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(AISTATS 2010)
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(COLT 2011 and Machine Learning Journal)
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Notation

Instance space X = R™n
Concept space C of classifiers h: X -> {O,1}

- Assume C has VC dimension vc < oo

Data Distribution D on X

Unknown target function h*: the true
labeling function (Realizable case: h* in C)
Assume 0 (h, g)=P,~;[h(x) # g(x)] for any
classifiers h, g, is a metric on C

Err (h) = P, -5 [h(x) # h*(x)]



"Active” means Label Request

* Label request:
have a pool of unlabeled exs, pick any x
and receive h*(x), repeat

* Motivation:
labeled data is expensive to get

* Using label request, can do Active Learning:
find h has small err(h)
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Self-Verifying Bayesian Active
Learning

Self-verifying
(a special type of stopping criterion)

- Given &, adaptively decides # of query,
then halts

- has the property that E[err] <& when halts

Question: Can you do with E[#query] = o(1/
£) ? (passive learning need 1/ € labels)

Slide 5



Example: Intervals

Suppose D is uniform on [0,1]
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Example: Intervals

Verification Lower Bound

In non-Bayesian setting, supposing h* is empty interval.
Given any classifier h,

just to verify err(h) < &,
Need to verify h* is not an interval of width 2¢.

Need an example in Q(1/¢) regions to verify this fact.

2¢2e2e2e2e2e2e2e2e2c2c2c2c2c2c2c2e2e2e2e2c2e2e2¢2¢2¢2¢2¢2¢2¢2¢2¢

Suppose h* is empty interval, D is uniform on [0,1]
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Learning with a prior

* Suppose we know a distribution the
target is sampled from, call it prior
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Interval Example with prior

R 2l
* Algorithm: Query random pts till find first +, do

binary search fo find end-pts. Halt when reach a pre-
specified prior-based query budget. Output posteriors
Bayes classifier.

* Let budget N be high enough so E[err] < €

- N = o(1/ €) sufficient for E[errlw*>0] < €: if w* > 0,
even prior-independent analysis needs only
E[#queries|lw™] = O(1/w* + log(l/ €)) = o(1/ €).

- N = o(1/ €) sufficient for E[errlw*=0] < €: if
P(w*=0)>0, then after some L = O(log(1/ € )) queries, w.p.>
1- £, most prob. mass on empty interval, so posteriors

Bayes classifier has O error rate
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Can do o(l/eps) for any VC-class

Theorem: With the prior, can get o(1/ €) QC

* There are methods that find a good
classifier in o(l/eps) queries (though they
arent self-verifying) [BHWO0S]

* Need set a stopping criterion for those alg
* The stop criterion we use : budget

* Set the budget to be just large enough so
Elerr] < €.
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Outline

 Self-Verifying Bayesian Active Learning
(AISTATS2010)

* Transfer Learning

(COLT 2011 and Machine Learning
Journal)
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Transfer Learning

* Principle: solving a new learning problem is easier
given that we've solved several already !

* How does it help?

- New task directly “related” to previous task
[e.g., Ben-David & Schuller 03; Evgeniou, Micchelli, & Pontil 2005]
- Previous tasks give us useful sub-concepts [e.g., Thrun 96]

- Can gather statistical info on the variety of concepts
[e.g., Baxter 97; Ando & Zhang 04]

* Example: Speech Recognition
- After training a few times, figured out the dialects. ",
- Next time, just identify the dialect.
- Much easier than training a recognizer from scratch™%
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Model of Transfer Learning
Motivation: Learners often Not Too Altruistic

Layer 1: draw
task i.i.d. from
unknown prior

Task 1 Task T

\

o : "
Better Estiigte of Rrior !

I

Layer 2: per
task, draw data
i.i.d. from target
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Identifiability of priors from
joint distribs
* Let prior m be any distribution on C
- example: (w, b) ~ multivariate normal
» Target h*_ ~ m
* Data X = (X, X,, ...) i.i.d. D indep h*_
¢ Z(m) = (X B*, (X), (X, B, (X,), ..
e Let [m] =41, ..., m}.
* Denote X; = X} . ; (I : subset of natural numbers)

 Z; (m) = {(X, h*, (X} ¢

[ Theorem: Z[vc] (“1) =d Z[VC] (ﬂz) iFF nl - “2. ]
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Identifiability of priors by
VC-dim joint distri.

* Threshold:
--------------------- +++++++++++++4+4++

- for two points x; x,, if x; < x, then

Pr(+,+)=Pr(+.), Pr(-,-)=Pr(.-), Pr(+,-)=0,

So Pr(-,+)=Pr(.+)-Pr(++) = Pr(.+)-Pr(+.)

- for any k > 1 points, can directly to reduce number of labels in the
joint prob from k fo 1

P(-——=mm - (—4)+++++++++++++++++)

= (-+) )

- p( (+) ) - P (+4) )
= P( (.+) ) - P( (+.) )
+ P( (+-) ) (unrealized labeling !!)

= P( (.+) ) - P( (+.) )
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[. Theorem: Z[VC] (nl) =d Z[VC] (ITZ) iff 111 - ITZ.

Proof Sketch

« Let p(hg)=1/m 2 _™ II(h(X.) # g(X,))
Then vc < oo implies w.p.l forall h, g € C with h # g
lim, .. 0.,(.g)=0(hg)>0

* 0 is a metfric on C by assumption,

so w.p.1 each h in C labels co-seq (X, X, ...)
distinctly (h(X)), h(X,), ...)

* => w.p.l conditional distribution of the label seq
Z(m)IX identifies

=> distrib of Z(1m) identifies
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ldentifiability of Priors from Joint Distributions

Theorem: Z, (Wl)iZ[VC] (m9) < w1 = mo.

Proof Sketch:

Fix any m > ve, 1,...,2m € X, 91,...,ym € {0, 1}.
Note C cannot shatter (x1,...,Zm).

Let 1,...,9m € {0,1} be s.t. Ah € C with Vi, h(z;) = 7;.

Clearly P ( Zjm)(m) = {(wi, §i) biepm | Xpm) = {@i}icm) = 0.

If 3k s.t. yr # Uk, then letting y, = y; for ¢« # k, and y;,, = ys,
P (Z[m ( ) — {(xza yz i€ [m] ‘X[m] — {%}ze ])Wm cond distrib]
=P (Zem 3 (1) = {(@0,9) Vet 1y [ Kim g1y = {2} seimpr 1)

—[P (Z[m]( ) = {(xzvyz)}ze[m] Xim] = {xz}ze[m]){ v closerto |
Induction: P (Zp,, () ‘X m]) function of P (Zjyq(m) = |X[VC ).
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ldentifiability of Priors from Joint Distributions

Theorem: Z, (Wl)iZ[VC] (m9) < T = mo.

Proof Sketch:

By the above,

Z1ve) (1) = Zjue) (02) = ¥ € N, Zis) (1) £ Z ) (7).

Classic result:
set of distribs of Zj,,,)(7) : m € N identify distrib of Z(7), so
Zimt (71) = Zpy (72), ¥ € N = Z (1) 27 (73).

Showeg above that

Z(m)=24(me) = 7 = mo.
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|dentifiability of Priors from Joint Distributions

Theorem: Z, (Wl)iZ[VC] (m9) < T = mo.

Theorem: dD, m # w3 s.t. Vim < ve, Zjy, (Wl)iZ[m](m).

Proof Sketch:

Let (x1,...,%yv) be shattered by H = {h1,...,hov} C C.
Let D be uniform on {x1,..., Ty},

let 71 be uniform on H.

Let H' = {h},..., A1} C H shatter (z1,...,Zvc—1)

s.t. hl(xy.) = Parity({h}(x1),..., b, (Tye—1))-

Let 75 be uniform on H’.

Clearly m # mo.

But for m < vc, Z[m] (m)iZ[m] (72):

unif cond on labels given distinct Xq,..., X,,.
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Transfer Learning Setting

e Collection TT of distribs on C. (known)

* Target distrib m* € TI. (unknown)

* Indep target fns h* .., h;* ~ m* (unknown)
* Indep i.i.d. D data sets X = (X, X,1, ...), t €[T].
* Define zM = ((X,®, h*(X,®M)), (X,, h,*(X,1)), ...).

* Learning alg. "gets” Z, then produces h, then
“gets” Z(®), then produces h,, etc. in sequence.

e Interested in: values of ,O(ﬁf, h*(1)), and the
number of h*; (X)) value alg. needs to access.
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Estimating the prior

» Principle: learning would be easier if know m*
* Fact: n* is identifiable by distrib of Z,”

» Strategy: Take samples Z;, 4" from past tasks 1,
.., t-1, use them to estimate distrib of Z,, 1,

convert that into an estimate 11',r 1 of n*

* Use " in a prior-dependent learning alg for
- *
new task h;
* Assume [T is totally bounded in total variation
* Can estimate * at a bounded rate:

| 7 - n’ |l &, converges to O (holds whp)
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Transfer Learning

* Given a prior-dependent learning A( &, ), with
E[# labels accessed] =\ (€, m) and producing h
with E[ o (h, h*))< €
(For ¥ =T1..,7T ™
If §,,> € /4,
run prior-indep learning on Zy, . fo get h,

Else le'l' ]T”-|- — argmlnn € B(n"l'-lf 61‘—1),\/\(8 /2, ﬂ)
_ and run A(€ /2, m +) on Z® to get h, y

~\

" Theorem: Forall 1, E[ o (h,, h¥)] < €, and

| limsup; _, E[#labels accessed])/T <A(€ /2, n*) + vc. |
Slide 22




Is this Better than without
Transfer ?

* The question becomes:
- How much does knowledge of target distrib m*help?

* There are some (constant factor) gains for passive
learning [e.g. HKS1992]

* It really helps in Active learning:
- Earlier, we showed can get o(l/ &) for all m

* For many C (e.g. linear separators), no prior-indep
alg has this guarantee.

* Plugging in that method, transfer method

accesses o(l/ €) labels on avg.
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Remarks

* Not too many extra labels per task (vc extra)

* Subroutine A can be fairly arbitrary
(supervised, semi-supervised, active, ...)

* 1 estimation may be useful for other things
too

* Open problem: calculate the rate of
convergence
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Thanks !
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