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Abstract

We study the problem of active learning with
convex loss functions. We prove that even un-
der bounded noise constraints, the minimax rates
for proper active learning are often no better than
passive learning.

1 Introduction

It is now well established, both empirically and theoreti-
cally, that active learning can provide substantial improve-
ments in the convergence rates achievable for classification
compared to passive learning for the0-1 loss function (Das-
gupta, 2005; Dasgupta, Hsu, and Monteleoni, 2007; Bal-
can, Beygelzimer, and Langford, 2006; Hanneke, 2007b,a;
Balcan, Hanneke, and Wortman, 2008; Hanneke, 2009b;
Tong and Koller, 2001; Beygelzimer, Dasgupta, and Lang-
ford, 2009). However, although many positive results on
rates of convergence with noisy labels are known, there
remains a substantial computational problem in extend-
ing these results to practical scenarios, since even passive
learning can be computationally difficult in many cases
when there is label noise.

In passive learning, one of the primary tricks for avoiding
this difficulty is to optimize a surrogate convex loss func-
tion, which can be performed computationally efficiently.
The hope is that the optimal solution to the surrogate risk
will also have small risk under0-1 loss for many cases
(though clearly not always). This is the primary tool that
has given rise to such effective passive learning methods as
SVM and AdaBoost.

This naturally raises the question of whether this same trick
can be employed to create computationally efficient active
learning algorithms based on actively optimizing the risk
for a convex loss function. The key question is whether
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active learning will still provide the convergence rate im-
provements over passive learning, when the loss function
is convex rather than discrete. In this work, we explore this
issue. Specifically, we find negative results for proper ac-
tive learning algorithms under a wide variety of convex loss
functions, showing that their minimax rates are often no
better than the rates achievable for passive learning, even
underbounded noise conditions, which are known to give
favorable results for the0-1 loss (Hanneke, 2009b; Castro
and Nowak, 2006).

The intuition behind these results is that distant points with
even small amounts of label noise can dramatically affect
the optimal function. This means that the learning algo-
rithm cannot ignore distant points, so that its queries will
never become localized to a small region of the instance
space (e.g., around the optimal decision boundary). Since
the queries never localize, the algorithm cannot improve
over passive. Note that this contrasts with0-1 loss, where
distant noisy points are no worse than close noisy points,
and an algorithm’s queries will often rapidly focus to a
region near the optimal function’s decision boundary. To
make matters worse, the amount to which those distant
noisy points affect the optimal function actually depends on
themagnitude of their noise, so that the learning algorithm
essentially needs to estimate the magnitude of the noise in
those distant noisy regions in order to properly optimize
the risk. Since estimating the magnitude of noise is a task
that active learning essentially cannot help with, we are left
with a problem active learning is not well suited to solving.
Again, this contrasts with the0-1 loss, where an algorithm
can safely ignore any point once it has determined thesign
of the optimal function’s value on that point.

Though negative in nature, we stress that these results
should be interpretted carefully. In particular, althoughwe
show that active learning is not generally more effective
than passive at reducing the risk for convex losses, this does
not necessarily mean that we cannot design effective ac-
tive learning algorithms for optimizing the0-1 loss based
on optimizing a convexsurrogate loss. Indeed, the “hard”
distributions studied below, which give rise to the negative
results, are precisely designed so that the risk based on the
convex loss isnot a good approximation to the risk based
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on the0-1 loss. This leaves open the question of whether
there are efficient active learning algorithms based on opti-
mizing convex surrogate losses, which achieve good rates
for the 0-1 loss when the surrogate risk provides a good
approximation. Furthermore, our results regard the asymp-
totic dependence on the number of labels, and we leave
open the question of significant constant factor improve-
ments (see (Beygelzimer, Dasgupta, and Langford, 2009)
for some ideas in this direction).

The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce basic notation and formalize the learn-
ing model. This is followed in Section 3 with a brief sur-
vey of convex loss functions and known results for passive
learning. In Section 4, we prove our first result, a general
negative result for strictly convex losses. In Section 5, we
prove a similar negative result for a more general class of
convex losses, but only for a particular function class (cor-
responding to threshold classifiers under0-1 loss). We con-
clude in Section 6 with some interpretation and discussion
of the results.

2 Definitions and Notation

We consider the problem of optimizing the expectation of a
loss function, for a random variable(X,Y ) taking values in
X ×{−1,+1}. Specifically, we suppose there is a distribu-
tion D onX × {−1,+1}, a loss function ℓ : R → [0,∞),
and afunction class F of functionsf : X → R. In this
paper, our results will be most interesting forparametric
classesF (though our general lower bounds will hold re-
gardless), and we will implicitly assumeF is such through-
out the paper. We will primarily be discussingconvex and
nonincreasing loss functions: that is, nonincreasingℓ such
that, ∀x, y ∈ R and α ∈ [0, 1], ℓ(αx + (1 − α)y) ≤
αℓ(x) + (1 − α)ℓ(y). For any functionf : X → R, we
define therisk R(f) = E(X,Y )∼D[ℓ(f(X)Y )], theoptimal
risk R∗ = inff∈F R(f), and we will refer to the quantity
R(f) − R∗ as theexcess risk of f .

In the learning problem, there is a sequence of random vari-
ables(X1, Y1), (X2, Y2), . . . independent and distributed
according toD. In active learning, the algorithm is able
to observe the unlabeled sequenceX1,X2, . . ., then selects
an indexi1, receives the labelYi1 , then after observing this
label, selects another indexi2, and receives the labelYi2 ,
etc. Thus, it is only able to observe theYi values that it
explicitly requests. Suppose that, after each label request,
the algorithm produces a function̂fn ∈ F (wheren is
the number of label requests); note that we are consider-
ing proper learning algorithms only. We will be interested
in the behavior ofE[R(f̂n)−R∗] as a function ofn, where
the expectation is over the(Xi, Yi) sequence and any inter-
nal randomness of the algorithm.

The distributions onY |X we study below are generally re-
ferred to asη-bounded-noise distributions; they satisfy the

property that∃f ∈ F such that,∀x ∈ X ,

P(Y 6= sign(f(x))|X = x) ≤ η < 1/2.

These conditions are considered favorable toward learning,
and in particular active learning can often achieve expo-
nential rates of convergence for the0-1 loss function under
bounded noise distributions (Hanneke, 2009a; Castro and
Nowak, 2006).

2.1 A Sampler of Loss Functions

The primary loss function studied in this classification set-
ting is the0-1 loss:ℓ(x) = 1[x ≤ 0]. Thus,ℓ(yf(x)) cor-
responds to testing whethersign(f(x)) 6= y, and the risk
becomesP(X,Y )∼D(f(X) 6= Y ). However, as this loss is
not convex, and thus often computationally difficult to op-
timize, we are often interested in convexrelaxations of the
0-1 loss, often referred to as asurrogate loss function.

As we are interested in losses that are surrogates for0-1
loss, in this work, we will restrict ourselves to loss func-
tions that are nonincreasing, as is the case for those losses
mentioned below; these are often associated with margin-
based learning algorithms, since the loss increases as the
function value of an incorrect prediction increases, and de-
creases as the function value of a correct prediction in-
creases.

Perhaps the most well-known such surrogate loss is the
hinge loss: ℓ(x) = max{1−x, 0}. In some sense, this rep-
resents the “least convex” loss function that upper bounds
the0-1 loss. It is used extensively in margin-based learn-
ing algorithms. Other common convex loss functions are
the exponential loss ℓ(x) = e−x, used in AdaBoost, and
the logistic loss,ℓ(x) = log(1 + e−x), used in logistic re-
gression.

3 Known Results for Passive Learning

In this context, apassive learning algorithm is simply any
active learning algorithm that requests the labels in the or-
der they appear in the original sequence: that is,i1 = 1,
i2 = 2, and generallyin = n.

Convex loss functions have been studied in some depth
in the passive learning literature. In particular, (Bartlett,
Jordan, and Mcauliffe, 2005) provide several nice results
under low noise conditions. Most relevant to our present
discussion, they show that for strictly convex losses (with
at least a certain “modulus of convexity”) and a few ad-
ditional constraints onF andℓ, under bounded noise dis-
tributions, there are passive learning algorithms such that
E[R(f̂n) − R∗] ≤ c/n, for some constantc depending on
ℓ, F , andη. Thus, these results will serve as our baseline
for comparison in active learning.
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3.1 A Lower Bound for Estimating a Bernoulli Mean

The following well-known result will play a key role in all
of our proofs. It lower bounds the minimax risk for esti-
mating the mean of a Bernoulli random variable.

Lemma 1. For 0 ≤ a < b ≤ 1, there exists a constant
ca,b > 0 such that, for any n ∈ N, for any estimator p̂n :
{0, 1}n → [0, 1], there exists a value p ∈ [a, b] such that,
if B1, B2, . . . , Bn are independent Bernoulli(p) random
variables, then

E[(p̂n(B1, B2, . . . , Bn) − p)2] > ca,b/n.

4 General Results for Strictly Convex Losses

Let ℓ be twice differentiable, with∀x ∈ R, ℓ(x) >
0, ℓ′(x) < 0, ℓ′′(x) > 0, and with all three of these ev-
erywhere continuous. Furthermore, letF be a function
class with the property that, for somex0 ∈ X , [1/2, 1] ⊆
{f(x0) : f ∈ F}.

Theorem 1. For any ℓ and F satisfying the above con-
ditions, there exists a distribution on X , a noise bound
η ∈ [0, 1/2), and a constant c > 0 such that, for any
active learning algorithm f̂n and any n ∈ N, there is an
η-bounded-noise label distribution for which

E[R(f̂n) − R∗] > c/n.

Note that, since passive learning can achieve a ratec′/n for
certain strictly convex losses under the stated conditions
(e.g., (Bartlett, Jordan, and Mcauliffe, 2005)), this repre-
sents a negative result.

Proof of Theorem 1. The proof is by reduction from esti-
mating the mean of a Bernoulli random variable.

Define the distribution onX so thatP({x0}) = 1. In
particular, all of the active learning algorithm’s queries
must be atx0. Then parametrize the label distribution by
ν = P(Y = −1|X = x0) ∈ [0, 1]. In particular, the equa-
tion νℓ′(−y) = (1− ν)ℓ′(y), derived by setting the deriva-
tive of the conditional risk givenx0 equal to zero, defines
a continuous bijectionφ : (0, 1) → R betweenν values
in (0, 1) andy values inR. Thus, there exists a range ofν
values[ν1, ν1/2] = φ−1([1/2, 1]), for which the risk min-
imizer f∗ hasf∗(x0) ∈ [1/2, 1]. Furthermore,0 < ν1 <
ν1/2 < 1/2, and we can takeη = ν1/2. Now, given any

active learning algorithm̂fn, define an estimator̂νn for ν
as follows. If f̂n(x0) ∈ [1/2, 1], definef̃n(x0) = f̂n(x0);
otherwise, definẽfn(x0) = argminy∈{1/2,1} |y − f̂n(x0)|.

Then definêνn = φ−1(f̃n(x0)). Finally, letν∗ ∈ [ν1, ν1/2]
be the value for whichE[(ν̂n − ν∗)2] > cν1,ν1/2

/n, guar-
anteed to exist by Lemma 1, and define

P(Y = −1|X = x0) = ν∗.

Lettingf∗ be such thatf∗(x0) = φ(ν∗), we have

R(f̂n) − R(f∗) ≥ R(f̃n) − R(f∗).

Noting that compactness of[−1, 1] impliesℓ′′ is uniformly
continuous on[−1, 1], let m = infy∈[−1,1] ℓ

′′(y) > 0 and
M = supy∈[−1,1] ℓ

′′(y) < ∞; in particular, this also means

ℓ is strongly convex on[−1, 1]. Let ỹ = f̃n(x0) andy∗ =
f∗(x0). Then

R(f̃n) − R(f∗)

= (1 − ν∗)(ℓ(ỹ) − ℓ(y∗)) + ν∗(ℓ(−ỹ) − ℓ(−y∗))

≥ ((1 − ν∗)ℓ′(y∗) − ν∗ℓ′(−y∗))(ỹ − y∗)

+ (1 − ν∗)
m

2
(ỹ − y∗)2

= (1 − ν∗)
m

2
(ỹ − y∗)2.

Also, for anya < b, there is somec ∈ [a, b] such that
ℓ′(b) − ℓ′(a) = ℓ′′(c)(b − a) ≤ M(b − a). Therefore,

|ν̂n − ν∗| · |ℓ′(1/2)|

≤ |ν̂n − ν∗||ℓ′(−ỹ) + ℓ′(ỹ)|

= ν∗|ℓ′(−y∗) − ℓ′(−ỹ)| + (1 − ν∗)|ℓ′(ỹ) − ℓ′(y∗)|

≤ ν∗M |ỹ − y∗| + (1 − ν∗)M |ỹ − y∗| = M |ỹ − y∗|.

Thus,

E[R(f̂n) − R(f∗)]

≥ (1 − ν∗)
m

2
E[(ỹ − y∗)2]

≥ (1 − ν∗)
mℓ′(1/2)2

2M2
E[(ν̂n − ν∗)2]

> (1 − ν∗)
mℓ′(1/2)2

2M2
cν1,ν2

/n.

It is straightforward to relax the stated conditions consider-
ably; for instance, we can allow a few discontinuities inℓ′,
or require the existence of any arbitrary interval[y0, y1] of
f(x0) values (rather than the arbitrary[1/2, 1]). Also, it is
easy to generalize this result to essentially any reasonable
distribution for most natural function classes. Note that the
distribution presently described is essentially trivial to learn
under the0-1 loss (with exponential rates).

5 Constant-Slope One-Dimensional Linear
Functions with General Convex Losses

The results of the previous section were proven for strictly
convex losses. However, the intuitive idea seems to hold
for any convex loss function, and the results of this section,
though in some ways less general in that they are proven
for only one particular function classF , are also in some
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ways more general in that they hold for loss functions that
might not be strictly convex, nor be everywhere differen-
tiable, nor be strictly positive nor strictly decreasing. The
example also serves to highlight the intuition that distant
noisy points are typically the cause of poor performance
for active learning with convex losses.

Specifically, in this section we will consider any non-
increasing continuous convexℓ that satisfiesℓ(0) > 0,
ℓ is differentiable at0 and hasℓ′(0) < 0, is differen-
tiable at all but at most a finite number of points, and
has limx→∞ ℓ(x) = 0. Furthermore, we will denote by
z > 0 some point for whichℓ is differentiable atz and
ℓ′(z) > ℓ′(0)/2.

We will also restrict ourselves to the specific class of func-
tions

F = {ft(x) = x − t : t ∈ R},

which in some sense corresponds to the “thresholds” func-
tion class commonly studied for the0-1 loss (and known to
allow exponential rates for bounded noise in that case).

Theorem 2. Suppose F and ℓ are as described above.
There exists a distribution on X and a constant c > 0 such
that, for any active learning algorithm f̂n and any n ∈ N,
there is a 1/4-bounded-noise label distribution for which

E[R(f̂n) − R∗] > c/n.

Proof of Theorem 2. Define the marginal distribution onR
by a density that is1/(4z) in [0, 4z], and0 elsewhere. For
the conditional distribution ofY givenX, parameterize it
by a valueν ∈ [0, 1/4], and letP(Y = +1|X = x) = 1 for
x ≤ 2z, andP(Y = +1|X = x) = 1 − ν for x > 2z. For
each such distribution based on a givenν, let Rν(·) rep-
resent the corresponding risk functional, andR∗

ν the cor-
responding optimal risk. For eachft ∈ F , let νt denote
the value ofν for which Rν(ft) = R∗

ν . Also, there ex-
ists some range[a, b] with 0 ≤ a < b ≤ 1/4 in which
argmint Rν(ft) ∈ (0, z) for all ν ∈ [a, b]. For a given
learning algorithmf̂n, defineν̂n = νt such thatf̂n = ft.

Now construct a reduction from the Bernoulli mean esti-
mation problem, by constructing the conditionalY |X dis-
tribution as follows. Given ap ∈ [0, 1/4], and a se-
quenceB1, B2, . . . , Bn of independentBernoulli(p) ran-
dom variables, on theith time the active learning algorithm
requests a label in(2z,∞), return−1 if Bi = 1 and oth-
erwise return+1. For any query in(−∞, 2z], simply re-
turn +1. This corresponds to takingν = p in the condi-
tional distribution. Now letν∗ be the value ofp for which
E[(ν̂n − ν∗)2] > c0,1/4/n when we useν∗ in the condi-
tional of Y given X; such aν∗ is guaranteed to exist by
Lemma 1.

Next, we lower bound the excess risk as a function of this
distance. Note that∂Rν∗ (ft∗ )

∂t∗ = 0, wheret∗ is such that

R(ft∗) = R∗. Now for t ∈ (0, z) for which ℓ is differen-
tiable at2z − t and4z − t,

∂Rν∗(ft)

∂t
∝ −[ν∗ℓ(t − 4z) + ν∗ℓ(2z − t)

+ (1 − ν∗)ℓ(4z − t) − (ℓ(−t) + ν∗ℓ(t − 2z))]

= −[ν∗[(ℓ(t − 4z) − ℓ(t∗ − 4z))

+ (ℓ(2z − t) − ℓ(2z − t∗)) − (ℓ(4z − t) − ℓ(4z − t∗))

− (ℓ(t − 2z) − ℓ(t∗ − 2z))]

+ [(ℓ(4z − t) − ℓ(4z − t∗)) − (ℓ(−t) − ℓ(−t∗))]].

To simplify things, supposet − t∗ ≤ 0; the other case is
proven analogously. By basic convexity inequalities, the
magnitude of the above is at least as big as

ν∗(t − t∗)[ℓ′(t∗ − 4z) − ℓ′(t∗ − 2z)

+ ℓ′(4z − t∗) − ℓ′(2z − t∗)]

+ (t − t∗) [−ℓ′(4z − t∗) + ℓ′(−t∗)] . (1)

Since

ℓ′(t∗ − 2z)− ℓ′(t∗ − 4z) > ℓ′(4z − t∗)− ℓ′(2z − t∗) > 0,

we have

ℓ′(t∗ − 4z)− ℓ′(t∗ − 2z) + ℓ′(4z − t∗)− ℓ′(2z − t∗) < 0.

Also,

ℓ′(4z − t∗) − ℓ′(−t∗) > −ℓ′(0)/2 = |ℓ′(0)|/2.

Thus,
∣

∣

∣

∣

∂Rν∗(ft)

∂t

∣

∣

∣

∣

≥ c′|ℓ′(0)| · |t − t∗|,

for some constantc′.

A similar argument shows this remains true fort− t∗ > 0.
Specifically, we replace (1) by an analogous bound, using
the reverse inequalityℓ(y) − ℓ(x) ≤ ℓ′(y)(y − x) (which
effectively keeps the terms that involvet, rather than those
involving t∗ as in (1)).

Thus,

Rν∗(f̂n) − R∗ ≥

∣

∣

∣

∣

∣

∫ t̂n−t∗

0

∂Rν∗(fx+t∗)

∂x
dx

∣

∣

∣

∣

∣

≥ c′′|t̂n − t∗|2.

Additionally noting that

0 =
∂Rν∗(ft)

∂t
|t=t∗ −

∂Rν̂n
(ft)

∂t
|t=t̂n

≥ c3[(t̂n − t∗)−

(ν̂n−ν∗)(ℓ(2z−t̂n)−ℓ(4z−t̂n)+ℓ(t̂n−4z)−ℓ(t̂n−2z))],

and similarly for∂Rν̂n (ft)
∂t |t=t̂n

− ∂Rν∗ (ft)
∂t |t=t∗ , we gener-

ally have|t̂n − t∗| ≥ c4|ν̂n − ν∗|. Thus,
E[R(f̂n) − R∗] ≥ c5E[(ν̂n − ν∗)2] > c6/n.



         325

Steve Hanneke, Liu Yang

6 Discussion

It should clearly be possible to relax many of these con-
ditions on the losses and generalize to other types of dis-
tributions. However, the point here is simply to highlight
the fact that we generally should not expect improvements
for convex losses due to the dragging effect of distant noisy
points on the solution.

That said, as mentioned earlier, the negative results proven
above should be interpretted carefully. In particular, al-
though we have shown that active learning is not generally
more effective at reducing risk based on convex losses, this
does not necessarily mean that an active learning algorithm
designed to optimize a convex loss will not achieve im-
proved rates for the0-1 loss. Nonetheless, it seems that
great care would be needed in designing active learning
algorithms for convex surrogate losses; in particular, un-
like existing algorithms that directly optimize the0-1 loss
(Balcan, Beygelzimer, and Langford, 2006; Dasgupta, Hsu,
and Monteleoni, 2007; Beygelzimer, Dasgupta, and Lang-
ford, 2009), an algorithm based on a convex surrogate loss
should not necessarily be designed to optimize itsworst-
case performance under thesurrogate loss. For such an
algorithm, even when the noise distribution is such that the
surrogate approximates the0-1 loss, the merepossibility of
distant noisy points may prevent the algorithm from focus-
ing its queries, thus preventing improvements over passive
learning; that is, algorithms that optimize for the worst-case
scenario for the surrogate will tend tosearch for noisy re-
gions. Rather, to be an effective algorithm for the0-1 loss,
we should optimize the algorithm’s performance for only
the noise distributions under which the solutions to the sur-
rogate loss are also good for the0-1 loss. Since typically
these are the only scenarios we are interested in anyway, the
use of surrogate losses may yet be a viable possibility for
designing efficient and effective active learning algorithms.
The details of designing and analyzing such methods are
left for future work.
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