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1 Introduction

In this work, we study the fundamental complexity of Bayesian active learning by ex-
amining the basic problem of learning from binary-valued queries. We are particularly
interested in identifying a key quantity that characterizes the number of queries required
to learn to a given accuracy, given knowledge of the prior distribution from which the
target is sampled. This topic is interesting both in itself,and also as a general setting in
which to derive lower bounds, which apply broadly to any active learning scenario in
which binary-valued queries are employed, such as the popular setting of active learn-
ing with label requests (membership queries). The analysisof the Bayesian variant of
this setting is important for at least two reasons: first, forpractical reasons, as mini-
max analyses tend to emphasize scenarios much more difficultto learn from than what
the world often offers us, so that the smoothed or average-case analysis offered by a
Bayesian setting can often be an informative alternative, and second, for philosophical
reasons, owing to the decision-theoretic interpretation of rational inference, which is
typically formulated in a Bayesian setting.

There is much related work on active learning with binary-valued queries. How-
ever, perhaps the most relevant for us is the result of (Kulkarni et al., 1993). In this
classic work, they allow a learning algorithm to askany question with a yes/no an-
swer, and derive a precise characterization of the number ofthese binary-valued queries
necessary and sufficient for learning a target classifier to aprescribed accuracy, in a
PAC-like framework. In particular, they find this quantity is essentially characterized
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by logM(ǫ), where1 − ǫ is the desired accuracy, andM(ǫ) is the size of a maximal
ǫ-packing of the concept space.

In addition to being quite interesting in their own right, these results have played
a significant role in the recent developments in active learning with “label request”
queries for binary classification (Hanneke, 2007b; Hanneke, 2007a; Dasgupta, 2005).
Specifically, since label requests can be viewed as a type of binary-valued query, the
number of label requests necessary for learning is naturally lower bounded by the num-
ber of arbitrary binary-valued queries necessary for learning. We therefore always ex-
pect to see some term relating tologM(ǫ) in our sample complexity bounds for active
learning with label requests (though this factor is typically represented by its upper
bound:∝ V C(C) log(1/ǫ), whereV C(C) is the VC dimension).

Also related is a certain thread of the literature on sample complexity bounds for
Bayesian learning. In particular, (Haussler et al., 1994a)study the passive learning
problem in a Bayesian setting, and study the effect of the information made available
via access to the prior. In many cases, the learning problem is made significantly eas-
ier than the worst-case scenarios of the PAC model. In particular, (building from the
work of (Haussler et al., 1994b)) they find thatV C(C)/ǫ random labeled examples are
sufficient to achieve expected error rate at mostǫ using the Bayes classifier.

Allowing somewhat more general types of queries than (Haussler et al., 1994a),
a paper by (Freund et al., 1997; Seung et al., 1992) studied analgorithm known as
Query by Committee (QBC). Specifically, QBC is allowed to sequentially decide which
points to select, observing each response before selectingthe next data point to observe.
They found this additional flexibility can sometimes pay offsignificantly, reducing the
expected number of queries needed exponentially to onlyO(log(1/ǫ)). However, these
results only seem to apply to a very narrow family of problems, where a certain expected
information gain quantity is lower bounded by a constant, a situation which seems fairly
uncommon among the types of learning problems we are typically most interested in
(informative priors, or clustered data). Thus, to our knowledge, the general questions,
such as how much advantage we actually get from having accessto the priorπ, and
what fundamental quantities describe the intrinsic complexity of the learning problem,
remain virtually untouched in the published literature.

The “label request” query discussed in these Bayesian analyses represents a type
of binary-valued query, though quite restricted compared to the powerful queries an-
alyzed in the present work. As a first step toward a more complete understanding of
the Bayesian active learning problem, we propose to return to the basic question of
how many binary-valued queries are necessary and sufficientin general; but unlike the
(Kulkarni et al., 1993) analysis, we adopt the Bayesian perspective of (Haussler et al.,
1994a) and (Freund et al., 1997), so that the algorithms in question will directly de-
pend on the priorπ. In fact, we investigate the problem in a somewhat more general
form, where reference to the underlying data distribution is replaced by direct reference
to the induced pseudo-metric between elements of the concept space. As we point out
below, this general problem has deep connections to many problems commonly stud-
ied in information theory (e.g., the analysis of lossy compression); for instance, one
might view the well-known asymptotic results of rate distortion theory as a massively
multitask variant of this problem. However, to our knowledge, the basic question of the
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number of binary queries necessary to approximate a single random targeth∗ to a given
accuracy, given access to the distributionπ of h∗, has not previously been addressed in
generality.

Below, we are able to derive upper and lower bounds on the query complexity based
on a natural analogue of the bounds of (Kulkarni et al., 1993). Specifically, we find that
in this Bayesian setting, under an assumption of bounded doubling dimension, the query
complexity is controlled by the entropy of a partition induced by a maximalǫ-packing
(specifically, the natural Voronoi partition); in particular, the worst-case value of this
entropy is thelogM(ǫ) bound of (Kulkarni et al., 1993), which represents a uniform
prior over the regions of the partition. The upper bound is straightforward to derive,
but nice to have; but our main contribution is the lower bound, the proof of which is
somewhat more involved.

The rest of this paper is organized as follows. In Section 2, we introduce a few im-
portant quantities used in the statement of the main theorem. Following this, Section 3
contains a statement of our main result, along with some explanation. Section 4 contains
the proof of our result, followed by Section 5, which states afew of the many remaining
open questions about Bayesian active learning.

2 Definitions and Notation

We will formalize our discussion in somewhat more abstract terms.
Formally, throughout this discussion, we will supposeC

∗ is an arbitrary (nonempty)
collection of objects, equipped with a separable pseudo-metric ρ : C

∗×C
∗ → [0,∞). 4

We supposeC∗ is equipped with its Borelσ-algebra induced byρ. There is additionally
a (nonempty, measurable) setC ⊆ C

∗, and we denote bȳρ = sup
h1,h2∈C

ρ(h1, h2). Finally,

there is a probability measureπ with π(C) = 1, known as the “prior,” and aC-valued
random variableh∗ with distributionπ, known as the “target.” As the prior is essentially
arbitrary, the results below will hold foranyprior π.

As an example, in the special case of the binary classifier learning problem studied
by (Haussler et al., 1994a) and (Freund et al., 1997),C

∗ is the set of all measurable
classifiersh : X → {−1,+1}, C is the “concept space,”h∗ is the “target function,” and
ρ(h1, h2) = PX∼D(h1(X) 6= h2(X)), whereD is the distribution of the (unlabeled)
data; in particular,ρ(h, h∗) = er(h) is the “error rate” ofh.

To discuss the fundamental limits of learning with binary-valued queries, we define
the quantityQueryComplexity(ǫ), for ǫ > 0, as the minimum possible expected num-
ber of binary queries for any learning algorithm guaranteedto returnĥ with E[ρ(ĥ, h∗)]

≤ ǫ, where the only random variable in the expectation ish∗ ∼ π (andĥ, which is itself
determined byh∗ and the sequence of queries). For simplicity, we restrict ourselves to
deterministic algorithms in this paper, so that the only source of randomness ish∗.

Alternatively, there is a particularly simple interpretation of the notion of an algo-
rithm based on arbitrary binary-valued queries, which leads to an equivalent definition

4 The setC∗ will not play any significant role in the analysis, except to allow for improper
learning scenarios to be a special case of our setting.
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of QueryComplexity(ǫ): namely, a prefix-free code. That is, any deterministic algo-
rithm that asks a sequence of yes/no questions before terminating and returning some
ĥ ∈ C

∗ can be thought of as a binary decision tree (no = left, yes = right), with the
returnĥ values stored in the leaf nodes. Transforming each root-to-leaf path in the de-
cision tree into a codeword (left = 0, right = 1), we see that the algorithm corresponds
to a prefix-free binary code. Conversely, given any prefix-free binary code, we can con-
struct an algorithm based on sequentially asking queries ofthe form “what is the first
bit in the codewordC(h∗) for h∗?”, “what is the second bit in the codewordC(h∗) for
h∗?”, etc., until we obtain a complete codeword, at which pointwe return the value that
codeword decodes to. From this perspective, we can state an equivalent definition of
QueryComplexity(ǫ) in the language of lossy codes.

Formally, acodeis a pair of (measurable) functions(C,D). Theencoder, C, maps
any elementh ∈ C to a binary sequenceC(h) ∈

⋃∞

q=0{0, 1}q (the codeword). The
decoder, D, maps any elementc ∈

⋃∞

q=0{0, 1}q to an elementD(c) ∈ C
∗. For any

q ∈ {0, 1, . . .} andc ∈ {0, 1}q, let |c| = q denote thelengthof c. A prefix-freecode is
any code(C,D) such that noh1, h2 ∈ C havec(1) = C(h1) andc(2) = C(h2) with
c(1) 6= c(2) but ∀i ≤ |c(1)|, c

(2)
i = c

(1)
i : that is, no codeword is a prefix of another

(longer) codeword.
Here, we consider a setting where the code(C,D) may belossy, in the sense that

for some values ofh ∈ C, ρ(D(C(h)), h) > 0. Our objective is to design the code to
have small expected loss (in theρ sense), while maintaining as small of an expected
codeword length as possible, where expectations are over the targeth∗, which is also
the element ofC we encode. The following defines the optimal such length.

Definition 1. For anyǫ > 0, define thequery complexityas

QueryComplexity(ǫ)

= inf
{

E

[

|C(h∗)|
]

: (C,D) is a prefix-free code withE
[

ρ
(

D(C(h∗)), h∗
)]

≤ ǫ
}

,

where the random variable in both expectations ish∗ ∼ π.

Recalling the equivalence between prefix-free binary codesand deterministic learn-
ing algorithms making arbitrary binary-valued queries, note that this definition is equiv-
alent to the earlier definition.

Returning to the specialized setting of binary classification for a moment, we see
that this corresponds to the minimum possible expected number of binary queries for a
learning algorithm guaranteed to have expected error rate at mostǫ.

Given this coding perspective, we should not be surprised tosee an entropy quantity
appear in the results of the next section. Specifically, define the following quantities.

Definition 2. For any ǫ > 0, defineY(ǫ) ⊆ C as a maximalǫ-packing ofC. That is,
∀h1, h2 ∈ Y(ǫ), ρ(h1, h2) ≥ ǫ, and∀h ∈ C \ Y(ǫ), the setY(ǫ) ∪ {h} does not satisfy
this property.

For our purposes, if multiple maximalǫ-packings are possible, we can choose to
defineY(ǫ) arbitrarily from among these; the results below hold for anysuch choice.
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Recall that any maximalǫ-packing ofC is also anǫ-cover ofC, since otherwise we
would be able to add toY(ǫ) theh ∈ C that escapes the cover.

Next we define a complexity measure, a type of entropy, which serves as our primary
quantity of interest in the analysis ofQueryComplexity(ǫ). It is specified in terms of a
partition induced byY(ǫ), defined as follows.

Definition 3. For anyǫ > 0, define

P(ǫ) =

{{

h ∈ C : f = argmin
g∈Y(ǫ)

ρ(h, g)

}

: f ∈ Y(ǫ)

}

,

where we break ties in theargmin arbitrarily but consistently (e.g., based on a pre-
defined preference ordering ofY(ǫ)). If the argmin is not defined (i.e., themin is not
realized), take anyf ∈ Y(ǫ) with ρ(f, h) ≤ ǫ (one must exist by maximality ofY(ǫ)).

Definition 4. For any finite (or countable) partitionS of C into measurable regions
(subsets), define theentropyof S

H(S) = −
∑

S∈S

π(S) log2 π(S).

In particular, we will be interested in the quantityH(P(ǫ)) in the analysis below.
Finally, we will require a notion of dimensionality for the pseudo-metricρ. For this,

we adopt the well-knowndoubling dimension(Gupta et al., 2003).

Definition 5. Define thedoubling dimensiond as the smallest valued such that, for
anyh ∈ C, and anyǫ > 0, the size of the minimalǫ/2-cover of theǫ-radius ball around
h is at most2d.

That is, for anyh ∈ C and ǫ > 0, there exists a set{hi}
2d

i=1 of 2d elements ofC
such that

{h′ ∈ C : ρ(h′, h) ≤ ǫ} ⊆

2d

⋃

i=1

{h′ ∈ C : ρ(h′, hi) ≤ ǫ/2}.

Note that, as defined here,d is a constant (i.e., has no dependence onh or ǫ). See
(Bshouty et al., 2009) for a discussion of the doubling dimension of spacesC of binary
classifiers, in the context of learning theory.

3 Main Result

Our main result can be summarized as follows. Note that, since we took the prior to be
arbitrary in the above definitions, this result holds foranyprior π.

Theorem 1. If d < ∞ and ρ̄ < ∞, then there is a constantc = O(d) such that
∀ǫ ∈ (0, ρ̄/2),

H (P (ǫ log2(ρ̄/ǫ))) − c ≤ QueryComplexity(ǫ) ≤ H (P (ǫ)) + 1.



6 Yang, Hanneke, and Carbonell

Due to the deep connections of this problem to information theory, it should not be
surprising that entropy terms play a key role in this result.Indeed, this type of entropy
seems to give a good characterization of the asymptotic behavior of the query com-
plexity in this setting. We should expect the upper bound to be tight when the regions
in P(ǫ) are point-wise well-separated. However, it may be looser when this is not the
case, for reasons discussed in the next section.

Although this result is stated for bounded psuedometricsρ, it also has implications
for unboundedρ. In particular, the proof of the upper bound holds as-is for unbounded
ρ. Furthermore, we can always use this lower bound to construct a lower bound for
unboundedρ, simply restricting to a bounded subset ofC with constant probability
and calculating the lower bound for that region. For instance, to get a lower bound for
π being a Gaussian distribution onR, we might note thatπ([−1/2, 1/2]) times the
expected error rate under theconditionalπ(·|[−1/2, 1/2]) lower bounds the total ex-
pected error rate. Thus, calculating the lower bound of Theorem 1 under the conditional
π(·|[−1/2, 1/2]) while replacingǫ with ǫ/π([−1/2, 1/2]) provides a lower bound on
QueryComplexity(ǫ).

4 Proof of Theorem 1

We first state a lemma that will be useful in the proof.

Lemma 1. (Gupta et al., 2003) For anyγ ∈ (0,∞), δ ∈ [γ,∞), andh ∈ C, we have

|{h′ ∈ Y(γ) : ρ(h′, h) ≤ δ}| ≤

(

4δ

γ

)d

.

Proof. See (Gupta et al., 2003). ⊓⊔

Proof (of Theorem 1).Throughout the proof, we will consider a set-valued random
quantityPǫ(h

∗) with value equal to the set inP(ǫ) containingh∗, and a corresponding
C-valued random quantityYǫ(h

∗) with value equal the sole point inPǫ(h
∗) ∩ Y(ǫ):

that is, the target’s nearest representative in theǫ-packing. Note that, by Lemma 1,
|Y(ǫ)| < ∞ for all ǫ ∈ (0, 1). We will also adopt the usual notation for entropy (e.g.,
H(Pǫ(h

∗))) and conditional entropy (e.g.,H(Pǫ(h
∗)|X)), both in base 2; see (Cover &

Thomas, 2006) for definitions.
To establish the upper bound, we simply takeC as the Huffman code for the random

quantityPǫ(h
∗) (Cover & Thomas, 2006). It is well-known that the expected length of

a Huffman code forPǫ(h
∗) is at mostH(Pǫ(h

∗))+1 (in fact, is equalH(Pǫ(h
∗)) when

the probabilities are powers of2) (Cover & Thomas, 2006), and each possible value
of Pǫ(h

∗) is assigned a unique codeword so that we can perfectly recover Pǫ(h
∗) (and

thus alsoYǫ(h
∗)) based onC(h∗). In particular, defineD(C(h∗)) = Yǫ(h

∗). Finally,
recall that any maximumǫ-packing is also anǫ-cover; that is, for everyh ∈ C, there
is at least oneh′ ∈ Y(ǫ) with ρ(h, h′) ≤ ǫ (otherwise, we could addh to the packing,
contradicting its maximality). Thus, since every element of the setPǫ(h

∗) hasYǫ(h
∗) as

its closest representative inY(ǫ), we must haveρ(h∗,D(C(h∗))) = ρ(h∗, Yǫ(h
∗)) ≤ ǫ.
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In fact, as this proof never relies ond < ∞ or ρ̄ < ∞, this establishes the upper bound
even in the cased = ∞ or ρ̄ = ∞.

The proof of the lower bound is somewhat more involved, though the overall idea
is simple enough. Essentially, the lower bound would be straightforward if the regions
of P(ǫ log2(ρ̄/ǫ)) were separated by some distance, since we could make an argument
based on Fano’s inequality to say that since anyĥ is “close” to at most one region, the
expected distance fromh∗ is at least as large as half this inter-region distance timesa
quantity proportional to the entropy. However, it is not always so simple, as the regions
can generally be quite close to each other (even adjacent), so that it is possible for̂h to be
close to multiple regions. Thus, the proof will first “color”the regions ofP(ǫ log2(ρ̄/ǫ))
in a way that guarantees no two regions of the same color are within distanceǫ log2(ρ̄/ǫ)
of each other. Then we apply the above simple argument for each color separately (i.e.,
lower bounding the expected distance fromh∗ under the conditional given the color of
Pǫ log

2
(ρ̄/ǫ)(h

∗) by a function of the entropy under the conditional), and average over
the colors to get a global lower bound. The details follow.

Fix any ǫ ∈ (0, ρ̄/2), and for brevity letα = ǫ log2(ρ̄/ǫ). We suppose(C,D) is
some prefix-free binary code (representing the learning algorithm’s queries and return
policy).

Define a functionK : P(α) → N such that∀P1, P2 ∈ P(α),

K(P1) = K(P2) =⇒ inf
h1∈P1,h2∈P2

ρ(h1, h2) ≥ α, (1)

and supposeK has minimumH(K(Pα(h∗))) subject to (1). We will refer toK(P ) as
thecolor of P .

Now we are ready to bound the expected distance fromh∗. Let ĥ = D(C(h∗))

denote the element returned by the algorithm (decoder), andlet Pα(ĥ;K) denote the set
P ∈ P(α) havingK(P ) = K with smallestinfh∈P ρ(h, ĥ) (breaking ties arbitrarily).
We know

E[ρ(ĥ, h∗)] = E

[

E[ρ(ĥ, h∗)|K(Pα(h∗))]
]

. (2)

Furthermore, by (1) and a triangle inequality, we know noĥ can beα/3-close to more
than oneP ∈ P(α) of a given color. Therefore,

E[ρ(ĥ, h∗)|K(Pα(h∗))] ≥
α

3
P(Pα(ĥ;K(Pα(h∗))) 6= Pα(h∗)|K(Pα(h∗))). (3)

By Fano’s inequality, we have

E

[

P(Pα(ĥ;K(Pα(h∗))) 6=Pα(h∗)|K(Pα(h∗)))
]

≥
H(Pα(h∗)|C(h∗),K(Pα(h∗)))−1

log2 |Y(α)|
.

(4)
It is generally true that, for a prefix-free binary codeC(h∗), C(h∗) is a lossless

prefix-free binary code for itself (i.e., with the identity decoder), so that the classic en-
tropy lower bound on average code length (Cover & Thomas, 2006) impliesH(C(h∗))
≤ E[|C(h∗)|]. Also, recalling thatY(α) is maximal, and therefore also anα-cover, we
have that anyP1, P2 ∈ P(α) with inf

h1∈P1,h2∈P2

ρ(h1, h2) ≤ α haveρ(Yα(h1), Yα(h2))

≤ 3α (by a triangle inequality). Therefore, Lemma 1 implies that, for any givenP1 ∈
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P(α), there are at most12d setsP2 ∈ P(α) with inf
h1∈P1,h2∈P2

ρ(h1, h2) ≤ α. We there-

fore know there exists a functionK′ : P(α) → N satisfying (1) such thatmax
P∈P(α)

K′(P )

≤ 12d (i.e., we need at most12d colors to satisfy (1)). That is, if we consider coloring
the setsP ∈ P(α) sequentially, for any givenP1 not yet colored, there are< 12d sets
P2 ∈ P(α) \ {P1} within α of it, so there must exist a color among{1, . . . , 12d} not
used by any of them, and we can choose that forK′(P1). In particular, by our choice of
K to minimizeH(K(Pα(h∗))) subject to (1), this implies

H(K(Pα(h∗))) ≤ H(K′(Pα(h∗))) ≤ log2(12d) ≤ 4d.

Thus,

H(Pα(h∗)|C(h∗),K(Pα(h∗))) (5)

= H(Pα(h∗), C(h∗),K(Pα(h∗))) −H(C(h∗)) −H(K(Pα(h∗))|C(h∗)) (6)

≥ H(Pα(h∗)) −H(C(h∗)) −H(K(Pα(h∗))) ≥ H(Pα(h∗)) − E [|C(h∗)|] − 4d

= H(P(α)) − E [|C(h∗)|] − 4d. (7)

Thus, combining (2), (3), (4), and (7), we have

E[ρ(ĥ, h∗)] ≥
α

3

H(P(α)) − E [|C(h∗)|] − 4d − 1

log2 |Y(α)|

≥
α

3

H(P(α)) − E [|C(h∗)|] − 4d − 1

d log2(4ρ̄/α)
,

where the last inequality follows from Lemma 1.
Thus, for any code with

E [|C(h∗)|] < H(P(α)) − 4d − 1 − 3d
log2(4ρ̄/ǫ)

log2(ρ̄/ǫ)
,

we haveE[ρ(ĥ, h∗)] > ǫ, which implies

QueryComplexity(ǫ) ≥ H(P(α)) − 4d − 1 − 3d
log2(4ρ̄/ǫ)

log2(ρ̄/ǫ)
.

Sincelog2(4ρ̄/ǫ)/ log2(ρ̄/ǫ) ≤ 3, we have

QueryComplexity(ǫ) = H(P(α)) − O(d).

⊓⊔

5 Open Problems

Generally, we feel this topic of Bayesian active learning isrelatively unexplored, and as
such there is an abundance of ripe open problems ready for solvers.
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In our present context, there are several interesting questions, such as whether the
log(ρ̄/ǫ) factor in the entropy argument of the lower bound can be removed, whether
the additive constant in the lower bound might be improved, and in particular whether a
similar result might be obtained without assumingd < ∞ (e.g., by making a VC class
assumption instead).

Additionally, one can ask for necessary and sufficient conditions for this entropy
lower bound to be achievable via a restricted type of query, such as label requests (mem-
bership queries).

Overall, the challenge here is to understand, to as large an extent as possible, how
much benefit we get from having access to the prior, and what the general form of
improvements we can expect in the query complexity given this information are.
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