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Notation!

•  Instance space X = R^n !
•  Concept space C of classifiers h: X -> {0,1}!
       - Assume C has VC dimension vc < ∞!

•  Data Distribution D on X   !
•  Unknown target function h*: the true     

labeling function (Realizable case: h* in C) !
•  Assumeρ(h, g)=Px~D[h(x) ≠ g(x)] for any 

classifiers h, g, is a metric on C !
•  Err (h) = Px~D [h(x) ≠ h*(x)]!
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“Active” means Label Request!

•  Label request:                               
have a pool of unlabeled exs, pick any x 
and receive h*(x), repeat!

• Motivation:                                
labeled data is expensive to get!

•  Using label request, can do Active Learning: 
find h has small err(h) !
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Self-Verifying Bayesian Active 
Learning 

Self-verifying !
  (a special type of stopping criterion)!
- Given ε, adaptively decides # of query, 

then halts!
- has the property that E[err] <εwhen halts!
Question: Can you do with E[#query] = o(1/
ε) ? (passive learning need 1/ε labels)!
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Example: Intervals!

- - 

Suppose D is uniform on [0,1] 

0 1
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Example: Intervals!

Suppose h* is empty interval, D is uniform on [0,1]!
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Verification Lower Bound!
In non-Bayesian setting, supposing h* is empty interval.!

Given any classifier h, !
just to verify err(h) < ε,!
Need to verify h* is not an interval of width 2ε.!

Need an example in Ω(1/ε) regions to verify this fact.!

h*      -  -   -  -  -   -  -   -  -   -  -  -   -  -  -   -  -  -   -  -  -   -  -  -   -  -  -   -  -  -   -   -  
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Learning with a prior!

•  Suppose we know a distribution the 
target is sampled from, call it prior!
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Interval Example with prior 
‐ ‐ ‐ ‐ ‐ |+++++++|‐ ‐ ‐ ‐ ‐ ‐  

•  Algorithm: Query random pts till find first +, do 
binary search to find end-pts. Halt when reach a pre-
specified prior-based query budget. Output posterior’s 
Bayes classifier.!

•  Let budget N be high enough so E[err] < ε!
     - N = o(1/ε) sufficient for E[err|w*>0] < ε: if w* > 0, 

even prior-independent analysis needs only         
E[#queries|w*] = O(1/w* + log(1/ε)) = o(1/ε).!

     - N = o(1/ε) sufficient for E[err|w*=0] < ε: if 
P(w*=0)>0, then after some L = O(log(1/ε)) queries, w.p.> 
1-ε, most prob. mass on empty interval, so posterior’s 
Bayes classifier has 0 error rate!
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Can do o(1/eps) for any VC-class!

Theorem: With the prior, can get o(1/ε) QC!
•  There are methods that find a good 

classifier in o(1/eps) queries (though they 
aren’t self-verifying) [BHW08]!

•  Need set a stopping criterion for those alg!
•  The stop criterion we use : budget !
•  Set the budget to be just large enough so 

E[err] < ε.!
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Outline!

Slide 11 



Transfer Learning 
•  Principle: solving a new learning problem is easier 

given that we’ve solved several already ! !
•  How does it help?!
   - New task directly ``related’’ to previous task!
       [e.g., Ben-David & Schuller 03; Evgeniou, Micchelli, & Pontil 2005]!
   - Previous tasks give us useful sub-concepts [e.g., Thrun 96]!
   - Can gather statistical info on the variety of concepts!
        [e.g., Baxter 97; Ando & Zhang 04]!

•  Example: Speech Recognition   !
    - After training a few times, figured out the dialects. !
    - Next time,  just identify the dialect. !
    - Much easier than training a recognizer from scratch!
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         Model of Transfer Learning !
    Motivation: Learners often Not Too Altruistic!
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Task 2 

Layer 1: draw 
task i.i.d. from 
unknown prior!

Layer 2: per 
task, draw data 
i.i.d. from target!

Better Estimate of Prior !!!
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Identifiability of priors from 
joint distribs!

•  Let prior π be any distribution on C!
       - example: (w, b) ~ multivariate normal !
•  Target h*π ~ π!
•  Data X = (X1, X2, …) i.i.d. D indep h*π!
•  Z(π) = ((X1, h*π (X1), (X2, h*π (X2), …).!
•  Let [m] = {1, …, m}.!
•  Denote XI = {Xi}i € I (I : subset of natural numbers)!
•  ZI (π) = {(Xi, h*π (Xi))}i € I  !
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Identifiability of priors by !
VC-dim joint distri.!

•  Threshold:!

     - for two points x1, x2, if x1 < x2, then      !
     Pr(+,+)=Pr(+.), Pr(-,-)=Pr(.-), Pr(+,-)=0, !
     So Pr(-,+)=Pr(.+)-Pr(++) = Pr(.+)-Pr(+.)!
     - for any k > 1 points, can directly to reduce number of labels in the !
     joint prob from k to 1!
     P(-----------(-+)+++++++++++++++++)!
      = P(               (-+)                       )!
      = P(               (.+)                       ) - P(               (++)                       ) !
      = P(               (.+)                       ) - P(               (+.)                       )!
      + P(               (+-)                       ) (unrealized labeling !!)!
      = P(               (.+)                       ) - P(               (+.)                       ) !

Slide 15 

--------------------- 
0 1

++++++++++++++++ 



•  Theorem: Z[VC] (π1) =d Z[VC] (π2) iff π1 = π2.!

    Proof Sketch!
•  Let ρm(h,g) = 1/m Σi=1

m  II(h(Xm) ≠ g(Xm))!
   Then vc < ∞ implies w.p.1 forall h, g € C with h ≠ g !
   limm -> ∞ ρm(h,g) = ρ(h,g) > 0!
•  ρ is a metric on C by assumption, !
   so w.p.1 each h in C labels ∞-seq (X1, X2 …) 

distinctly (h(X1), h(X2), …)!
•  => w.p.1 conditional distribution of the label seq 

Z(π)|X identifies π !
   => distrib of Z(π) identifies π !
      i.e. Z∞ (π1) =d Z∞ (π2) implies π1 = π2!Slide 16 



Iden)fiability of Priors from Joint Distribu)ons 

lower–dim cond distrib 

y’ closer to ỹ 
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Iden)fiability of Priors from Joint Distribu)ons 
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Iden)fiability of Priors from Joint Distribu)ons 
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Transfer Learning Setting!
•  Collection Π of distribs on C. (known)!
•  Target distrib π* € Π. (unknown)!
•  Indep target fns h1*, …, hT* ~ π* (unknown)!
•  Indep i.i.d. D data sets X(t) = (X1

(t), X2
(t), …), t €[T].!

•  Define Z(t) = ((X1
(t), ht*(X1

(t))), (X2
(t), ht*(X2

(t))), …). !
•  Learning alg. “gets” Z(1), then produces ĥ1, then 

“gets” Z(2),  then produces ĥ2, etc. in sequence. !
•  Interested in: values of ρ(ĥt, h*(t)), and the  

number of h*t (Xj
(t)) value alg. needs to access. '   !
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Es)ma)ng the prior 

•  Principle: learning would be easier if know π*!
•  Fact: π* is identifiable by distrib of Z[VC]

(t)!

•  Strategy: Take samples Z[VC]
(i) from past tasks 1, 

…, t-1, use them to estimate distrib of Z[VC]
(i), 

convert that into an estimate π’
t-1 

of π*, !
•  Use π’

t-1 
in a prior-dependent learning alg for 

new task ht* !
•  Assume Π is totally bounded in total variation!
•  Can estimate π* at a bounded rate: !
     || π* - π’

t
||< δt converges to 0 (holds whp)!
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Transfer Learning!
•  Given a prior-dependent learning A(ε, π), with !
   E[# labels accessed] =Λ(ε, π) and producing ĥ !
   with E[ρ(ĥ, h*)]≤ε!
For t = 1,…, T!
     If δt-1 > ε/4, !
       run prior-indep learning on Z[VC/ε]

(t) to get ĥt !

     Else let π’’t = argminπ € B(π’t-1, δt-1)
 Λ(ε/2, π)     

and run A(ε/2, π’’
t
) on Z(t) to get ĥt !

Theorem: Forall t, E[ρ(ĥt, ht*)] ≤ ε, and !
limsupT -> ∞E[#labels accessed]/T ≤Λ(ε/2, π*) + vc.  
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Is this Better than without 
Transfer ? !

•  The question becomes: !
   - How much does knowledge of target distrib π*help?!
•  There are some (constant factor) gains for passive 

learning [e.g. HKS1992]!
•  It really helps in Active learning: !
       - Earlier, we showed can get o(1/ε) for all π!
•  For many C (e.g. linear separators), no prior-indep 

alg has this guarantee.              !
•  Plugging in that method, transfer method 

accesses o(1/ε) labels on avg.  !
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Remarks!

•  Not too many extra labels per task (vc extra)!
•  Subroutine A can be fairly arbitrary 

(supervised, semi-supervised, active, …)!
•  π estimation may be useful for other things 

too!
•  Open problem: calculate the rate of 

convergence !
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