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Abstract active learning will still provide the convergence rate im-

provements over passive learning, when the loss function
is convex rather than discrete. In this work, we explore this
issue. Specifically, we find negative results for proper ac-
tive learning algorithms under a wide variety of convex loss
functions, showing that their minimax rates are often no
better than the rates achievable for passive learning, even
underbounded noise conditions, which are known to give
favorable results for the-1 loss (Hanneke, 2009b; Castro
and Nowak, 2006).

We study the problem of active learning with
convex loss functions. We prove that even un-
der bounded noise constraints, the minimax rates
for proper active learning are often no better than
passive learning.

1 Introduction o _ _ _ _ _
The intuition behind these results is that distant points wi

even small amounts of label noise can dramatically affect
the optimal function. This means that the learning algo-

ments in the convergence rates achievable for classifit:atiorlthm cannot ignore .d|stant points, so that its queries wil
never become localized to a small region of the instance

compared to passive learning for the loss function (Das- space (e.g., around the optimal decision boundary). Since

gupta, 2005; Dasgupta, Hsu, and Monteleoni, 2007; Bal- . . . 4
can, Beygelzimer, and Langford, 2006 Hanneke, 2007b athe gueries never localize, the algorithm cannot improve
Baléan Hanneke, and Wortmar% 200,8' Hannek7e 2Oog;bcbver passive. Note that this contrasts with loss, where

Tong and Koller, 2001; Beygelzimer, Dasgupta, and Lang-d'séant nollsy %?m,ts are no qulseftthan Clqu nfmsy ptomts,
ford, 2009). However, although many positive results on2Nd an aigorthms queries will often rapidly focus to a

rates of convergence with noisy labels are known theréegion hear the optimal function's decision boundary. To

remains a substantial computational problem in extend[nake matters worse, the amount to which those distant

ing these results to practical scenarios, since even mssi\po'sy points affect the optimal function actually deperxis o

learning can be computationally difficult in many casesthem,?n'HtUdeotjthf'r notl_se,tsot:]hat the I_er;mng; ?Agonthm.
when there is label noise. essentially needs to estimate the magnitude of the noise in

those distant noisy regions in order to properly optimize
In passive learning, one of the primary tricks for avoiding the risk. Since estimating the magnitude of noise is a task
this difficulty is to optimize a surrogate convex loss func- that active learning essentially cannot help with, we afte le
tion, which can be performed computationally efficiently. with a problem active learning is not well suited to solving.
The hope is that the optimal solution to the surrogate riskAgain, this contrasts with the-1 loss, where an algorithm
will also have small risk unde-1 loss for many cases can safely ignore any point once it has determinedsitye
(though clearly not always). This is the primary tool that of the optimal function’s value on that point.
has given rise to such effective passive learning methods
SVM and AdaBoost.

It is now well established, both empirically and theoreti-
cally, that active learning can provide substantial improv

though negative in nature, we stress that these results
should be interpretted carefully. In particular, althowgdh

This naturally raises the question of whether this samk tric show that active learning is not generally more effective
can be employed to create computationally efficient activehan passive at reducing the risk for convex losses, this doe
learning algorithms based on actively optimizing the risknot necessarily mean that we cannot design effective ac-
for a convex loss function. The key question is whethertive learning algorithms for optimizing the-1 loss based
- on optimizing a convesurrogate loss. Indeed, the “hard”
Appearing in Proceedings of thg"" International Conference distributions studied below, which give rise to the negativ
on Artificial Intelligence and Statistics (AISTATS) 2010, Chia La- resylts, are precisely designed so that the risk based on the

guna Resort, Sardinia, Italy. Volume 9 of IMLR: W&CP 9. Copy- : ; : :
right 2010 by the authors. convex loss isiot a good approximation to the risk based
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on the0-1 loss. This leaves open the question of whetherproperty thaBlf € F such thatyz € X,

there are efficient active learning algorithms based or opti

mizing convex surrogate losses, which achieve good rates P(Y # sign(f(z))|X =x) <n <1/2.

for the 0-1 losswhen the surrogate risk provides a good

approximation. Furthermore, our results regard the asymp-These conditions are considered favorable toward learning
totic dependence on the number of labels, and we leavand in particular active learning can often achieve expo-
open the question of significant constant factor improvenential rates of convergence for the loss function under

ments (see (Beygelzimer, Dasgupta, and Langford, 2009)ounded noise distributions (Hanneke, 2009a; Castro and
for some ideas in this direction). Nowak, 2006).

The remainder of the paper is organized as follows. In Sec-

tion 2, we introduce basic notation and formalize the learn2.1 A Sampler of Loss Functions

ing model. This is followed in Section 3 with a brief sur-

vey of convex loss functions and known results for passivelhe primary loss function studied in this classification set
learning. In Section 4, we prove our first result, a generalting is the0-1 loss: ¢(z) = 1[x < 0]. Thus,/(yf(z)) cor-
negative result for strictly convex losses. In Section 5, weresponds to testing whetheign(f(z)) # y, and the risk
prove a similar negative result for a more general class obecomes® x y).p(f(X) # Y). However, as this loss is
convex losses, but only for a particular function class-(cor not convex, and thus often computationally difficult to op-
responding to threshold classifiers unélerloss). We con-  timize, we are often interested in conveskaxations of the
clude in Section 6 with some interpretation and discussior)-1 loss, often referred to assarrogate loss function.

of the results. As we are interested in losses that are surrogates-for

loss, in this work, we will restrict ourselves to loss func-
2 Definitions and Notation tions that are nonincreasing, as is the case for those losses
mentioned below; these are often associated with margin-
We consider the problem of optimizing the expectation of abased learning algorithms, since the loss increases as the
loss function, for arandom variab(&, Y') taking values in  function value of an incorrect prediction increases, and de
X x{-1,+1}. Specifically, we suppose there is a distribu- creases as the function value of a correct prediction in-
tionDonX x {—1,+1}, alossfunction ¢ : R — [0, o0), creases.
and afunction class F of functionsf : X — R. In this
paper, our results will be most interesting fuarametric
classesF (though our general lower bounds will hold re-
gardless), and we will implicitly assun#€is such through-
out the paper. We will primarily be discussiegnvex and
nonincreasing loss functions: that is, nonincreasiAguch

Perhaps the most well-known such surrogate loss is the
hingeloss: ¢(x) = max{1 —x,0}. In some sense, this rep-
resents the “least convex” loss function that upper bounds
the 0-1 loss. It is used extensively in margin-based learn-
ing algorithms. Other common convex loss functions are
that, Va,y € R anda € [0,1], {(az + (1 — a)y) <  Neeponential loss (z) = ¢, used in AdaBoost, and
ab(z) + (1 — a)l(y). For any functionf : X — R, we (helogisticloss{(x) = log(1 + ™), used in logistic re-
define therisk R(f) = E(x y)~p[(f(X)Y)], theoptimal ~ 9r€ssion-

risk R* = infscx R(f), and we will refer to the quantity

R(f) — R as theexcessrisk of f. 3 Known Results for Passive Learning
In the learning problem, there is a sequence of random vari-
ables(X1,Y1), (Xs,Y2),... independent and distributed In this context, gassive learning algorithm is simply any

according toD. In active learning, the algorithm is able active learning algorithm that requests the labels in the or
to observe the unlabeled sequetce Xo, . . ., then selects  der they appear in the original sequence: thatis= 1,
an indexi, , receives the labéf;, , then after observing this i, = 2, and generally,, = n.

label, selects another indéy, and receives the labét,, Convex loss functions have been studied in some depth

etc. Thus, it is only able to observe the values that it . . . . .
- in the passive learning literature. In particular, (Bdttle
explicitly requests. Suppose that, after each label reéques . . .
. e : Jordan, and Mcauliffe, 2005) provide several nice results
the algorithm produces a functiofy, € F (wheren is

the number of label requests): note that we are consideHnder low noise conditions. Most relevant to our present

) : . . . discussion, they show that for strictly convex losses (with
ing proper learning algorithms only. We will be interested at least a certain “modulus of convexity”) and a few ad-
in the behavior oE[R(f,,) — R*] as a function of:, where Y

o : ditional constraints o and/, under bounded noise dis-
the expectation is over theX;, Y;) sequence and any inter- _ .~ . . . .
. tributions, there are passive learning algorithms such tha
nal randomness of the algorithm.

E[R(f,) — R*] < ¢/n, for some constant depending on
The distributions oY’ | X we study below are generally re- ¢, 7, andn. Thus, these results will serve as our baseline
ferred to ag)-bounded-noise distributions; they satisfy the for comparison in active learning.
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3.1 A Lower Bound for Estimating a Bernoulli Mean

The following well-known result will play a key role in all

of our proofs. It lower bounds the minimax risk for esti-

mating the mean of a Bernoulli random variable.

Lemma l. For 0 < a < b < 1, there exists a constant
¢q,b > 0 such that, for any n € N, for any estimator p,, :
{0,1}™ — [0, 1], there exists a value p € [a, b] such that,
if By, Bs,..., B, areindependent Bernoulli(p) random
variables, then

E[(pn(Bi, Bz, ..., Bn) — p)*] > cap/n.

4 General Results for Strictly Convex Losses

Let ¢ be twice differentiable, withvz € R ¢(z) >
0,¢(x) < 0,¢"(x) > 0, and with all three of these ev-
erywhere continuous. Furthermore, [Etbe a function
class with the property that, for somg € X, [1/2,1] C
{f(zo) : f € F}.

Theorem 1. For any ¢ and F satisfying the above con-
ditions, there exists a distribution on X, a noise bound

n € [0,1/2), and a constant ¢ > 0 such that, for any
active learning algorithm f,, and any n € N, there is an
n-bounded-noise label distribution for which

E[R(f,) — R*] > ¢/n.

Note that, since passive learning can achieve acf#tefor

certain strictly convex losses under the stated conditions

(e.g., (Bartlett, Jordan, and Mcauliffe, 2005)), this eepr
sents a negative result.

Proof of Theorem 1. The proof is by reduction from esti-
mating the mean of a Bernoulli random variable.

Define the distribution oY’ so thatP({zp}) = 1. In

particular, all of the active learning algorithm’s queries
must be atry. Then parametrize the label distribution by

v=PY = —-1|X = x0) € [0,1]. In particular, the equa-
tion vt/ (—y) = (1 —v)¢ (y), derived by setting the deriva-
tive of the conditional risk giver, equal to zero, defines
a continuous bijectioy : (0,1) — R betweenv values
in (0,1) andy values inR. Thus, there exists a range of
values(vy, vy 2] = ¢~*([1/2,1]), for which the risk min-
imizer f* hasf*(xzo) € [1/2,1]. Furthermorep) < v; <
v172 < 1/2, and we can takg = v;,,. Now, given any
active learning algorithnfn, define an estimatay,, for v
as follows. If f,, (o) € [1/2,1], definef, (zo) = fn(xo);
otherwise, defing, (o) = argmin, ¢ (; /51y [y — fu (o).
Then defing, = ¢~ (f,.(z0)). Finally, letv* € [v1, v o]
be the value for whictE[(2,, — v*)*] > ¢, ., ,/n, guar-
anteed to exist by Lemma 1, and define

P(Y = —1|X = z¢) = v".

Letting f* be such thaf* (z() = ¢(v*), we have

R(fa) = R(f*) > R(fn) — R(f").

Noting that compactness 6f 1, 1] implies¢” is uniformly
continuous orj—1, 1], letm = inf,¢;_; 1) ¢"(y) > 0 and
M = sup,¢(_111¢"(y) < oo;in particular, this also means
¢ is strongly convex ofi—1,1]. Letj = f,(zo) andy* =
f*(z0). Then

R(f.) = R(f")
= (1= ")) — ") + v (L=5) = ((=y")
> (1= )W) = vy )@~ y)

=) FE -y

= (1= Sy

Also, for anya < b, there is some: € [a,b] such that
() —(a)=10"(c)(b—a) < M(b— a). Therefore,

|0 — 7| - |€/(1/2)]

< |om = v |10(=g) + £/ (3)]

=V (=y") = (=) + (L= v)(G) = (y")]

SVIMlg =yt |+ (1= v )My -y = M|y —y*|.
Thus,

E[R(f.) — R(f")]
> (1= ") SE[G -y
ml'(1/2)?

> (1) "W gy, oy
> (1— y*)%cyhyz/n.

O

It is straightforward to relax the stated conditions coasid
ably; for instance, we can allow a few discontinuitieg’in

or require the existence of any arbitrary interfeal, y1] of
f(xo) values (rather than the arbitralry/2, 1]). Also, itis
easy to generalize this result to essentially any reasenabl
distribution for most natural function classes. Note that t
distribution presently described is essentially trivialearn
under the)-1 loss (with exponential rates).

5 Constant-Slope One-Dimensional Linear
Functions with General Convex Losses

The results of the previous section were proven for strictly

convex losses. However, the intuitive idea seems to hold
for any convex loss function, and the results of this section

though in some ways less general in that they are proven
for only one particular function clasg, are also in some
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ways more general in that they hold for loss functions thatR(f;-) = R*. Now fort¢ € (0, z) for which ¢ is differen-
might not be strictly convex, nor be everywhere differen-tiable at2z — t and4z — ¢,

tiable, nor be strictly positive nor strictly decreasinghel OR,- (f:)

example also serves to highlight the intuition that distant —=—~""> oc —[v*((t — 42) + v*0(22 — 1)

noisy points are typically the cause of poor performance . .
for active learning with convex losses. + (L= v7)l(4z — ) = (6(=t) + L[t — 22))]

n ) ) , ) . = —[V*[(U(t — 4z) — L(t" — 42))
Specifically, in this section we will consider any non- . .
increasing continuous convekthat satisfies/(0) > 0, + (022 —t) = (22 = 17)) — (£{4z — 1) — L4z — 17))
¢ is differentiable at0 and hast’(0) < 0, is differen- — (0t — 22) = £(t" — 22))]
tiable at all but at most a finite number of points, and + [(/(4z —t) — £(4z — t*)) — (£(—t) — £(—t%))]].
haslim,_.., £(z) = 0. Furthermore, we will denote by o . .
» > 0 some point for whicl¥ is differentiable at: and 10 Simplify things, suppose — ¢* < 0; the other case is

0(2) > £(0)/2. proven analogously. By basic convexity inequalities, the

_ _ - magnitude of the above is at least as big as
We will also restrict ourselves to the specific class of func-

tions vt — )t — 4z) — 0 (t*F — 22)
F={fi(zx)=ax—t:teR}, + 04z —t) = 0'(22 — )]
+(t—t*) [l (4z —t*) + 0 (—t")]. (1)

which in some sense corresponds to the “thresholds” func-
tion class commonly studied for tlel loss (and knownto  Since
allow exponential rates for bounded noise in that case). . , o .
. Ot =22) =" —4z) > (42 —t") = 0'(22 — t*) > 0,
Theorem 2. Suppose F and ¢ are as described above.
There exists a distribution on X and a constant ¢ > O such ~ We have
that, for any active learning algorithm f,, and any n € N, . . / « / «
thereis a 1/4-bounded-noise label distribution for which ~ © (¢~ 42) — £ = 22) + £(dz = #7) = £(22 = #7) <0.
R Also,
E[R(fn) = B'] > ¢/n. U(dz — 1) — 0(—t*) > —£(0)/2 = |£(0)] /2.
Proof of Theorem 2. Define the marginal distribution dd ~ Thus,
by a density that i3 /(4z) in [0,4z], and0 elsewhere. For It
the conditional distribution o¥” given X, parameterize it ot
by avaluer € [0,1/4], and letP(Y = +1|X =) = 1for  for some constant.
x <2z, andP(Y = +1|X =z) =1—vforz > 2z For
each such distribution based on a givenlet R, (-) rep-
resent the corresponding risk functional, aRfl the cor-
responding optimal risk. For each € F, let v, denote
the value ofv for which R, (f;) = R}. Also, there ex-
ists some rangéu, b] with 0 < a < b < 1/4 in which
argmin, R, (f;) € (0,z) for all v € [a,b]. For a given Thus,
learning algorithmfn, definer,, = v, such thatfn = fi.

8RV* (ft) Z C/w/(oﬂ . ‘t _ t*|,

A similar argument shows this remains true for t* > 0.
Specifically, we replace (1) by an analogous bound, using
the reverse inequality(y) — ¢(x) < ¢'(y)(y — =) (which
effectively keeps the terms that involverather than those
involving t* as in (1)).

tn—t*
; X " IRy (fagrr)
Now construct a reduction from the Bernoulli mean esti- Ry« (fn) - R" 2 /0 T‘“
mation problem, by constructing the conditionalX dis- o i
tribution as follows. Given @ € [0,1/4], and a se- > [t — "]

quenceBy, Bs, ..., B, of independenBernoulli(p) ran-
dom variables, on thé" time the active learning algorithm Additionally noting that
requests a label if2z, o), return—1 if B; = 1 and oth-

erwise returrt-1. For any query in—oco, 2z], simply re- 0= ORy-(f1) [ ORy, (1) li—i
turn +1. This corresponds to taking = p in the condi- ot ot o
tional distribution. Now let/* be the value op for which > c3f(th — %)=

E[(0n — v*)?] > co,1/4/n when we use/™ in the condi- (5, %) (0(22—1,,)— (42 —F ) +0(En —42)—L(E,—22))],
tional of Y given X; such av* is guaranteed to exist by

Lemma 1. and similarly for?fealliel| . R we gener-
Next, we lower bound the excess risk as a function of thilly havelt, — [ > C4|fﬂ - ”*|-2Th“5’
distance. Note tha?f=Ue) — o wheret* is such that E[R(fn) — R*] > sE[(0n — v*)?] > c6/n. O

ot*
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6 Discussion bounds for active learning. Mhe 44th Annual Allerton
Conference on Communication, Control and Computing.

It should clearly be possible to relax many of these con-Dasgupta, S. (2005). Coarse sample complexity bounds
ditions on the losses and generalize to other types of dis- for active learning. InPAdvances in Neural Information
tributions. However, the point here is simply to highlight  processing Systems 18.

the fact that we generally should not expect improvement%asguIota S., Hsu, D., and Monteleoni, C. (2007). A
for convex losses due to the dragging effect of distant noisy general’ ag.ﬁostic’act.i've learning aIgori,thrr;. Techﬁical

points on the solution. Report CS2007-0898, Department of Computer Science
That said, as mentioned earlier, the negative results prove and Engineering, University of California, San Diego.
above should be interpretted carefully. In particular, al-j5nneke. S. (2007a). A bound on the label complexity

though we have shown that active learning is not generally ¢ agnostic active learning. IRroceedings of the 241"
more effective at reducing risk based on convex losses, this | \tarnational Conference on Machine Learni ng.

does not necessarily mean that an active learning algorithm ] ] )

designed to optimize a convex loss will not achieve im-Hanneke, S. (2007b). Teaching dimension and thehcom—
proved rates for the-1 loss. Nonetheless, it seems that Plexity of active learning.  IrProceedings of the 20'

great care would be needed in designing active learning Conference on Learning Theory.

algorithms for convex surrogate losses; in particular, unHanneke, S. (2009a). Adaptive rates of convergence in ac-
like existing algorithms that directly optimize tlel loss tive learning. InProceedings of the 22"¢ Conference on
(Balcan, Beygelzimer, and Langford, 2006; Dasgupta, Hsu, Learning Theory.

and Monteleoni, 2007; Beygelzimer, Dasgupta, and Langianneke, S. (2009b) Theoretical Foundations of Active
ford, 2009), an algorithm based on a convex surrogate 10SS | gorni ng. Ph.D. thesis, Machine Learning Department

should not necessarily be designed to optimizentss- School of Computer Science, Carnegie Mellon Univer-
case performance under thsurrogate loss. For such an sity.

algorithm, even when the noise distribution is such that the )
surrogate approximates thel loss, the mergossibilityof ~ 10Nd, S. and Koller, D. (2001). Support vector machine
distant noisy points may prevent the algorithm from focus- active Iearnmg.Wlth appllcatlons to text classification.
ing its queries, thus preventing improvements over passive Journa of Machine Learning Research, 2.

learning; that is, algorithms that optimize for the worase

scenario for the surrogate will tend $earch for noisy re-

gions. Rather, to be an effective algorithm for thé loss,

we should optimize the algorithm’s performance for only

the noise distributions under which the solutions to the sur

rogate loss are also good for thel loss. Since typically

these are the only scenarios we are interested in anyway, the

use of surrogate losses may yet be a viable possibility for

designing efficient and effective active learning algorith

The details of designing and analyzing such methods are

left for future work.
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