Identifiability of Priors from Bounded Sample Sizes with Applications to Transfer Learning

Liu Yang

Joint work with Steve Hanneke & Jaime Carbonell Carnegie Mellon University

Outline

 Self-Verifying Bayesian Active Learning

(AISTATS 2010)

• Transfer Learning

(COLT 2011 and Machine Learning Journal)

Notation

- Instance space X = Rⁿ
- Concept space C of classifiers h: X -> {0,1}
 Assume C has VC dimension vc < ∞
- Data Distribution D on X
- Unknown target function h*: the true labeling function (Realizable case: h* in C)
- Assume $\rho(h, g)=P_{x^{\sim}D}[h(x) \neq g(x)]$ for any classifiers h, g, is a metric on C
- Err (h) = $P_{x^{\sim}D} [h(x) \neq h^{*}(x)]$

"Active" means Label Request

• Label request:

have a pool of unlabeled exs, pick any x and receive $h^*(x)$, repeat

• Motivation:

labeled data is expensive to get

 Using label request, can do Active Learning: find h has small err(h)

Self-Verifying Bayesian Active Learning

Self-verifying

(a special type of stopping criterion)

- Given ε , adaptively decides # of query, then halts
- has the property that E[err] < ε when halts Question: Can you do with E[#query] = o(1/ ε)? (passive learning need 1/ ε labels)

Example: Intervals

Suppose D is uniform on [0,1]

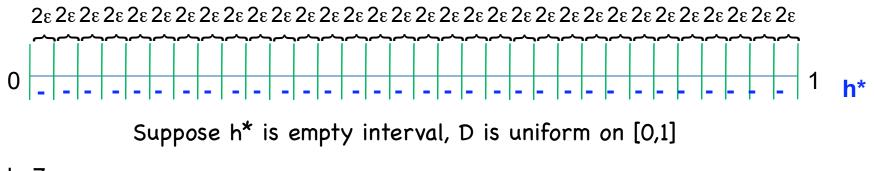
Example: Intervals

Verification Lower Bound

In non-Bayesian setting, supposing h* is empty interval.

Given any classifier h, just to verify err(h) < ϵ , Need to verify h* is not an interval of width 2ϵ .

Need an example in $\Omega(1/\epsilon)$ regions to verify this fact.



Learning with a prior

 Suppose we know a distribution the target is sampled from, call it prior

Interval Example with prior

 Algorithm: Query random pts till find first +, do binary search to find end-pts. Halt when reach a prespecified prior-based query budget. Output posterior's Bayes classifier.

• Let budget N be high enough so E[err] < ε

- N = $o(1/\varepsilon)$ sufficient for E[err|w*>0] < ε : if w* > 0, even prior-independent analysis needs only E[#queries|w*] = $O(1/w^* + \log(1/\varepsilon)) = o(1/\varepsilon)$.

- N = $o(1/\varepsilon)$ sufficient for E[err|w*=0] < ε : if P(w*=0)>0, then after some L = $O(log(1/\varepsilon))$ queries, w.p.> 1- ε , most prob. mass on empty interval, so posterior's Bayes classifier has 0 error rate

Can do o(1/eps) for any VC-class

Theorem: With the prior, can get o(1/ ε) QC

- There are methods that find a good classifier in o(1/eps) queries (though they aren't self-verifying) [BHW08]
- Need set a stopping criterion for those alg
- The stop criterion we use : budget
- Set the budget to be just large enough so $E[err] < \varepsilon$.

Outline

- Self-Verifying Bayesian Active Learning (AISTATS2010)
- Transfer Learning (COLT 2011 and Machine Learning Journal)

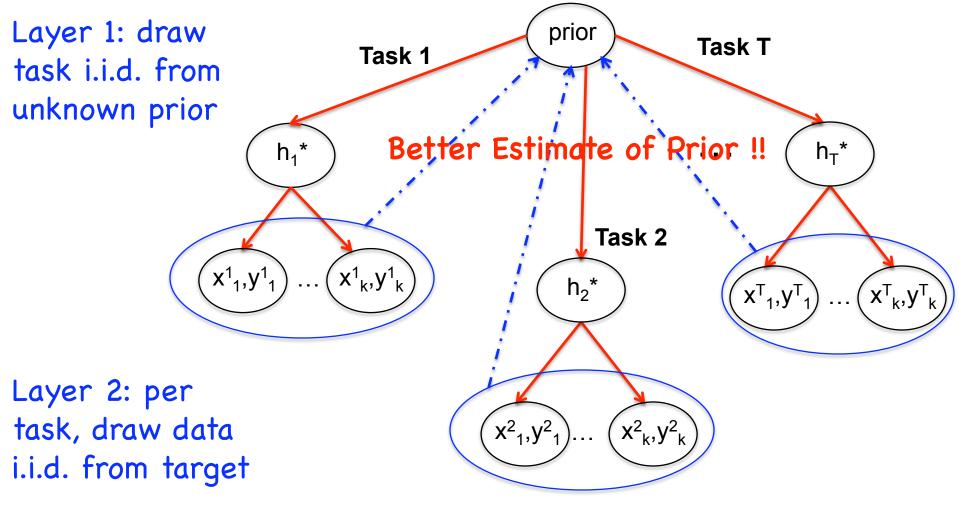
Transfer Learning

- Principle: solving a new learning problem is easier given that we've solved several already !
- How does it help?
 - New task directly ``related" to previous task
 - [e.g., Ben-David & Schuller 03; Evgeniou, Micchelli, & Pontil 2005]
 - Previous tasks give us useful sub-concepts [e.g., Thrun 96]
 - Can gather statistical info on the variety of concepts

[e.g., Baxter 97; Ando & Zhang 04]

- Example: Speech Recognition
 - After training a few times, figured out the dialects.
 - Next time, just identify the dialect.
 - Much easier than training a recognizer from scratch

Model of Transfer Learning Motivation: Learners often Not Too Altruistic



Identifiability of priors from joint distribs

- Let prior π be any distribution on C
 - example: (w, b) ~ multivariate normal
- Target $h_{\pi}^* \sim \pi$
- Data X = (X₁, X₂, ...) i.i.d. D indep h_{π}^*
- $Z(\pi) = ((X_1, h_{\pi}^* (X_1), (X_2, h_{\pi}^* (X_2), ...)).$
- Let [m] = {1, ..., m}.
- Denote $X_{I} = {X_{i}}_{i \in I}$ (I : subset of natural numbers)
- $Z_{I}(\pi) = \{(X_{i}, h_{\pi}^{*}(X_{i}))\}_{i \in I}$

Theorem: $Z_{[VC]}(\pi_1) =_d Z_{[VC]}(\pi_2)$ iff $\pi_1 = \pi_2$.

Identifiability of priors by VC-dim joint distri.

• Threshold:

0

- for two points x₁, x₂, if x₁ < x₂, then Pr(+,+)=Pr(+.), Pr(-,-)=Pr(.-), Pr(+,-)=0, So Pr(-,+)=Pr(.+)-Pr(++) = Pr(.+)-Pr(+.)

$$P(-----(-+)++++++++++) = P((-+)) = P((++)) - P((++)) = P((++)) - P((++)) + P((+-)) - P((++))) + P((+-)) (unrealized labeling !!) = P((++)) - P((++))) = P((++)) - P((++))) = P((++)) + P((++)) + P((++))) = P((++)) + P((++)) + P((++))) = P((++)) + P((++)) + P((++)) + P((++))) = P((++)) + P((++)) + P((++))) = P((++)) + P((++))) = P((++)) + P((++)) + P((++)) + P((++))) = P((++)) + P((++))) + P((++)) + P((+)) + P((+)$$

• Theorem: $Z_{[VC]}(\pi_1) =_d Z_{[VC]}(\pi_2)$ iff $\pi_1 = \pi_2$.

Proof Sketch

- Let $\rho_m(h,g) = 1/m \sum_{i=1}^{m} II(h(X_m) \neq g(X_m))$ Then vc < ∞ implies w.p.1 forall h, g \in C with h \neq g $\lim_{m \to \infty} \rho_m(h,g) = \rho(h,g) > 0$
- ρ is a metric on C by assumption,
 so w.p.1 each h in C labels ∞-seq (X₁, X₂ ...)
 distinctly (h(X₁), h(X₂), ...)
- => w.p.1 conditional distribution of the label seq $Z(\pi)|X$ identifies π

=> distrib of $Z(\pi)$ identifies π

Slide 16 i.e. $Z_{\infty}(\pi_1) =_d Z_{\infty}(\pi_2)$ implies $\pi_1 = \pi_2$

Identifiability of Priors from Joint Distributions

Theorem:
$$Z_{[vc]}(\pi_1) \stackrel{d}{=} Z_{[vc]}(\pi_2) \Leftrightarrow \pi_1 = \pi_2.$$

Proof Sketch:

Fix any $m > vc, x_1, ..., x_m \in \mathcal{X}, y_1, ..., y_m \in \{0, 1\}.$ Note \mathbb{C} cannot shatter (x_1, \ldots, x_m) . Let $\tilde{y}_1, \ldots, \tilde{y}_m \in \{0, 1\}$ be s.t. $\nexists h \in \mathbb{C}$ with $\forall i, h(x_i) = \tilde{y}_i$. Clearly $\mathbb{P}\left(Z_{[m]}(\pi) = \{(x_i, \tilde{y}_i)\}_{i \in [m]} \middle| \mathbb{X}_{[m]} = \{x_i\}_{i \in [m]}\right) = 0.$ If $\exists k \text{ s.t. } y_k \neq \tilde{y}_k$, then letting $y'_i = y_i$ for $i \neq k$, and $y'_k = \tilde{y}_k$, $\mathbb{P}\left(Z_{[m]}(\pi) = \{(x_i, y_i)\}_{i \in [m]} \middle| \mathbb{X}_{[m]} = \{x_i\}_{i \in [m]}\right) \text{ lower-dim cond distrib}$ $= \mathbb{P}\left(Z_{[m]\setminus\{k\}}(\pi) = \{(x_i, y_i)\}_{i \in [m]\setminus\{k\}} \middle| \mathbb{X}_{[m]\setminus\{k\}} = \{x_i\}_{i \in [m]\setminus\{k\}}\right)$ $-\mathbb{P}\left(Z_{[m]}(\pi) = \{(x_i, y'_i)\}_{i \in [m]} \middle| \mathbb{X}_{[m]} = \{x_i\}_{i \in [m]}\right) - \texttt{y' closer to } \tilde{\texttt{y}}$ Induction: $\mathbb{P}(Z_{[m]}(\pi) = \cdot |\mathbb{X}_{[m]})$ function of $\mathbb{P}(Z_{[vc]}(\pi) = \cdot |\mathbb{X}_{[vc]})$. Slide 17

Identifiability of Priors from Joint Distributions

Theorem:
$$Z_{[vc]}(\pi_1) \stackrel{d}{=} Z_{[vc]}(\pi_2) \Leftrightarrow \pi_1 = \pi_2.$$

Proof Sketch:

By the above, $Z_{[vc]}(\pi_1) \stackrel{d}{=} Z_{[vc]}(\pi_2) \Rightarrow \forall m \in \mathbb{N}, Z_{[m]}(\pi_1) \stackrel{d}{=} Z_{[m]}(\pi_2).$

Classic result: set of distribution of $Z_{[m]}(\pi) : m \in \mathbb{N}$ identify distribution of $Z(\pi)$, so $Z_{[m]}(\pi_1) \stackrel{d}{=} Z_{[m]}(\pi_2), \forall m \in \mathbb{N} \Rightarrow Z(\pi_1) \stackrel{d}{=} Z(\pi_2).$

Showed above that $Z(\pi_1) \stackrel{d}{=} Z(\pi_2) \Rightarrow \pi_1 = \pi_2.$

Identifiability of Priors from Joint Distributions

Theorem:
$$Z_{[vc]}(\pi_1) \stackrel{d}{=} Z_{[vc]}(\pi_2) \Leftrightarrow \pi_1 = \pi_2.$$

Theorem: $\exists \mathcal{D}, \pi_1 \neq \pi_2 \text{ s.t. } \forall m < \text{vc}, Z_{[m]}(\pi_1) \stackrel{d}{=} Z_{[m]}(\pi_2).$

Proof Sketch:

Let (x_1, \ldots, x_{vc}) be shattered by $\mathcal{H} = \{h_1, \ldots, h_{2^{vc}}\} \subseteq \mathbb{C}$. Let \mathcal{D} be uniform on $\{x_1, \ldots, x_{vc}\}$, let π_1 be uniform on \mathcal{H} . Let $\mathcal{H}' = \{h'_1, \ldots, h'_{2^{vc-1}}\} \subset \mathcal{H}$ shatter (x_1, \ldots, x_{vc-1}) s.t. $h'_i(x_{vc}) = \text{Parity}(\{h'_i(x_1), \ldots, h'_i(x_{vc-1})\})$. Let π_2 be uniform on \mathcal{H}' . Clearly $\pi_1 \neq \pi_2$. But for m < vc, $Z_{[m]}(\pi_1) \stackrel{d}{=} Z_{[m]}(\pi_2)$: unif cond on labels given distinct X_1, \ldots, X_m .

Transfer Learning Setting

- Collection Π of distribs on C. (known)
- Target distrib π^{*} € Π. (unknown)
- Indep target fns h_1^* , ..., $h_T^* \sim \pi^*$ (unknown)
- Indep i.i.d. D data sets X^(†) = (X₁^(†), X₂^(†), ...), † €[T].
- Define $Z^{(\dagger)} = ((X_1^{(\dagger)}, h_{\dagger}^{*}(X_1^{(\dagger)})), (X_2^{(\dagger)}, h_{\dagger}^{*}(X_2^{(\dagger)})), ...).$
- Learning alg. "gets" $Z^{(1)}$, then produces \hat{h}_1 , then "gets" $Z^{(2)}$, then produces \hat{h}_2 , etc. in sequence.
- Interested in: values of $\rho(\hat{h}_t, h^*(t))$, and the number of $h^*_t(X_j^{(t)})$ value alg. needs to access.

Estimating the prior

- Principle: learning would be easier if know π^*
- Fact: π^* is identifiable by distrib of $Z_{[VC]}^{(t)}$
- Strategy: Take samples $Z_{[VC]}^{(i)}$ from past tasks 1, ..., t-1, use them to estimate distrib of $Z_{[VC]}^{(i)}$, convert that into an estimate π'_{t-1} of π^* ,
- Use π' in a prior-dependent learning alg for new task h_t^{t-1}
- Assume Π is totally bounded in total variation
- Can estimate π^* at a bounded rate:

 $\| \pi^* - \pi'_{\dagger} \| < \delta_{\dagger}$ converges to 0 (holds whp)

Transfer Learning

• Given a prior-dependent learning A(ε , π), with E[# labels accessed] = $\Lambda(\varepsilon, \pi)$ and producing \hat{h} with E[$\rho(\hat{h}, h^*)$] $\leq \varepsilon$

For f = 1,..., TIf $\delta_{t-1} > \varepsilon/4$, run prior-indep learning on $Z_{[VC/\varepsilon]}^{(t)}$ to get \hat{h}_t Else let $\pi''_t = \operatorname{argmin}_{\pi \in B(\pi'_{t-1}, \delta_{t-1})} \Lambda(\varepsilon/2, \pi)$ and run $A(\varepsilon/2, \pi''_t)$ on $Z^{(t)}$ to get \hat{h}_t

Theorem: Forall t, $E[\rho(\hat{h}_{t}, h_{t}^{*})] \leq \varepsilon$, and limsup_{T -> ∞} $E[\#labels accessed]/T \leq \Lambda(\varepsilon/2, \pi^{*}) + vc.$ Slide 22

Is this Better than without Transfer ?

- The question becomes:
 - How much does knowledge of target distrib π^* help?
- There are some (constant factor) gains for passive learning [e.g. HKS1992]
- It really helps in Active learning:

- Earlier, we showed can get o(1/ ε) for all π

- For many C (e.g. linear separators), no prior-indep alg has this guarantee.
- Plugging in that method, transfer method accesses $o(1/\varepsilon)$ labels on avg.

Remarks

- Not too many extra labels per task (vc extra)
- Subroutine A can be fairly arbitrary (supervised, semi-supervised, active, ...)
- π estimation may be useful for other things too
- Open problem: calculate the rate of convergence

Thanks !