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Abstract. We explore a transfer learning setting, in which a finite sequence of
target concepts are sampled independently with an unknown distribusiomar
known family. We study the total number of labeled examples requiredtio édla
targets to an arbitrary specified expected accuracy, focusing onythwaics
in the number of tasks and the desired accuracy. Our primary intefflestrially
understanding the fundamental benefits of transfer learning, cedhpatearning
each target independently from the others. Our approach to the transiéem

is general, in the sense that it can be used with a variety of learning platéso
a particularly interesting application, we study in detail the benefits of trafwsfe
self-verifying active learning; in this setting, we find that the number oélkedb
examples required for learning with transfer is often significantly smalken th
that required for learning each target independently.

1 Introduction

Transfer learning reuses knowledge from past related tasé@se the process of learn-
ing to perform a new task. The goal of transfer learning igt@fage previous learning
and experience to more efficiently learn novel, but relatedcepts, compared to what
would be possible without this prior experience. The wtitif transfer learning is typi-
cally measured by a reduction in the number of training exasgequired to achieve a
target performance on a sequence of related learning pnsbompared to the number
required for unrelated problems: i.e., reduced sample tmiitp In many real-life sce-
narios, just a few training examples of a new concept or E®&eoften sufficient for
a human learner to grasp the new concept given knowledgédatédeones. For exam-
ple, learning to drive a van becomes much easier a task if we dleeady learned how
to drive a car. Learning French is somewhat easier if we hieady learned English
(vs Chinese), and learning Spanish is easier if we know Boese (vs German). We
are therefore interested in understanding the conditioaisenable a learning machine
to leverage abstract knowledge obtained as a by-produeofiing past concepts, to
improve its performance on future learning problems. Famtiore, we are interested
in how the magnitude of these improvements grows as theitepsystem gains more
experience from learning multiple related concepts.
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The ability to transfer knowledge gained from previous sagkmake it easier to
learn a new task can potentially benefit a wide range of realdnapplications, includ-
ing computer vision, natural language processing, cogngcience (e.g., fMRI brain
state classification), and speech recognition, to name aXAsvan example, consider
training a speech recognizer. After training on a numbendividuals, a learning sys-
tem can identify common patterns of speech, such as accedigects, each of which
requires a slightly different speech recognizer; theregia new person to train a rec-
ognizer for, it can quickly determine the particular dialzom only a few well-chosen
examples, and use the previously-learned recognizer &mpidrticular dialect. In this
case, we can think of the transferred knowledge as congistithe common aspects of
each recognizer variant and more generallydistribution of speech patterns existing
in the population these subjects are from. This same typestfllition-related knowl-
edge transfer can be helpful in a host of applications, dioly all those mentioned
above.

Supposing these target concepts (e.g., speech patteensdrapled independently
from a fixed population, having knowledge of the distribat@f concepts in the popu-
lation may often be quite valuable. More generally, we maystter a general scenario
in which the target concepts are sampled i.i.d. accordiragfieed distribution. As we
show below, the number of labeled examples required to k#rget concept sampled
according to this distribution may be dramatically reduidede have direct knowledge
of the distribution. However, since in many real-world lgag scenarios, we do not
have direct access to this distribution, it is desirabledgable to somehodearn the
distribution, based on observations from a sequence dfileggiproblems with target
concepts sampled according to that distribution. The hepeat an estimate of the dis-
tribution so-obtained might be almost as useful as direo¢ssto the true distribution
in reducing the number of labeled examples required to lsabsequent target con-
cepts. The focus of this paper is an approach to transfemiteabased on estimating
the distribution of the target concepts. Whereas we ackrdnel¢hat there are other
important challenges in transfer learning, such as expgoimprovements obtainable
from transfer under various alternative notions of taskteglness [EP04, BDS03], or
alternative reuses of knowledge obtained from previousstfiBhro6], we believe that
learning the distribution of target concepts is a central @mcial component in many
transfer learning scenarios, and can reduce the total sagopiplexity across tasks.

Note that it is not immediately obvious that the distribatiaf targets can even be
learned in this context, since we do not have direct accabgtarget concepts sampled
according to it, but rather have only indirect access via igefilumber of labeled ex-
amples for each task; a significant part of the present warkges on establishing that
as long as these finite labeled samples are larger than ancsrte, they hold sufficient
information about the distribution over concepts for estion to be possible. In par-
ticular, in contrast to standard results on consistentitieastimation, our estimators
are not directly based on the target concepts, but rathesrdyeindirectly dependent
on these via the labels of a finite number of data points froom ¢ask. One desidera-
tum we pay particular attention to is minimizing the numbkextralabeled examples
needed for each task, beyond what is needed for learning#énticular target, so that
the benefits of transfer learning are obtained almosttgs@roductof learning the tar-
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gets. Our technique is general, in that it applies to any epnspace with finite VC
dimension; also, the process of learning the target coads{in some sense) decou-
pled from the mechanism of learning the concept distrilmyten that we may apply
our technique to a variety of learning protocols, includpagsive supervised learning,
active supervised learning, semi-supervised learning|earning with certain general
data-dependent forms of interaction [Han09]. For simpljcve choose to formulate
our transfer learning algorithms in the language of actearning; as we show, this
problem can benefit significantly from transfer. Formulasidor other learning pro-
tocols would follow along similar lines, with analogous ¢hems; only the results in
Section 5 are specific to active learning.

Transfer learning is related at least in spirit to much easkiork on case-based and
analogical learning [Car83, Car86, VC93, Kol93, Thr96thaugh that body of work
predated modern machine learning, and focused on symhmigerof past problem
solving solutions rather than on current machine learnidplems such as classifica-
tion, regression or structured learning. More recentinsfer learning (and the closely
related problem ofmultitasklearning) has been studied in specific cases with inter-
esting (though sometimes heuristic) approaches [CarfiQ,31P04, Bax97, BDS03].
This paper considers a general theoretical framework émistier learning, based on an
Empirical Bayes perspective, and derives rigorous thaalatesults on the benefits of
transfer. We discuss the relation of this analysis to exgstireoretical work on transfer
learning below.

1.1 Active Learning

Active learningis a powerful form of supervised machine learning charaztdrby
interaction between the learning algorithm and data sodwr#ng the learning pro-
cess [CAL94,MN98,CCS00,TK01,NS04,BEYL04,DCB07,DC08@8]. In this work,
we consider a variant known a®ol-basedactive learning, in which a learning algo-
rithm is given access to a (typically very large) collectmfrunlabeled examples, and
is able to select any of those examples, request the supetwitabel it (in agreement
with the target concept), then after receiving the labdécd@nother example from the
pool, etc. This sequential label-requesting processeoes until some halting criterion
is reached, at which point the algorithm outputs a classHigd the objective is for this
classifier to closely approximate the (unknown) target ephdn the future. The pri-
mary motivation behind pool-based active learning is tbfien, unlabeled examples
are inexpensive and available in abundance, while anngt#tiose examples can be
costly or time-consuming; as such, we often wish to selelst the informative exam-
ples to be labeled, thus reducing information-redundaospme extent, compared to
the baseline of selecting the examples to be labeled unijathrandom from the pool
(passive learning).

There has recently been an explosion of fascinating thieafeesults on the ad-
vantages of this type of active learning, compared to padsi&rning, in terms of the
number of labels required to obtain a prescribed accuradiefcthesample complex-
ity): e.g., [FSST97, Das04, DKM09, Das05, Han07b, BHV10, BBLWan09, Kaa06,
Han07a, DHMO08, Fri09, CN08, Now08, BBZ07,Han11, Kol10, B&yBDLO09]. In par-
ticular, [BHV10] show that in noise-free binary classifieatning, for any passive learn-
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ing algorithm for a concept space of finite VC dimension, ¢hetists an active learning
algorithm with asymptotically much smaller sample comjilefor any nontrivial tar-
get concept. Thus, it appears there are profound advarttagesve learning compared
to passive learning. In later work, [Han09] strengthens tesult by removing a certain
dependence on the underlying distribution of the data ingaming algorithm.

However, the ability to rapidly converge to a good classitising only a small
number of labels is only one desirable quality of a machiaenimg method, and there
are other qualities that may also be important in certaimacges. In particular, the
ability to verify the performance of a learning method is often a crucial dartachine
learning applications, as (among other things) it helpsaterchine whether we have
enough data to achieve a desired level of accuracy with trenghethod. In passive
learning, one common practice for this verification is tochout a random sample
of labeled examples as\alidation sampleo evaluate the trained classifier (e.g., to
determine when training is complete). It turns out this tegbe is not feasible in active
learning, since in order to be really useful as an indicafowleether we have seen
enough labels to guarantee the desired accuracy, the nuwhlteseled examples in
the random validation sample would need to be much larger i number of labels
requested by the active learning algorithm itself, thussfime extent) canceling the
savings obtained by performing active rather than passaming. Another common
practice in passive learning is to examine the trainingreate of the returned classifier,
which can serve as a reasonable indicator of performanter @djusting for model
complexity). However, again this measure of performano®isiecessarily reasonable
for active learning, since the set of examples the algoritbquests the labels of is
typically distributed very differently from the test exalapthe classifier will be applied
to after training.

This reasoning seems to indicate that performance verditat (at best) a far more
subtle issue in active learning than in passive learnindedd, [BHV10] note that al-
though the number of labels required to achieve good acguraactive learning is
significantly smaller than passive learning, it is somesirtiee case that the number
of labels required twerify that the accuracy is good is not significantly improved. In
particular, this phenomenon can increase significanthstmple complexity of active
learning algorithms that adaptively determine how manglsibo request before termi-
nating. In short, if we require the algorithm bothlearn an accurate concept and to
knowthat its concept is accurate, then the number of labels medjldy active learn-
ing may sometimes not be significantly smaller than the numéguired by passive
learning.

In the present work, we are interested in the question of néret form of transfer
learning can help to bridge this gap, enabling self-venidyactive learning algorithms
to obtain the same types of dramatic improvements over yEésarning as can be
achieved by their non-self-verifying counterparts.

1.2 Outline of the paper

The remainder of the paper is organized as follows. In Se@ieve introduce basic
notation used throughout, and survey some related work fhenexisting literature. In
Section 3, we describe and analyze our proposed methodtfioratimg the distribution
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of target concepts, the key ingredient in our approach tesfea learning, which we
then present in Section 4. Finally, in Section 5, we invedgédhe benefits of this type
of transfer learning for self-verifying active learning.

2 Definitions and Related Work

First, we state a few basic notational conventions. We deNot= {1,2,...} and
Ny = NU{0}. For any random variabl&, we generally denote b¥x the distribution
of X (the induced probability measure on the rangeXgf and byP x|y the regular
conditional distribution ofX" givenY'. For any pair of probability measurgs, 12 on a
measurable spadé?, F), we define

[l = pall = sup [p1(A) = p2(A)].
AeF

Next we define the particular objects of interest to our presiéscussion. Le®
be an arbitrary set (called thmrameter spade (X, Bx) be a Borel space [Sch95]
(where X is called theinstance spage and D be a fixed distribution o’ (called
the data distributior). For instance® could beR™ and X’ could beR™, for some
n,m € N, though more general scenarios are certainly possible dsinguding
infinite-dimensional parameter spaces. Cdie a set of measurable classifiersX’ —
{-=1,+1} (called theconcept spageand suppos€ has VC dimensiod < oo [Vap82]
(such a space is called/&C clas$. C is equipped with its Boret-algebra3, induced by
the pseudo-metrip(h, g) = D({z € X : h(z) # g(z)}). Though all of our results can
be formulated for generdb in slightly more complex terms, for simplicity throughout
the discussion below we suppgses actually ametric, in that anyh, g € Cwith h # ¢
havep(h, g) > 0; this amounts to a topological assumption@nelative toD.

For eachy € O, my is a distribution onC (called aprior). Our only (rather mild)
assumption on this family of prior distributions is tHat, : 6 € ©} be totally bounded,
in the sense thate > 0, 3 finite©, C O s.t.¥0 € ©,30. € O with ||mg — mg_|| < €.
See [DLO1] for examples of categories of classes that gatis.

The general setup for the learning problem is that we haveegparameter value
. € O, and a collection of-valued random variable€g:}, }.en gco, Where for a fixed
0 € O the{h},}cn variables are i.i.d. with distribution,.

The learning problem is the following. For eagle ©, there is a sequence

Z,(0) = {(X11, Y (0)), (X2, Yi2(0)), - -},

where{Xy; }; ;en are i.i.d.D, and for eacht,: € N, Y;;(0) = h},(Xy;). Fork € Nwe
denote byZ;.(0) = {( X1, Y (9)), ..., (X, Yir(0))}. Since thevy; (9) are the actual
h},(X,;) values, we are studying the non-noisyrealizable-casgsetting.

The algorithm receives valuesandT as input, and for eache {1,2,...,T}in
increasing order, it observes the sequekige X, . . ., and may then select an indgx
receive label;, (0, ), select another inde, receive label’,, (0, ), etc. The algorithm
proceeds in this fashion, sequentially requesting lahgis| eventually it produces a
classifierh,. It then increments and repeats this process until it produces a sequence
hi,hs, ..., hr, at which time it halts. To be callecbrrect, the algorithm must have a
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guarantee thatd, € O,vt < T,E {p (l}t,ht*e*)} < ¢, for any values of" € N and

¢ > 0 given as input. We will be interested in the expected numbéalel requests
necessary for a correct learning algorithm, averaged onvsF tasks, and in particular
in how shared information between tasks can help to redusejtlantity when direct
access td, is not available to the algorithm.

2.1 Relation to Existing Theoretical Work on Transfer Learning

Although we know of no existing work on the theoretical adeges of transfer learn-
ing for active learning, the existing literature contaiageyal analyses of the advantages
of transfer learning for passive learning. In his classickyBaxter ([Bax97] section 4)
explores a similar setup for a general form of passive legirexcept in dull Bayesian
setting (in contrast to our setting, often referred to asgeital Bayes,” which includes

a constant parametér to be estimated from data). Essentially, [Bax97] sets up a hi
erarchical Bayesian model, in which (in our notatigh)is a random variable with
known distribution (hyper-prior), but otherwise the sadization of Baxter’s setting to
the pattern recognition problem is essentially identioabar setup above. This hyper-
prior does make the problem slightly easier, but generakyresults of [Bax97] are

of a different nature than our objectives here. Specific8ixter’s results on learning
from labeled examples can be interpreted as indicatingttaasfer learning can im-
prove certairconstant factorsn the asymptotic rate of convergence of the average of
expected error rates across the learning problems. Thegrigin constant complexity
terms (for instance, related to the concept space) can leeddo (potentially much
smaller) values related toy, by transfer learning. Baxter argues that, as the number
of tasks grows large, this effectively achieves close tdktimwvn results on the sample
complexity of passive learning with direct acces# toA similar claim is discussed by
Ando and Zhang [AZ04] (though in less detail) for a settingselr to that studied here,
wheref, is an unknown parameter to be estimated.

There are also several results on transfer learning of htkfidifferent variety, in
which, rather than having a prior distribution for the targencept, the learner initially
has several potential concept spaces to choose from, amdl¢éhef transfer is to help
the learner select from among these concept spaces [BaX@B]Aln this case, the
idea is that one of these concept spaces has the best avarageim achievable error
rate per learning problem, and the objective of transfanieg is to perform nearly as
well as if we knew which of the spaces has this property. Iti@aar, if we assume the
target functions for each task all reside in one of the conspaces, then the objective
of transfer learning is to perform nearly as well as if we knehich of the spaces
contains the targets. Thus, transfer learning results ianapke complexity related to
the number of learning problems, a complexity term for thastlconcept space, and a
complexity term related to the diversity of concept spaceshave to choose from. In
particular, as with [Bax97], these results can typicallyriierpreted as giving constant
factor improvements from transfer in a passive learningexdnat best reducing the
complexity constants, from those for the union over the givencept spaces, down to
the complexity constants of the single best concept space.

In addition to the above works, there are several analysésifer learning and
multitask learning of an entirely different nature than ptesent discussion, in that the
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objectives of the analysis are somewhat different. Spedlfichere is a branch of the
literature concerned with tasklatednessnot in terms of the underlying process that
generates the target concepts, but rather directly in tefmredations between the target
concepts themselves. In this sense, several tasks witkedekrget concepts should be
much easier to learn than tasks with unrelated target cosic€pis is studied in the
context of kernel methods by [MP04, EP04, EMPO05], and in aeng@neral theoretical
framework by [BDS03]. As mentioned, our approach to trankfarning is based on
the idea of estimating the distribution of target concepss such, though interesting
and important, these notions of direct relatedness of tamecepts are not as relevant
to our present discussion.

As with [Bax97], the present work is interested in showingttas the number of
tasks grows large, we can effectively achieve a sample aiitpiclose to that achiev-
able with direct access t,.. However, in contrast, we are interested in a general ap-
proach to transfer learning and the analysis thereof, hgpth concrete results for a
variety of learning protocols such as active learning amdiseipervised learning. In
particular, our analysis of active learning reveals therieéting phenomenon that trans-
fer learning can sometimes improve the asymptotic deperedenne, rather than merely
the constant factors as in the analysis of [Bax97].

Our work contrasts with [Bax97] in another important regpedich significantly
changes the way we approach the problem. Specifically, iteBaxanalysis, the results
(e.g., [Bax97] Theorems 4, 6) regard the average loss oediagks, and are stated as
a function of the number of samples per task. This number wipses plays a dual
role in Baxter's analysis, since these samples are usedblyatte individual learning
algorithm for each task, and also for the global transfemiieg process that provides
the learners with information abodt. Baxter is then naturally interested in the rates
at which these losses shrink as the sample sizes grow lardetharefore formulates
the results in terms of the asymptotic behavior as the mrgample sizes grow large.
In particular, the results of [Bax97] involve residual termhich become negligible for
large sample sizes, but may be more significant for smallepkasizes.

In our work, we are interested in decoupling these two radesife sample sizes; in
particular, our results regard only the number of tasks assgmptotic variable, while
the number of samples per task remains bounded. First, veeanagry practical moti-
vation for this: namely, non-altruistic learners. In maeitisgs where transfer learning
may be useful, it is desirable that the number of labeled gkesnwe need to collect
from each particular learning problem never be signifigalatiger than the number of
such examples required to solve that particular problesm (b learn that target concept
to the desired accuracy). For instance, this is the case tieelearning problems are
not all solved by the same individual (or company, etc.) rather a coalition of coop-
erating individuals (e.g., hospitals sharing data on ctihtrials); each individual may
be willing to share the data they used to learn their padiccbncept, in the interest of
making others’ learning problems easier; however, they naybe willing to collect
significantlymoredata than they themselves need for their own learning pnoige
should therefore be particularly interested in studyiransfer as dy-productof the
usual learning process; failing this, we are interestethénnbinimum possible number
of extralabeled examples per task to gain the benefits of transferitea
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The issue of non-altruistic learners also presents a futéedinical problem in that
the individuals solving each task may be unwilling to altegit methodof gathering
data to be more informative for the transfer learning precééat is, we expect the
learning process for each task is designed with the soletioteof estimating the target
concept, without regard for the global transfer learningbem. To account for this,
we model the transfer learning problem in a reduction-sfrdenework, in which we
suppose there is some black-box learning algorithm to befoumach task, which
takes a prior as input and has a theoretical guarantee ofggréarmance provided the
prior is correct. We place almost no restrictions whatsoewethis learning algorithm,
including the manner in which it accesses the data. Thisvallemarkable generality,
since this procedure could be passive, active, semi-sigaekvor some other kind of
query-based strategy. However, because of this generaéitiriave no guarantee on the
information about, reflected in the data used by this algorithm (especiallyig &n
active learning algorithm). As such, we choose not to uséathel information gathered
by the learning algorithm for each task when estimatingithéut instead take a small
number ofadditionalrandom labeled examples from each task with which to estéimat
0.. Again, we want to minimize this number of additional sarspber task; indeed, in
this work we are able to make due with a meomstanthumber of additional samples
per task. To our knowledge, no result of this type (estinggdinusing a bounded sample
size per learning problem) has previously been establighéle level of generality
studied here.

3 Estimating the Prior

The advantage of transfer learning in this setting is thel égarning problem provides
some information about,, so that after solving several of the learning problems, we
might hope to be able testimated,. Then, with this estimate in hand, we can use
the corresponding estimated prior distribution in therdé@ag algorithm for subsequent
learning problems, to help inform the learning processlantyito how direct knowl-
edge ofd, might be helpful. However, the difficulty in approachingstis how to define
such an estimator. Since we do not have direct access tg thialues, but rather only
indirect observations via a finite number of example lakibks standard results for den-
sity estimation from i.i.d. samples cannot be applied.

The idea we pursue below is to consider the distribution€gri6, ). These vari-
ablesare directly observable, by requesting the labels of those @kesn Thus, for
any finite k. € N, this distributionis estimable from observable data. That is, using
the i.i.d. valuesz,(6y),..., Z:(0,), we can apply standard techniques for density
estimation to arrive at an estimator®g,, (5, ). Then the question is whether the distri-
butionPz,, (4,) uniquely characterizes the prior distributiop : that is, whetherr, is
identifiablefrom Pz, 4, ).

As an example, consider the spacehaff-open intervaklassifiers or{0,1]: C =
{]Li’b) 0 <a<b<1}, Wherell[ﬂ;b)(a:) = +1ifa < 2 < band—1 oth-
erwise. In this casery, is not necessarily identifiable fron®z,, (,; for instance,
the distributionsry, and o, characterized byro, ({1 ,,}) = m, ({15 }) = 1/2

and o, ({15, /2)}) = me,({1};5,)}) = 1/2 are not distinguished by these one-
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dimensional distributions. However, it turns out that foisthalf-open intervals prob-
lem, 7q, is uniquely identifiable fron®z,, 4, ); for instance, in thé, vs ¢, scenario,
the conditional probabilitY (v, , (6,),v;2(6:))|(X.1,x:2) (1, +1)[(1/4, 3/4)) will distin-
guishry, fromm,, and this can be calculated frdhz,, ¢,). The crucial element of the
analysis below is determining the appropriate valué td uniquely identifyry, from
Pz, (6,) in general As we will seek = d (the VC dimension) islwayssufficient, a
key insight for the results that follow. We will also see tisisot the case for ang < d.

To be specific, in order to transfer knowledge from one task¢onext, we use a
few labeled data points from each task to gain informaticoua, . For this, for each
task¢, we simply take the first data points in theZ, (6, ) sequence. That is, we request
the labels

Yi1(0x), Yo (0x), - - -, Yia(6y)

and use the point§,,(6.,) to update an estimate 6f.

The following result shows that this technique does pro@dm®nsistent estimator
of 7y, . Again, note that this result is not a straightforward agggion of the standard
approach to consistent estimation, since the observatiemsare not thé;, variables
themselves, but rather a number of tg(6, ) values. The key insight in this result is
thatm, is uniquely identifiecby the joint distributionPz, , 4, ) over the firstd labeled
examples; later, we prove thisnstnecessarily true faP z,, (4, for valuesk < d. This
identifiability result is stated below in Corollary 1; as wisalss in Section 3.1, there
is a fairly simple direct proof of this result. However, farrqurposes, we will actually
require the stronger condition that aflyc © with small [|Pz,, ) — Pz, (,)| also
has small|my — 7, ||. This stronger requirement adds to the complexity of thefsro
The results in this section are purely concerned with medadiistances in the space of
IPz,,(9) distributions to the corresponding distances in the spheg distributions; as
such, they are not specific to active learning or other learprotocols, and hence are
of independent interest.

Theorem 1. There exists an estimatdiy, = 07(Z14(6,), ..., Zra(6,)), and func-
tionsR : Ny x (0,1] — [0,00) andd : Ny x (0, 1] — [0, 1], such that for anyx > 0,
Tlim R(T,«a) = Tlim 0(T,«) = 0 and for anyT’ € Ny andd, € O,

— 00 — 00

P (||7rém — 7. || > R(T, a)) < §(T,a) < a.

One important detail to note, for our purposes, is tRéf, o) is independent from
0., so that the value aR(T', o) can be calculated and used within a learning algorithm.
The proof of Theorem 1 will be established via the followirggsence of lemmas.
Lemma 1 relates distances in the space of priors to distancé® space of distri-
butions on the full data sets. In turn, Lemma 2 relates thégtarttes to distances in
the space of distributions on a finite number of examples fiteendata sets. Lemma 3
then relates the distances between distributions on arte finimber of examples to
distances between distributions drexamples. Finally, Lemma 4 presents a standard
result on the existence of a converging estimator, in thse éar the distribution od ex-
amples, for totally bounded families of distributions. dirg these relations back, they
relate convergence of the estimator for the distributiod ekamples to convergence of
the corresponding estimator for the prior itself.
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Lemma 1. For any6, ¢’ € © andt € N,

7o — mor || = Pz, 0) — Pz, 0)-

Proof. Fix 0,0’ € ©,t € N. LetX = {X}1, X4o,...}, Y(0) = {Ya ( ), Y (0), ...},
and fork € NletX, = {Xu,..., X} andY,(0) = {Ya(0),...,Yw(0)}. For
h e C, letex(h) = {(Xu, M Xn)), (X2, h(Xe2)), ...}

Forh,g € C, definepx(h,g) = lim %Zl 1 Jl[ (Xti) # g(Xz)] (if the limit

exists), antpy, (h, g) = 1 Zl L1 Xn) # g(X4;)]. Note that sinc& has finite VC
dimension, so does the collection of s¢fs: : h(z) # g(x)} : h,g € C}, so that
the uniform strong law of large numbers implies that withkability one,Vh, g € C,
px(h, g) exists and hagx(h, g) = p(h, g) [Vap82].

Consider any, ¢’ € ©, and anyA € B. Then sinceB is the Borels-algebra
induced byp, anyh ¢ A hasVg € A, p(h,g) > 0. Thus, if px(h, g) = p(h, g) for all
h,g € C, thenvh ¢ A,

Vg € A, px(h,g) = p(h,g) >0 = Vg € A,cx(h) # cx(9) = cx(h) & cx(A).
This impliese ' (cx(A)) = A. Under these conditions,
Pz, () x(cx(A)) = mo(cx ' (cx(A))) = mo(A),

and similarly for6’.

Any measurable set' for the range ofZ,(6) can be expressed &5 = {cz(h) :
(h,z) € C'} for some appropriate’ € B® BS. LettingCL = {h : (h,z) € C'}, we
have

P2o)(©) = [ (e (es(C)P2(do) = [ ma(CLPL(de) = Piaz a0 (C').
Likewise, this reasoning holds féf. Then

IPz,0) — Pz, ol = IPnz, x) — ll

t9’

— s / (m0(CL) — mpr(CL)) P (d2)
C'eBRBS
< / sup [m9(A) — g (A)|Px(dz) = [[mo — 70|
AeB

Sinceh;, andX are independent, fo € B, mp(A) = Ppr, (A) = Ppy, (A)Px(X>) =
Pz, x) (A x X°°). Analogous reasoning holds faf,, . Thus, we have

7o — morl| = I P(nx
<P, x

)( X XF) =Pz, 5 (- x X))
— Py,

16’7

. X - 0l = Pz, — Pz, 0]l

Combining the above, we hay@z, () — Pz, (o) || = ||m9 — 7o/ ||. O
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Lemma 2. There exists a sequeneg = o(1) such thatvt, k € N, V0,0’ € O,
IPz0) = Pzu(onll < llmo — morll < [Pz,,00) — Pzpon)ll + 7k
Proof. The left inequality follows from Lemma 1 and the basic deimitof || - ||, since
Pz,.0)(-) = Pz, 0)(- ¥ (X x {=1,+1})>), so that
IPz.6) = Pzionl < IPz,6) — Pzl = Mo — mor|.

The remainder of this proof focuses on the right inequdhity.6, 6’ € O, lety > 0,
and letB C (X x {—1,+1})> be a measurable set such that

7o — morl| = Pz, 0) — Pz, 0| <Pz, (0)(B) — Pz,(6)(B) +7-

Let A be the collection of all measurable subsetg&fx {—1,+41})> representable
in the formA” x (X x {—1,+1})>, for some measurabl¢’ C (X x {—1,+1})* and
somek € N. In particular, sinced is an algebra that generates the produetigebra,
Caratleodory’s extension theorem [Sch95] implies that thereteiggoint sets{ A; };cn
in Asuch thatB C | J,. A; and

Pz,0)(B) = Pz,01(B) < Y Pz (Ai) = Y Pz, o) (A
€N €N

Additionally, as these sums are bounded, there mustexisN such that

szt(a)(z‘li) <y+ Z]P’zt(e) (Ai),

ieN i=1
so that
D Pz,0)(Ai) = > Pz 0n(Ai) < v+ Z Pz,0)(A Z Pz, (A
i€EN €N i=1

=7+ Pz, (U Ai) Pz, (U Ai) .
=1

i=1

As !, A; € A, there exists’ € N and measurabld’ C (X x {—1,+1})* such
that{J;_, A; = A’ x (X x {—1,+1})>, and therefore

Pz, ) (U Ai) Pz, o (U 4 ) Pz, 0)(A) =Pz, o0 (A")
i=1

S|Pz, 0 = Pz,000 < Im [Pz, 0) = Pz,09)l

In summary, we havéry — mo/|| < limg o0 [Pz, (9) — Pz, (01|l + 37. Since this is
true for an arbitraryy > 0, taking the limit asy — 0 implies

I —mo|| < lim [Pz, 6) — Pz, 01
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In particular, this implies there exists a sequeng@, ¢’) = o(1) such that
Vk €N, [mo — mor || < Pz,0) — Pzoionll + (6, 0").

This would suffice to establish the upper bound if we werevalig r;, to depend
on the particula® and §’. However, to guarantee the same rates of convergence for
all pairs of parameters requires an additional argumergci8pally, lety > 0 and let
©,, denote a minimal subset & such thatvd < ©, 30, € O, s.t. |1y — 7, || <
~: that is, a minimakhy-cover. Sincel©®,| < oo by assumption, defining,(vy) =
maxg g-co. Tk(0,0'), we havery(y) = o(1). Furthermore, for any, 0’ € O, letting
97 = argmingﬁeew ||7T9 — ﬂ'g//” and&fy = a,l"ngiIlg//E@w Hﬂ'@/ — 7T9//||, we have (by
triangle inequalities)

|mo — mor[| < |lmo — o, || + l|mo, — Tor || + [ 7o; — 7o ||
<2y +71(7) + Pzy0,) — Pzigor Il

By triangle inequalities and the left inequality from theni@a statement (established
above), we also have

IPz..0,) — Pzonioy)ll

S Pz 0,) = Pzio) | + 1Pz, 0) = Pzoionll + 1Pz 00) — Pzoior)

< |lmo, = 7ol + IPz,.(0) = Pzt | + lImor — 7y ||

<27+ Pz, 0) = Pzo(on -

Defining r, = inf.,~o (4y + 7(7)), we have the right inequality of the lemma state-
ment, and sincey () = o(1) for eachy > 0, we havery, = o(1). O

Lemma 3. Vt,k € N, V0,0 € O,

IP2,00) = Payeonl < 4+ 225448\ [Pz, 5) — Pz 00|

Proof. Fix anyt € N, and letX = {X;1, Xy2,...} andY(0) = {Y1(0), Yi2(0),.. .},
and fork € NletXy = {X1,..., X} andYi () = {Yi(0), ..., Y (0)}.
If k < d, thenPz,, (9)(-) = Pz,,0)(- x (X x {1, +1})47*), so that

IPz,,.0) — Pz,. 00 < IPz,.00) — Pz,

and therefore the result trivially holds.

Now supposek > d. For a sequence and/ C N, we will use the notation
zr = {z : i € I}. Note that, for anyk > d andz® € X%, there is a sequence
y(z*) € {—1,+1}* such that nch € C hash(z*) = y(z*) (i.e.,Vh € C, Ji < k s.t.
h(z¥) # 5;(z*)). Now supposé > d and take as an inductive hypothesis that there is a
measurable set* C X’ of probability one with the property thatt € A*, for every
finite I C Nwith |I] > d, for everyy € {—1,+1}>° with ||5; — §(Z;)|1/2 < k -1,

Py, oy, W11Z1) — Py, o1y %, (F1]Z1))|

<2 o, o P (5170) — Brywnix, (8120)]
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This clearly holds fof|5j; —4(Z1)||1/2 = 0, SincePy, (9%, (¥1]71) = 0 in this case, so
this will serve as our base case in the inductive proof. Nexinductively extend this
to the valuek > 0. Specifically, letd;,_, be theA™ guaranteed to exist by the inductive
hypothesis, and fix any € A*, § € {—1,+1}°, and finitel ¢ N with || > d and
lgr — 9(zr)|l1/2 = k. Leti € I be such thay; # 7;(Z;), and lety’ € {—1,+1} have
y; = y; for everyj # i, andy; = —y;. Then

Py, )5, (01121) = Py, 1y 0) %0y O3 |20 y) — Pygoy, (0712r), (1)

and similarly for6’. By the inductive hypothesis, this means
Py, 0y, (FrlZ1) — Py, oy, (9117 1))]

< ’PYI\Mw)mI\m @ engy) - E”YI\{i}w')\xI\{i}(ﬂf\{i}ﬁf\{i})’

+ [Py, oyx, (@11E1) — Py, oryx, (§7121)]

<2k P Py, @)%, (5°1ZD) = Py, 0%, (7°17D)] -

Therefore, by the principle of induction, this inequalityldks for allk > d, for every
z e A*, ye{-1,+1}°, and finitel C N, whereA* hasD>-probability one.
In particular, we have that fat, ¢ € ©,

||]P)Ztk(9) - ]P)Ztk(e’) ||

<2'E { max Py, o)1 (7" 1Xk) = Py, (1)1, (ykIXk)|]

ghe{—1,+
< 2%FRE P 74Xp) — Py, oryx, (%X
= L}de{_17+1I}{}ia7g€{17.__7k}d| Ya(0) x4 (§°1XD) V(0154 (5°] D)f
< 2%k Z Z E [|Py,0)x. (771XD) — Py, 0, (541X D)]] -

gle{—1,+1}4 De{1,...,k}d
Exchangeability implies this is at most

26 S E[|Praoma (54%a) = Pragon i, (5914 ]
gle{—1,+1}4 De{1,...,.k}¢

< 2k+dpd E [|P 74Xa) — Py, 0%, (54Xa)|] -
< e [P0y 154 (591%a) — Py (oryx, (5°1%Xa) ]

To complete the proof, we need only bound this value by anapiate function of
IPz,.0) — Pz,,06 . Toward this end, suppose

E H]P’Yd(e)\xd (571Xq) — Pyd(ef)\xd(§d|xd)|] > e,
for somej¢. Then either

P (Py,(0)x. (571Xa) — Py, (541Xa) > €/4) > /4,

or
P (Py, 01y 52 (5%1Xa) — Py, 0)x, (541Xa) > €/4) > /4.
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For which ever is the case, le. denote the corresponding measurable subséatiof
of probability at least /4. Then

IPz.0) = Pz, l| Z [Pz,u00) (Ac X {5}) = P40 (Ac x {5})]
> (e/4)Px,(A:) > %/16.

Therefore,

E [Py, 0y, (5%1Xa) — Py oz, 70Xa)|] < 4\/||P2m(9) =Pz,

which means

92hk+dpd E[|P i%Xy) — Py o0 71X
Qdeg?ﬁl}d H Yd(e)|xd(y| d) Yd(G)\Xd(y| d)H

<4 22k+dkd\/||sz(9) =Pz 0
0

The following lemma is a standard result on the existenceoaf/erging density
estimators for totally bounded families of distributiof®r our purposes, the details
of the estimator achieving this guarantee are not partisuilmportant, as we will ap-
ply the result as stated. For completeness, we describdiaybar estimator that does
achieve the guarantee after the lemma.

Lemmad4. [Yat85,DL0O1] LetP = {py : 6 € O} be a totally bounded family of
probability measures on a measurable spéack F), and let{W;(0) },;en gco be 2-
valued random variables such th&tV;(0)}:cy are i.i.d. py for eachd € ©. Then
there exists an estimatd¥yy, = 67 (W1 (6, ), ..., Wr(6,)) and functionsRp : Ny x
(0,1] = [0,00) anddp : Ny x (0,1] — [0, 1] such thatVee > 0, limp_, 0o Rp(T, ) =
limr_, o dp(T, ) = 0, andvh, € © andT € Ny,

P (Ips,,, — po.| > Rp(T,a)) < dp(T,0) < a.

In many contexts (though certainly not all), even a simplgimam likelihood esti-
mator suffices to supply this guarantee. However, to deesalts under the more gen-
eral conditions we consider here, we require a more invotwethod: specifically, the
minimum distance skeleton estimate explored by [Yat85, )L 8pecified as follows.
Let@. C © be a minimal-cardinality-cover of@: that is, a minimal-cardinality subset
of © such that/d € ©, 36, € O. with ||py. —pel|| < €. Foreachy, ¢’ € O, let Ay o be
asetinF maximizingpg(Ag,¢)—per (As,er), andletd, = {Ag g : 0,0' € O}, known
as aYatracos classFinally, for A € F, letpr(A) = 7= S, 1.4(W,(6,)). The min-
imum distance skeleton estimatefisy, = argmingeg_sup 4c 4, [po(A4) — pr(4)|.
The reader is referred to [Yat85, DL0O1] for a proof that thisthod satisfies the guar-
antee of Lemma 4. In particular, ify is a sequence decreasing(at a rate such
that7-'log(|©.,|) — 0, andér is a sequence bounded byand decreasing t0
with 7 = w(er + /T 11og(|O.,|)), then the result of [Yat85, DLO1], combined
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with Markov’s inequality, implies that to satisfy the cotidh of Lemma 4, it suffices
to take Rp (T, o) = 67" (35T + /8T TTog(2[6., 2V 8)) anddp (T, a) = dr. For

instancegr = 2inf {s >0:log(|6:]) < \/T} andor = a A (yer +T~1/8) suffice.
We are now ready for the proof of Theorem 1

Proof (Theorem 1)Fore > 0, let ©. C © be a finite subset such th&t € O,
30. € O, with |mg. —mg|| < ¢; this exists by the assumption tHat, : 6 € O} is totally
bounded. Then Lemma 2 implies that € ©, 30. € O, with ||Pz,, .y — Pz, <
9. — moll < €, SO that{Pz, 5. : 0. € O.} is a finitee-cover of {Pz,,g) : 0 €
6}. Therefore,{Pz,,4) : 0 € O} is totally bounded. Lemma 4 then implies that
there exists an estimatég, = 07 (Z14(0,), . .., Zra(0,)) and functionsky : Ny x
(0,1] = [0,00) anddg : Ny x (0,1] — [0, 1] such thatvae > 0, limp_, o R4(T, ) =
limr_, o d4(T, ) = 0, andvl, € © andT € Ny,

P (H]P)Z(T+1)d(éT9*)‘éT0* o PZ(THM(@*)H > Ra(T, a)) <0y(Ta) <. (2)

Defining
R(T, ) = min (rk 4. 92ktdpd SR a)) :

andd(T, «) = 64(T, ), and combining (2) with Lemmas 3 and 2, we have
P (||7T§T9 — .|| > R(T, a)) < §(T,a) < a.

Finally, note thatlim r, = 0and lim R4(7,«) = 0imply that lim R(T,«) = 0.
k—oc0 T—o00 T—o0 O

3.1 Identifiability from d Points

Inspection of the above proof reveals that the assumptiantkie family of priors is
totally bounded is required only to establish the estinitgtaind bounded minimax rate
guarantees. In particular, the implied identifiability dd@ion is, in fact,alwayssatisfied,
as stated formally in the following corollary.

Corollary 1. For any priorsmy, mo onC, if A} ~ m;, X;,..., X4 are i.i.d. D inde-
pendent fromh}, and Z, (i) = {(X1, h (X1)), ..., (Xa, hi (X))} fori € {1,2}, then
PZd(l) = Pzd(g) — T = T2.

Proof. The described scenario is a special case of our generaigettith© = {1, 2},
inwhich caséPz, ;) = Pz, ;). Thus, ifPz, 1) = Pz,(2), then Lemma 3 and Lemma 2
combine to imply thatim; — || < infrey 7 = 0. i

Since Corollary 1 is interesting in itself, it is worth naginhat there is a simple
direct proof of this result. Specifically, by an inductiveyament based on the obser-
vation (1) from the proof of Lemma 3, we quickly find that foryah € N, Pz, 4,)
is identifiable fromPz, , ¢, ). Then we merely recall th@z, 4, is always identifiable
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from {Pz,, (s,) : k € N} [Kal02], and the argument from the proof of Lemma 1 shows
g, is identifiable fromPz, (g, ).

It is natural to wonder whether identifiability af, fromPz,, (4, remains true for
some smaller number of points< d, so that we might hope to create an estimator for
7, based on an estimator férz,, (5, ). However, one can show thdtis actually the
minimumpossible value for which this remains true for Blland all families of priors.
Formally, we have the following result, holding for every \¢{@ssC.

Theorem 2. There exists a data distributiof? and priorsm, 7o on C such that, for
any positive integek < d, if h} ~ m;, X4,..., X} are i.i.d. D independent fromk},
andZ (i) = {(X1,h; (X1)), ..., (Xk, hj (X))} fori € {1,2}, thenPy, 1) = P, (9
butm # 7.

Proof. Note that it suffices to show this is the caseKoe d—1, since any smallek is a
marginal of this case. Consider a shatterable set of pSipts {x1, z2,..., 24} C X,
and letD be uniform onS,. Let C[S,] be any2¢ classifiers inC that shattetS,. Let
be the uniform distribution of©[S]. Now letS;—1 = {z1,...,24-1} andC[S,_1] C
C[Sq] shatterS,_; with the property thath € C[Sy_1], h(zq) = H?;} h(zj). Letm,
be uniform onC[S,_1]. Now for anyk < d and distinctindices, ..., t; € {1,...,d},
{hi(2y,), ..., hi(zy,)} is distributed uniformly in{—1,+1}* for bothi € {1,2}.
This impliesIP’Zdﬂ(1)‘Xl7“_,Xd71 = PZJ71(2)|X1,.--,X<171' which implies]P’del(l) =
Pz, . (2)- Howeverm is clearly different fromr,, since even the sizes of the supports
are different. O

4 Transfer Learning

In this section, we look at an application of the techniquesifthe previous section
to transfer learning. Like the previous section, the resulthis section are general, in
that they are applicable to a variety of learning protodolsiuding passive supervised
learning, passive semi-supervised learning, active legyrand learning with certain
general types of data-dependent interaction (see [HanB8f)simplicity, we restrict
our discussion to the active learning formulation; the agaus results for these other
learning protocols follow by similar reasoning.

The result of the previous section implies that an estimédord, based ond-
dimensional joint distributions is consistent with a boeddate of convergencg.
Therefore, for certain prior-dependent learning algonih their behavior should be
similar undemém* to their behavior undery, .

To make this concrete, we formalize this in the active leagrprotocol as fol-
lows. A prior-dependentctive learning algorithmA takes as inputs > 0, D, and
a distribution7 on C. It initially has access toX,, X, ... i.i.d. D; it then selects
an indexi; to request the label for, receivd§, = h*(X;,), then selects another
index i, etc., until it eventually terminates and returns a classifdenote byZ =
{(X1,h*(X1)), (X2, h*(X2)),...}. To becorrect A must guarantee that fér ~ ,
Ve > 0,E [p(A(e, D, m), h*)] < . We define the random variablé(A, f,e, D, ) as
the number of label request$ makes before terminating, when givenD, andr as
inputs, and wheh* = f is the value of the target function; we make the particulaa da
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sequenceZ the algorithm is run with implicit in this notation. We willebinterested in
theexpected sample complexBY’'(A,e, D, w) = E[N(A, h*, e, D, 7)].

We propose the following algorithm . for transfer learning, defined in terms of
a given correct prior-dependent active learning algoritAm We discuss interesting
specifications fot4,, in the next section, but for now the only assumption we regjuir
is that for any= > 0 andD, there is a valug. < oo such that for everyr and f €
C, N(A,, f,e,D,m) < s.; this is a very mild requirement, and any active learning
algorithm can be converted into one that satisfies this witlsgnificantly increasing
its sample complexities for the priors it is already good[&iHV10]. We additionally
denote bym. = 1% 1n (24), andB(0,v) = {0 € O : ||mg — 7o/ || < 7}

Algorithm 1 A, (T, £): an algorithm for transfer learning, specified in terms oéaeyic
subroutineA,.
fort=1,2,...,7do
Request label¥?1 (04), . .., Yza(0x)
if R(t —1,¢/2) > ¢/8 then
Request label¥}qy1)(0x), . . -, Yim. (0x)
Takeh; as anyh € C s.t.Vi < m., h(Xy) = Yii(6y)

else
Letfy, € B (é(t,1)9*7R(t — 1,5/2)) be such that
SC(Aa,e/4,D,mg,, ) < min SC(Aqa,e/4,D,mg) + 1/t

0€B(01_1y0, R(t—1,6/2))
RunA,(e/4,D, wém*) with data sequencg; (6., ) and leth; be the classifier it returns
end if
end for

Recall thaté(t_l)g*, which is defined by Theorem 1, is a function of the labels
requested on previous rounds of the algorithi — 1,/2) is also defined by Theo-
rem 1, and has no dependence on the data (6¢pThe other quantities referred to in
Algorithm 1 are defined just prior to Algorithm 1. We suppadse &lgorithm has access
to the valueSC(A,,e/4,D, ) for everyd € ©. This can sometimes be calculated
analytically as a function o, or else can typically be approximated via Monte Carlo
simulations. In fact, the result below holds everbif’ is merely an accessibigpper
boundon the expected sample complexity.

Theorem 3. The algorithmA,, is correct. Furthermore, ib7(¢) is the total number of
label requests made b4, (7, <), thenlim sup w < SC(A,,e/4,D,mp,) + d.

T—o0

The implication of Theorem 3 is that, via transfer learniih@gs possible to achieve
almost thesamelong-run average sample complexity as would be achievdlileei
target’s prior distribution wer&nownto the learner. We will see in the next section
that this is sometimes significantly better than the singslk sample complexity. As
mentioned, results of this type for transfer learning haewipusly appeared whed,,
is a passive learning method [Bax97]; however, to our kndgkge this is the first such
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result where the asymptotics concern only the number ofilegtasks, not the number
of samples per task; this is also the first result we know dfitianmediately applicable
to more sophisticated learning protocols such as activeilez

The algorithmA.. is stated in a simple way here, but Theorem 3 can be improved
with some obvious modifications td... The extra “d” in Theorem 3 is not actually
necessary, since we could stop updating the estinfaor(and the corresponding
value) after some(T") number of rounds (e.gy/T), in which case we would not need
to request;i (64), . .., Y:q(0,) for t larger than this, and the extda o(T') number of
labeled examples vanishes in the averag& as oo. Additionally, thee/4 term can
easily be improved to any value arbitrarily closest@even(1 — o(1))e) by runningA,
with argument — 2R(t — 1,¢/2) — 6(t — 1,¢/2) instead of /4, and using this value
in the SC calculations in the definition cifw* as well. In fact, for many algorithmd,
(e.g., withSC(A,, e, D, mp, ) continuous ire), combining the above two tricks yields
lim sup w < SC(Aq,e,D,mg,).

T— o0
Returning to our motivational remarks from Subsection &d can ask how many

extralabeled examples are required from each learning problegaito the benefits
of transfer learning. This question essentially concehesinitial step of requesting
the labelsY;; (64), . .., Yza(0). Clearly this indicates that from each learning problem,
we need at most extra labeled examples to gain the benefits of transfer. Véheth
thesed label requests are indeextra depends on the particular learning algorithm
A,; that is, in some cases (e.g., certain passive learningidigs), A, may itself
use these initiall labels for learning, so that in these cases the benefits néfarm
learning are essentially gained dsyaproductof the learning processes, and essentially
no additional labeling effort need be expended to gain thesefits. On the other hand,
for some active learning algorithms, we may expect thatagtlsome of these initial

d labels would not be requested by the algorithm, so that sodna beling effort is
expended to gain the benefits of transfer in these cases.

One drawback of our approach is that we require the datahkiistbn D to remain
fixed across tasks (this contrasts with [Bax97]). Howeveshould be possible to relax
this requirement in the active learning setting in many saBer instance, it = R¥,
then as long as we are guaranteed that the distrib@®iofor each learning task has
a strictly positive density function, it should be possitieuse rejection sampling for
each task to guarantee thHejueried examples from each task have approximately the
same distribution across tasks. This is all we require folconsistency results cﬁyg*
(i.e., it was not important that thé samples came from the true distributiéh only
that they came from a distribution under whiglis a metric). We leave the details of
such an adaptive method for future consideration.

4.1 Proof of Theorem 3

Recall that, to establish correctness, we must showthat 7', E [p (Bt, h;‘e*)} <e,
regardless of the value 6f € ©. Fixany6, € © andt < T.If R(t — 1,¢/2) > ¢/8,
then classic results from passive learning indicate ]Eh%;ﬁ (ﬁt, h;“g*)} < ¢ [Vap82].
Otherwise, by Theorem 1, with probability at ledste /2, we have|mg, T e, I <
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R(t — 1,e/2). On this event, ifR(t — 1,e/2) < /8, then by a triangle inequality
7, — mo. || < 2R(t —1,6/2) < e/4. Thus,

E [p (ﬁt,h;}*)} <E [E[ (ht, " ) 010, } 1 [Hwéw* || < 5/4H +e/2. (3)

Ford e O, leth,y denote the classifier that would be returneddy(e /4, D, 6,0 )

when run with data sequen¢€eX 1, by (X11)), (X2, hjp(Xi2)), . . .}. Note that for any
0 € ©, any measurable functiofi : C — [0,1] has

E [F(hip,)] < E[F(hip)] + lImo — o, |- (4)
In particular, supposingmg,, — o, || < £/4, we have

o i) 5] = s (. 15.) )

<E [ (. iz, ) ] i, =l < e et =22

Combined with (3), this implie& [p (f}t, h;*e*)] <e.

We establish the sample complexity claim as follows. Fiterthat convergence
of R(t — 1,¢/2) implies thatlimy ., 3°,_, 1 [R(t,e/2) > £/8] /T = 0, and that the
number of labels used for a valuetofvith R(t — 1,¢/2) > /8 is bounded by a finite
functionm, of . Therefore,

Jim sup 27 ()]

T—o0 T

< d—i—hmsupZE [N Aq, hig,,€/4,D, g, )} 1[R(t—1,e/2) <e/8]/T

T—><>ot1

< d—l—hmsupZE[ (Aa, hip, . €/4,D, 75, )} JT. (5)

T—)ootl

By the definition ofR, 6 from Theorem 1, we have

lim = ZE [ (Aa By, £/4,D, w5, )1 [||7ré(t71)e* — .|| > R(t - 1,5/2)H

T—oo T

Shmfz%mm%w || > R(t - 1,2/2))

1
§85/4Th_r)r;of E d(t—1,e/2)=0.
t=1

Combined with (5), this implies
E[S7(e)]
T

lim sup <d+

T—o0

lim sup — ZE[ (Aa, hig,,e/4,D,mg,, )1

T—o0

17501y, = 0.1l < Rt = 1,2/2)] .
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Foranyt < T, onthe evennwé(t_l)g —mo, || < R(t—1,¢/2), we have (by the property
(4) and a triangle inequality)

E[N(Aa, hiy, 2/4,D, 75, )|fro. |

<E [N(Aa, W, /4D, )

étg*} FOR(E—1,6/2)
—sc (,4&,5/4,17,7%*) Y 2R(t—1,¢/2)
< SC(Auy2/4,D,mp) + 1/t + 2R(E — 1,2/2),

where the last inequality follows by definition 6f,, . Therefore,

lim sup L[ST (e)]
T—o0 T

T
1
< d+ limsup — a0, €/4,D,mg, )+ 1/t +2R(t—1,/2
d+1 T SC (A 4,D R

T—o0 =1

= d+ SC (Aa,e/4,D,mp.).

5 Application to Self-Verifying Active Learning

In this section, we examine a specific sample complexity ajuae achievable by ac-
tive learning, when combined with the above transfer leaymrocedure. As men-
tioned, [BHV10] found that there is often a significant gajmeen the sample com-
plexities achievable by good active learning algorithmgeneral and the sample com-
plexities achievable by active learning algorithms thantiselves adaptively determine
how many label requests to make for any given problem (refeto asself-verifyingac-
tive learning algorithms). Specifically, while the formemalwaysbe strictly superior
to the sample complexities achievable by passive leartimgge are simple examples
where this is not the case for self-verifying active leagnafgorithms.

We should note, however, that all of the above consideratioere proven for a
learning scenario in which the target concept is considareshstant, and no informa-
tion about the process that generates this concept is blaitathe learner. Thus, there
is a natural question of whether, in the context of the tramnsarning setting described
above, we might be able to close this gap, so that self-vagfgctive learning algo-
rithms are able to achieve the same type of guaranteedistpobvements over passive
learning that are achievable by their non-self-verifyiogiterparts.

The considerations of the previous section indicate thiatdbestion is in some
sense reducible to an analogous questiopfiar-dependenself-verifying active learn-
ing algorithms. The quantityC(A,, ¢, /4, D, mp, ) then essentially characterizes the
achievable average sample complexity among the sequenaskst We will therefore
focus in this section on characterizing this quantity, fqraaticularly effective active
learning algorithm4,,.
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Throughout this section, we suppose the active learningrigitgn A, is run with
the sequence of examplgs= {(X1, h*(X1)), (X2, h*(X2)),...}, whereX;, Xs, ...
are i.i.d.D, andh* ~ my, .

5.1 Related Work on Prior-dependent Learning

Prior-dependent learning algorithms have been studieehdin the context of pas-
sive learning. In particular, [HKS92] found that for any cept space of finite VC
dimensiond, for any prior and data distributio)(d/<) random labeled examples are
sufficient for the expected error rate of the Bayes clasgifieduced under the poste-
rior distribution to be at most. Furthermore, it is easy to construct learning problems
for which there is an2(1/¢) lower bound on the number of random labeled examples
required to achieve expected error rate at nagdity any passive learning algorithm;
for instance, the problem of learning threshold classifver), 1] under a uniform data
distribution and uniform prior is one such scenario.

In contrast, a relatively small amount is known about pdependenactivelearn-
ing. [FSST97] analyze th@uery By Committealgorithm in this context, and find that
if a certain information gain quantity for the points regieekby the algorithm is lower-
bounded by a value, then the algorithm requires onl9((d/g) log(1/¢)) labels to
achieve expected error rate at mestn particular, they show that this is satisfied for
constanty for linear separators under a near-uniform prior, and a-ngdiorm data dis-
tribution over the unit sphere. This represents a markedawgment over the results
of [HKS92] for passive learning, and since the Query by Cottgaialgorithm is self-
verifying, this result is highly relevant to the presentission. However, the condition
that the information gains be lower-bounded by a constaquiig restrictive, and many
interesting learning problems are precluded by this requént. Furthermore, there
exist learning problems (with finite VC dimension) for whittte Query by Commit-
tee algorithm makes an expected number of label requesteexg(2(1/<). To date,
there has not been a general analysis of how the valgecah behave as a function of
g, though such an analysis would likely be quite interesting.

In the present section, we take a more general approach tguésion of prior-
dependent active learning. We are interested in the broestignm of whether access to
the prior bridges the gap between the sample complexitgarhing and the sample
complexity of learningwith verification Specifically, we ask the following question.

Can a prior-dependent self-terminating active learningaithm for a concept
class of finite VC dimension always achieve expected erterabmost usingo(1/<)
label requests?

5.2 Prior-Independent Learning Algorithms

One may initially wonder whether we could achieve #iis/<) result merely by calcu-
lating the expected sample complexity of some prior-indejeat method, thus preclud-
ing the need for novel algorithms. Formally, we say an athariA is prior-independent
if the conditional distribution of the queries and returhueaof A(e, D, 7) given Z is
functionally independent of. Indeed, for somé& andD, it is known that therere
prior-independent active learning algorithmasthat haveE[N (A, h*, e, D, m)|h*] =
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o(1/¢) (always); for instance, threshold classifiers have thiperty under anyD, ho-
mogeneous linear separators have this property underaromii? on the unit sphere in
k dimensions, and intervals with positive width ah= [0, 1] have this property under
D = Uniform([0, 1]) (see e.g., [Das05]). It is straightforward to show that amghs
A will also haveSC(A,e,D,m) = o(1/¢) for everyr. In particular, the law of total
expectation and the dominated convergence theorem imply

lim eSC(A,e,D, ) = lim eE[E[N (A, h*, e, D, 7)|h*]]
e—0 e—0
= E [lim eE[N (A, h*, ¢, D, w)|h*]} = 0.
e—0

In these cases, we can think € as a kind ofaverage-casanalysis of these algo-
rithms. However, as we discuss next, there are also rfieanyd D for which there iso
prior-independent algorithm achievingl /e) sample complexity forll priors. Thus,
any general result oo(1/¢) expected sample complexity fardependent algorithms
would indicate that there is a real advantage to having adcethe prior, beyond the
apparensmoothingeffects of an average-case analysis.

As an example of a problem where no prior-independent selfying algorithm
can achiever(1/¢) sample complexity, conside¥ = [0,1], D = Uniform(]0, 1]),
andC as the concept space iterval classifiersC = {ﬂi,b) :0<a<b< 1,

where ]lab) (x) = +11if x € (a,b) and —1 otherwise. Note that because we al-
low a = b, there is a classifieh . € C labeling all of X negative. Foil0 < a <
b < 1, let (4 denote the prior Witm(a,b)({ﬂi7b)}) = 1. We now show any cor-
rect prior-independent algorithm h&x(1/¢) sample complexity forr ¢, following
a technique of [BHV10]. Consider ary€ (0,1/144) and any prior-independent ac-
tive learning algorithmA with SC(A,e,D,7(0,0)) < s = ﬁ. Then defineH. =
{(12ie,12(i + 1)e) s i € {0,1,..., | 1522 | } ). Letfz(a’b) denote the classifier returned
by A(e, D, -) when queries are answered with = Jli’b), for0 <a <b<1,andlet
R4 denote the set of examplés, i) for which A(e, D, -) requests labels (including
theiry = h*(z) labels). The point of this construction is that, with suchrea num-
ber of queries, for many of th@, b) € H., the algorithm must behave identically for
h* =1F,, asforh* = 17 (i.e., Rias) = Ro,0), and hencé, ;) = h(o0)). These
T(a,p) Priors will then witness the fact that is not a correct self-verifying algorithm.
Formally,

e B [D(x e (@) # 10, (w))}

1 .
2, geng E[D( : (@) # 13, (@)]

_E S Dl by (@) £ 15, @)

H,
| He | | (a:b)€H::R(a,0)=R(0,0)

Y

v
=

! E Z (125 — min{D(x : iAz(,Lb)(x) # —1), 125}) . (6)

L(a,b)EHR(q4,b)=R(0,0)
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Since the summation in (6) is restricted(tg b) with R, ;) = R(o,0), theseg(a, b) must
also havél, 4 = h(o,0), SO that (6) equals

1

Ak .

3 (125 — min{D(x : ho(x) # —1), 125})

(a,b)€H::R(a,5)=R(0,0)

Furthermore, for a give® sequence, the onlfn,b) € H. with R, ;) # R, are
those for which soméz, —1) € R hasz € (a,b); since the(a,b) € H. are
disjoint, the above summation has at ledét| — |R( )| elements in it. Thus, (7) is at
least

B [(|He| — min{|Ro,0)|, | Hc|}
|H.|

) (125 — min{D(x : il(o,o) (z) # -1), 126})]

>E {1 [|R0.0)] < 3s] 1 [D(m ooy (z) # —1) < 65] ('HTH_|35> (12¢ — 65)}

> 3cP (|R(0,0)| <35, D(x : hoo(x) £ —1) < 66) . @)
By Markov’s inequality,

P (IR0l > 3s) <E[R0ll/(3s) = SC(A.&, D, m0,0))/(35) < 1/3,

andP (D(:c .oy (z) # —1) > 65) <E [D(gc o0y () # —1)} /(6¢), and if A is

a correct self-verifying algorithm, thei {D(m : i}(o,o) (x) # —1)] /(6e) < 1/6. Thus,

by a union bound, (8) is at lea3t(1 — 1/3 —1/6) = (3/2)e > ¢. Therefore A cannot
be a correct self-verifying learning algorithm.

5.3 Prior-Dependent Learning: An Example

We begin our exploration of-dependent active learning with a concrete example,
namely interval classifiers under a uniform data densitydsbtitrary prior, to illus-
trate how access to the prior can make a difference in the Isatcomplexity. Specif-
ically, considerX = [0,1], D uniform on|0, 1], and the concept spaée of inter-

val classifiers specified in the previous subsection. Foh etassifierh € C, define
w(h) = D(z : h(z) = +1) (the width of the intervah). Note that because we allow
a = bin the definition ofC, there is a classifigi_ € C with w(h_) = 0.

For simplicity, in this example (only) we will suppose thgalithm may request
the label ofany point in X, not just those in the sequen¢&(; }; the same ideas can
easily be adapted to the setting where queries are resttx{eX; }. Consider an active
learning algorithm that sequentially requests the labé(s:) for pointsz at1/2, 1/4,
3/4,1/8,3/8,5/8,7/8,1/16, 3/16, etc., until (case 1) it encounters an exampieith
h*(x) = +1 or until (case 2) the set of classifiersC C consistent with all observed
labels so far satisfieB[w(h*)|V] < e (which ever comes first). In case 2, the algorithm
simply halts and returns the constant classifier that alpegdicts—1: call it 4_; note
that p(h_,h*) = w(h*). In case 1, the algorithm enters a second phase, in which it
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performs a binary search (repeatedly querying the middmtiveen the closest two
—1 and+1 points, taking) and1 as known negative points) to the left and right of the
observed positive point, halting afteig, (4/¢) label requests on each side; this results
in estimates of the target’s endpoints uptie/4, so that returning any classifier among
the setV” C C consistent with these labels results in error rate at myast particular,
if his the classifier iV returned, the[p(h, h*)|V] < e.

Denoting this algorithm byA;;, andh the classifier it returns, we have

o (10)] =8[e o 1) V] <=

so that the algorithm is definitely correct.

Note that case 2 will definitely be satisfied after at m@dabel requests, and if
w(h*) > ¢, then case 1 will definitely be satisfied after at mggh label requests, so
that the algorithm never makes more t% label requests before satisfying
one of the two cases. Abbreviatidg(h*) = N (Ap, h*,e, D, ), we have

E[N(h")]
—E {N(h*) w(h*) = o] P (w(h*) = 0)
+E [N(h*) 0 < w(h*) < ﬁ} P (0 < w(h*) < V2)
+E [N w(h*) > VE] P (w(h*) > VE)
<E [N(h*) w(h*) = O]]P’(w(h*> —0)+ gﬂv (0 < w(h*) < V&) + % +2log, g.

(9)

The third and fourth terms in (9) atél/e). SinceP(0 < w(h*) < \/e) — 0ase — 0,

the second term in (9) ig(1/¢) as well. IfP(w(h*) = 0) = 0, this completes the proof.
We focus the rest of the proof on the first termin (9), in theedaatP(w(h*) = 0) > 0:

i.e., there is nonzero probability that the targ&tiabels the space all negative. Letting
V' denote the subset @ consistent with all requested labels, note that on the event
w(h*) = 0, aftern label requests (fon + 1 a power of2) we havemax,cy w(h) <

1/n. Thus, for any value; € (0,1), after at most% label requests, on the event that
w(h*) =0

B [ugre|v] < B0 <3 BROoL o0 <al) - o

V< (V) =T Pw() = 0)

Now note that, by the dominated convergence theorem,

lim B {W(h*)ll [w(h™) < W]} & {

y—0

i W)L [w(R7) < 5]
y—0 vy

=0.

Therefore E [w(h*)1 [w(h*) < 4]] = o(v). If we definey. as the largest value of
for whichE [w(h*)1 [w(h*) < ~]] < eP(w(h*) = 0) (or, say, half the supremum if the
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maximum is not achieved), then we haye> . Combined with (10), this implies

E [N |wh) = 0] < 2 = o(1/2).

€

Thus, all of the terms in (9) ar&(1 /<), so that in totaE[N (h*)] = o(1/e).

In conclusion, for this concept spa€eand data distributior®, we have a correct
active learning algorithrmd achieving a sample complexityC (A, e, D, ) = o(1/¢)
for all priorsm onC.

5.4 A General Result for Self-Verifying Bayesian Active Leaning

In this subsection, we present our main result for improvesiachievable by prior-
dependent self-verifying active learning: a general testalting thato(1/¢) expected
sample complexity is always achievable for some apprapipaior-dependent active
learning algorithm, foany (X', C, D, 7) for whichC has finite VC dimension. Since the
known results for the sample complexity of passive learmiitg access to the prior are
typically ©(1/¢) [HKS92], and since there are known learning probléiisC, D, )
for which every passive learning algorithm requifegl /) samples, this(1/¢) result
for active learning represents an improvement over pagsaraing.

The proof is simple and accessible, yet represents an ianiastep in understand-
ing the problem of self-termination in active learning alguns, and the general issue
of the complexity of verification. Also, since there are gesbs (X, C, D) whereC
has finite VC dimension but for which no (single-task) piiledependent correct ac-
tive learning algorithm (of the self-terminating type sedihere) can achieve(1/¢)
expected sample complexity for evety this also represents a significant step toward
understanding the inherent value of having access to tloe ipriactive learning. Ad-
ditionally, via Theorem 3, this result implies that activansferlearning (of the type
discussed above) can provide strictly superior sample taitigs compared to the
known results for passive learning (even compared to pagsarning algorithms hav-
ing directaccess to the priary, ), and often strictly superior to the sample complexities
achievable by (prior-independent) active learning withtoansfer.

First, we have a small lemma.

Lemma 5. For any sequence of functions, : C — [0,00) such that,Vf € C,
¢n(f) = o(1/n) andVn € N, ¢,(f) < ¢/n (for an f-independent constant €
(0, >)), there exists a sequengsg in [0, o) such that

¢n =o(1/n) and lim P (¢n(h*) > ¢n) = 0.

Proof. For any constant € (0, c0), we have (by Markov’s inequality and the domi-
nated convergence theorem)

lim P (n¢n(h*) > ) <

n—oo
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Therefore (by induction), there exists a diverging segaendn N such that

lim sup P (ng,(h*) >27") = 0.

100 n>n,

Inverting this, leti,, = max{i € N : n; < n}, and definep,,(h*) = (1/n) - 27». By
constructionP (¢,,(h*) > ¢,) — 0. Furthermoren; — co => i, — o0, S0 that we
have

lim nd;n = lim 27" = 0,

n— o0 n—0o0

implying ¢,, = o(1/n). O

Theorem 4. For any VC clas<, there is a correct active learning algorithm,, that,
for every data distributiorD and prior 7, achieves expected sample complexity

SC(Ag,e,D,m) =o0(1/e).

Our approach to proving Theorem 4 is via a reduction to eistadadl results about
(prior-independent) active learning algorithms that moeself-verifying. Specifically,
consider a slightly different type of active learning aligfom than that defined above:
namely, an algorithm4, that takes as input budgetn € N on the number of label
requests it is allowed to make, and that after making at mdsibel requests returns as
output a classifieh,, . Let us refer to any such algorithm abadget-basedctive learn-
ing algorithm. Note that budget-based active learningrélgms are prior-independent
(have no direct access to the prior). The following resuls weoven by [Han09] (see
also the related earlier work of [BHV10]).

Lemma 6. [Han09] For any VC clas€, there exists a constante (0, oo), a function
E(n; f, D), and a budget-based active learning algoritbdn such that

vD,Vf € C,E(n; f,D) < c¢/nand&(n; f,D) = o(1/n),

andE [p (Ay(n), ™)

h*} < &(n; h*, D) (always)?

That is, equivalently, for any fixed value for the target ftiois, the expected error
rate iso(1/n), where the random variable in the expectation is only tha daguence
X1, X5,.... Our task in the proof of Theorem 4 is to convert such a bubigstd
algorithm into one that is correct, self-terminating, antbpdependent, taking as
input.

Proof (Theorem 4)ConsiderA,, £, andc as in Lemma 6, Iefzn denote the classifier
returned byA,(n), and define

Ny e = min {n eN:E [p (ﬁn,h*ﬂ < 5} .

4 Furthermore, it is not difficult to see that we can take thi® be measurable in the* argu-
ment.
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This value is accessible based purely on accessdadD. Furthermore, we clearly
have (by constructioriy [p (Bnm,h*ﬂ < e. Thus, lettingA4,, denote the active learn-
ing algorithm taking D, 7, ¢) as input, which runst, (n,; .) and then returns,, _ _, we
have that4, is acorrectlearning algorithm (i.e., its expected error rate is at mpst

As for the expected sample complex§y’(A,, ¢, D, ) achieved byA4,, we have
SC(Aq,e,D, ) < ng ., so that it remains only to bound,. .. By Lemma 5, there is a
w-dependent functiod (n; m, D) such that

T({feC:&n;f,D)>EMm;m,D)}) =0
andé(n;m, D) = o(1/n).

Therefore, by the law of total expectation,
£ o ()] =2 [2 o ()
< %r ({f €C:&n; £,D) > E(nim, D)}) + E(n; 7, D)

=o(1/n).

If nr = O(1), then clearlyn, . = o(1/¢) as needed. Otherwise, sineg . is mono-
tonic ine, we must have., . T oo ase | 0. In particular, in this latter case we have

w]] < Ef(msne, D)

lime-ng;.
e—0 ?

<lime- <1+max{n >ng.—1:E [p (ﬁn,h*)} > 5})

e—0

=lime- max nl [E [p (ﬁ,mh*)} /e > 1]

e—0 n>ng —1

<lime- max nE [p (ﬁn,h*)] /e

e—0 n>ng —1

= lim max nE [p (ﬁn, h*)} = limsup nE [p (ﬁn, h*)} =0,

e=0n>ny, .—1 n—o0
so thatn, . = o(1/¢), as required. O

Theorem 4 implies that, if we hawdirect access to the prior distribution af*,
regardless of what that prior distributianis, we can always constructsalf-verifying
active learning algorithr,, that has a guarantee Bfp (A, (e, D, ), h*)] < e and its
expected number of label request){d /). This guarantee isot possible for prior-
independent (single-task) self-verifying active leagnatgorithms.

Additionally, when combined with Theorem 3, Theorem 4 imaplthatA,, with
this particular algorithmA,, as its subroutine, hdan sup,_, . E[S7(€)]/T = o(1/¢).
Again, since there are known cases where thermigrior-independent self-verifying
active learning algorithm with sample complexityl /<), this sometimes represents a
significant improvement over the results provable for leggithe tasks independently
(i.e., without transfer).
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5.5 Dependence oD in the Learning Algorithm

The dependence dP in the algorithm described in the proof of Theorem 4 is fairly
weak, and we can eliminate any direct dependenc® ay replacingp (ﬁn, h*) by a

1—¢/2 confidence upper bound basedidh = (? (s% log %) i.i.d. unlabeled examples
X1, X35,..., X}, independent from the examples used by the algorithm (egaside
in a pre-processing step, where the bound is calculated o&ftiing’s inequality and
a union bound over the values ofthat we check, of which there are at méxtl /<)).
Then we simply increase the valuerofstarting at some constant, suchlasintil

]\Zﬁﬂ ({f €eC: f(X;) a iln (Xz/)}> < 6/2.

The expected value of the smallest value:dbr which this occurs is(1/¢). Note that
this only requires access to the prior not the data distributio® (the budget-based
algorithm.4, of [Han09] has no direct dependence®} if desired for computational
efficiency, this dependence may also be estimatedlby a/4 confidence upper bound
based o2 (2 log 1) independent samples bf values with distributionr, where for
each sample we simulate the executiomdgfn) for that (simulated) target function in
order to obtain the returned classifier. In particular, bt no actual label requests
to the oracle are required during this process of estimatiagppropriate label budget
nre, as all executions ofl;, aresimulated

5.6 Inherent Dependence onr in the Sample Complexity

We have shown that for every priar, the sample complexity is bounded by@ /<)
function. One might wonder whether it is possible that thergstotic dependence on
e in the sample complexity can be prior-independent, whilelsting o(1/<). That is,
we can ask whether there existsmaifdependent) function(e) = o(1/¢) such that,
for everym, there is a correct-dependent algorithmi achieving a sample complex-
ity SC(A,e,D,m) = O(s(e)), possibly involvingr-dependent constants. Certainly
in some cases, such as threshold classifiers, this is trugewo, it seems this is not
generally the case, and in particular it fails to hold for space of interval classifiers.
For instance, consider a prigron the spac& of interval classifiers, constructed as
follows. We are given an arbitrary monotonj¢z) = o(1/¢); sinceg(e) = o(1/e),
there must exist (nonzero) functions(i) and g2(i) such thatlim; ,. ¢1 (i) = 0,
lim; o q2(i) = 0, andVi € N, g(qy (i) /2'T1) < g2(4) - 2¢; furthermore, letting; (i) =
max{qi (i), g2(i) }, by monotonicity ofg we also havei € N, g(q(i)/2"!) < q(i)-2?,
andlim; , q(i) = 0. Then define a functiop(i) with ", p(i) = 1 such that
p(i) > q(i) for infinitely manyi € N; for instance, this can be done inductively as fol-
lows. Letag = 1/2; for eachi € N, if ¢(i) > «a;_1, setp(i) = 0 anda; = a;_1;
otherwise, seb(i) = «;—1 anda; = «,;_1/2. Finally, for eachi € N, and each

- i 1 + _ . i
je{0,1,...,2 — 1}, definer ({]10,2_,,7(#1),2_71)}) = p(i)/2".

We letD be uniform onX = [0, 1]. Then for each € N s.t.p(i) > ¢(i), there is a
p(i) probability the target interval has wid#h ¢, and given this any algorithm requires
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o 2' expected number of requests to determine which of thesgervals is the target,
failing which the error rate is at leagt™. In particular, lettings; = p(i)/2!"1, any
correct algorithm has sample complexity at leasi(i)-2¢ for ¢ = ;. Notingp(i)-2¢ >
q(i) - 28 > g(q(i)/2"+1) > g(e;), this implies there exist arbitrarily small values of
e > 0 for which the optimal sample complexity is at leastg(z), so that the sample
complexity isnoto(g(e)).

For anys(e) = o(1/¢), there exists a monotonigc) = o(1/¢) such thats(e) =
o(g(e)). Thus, constructing as above for thig, we have that the sample complexity
is noto(g(e)), and therefore no®(s(e)). So at least for the space of interval classi-
fiers, the specifio(1/<) asymptotic dependence eris inherentlyr-dependent. This
argument also illustrates that thel /=) result in Theorem 4 is essentially the strongest
possible at this level of generality (i.e., without sayingreaboutC, D, or ).

6 Conclusions

We have shown that when learning a sequence of i.i.d. tagyetepts from a known
VC class, with an unknown distribution from a known totallyunded family, transfer
learning can lead to amortized average sample complexagedo that achievable by
an algorithm with direct knowledge of the the targets’ dimttion. Furthermore, for
the problem of active learning (with self-verification), lnave shown that this latter
quantity is always(1/¢), wheree is the desired expected error rate. This represents
an improvement in the asymptotic dependences @ompared to the general results
provable for active learning without transfer.
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