) and nonlinear embedding methods (ISOMAP [35]cally Linear Em-
bedding (LLE) [30], and Laplacian Eigenamp (LE) [2]). Wether unify these al-
gorithms into a common framework based on the embedding atatipn. The third
category, which is maximum margin based distance metricieg approaches, in-
cludes the large margin nearest neighbor based distanci heetrning methods and
semi-definite Programming (SDP) methods to solve the kizegtimargin maximiza-
tion problem. And the fourth category discussing kernelhmods towards learning
distance metrics, covers kernel alignment [28] and its Spt@aches [26], and also
the extension work of learning the idealized kernel [25].

In addition to this survey [41], here we provide a complet# apdated summariza-
tion of the related work on both unsupervised distance m&tarning and supervised
distance metric learning, including the most recent worthmarea of distance metric
learning.

Many unsupervised distance metric learning algorithmsasentially for the pur-
pose of unsupervised dimensionality reduction, i.e. lie@ra low-dimensional embed-
ding of the original feature space. This group of methodsaeadivided into nonlinear
and linear methods. The well known algorithms for nonlinesupervised dimension-
ality reduction are ISOMAP [35], Locally Linear Embeddind_€) [30], and Lapla-
cian Eigenamp (LE) [2]. ISOMAP seeks the subspace that iesepves the geodesic
distances between any two data points, while LLE and LE focuthe preservation of
local neighbor structure. An improved and stable versidrldf is achieved in [45], by
introducing multiple linearly independent local weightt@rs for each neighborhood.
Among the linear methods, Principal Component AnalysisAP[24] finds the sub-
space that best preserves the variance of the data; Muétidiional Scaling (MDS) [5]
finds the low-rank projection that best preserves the iptént distance given by the
pairwise distance matrix; Independent components arsa(iGiA) [4] seeks a linear
transformation to coordinates in which the data are madynstistically indepen-



dent. Locality Preserving Projections (LPP) [17] and Néigthood Preserving Em-
bedding (NPE) [18] are the linear approximation to LE and Lk&spectively. Note
that although LPP and NPE are developed originally for treupervised dimensional-
ity reduction, they can also be extend to the setup of supedviistance metric learn-
ing where the label information is used to construct the Weigatrix. In addition,
several efforts have been made to achieve good generalizatbperties of manifold
learning, i.e., the robustness to noise and nonlinearfwemation. Locally Smooth
Manifold Learning (LSML)[22] is able to recover a manifoltbim noisy data using
weighted local linear smoothing, and effectively handldliets. As an extension of
LSML,[9] learns a representation of non-isometric and im@dr manifold, which en-
ables the manipulation of new-coming data points, undecdineept of “generalization
beyond the training data”. In the effort of discovering loiménsional representations
through constructing a semidefinite programs (SDPs) withrnk solutions, differ-
ing from previous approaches, [39] conducts matrix fazdion that respects local
distance constraints, and yields smaller SDPs than prewiauk and achieves good
approximations to the original problem.

In this study, we limited ourselves to supervised distane&imlearning, i.e. learn-
ing a distance metric from side information that is typiggltesented in a set of pair-
wise constraints. The optimal distance metric is found byplkeg objects in equiva-
lence constraints close, and at the same time, objectsduivedence constraints well
separated. In the past, a number of algorithms have beerogedefor supervised
distance metric learning. [40] formulates distance még&&rning into a constrained
convex programming problem by minimizing the distance leetwthe data points in
the same classes under the constraint that the data paintsiffferent classes are well
separated. This algorithm is extended to the nonlinearicgd@&] by the introduction
of kernels. Local linear discriminative analysis [16] esties a local distance metric
using the local linear discriminant analysis. Relevant @onents Analysis (RCA) [1]
learns a global linear transformation from the equivalecmestraints. The learned
linear transformation can be used directly to compute déesebetween any two ex-
amples. Discriminative Component Analysis (DCA) and KéDEA [20] improve
RCA by exploring negative constraints and aiming to caphaelinear relationships
using contextual information. Essentially, Relevant Comgnts Analysis (RCA) [1]
and Discriminative Component Analysis (DCA) [20] can beweel as extensions of
Linear Discriminant Analysis (LDA) [10] by exploiting the ust-link constraints and
cannot-link constraints. Local Fisher Discriminant Areag/(LFDA) [34] extends LDA
by assigning greater weights to those connecting examipdeste nearby rather than
distant. [23] provides an efficient incremental learningmoe for LDA, by adopting
sufficient spanning set approximation for each update qt&}). extends the support
vector machine to distance metric learning by encoding #ieymise constraints into
a set of linear inequalities. Neighborhood Component AsialyNCA) [13] learns a
distance metric by extending the nearest neighbor classifibe maximum-margin
nearest neighbor (LMNN) classifier [38] extends NCA throwgmaximum margin
framework. [12] learns a Mahalanobis distance that triesoltapse examples in the
same class to a single point, and in the meantime keep exaffinpie different classes
far away. Local Distance Metric (LDM) algorithm [43] addses multimodal data
distributions in distance metric learning by optimizingdb compactness and local



separability in a probabilistic framework. [42] estimategposterior distribution for
the estimated distance metric through a full bayesianrreat; and actively selects
unlabeled example pairs for labeling with the greatest tau#y in relative distance.
[32] learns a distance metric from relative comparisonulgioSVM-like convex opti-
mization. Locally Linear Metric Adaptation (LLMA) [15] psents a semi-supervised
clustering approach that performs nonlinear transformnagiobally but linear trans-
formation locally. [8] presents an LDA based approach asffcient eigen problem.
Previous study [38] has shown the LMNN algorithm delivertes state-of-the-art per-
formance among all the distance metric learning algorithms

A group of most recent work focuses on examining and expipttie relationship
among metric learning, dimensionality reduction, kereathing, and semi-supservied
learning. [36] unifies the goals of dimensionality reduestend metric learning, in
order to reduce the risks of overfitting. [21] studies theremstions between statistical
translation, heat kernels on manifolds and graphs, andcgagelistances, specifically
for high dimensional structured data. [27] studies the eation between distance
metric learning in a transductive framework and nonlingarathsionality reduction.

Several information-theoretic approaches towards distéarning have been re-
cently proposed, in addition to traditional distance neetearning that assumes a
quadratic form for the distance between any two vectorseXpresses the learning a
Mahalanobis distance function as a Bregman optimizatioblpm, by minimizing the
differential relative entropy (the LogDet divergence)aeén two multivariate Gaus-
sians subject to linear constraints on the distance fumcfi®] defines the similarity as
the gain in coding length by shifting from pairwise indepentiencoding to joint en-
coding. It has been shown in [19] that, in a certain large dafipit, coding similarity
converges to the Mahalanobis metric estimated by the Rei&@mponents Analysis
algorithm (RCA) [1].

There are some interesting pattern recognition literaburédistance metric learn-
ing [24, 44, 6, 37, 29, 31]. [24] essentially is a metric leaghmethod that imple-
ments a nonlinear mapping function by optimizing the patanseunder a separability
criterion. [44] propose a parametric learning method thratdia regression mapping
of the input space, through which between-class dissiityilés always larger than
within-class dissimilarity. In [44], parameters are |dateratively by the majorization
algorithm.

In the context of visual recognition, the recent developnhwérdistance learning
includes the following. [11] learns a local perceptualaliste function for each training
example by combining elementary distances in the patct. |[E8leneasures similarity
between two signals by composition, i.e. how easy it is to pose one signal from
few large contiguous chunks of another.

As a summary to the above related work, Table and Table ridltesthe key related
approaches to unsupervised distance metric learning guehdsed distance metric
learning, respectively. Both Table and Table specify a femegal properties for
distance metric learning (for instance, linear or nonlingkobal or local) and describe
the learning strategies.
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Methods

Properties

Principal Component Analysis
(PCA) [14]

global structure preserved, linear,
best preserve the variance of the data

Multidimensional Scaling
(MDS) [5]

global structure preserved, linear,
best preserve inter-point distance in low-rank

Independent Components
Analysis (ICA) [4]

global structure preserved, linear,
transformed data are maximally statistically independ

Locality Preserving Projection
(LPP) [17]

5 local structure preserved, linear,
approximation to LE

Neighborhood Preserving
Embedding (NPE) [18]

local structure preserved, linear,
approximationto LLE

I[SOMAP [35]

global structure preserved, nonlinear,
glopreserve the geodesic distances

Locally Linear Embedding
(LLE) [30]

local structure preserved, nonlinear,
preserve local neighbor structure

Laplacian Eigenamp
(LB)[2]

local structure preserved, nonlinear,
preserve local neighbor structure

Locally Smooth Manifold
Learning (LSML) [22]

local structure preserved, nonlinear,
manifold recovery by weighted local linear smoothing

Table 1: Unsupervised distance metric learning methods$s gitoup of methods es-
sentially learn a low-dimensional embedding of the origfeature space; and can be
categorized along two dimensions: preserving glocal sirecvs. preserving local

structure; and linear vs. nonline

ar

ent



Methods

Properties

Local Linear Discriminative
Analysis [16]

local, linear, estimate a local distance metric using
the local linear discriminant analysis

Global Distance Metric
Learning [40]

global, linear,
constrained convex programming problem

Relevant Components
Analysis (RCA) [1]

global, linear, learn a global linear transformation
from equivalence constraints

Discriminative Component
Analysis (DCA) and
Kernel DCA [20]

global, linear,
improve RCA by exploring negative constraints

Local Fisher Discriminant
Analysis (LFDA) [34]

local, linear, extend LDA by assigning greater
weights to closer connecting examples

Neighborhood Component
Analysis (NCA) [13]

local, linear, extend the nearest neighbor
classifier to metric learning

Maximum-Margin Nearest

Neighbor (LMNN) Classifier [38]

local, linear, extend NCA through a
maximum margin framework

Localized Distance
Metric Learning (LDM) [43]

local, linear, optimize local compactness and local
separability in a probabilistic framework

Baysian Active Distance
Metric Learning [42]

global, linear, select example pairs with the greatest daicgy,
posterior estimation with a full Bayesian treatment

Table 2: Supervised distance metric learning methods




