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Abstract. We explore a general Bayesian active learning setting, in which the
learner can ask arbitrary yes/no questions. We derive upper andbowrads on
the expected number of queries required to achieve a specified expis&te
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1 Introduction

In this work, we study the fundamental complexity of Bayasiative learning by ex-
amining the basic problem of learning from binary-valueérnigs. We are particularly
interested in identifying a key quantity that charactesitee number of queries required
to learn to a given accuracy, given knowledge of the priofrithistion from which the
target is sampled. This topic is interesting both in itsaifd also as a general setting in
which to derive lower bounds, which apply broadly to any\actearning scenario in
which binary-valued queries are employed, such as the popatting of active learn-
ing with label requests (membership queries). The anabfsise Bayesian variant of
this setting is important for at least two reasons: first,dmactical reasons, as mini-
max analyses tend to emphasize scenarios much more diffidethrn from than what
the world often offers us, so that the smoothed or average-aaalysis offered by a
Bayesian setting can often be an informative alternatind,second, for philosophical
reasons, owing to the decision-theoretic interpretatibrational inference, which is
typically formulated in a Bayesian setting.

There is much related work on active learning with binarjugd queries. How-
ever, perhaps the most relevant for us is the result of (Kuolket al., 1993). In this
classic work, they allow a learning algorithm to asiy question with a yes/no an-
swer, and derive a precise characterization of the numhkbest binary-valued queries
necessary and sufficient for learning a target classifier poeacribed accuracy, in a
PAC-like framework. In particular, they find this quantity éssentially characterized
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by log M(e€), wherel — € is the desired accuracy, avd (¢) is the size of a maximal
e-packing of the concept space.

In addition to being quite interesting in their own rightesie results have played
a significant role in the recent developments in active liegrvith “label request”
queries for binary classification (Hanneke, 2007b; Hann2k87a; Dasgupta, 2005).
Specifically, since label requests can be viewed as a typ@afybvalued query, the
number of label requests necessary for learning is nagdoaller bounded by the num-
ber of arbitrary binary-valued queries necessary for legriVe therefore always ex-
pect to see some term relatingltg M (e) in our sample complexity bounds for active
learning with label requests (though this factor is tygdicaépresented by its upper
bound:x VC(C)log(1/¢), whereV C(C) is the VC dimension).

Also related is a certain thread of the literature on samphapiexity bounds for
Bayesian learning. In particular, (Haussler et al., 19%tajly the passive learning
problem in a Bayesian setting, and study the effect of therimétion made available
via access to the prior. In many cases, the learning proldemeade significantly eas-
ier than the worst-case scenarios of the PAC model. In pdatic(building from the
work of (Haussler et al., 1994b)) they find tHa€'(C) /e random labeled examples are
sufficient to achieve expected error rate at measting the Bayes classifier.

Allowing somewhat more general types of queries than (Haust al., 1994a),
a paper by (Freund et al., 1997; Seung et al., 1992) studieslgamithm known as
Query by Committee (QBC). Specifically, QBC is allowed towsetially decide which
points to select, observing each response before selebtingext data point to observe.
They found this additional flexibility can sometimes pay sifjnificantly, reducing the
expected number of queries needed exponentially toOlyg(1/¢)). However, these
results only seem to apply to a very narrow family of problewtsere a certain expected
information gain quantity is lower bounded by a constanitigton which seems fairly
uncommon among the types of learning problems we are typioadst interested in
(informative priors, or clustered data). Thus, to our krexge, the general questions,
such as how much advantage we actually get from having ateebkge priorm, and
what fundamental quantities describe the intrinsic comipl®f the learning problem,
remain virtually untouched in the published literature.

The “label request” query discussed in these Bayesian s@slgepresents a type
of binary-valued query, though quite restricted compacethe powerful queries an-
alyzed in the present work. As a first step toward a more camplederstanding of
the Bayesian active learning problem, we propose to returthé basic question of
how many binary-valued queries are necessary and sufficigi@neral; but unlike the
(Kulkarni et al., 1993) analysis, we adopt the Bayesianpestive of (Haussler et al.,
1994a) and (Freund et al., 1997), so that the algorithms @stipn will directly de-
pend on the priofr. In fact, we investigate the problem in a somewhat more ggner
form, where reference to the underlying data distributgoreplaced by direct reference
to the induced pseudo-metric between elements of the cospape. As we point out
below, this general problem has deep connections to marblgms commonly stud-
ied in information theory (e.g., the analysis of lossy coesgion); for instance, one
might view the well-known asymptotic results of rate distor theory as a massively
multitask variant of this problem. However, to our knowledthe basic question of the
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number of binary queries necessary to approximate a siagtiom targeb™* to a given
accuracy, given access to the distributioof 2*, has not previously been addressed in
generality.

Below, we are able to derive upper and lower bounds on theyqaanplexity based
on a natural analogue of the bounds of (Kulkarni et al., 199Bgcifically, we find that
in this Bayesian setting, under an assumption of boundeblohgudimension, the query
complexity is controlled by the entropy of a partition inedcby a maximat-packing
(specifically, the natural Voronoi partition); in partian) the worst-case value of this
entropy is thdog M (¢) bound of (Kulkarni et al., 1993), which represents a uniform
prior over the regions of the partition. The upper bound iaightforward to derive,
but nice to have; but our main contribution is the lower bguheé proof of which is
somewhat more involved.

The rest of this paper is organized as follows. In Section€introduce a few im-
portant quantities used in the statement of the main thedfettowing this, Section 3
contains a statement of our main result, along with someaggpion. Section 4 contains
the proof of our result, followed by Section 5, which statésvaof the many remaining
open questions about Bayesian active learning.

2 Definitions and Notation

We will formalize our discussion in somewhat more abstraths.

Formally, throughout this discussion, we will supp@seis an arbitrary (nonempty)
collection of objects, equipped with a separable pseudwiee: C* x C* — [0, 00). 4
We suppos€* is equipped with its Boref-algebra induced by. There is additionally

a (nonempty, measurable) &t C*, andwe denoteby = sup p(h1, ko). Finally,
hi,haeC

there is a probability measurewith 7(C) = 1, known as the “prior,” and &-valued
random variablé* with distributionr, known as the “target.” As the prior is essentially
arbitrary, the results below will hold fany prior .

As an example, in the special case of the binary classifienileg. problem studied
by (Haussler et al., 1994a) and (Freund et al., 1997)js the set of all measurable
classifiersh : X — {—1,+1}, Cis the “concept spacei* is the “target function,” and
p(h1,he) = Pxop(hi1(X) # hao(X)), whereD is the distribution of the (unlabeled)
data; in particularp(h, h*) = er(h) is the “error rate” ofh.

To discuss the fundamental limits of learning with binagtued queries, we define
the quantityQueryComplexity (¢), for e > 0, as the minimum possible expected num-
ber of binary queries for any learning algorithm guarantee@turn/, with E[p(h, h*)]
< ¢, where the only random variable in the expectatiohtis- 7 (andh, which is itself
determined by:* and the sequence of queries). For simplicity, we restrictelues to
deterministic algorithms in this paper, so that the onlyreewf randomness is".

Alternatively, there is a particularly simple interprédaut of the notion of an algo-
rithm based on arbitrary binary-valued queries, which $gadan equivalent definition

4 The setC* will not play any significant role in the analysis, except to allow for imprope
learning scenarios to be a special case of our setting.
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of QueryComplexity(e): namely, a prefix-free code. That is, any deterministic algo
rithm that asks a sequence of yes/no questions before t&ingrand returning some
h € C* can be thought of as a binary decision tree (no = left, yes ht)igvith the
return/ values stored in the leaf nodes. Transforming each rot#abpath in the de-
cision tree into a codeword (left = 0, right = 1), we see thatalgorithm corresponds
to a prefix-free binary code. Conversely, given any prefeefbinary code, we can con-
struct an algorithm based on sequentially asking querig¢seoform “what is the first
bit in the codeword” (h*) for h*?”, “what is the second bit in the codewogt(»*) for
h*?", etc., until we obtain a complete codeword, at which puwiatreturn the value that
codeword decodes to. From this perspective, we can statquavaent definition of
QueryComplexity () in the language of lossy codes.

Formally, acodeis a pair of (measurable) functiof€’, D). Theencoder C, maps
any element, € C to a binary sequenc€'(h) € J;Z,{0,1}7 (the codeword. The
decoder D, maps any element € |J°-,{0,1}4 to an elementD(c) € C*. For any
g € {0,1,...} andc € {0,1}9, let|c| = ¢ denote thdengthof c. A prefix-freecode is
any code(C, D) such that ndv;, hy € C havec!) = C(hy) andc® = C(hy) with
W £ @ putvi < e, ¢ = V: that is, no codeword is a prefix of another
(longer) codeword.

Here, we consider a setting where the c¢deD) may belossy in the sense that
for some values ok € C, p(D(C(h)),h) > 0. Our objective is to design the code to
have small expected loss (in thesense), while maintaining as small of an expected
codeword length as possible, where expectations are ogdatbeth*, which is also
the element of® we encode. The following defines the optimal such length.

Definition 1. For anye > 0, define thequery complexityas

QueryComplexity(¢)
— inf {IE [|c(h*)|} . (C, D) is a prefix-free code with [,;(D(C(h*)), h)} < e},

where the random variable in both expectationgis~ .

Recalling the equivalence between prefix-free binary cagesdeterministic learn-
ing algorithms making arbitrary binary-valued queriedgertbat this definition is equiv-
alent to the earlier definition.

Returning to the specialized setting of binary classifarafior a moment, we see
that this corresponds to the minimum possible expected puwitbinary queries for a
learning algorithm guaranteed to have expected error tatmste.

Given this coding perspective, we should not be surprissééaan entropy quantity
appear in the results of the next section. Specifically, ddfie following quantities.

Definition 2. For anye > 0, define)(e) C C as a maximak-packing ofC. That is,
Vhi,he € Y(€), p(h1, he) > €, andVh € C\ Y(¢), the sef)(¢) U {h} does not satisfy
this property.

For our purposes, if multiple maximatpackings are possible, we can choose to
define)(¢) arbitrarily from among these; the results below hold for aogh choice.
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Recall that any maximad-packing ofC is also ane-cover of C, since otherwise we
would be able to add t'(¢) the h € C that escapes the cover.

Next we define a complexity measure, a type of entropy, wheches as our primary
quantity of interest in the analysis QfueryComplexity (¢). It is specified in terms of a
partition induced by/(¢), defined as follows.

Definition 3. For anye > 0, define

Pe) = {{h eC:f= argminp(h,g)} fe y(e)},

g€Y(e)

where we break ties in thergmin arbitrarily but consistently (e.g., based on a pre-
defined preference ordering 9f(¢)). If the argmin is not defined (i.e., theuin is not
realized), take any’ € ) (e) with p(f, h) < e (one must exist by maximality dfe)).

Definition 4. For any finite (or countable) partitios of C into measurable regions
(subsets), define thentropyof S

H(S) = — Z 7(S) logy 7(S).

SeS

In particular, we will be interested in the quantit§(P(¢)) in the analysis below.
Finally, we will require a notion of dimensionality for thegudo-metrig. For this,
we adopt the well-knowdoubling dimensioiGupta et al., 2003).

Definition 5. Define thedoubling dimensioni as the smallest valué such that, for
anyh € C, and anye > 0, the size of the minimal/2-cover of the:-radius ball around
h is at mose<.
That is, for anyh € C ande > 0, there exists a se{thi}fil of 2¢ elements of®
such that
2d
(W' e C:p(h h) <e} S| J{W € C:p(l hi) < e/2}.
i=1
Note that, as defined heré,is a constant (i.e., has no dependenceé: @t €). See
(Bshouty et al., 2009) for a discussion of the doubling disiem of space€ of binary
classifiers, in the context of learning theory.

3 Main Result

Our main result can be summarized as follows. Note thatesivetook the prior to be
arbitrary in the above definitions, this result holds oy prior 7.

Theorem 1. If d < oo and p < oo, then there is a constant = O(d) such that
Ve € (0,p/2),

H (P (elogy(p/e))) — ¢ < QueryComplexity(e) < H (P (e)) + 1.
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Due to the deep connections of this problem to informati@oti, it should not be
surprising that entropy terms play a key role in this rednfieed, this type of entropy
seems to give a good characterization of the asymptoticvii@haf the query com-
plexity in this setting. We should expect the upper boundedight when the regions
in P(e) are point-wise well-separated. However, it may be loosezmwihis is not the
case, for reasons discussed in the next section.

Although this result is stated for bounded psuedometridsalso has implications
for unbounded. In particular, the proof of the upper bound holds as-is fusaunded
p. Furthermore, we can always use this lower bound to corts&rdawer bound for
unboundedp, simply restricting to a bounded subset©@fwith constant probability
and calculating the lower bound for that region. For inséana get a lower bound for
7 being a Gaussian distribution d&, we might note thatr([—1/2,1/2]) times the
expected error rate under teenditional 7 (-|[—1/2,1/2]) lower bounds the total ex-
pected error rate. Thus, calculating the lower bound of Téradl under the conditional
7(-|[-1/2,1/2]) while replacinge with ¢/7([—1/2,1/2]) provides a lower bound on
QueryComplexity (e).

4 Proof of Theorem 1

We first state a lemma that will be useful in the proof.
Lemma 1. (Gupta et al., 2003) For any € (0,0), d € [y, ), andh € C, we have

d
W € V() : pli' ) < 8] < (475) .

Proof. See (Gupta et al., 2003). O

Proof (of Theorem 1)Throughout the proof, we will consider a set-valued random
quantity P.(h*) with value equal to the set iR(e) containingh*, and a corresponding
C-valued random quantity(h*) with value equal the sole point iR.(h*) N Y(e):
that is, the target's nearest representative inetfpacking. Note that, by Lemma 1,
|Y(e)| < oo forall e € (0,1). We will also adopt the usual notation for entropy (e.g.,
H(P.(h*))) and conditional entropy (e.g4(P.(h*)| X)), both in base 2; see (Cover &
Thomas, 2006) for definitions.

To establish the upper bound, we simply tdkas the Huffman code for the random
quantity P.(h*) (Cover & Thomas, 2006). It is well-known that the expectetyth of
a Huffman code fo, (h*) is at mostH(P.(h*)) + 1 (in fact, is equal(P.(h*)) when
the probabilities are powers @) (Cover & Thomas, 2006), and each possible value
of P.(h*) is assigned a unique codeword so that we can perfectly re¢@ye*) (and
thus alsoY.(h*)) based orC'(h*). In particular, defineD(C(h*)) = Y.(h*). Finally,
recall that any maximuna-packing is also am-cover, that is, for everyh € C, there
is at least oné’ € Y(e) with p(h, ') < e (otherwise, we could add to the packing,
contradicting its maximality). Thus, since every elemdiihe setP, (h*) hasY.(h*) as
its closest representative 3(e), we must have(h*, D(C(h*))) = p(h*,Y.(h*)) < e.
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In fact, as this proof never relies @h< oo or p < oo, this establishes the upper bound
even in the casé = oo or p = oc.

The proof of the lower bound is somewhat more involved, thotlge overall idea
is simple enough. Essentially, the lower bound would bedttéorward if the regions
of P(elog,(p/€)) were separated by some distance, since we could make anergum
based on Fano’s inequality to say that since Emy “close” to at most one region, the
expected distance fromr* is at least as large as half this inter-region distance tianes
quantity proportional to the entropy. However, it is not aj® so simple, as the regions
can generally be quite close to each other (even adjacenbasit is possible foh to be
close to multiple regions. Thus, the proof will first “coldHe regions of? (e log, (p/€))
in a way that guarantees no two regions of the same color #hewdistance log, (p/¢)
of each other. Then we apply the above simple argument fér @alor separately (i.e.,
lower bounding the expected distance fraimunder the conditional given the color of
Pe1og,(5/¢)(h*) by a function of the entropy under the conditional), and agerover
the colors to get a global lower bound. The details follow.

Fix anye € (0,p/2), and for brevity leta = elog,(5/€). We supposéC, D) is
some prefix-free binary code (representing the learningritlgn’s queries and return
policy).

Define a functionC : P(a) — N such thatv Py, P> € P(«),

K(P) =K(P) = hlef}ll,lliePz p(h1,h2) > a, 1)

and suppos& has minimumH (K(P,(h*))) subject to (1). We will refer tdC(P) as
thecolor of P.

Now we are ready to bound the expected distance fhdmiet h = D(C/(h*))
denote the element returned by the algorithm (decoder)l,emlﬂd(ﬁ; KC) denote the set
P e P(a) havingK(P) = K with smallestinf,c p p(h, h) (breaking ties arbitrarily).
We know R .

Elp(h, n*)] = E E[p(hah*)liC(Pa(h*))ﬂ : )

Furthermore, by (1) and a triangle inequality, we know/ncan bew/3-close to more
than oneP € P(«) of a given color. Therefore,

E[p(h, h*)|K(Pa(h"))] = %P(PQ(E;K(Pa(h*))) # Po(h7)IK(Pa (7)) (3)

By Fano’s inequality, we have

. . . ayny]s H (P (P)|C(h"), K(Pa(h®))) —1
E[P(Pa (b (Pa(h))) # Pa(h*)|K(Pa(h))) |2 og, D@l .
(4)

It is generally true that, for a prefix-free binary codéhr*), C'(h*) is a lossless
prefix-free binary code for itself (i.e., with the identitgcbder), so that the classic en-
tropy lower bound on average code length (Cover & ThomasgRiddpliesH(C (h*))
< E[|C(h*)|]. Also, recalling thaf/(«) is maximal, and therefore also ancover, we

have that anyP;, P, € P(«) with inf  p(hy,he) < ahavep(Ya(hi),Ya(ha))
h1€P1,h2€P>

< 3a (by a triangle inequality). Therefore, Lemma 1 implies tliat any givenP; €
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P(a), there are at modt? setsP, € P(«a) with . Pin£ - p(h1, he) < a. We there-
€

1€1,N2

fore know there exists a functidd’ : P(«) — N satisfying (1) such tha}gmgﬁc : K'(P)
€P(a

< 124 (i.e., we need at mod2? colors to satisfy (1)). That is, if we consider coloring
the setsP € P(«) sequentially, for any gived®; not yet colored, there are 12¢ sets
Py € P(a) \ {P1} within « of it, so there must exist a color amo#g, . . ., 12} not
used by any of them, and we can choose thak¥@; ). In particular, by our choice of
K to minimizeH (K (P, (h*))) subject to (1), this implies

H(K(Pa(h*))) < H(K' (Pa(h*))) < logy(127) < 4d.

Thus, combining (2), (3), (4), and (7), we have

E[p(h, b)) > 2 HP(@) —E[CGHY)] —4d 1

3 log, [ V()]
_ aH(P(e)) ~E[C(h")[] —4d ~ 1
-3 dlog,(4p/a) )

where the last inequality follows from Lemma 1.
Thus, for any code with

E(IC(h)]] < H(P(a)) - 4d — 1 - 3d11gg<(4;//)>
we haveE[p(h, h*)] > e, which implies
log,(4p/€)

QueryComplexity(e) > H(P(«)) —4d — 1 — 3d — .
yComplexity(€) > H(P(a)) Tog, (7/¢)

Sincelog,(4p/¢€)/ log,(p/e) < 3, we have

QueryComplexity(e) = H(P(«)) — O(d).

5 Open Problems

Generally, we feel this topic of Bayesian active learningglatively unexplored, and as
such there is an abundance of ripe open problems ready f@rsol
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In our present context, there are several interesting gqumsstsuch as whether the
log(p/€) factor in the entropy argument of the lower bound can be remiowhether
the additive constant in the lower bound might be improved,ia particular whether a
similar result might be obtained without assumihg: oo (e.g., by making a VC class
assumption instead).

Additionally, one can ask for necessary and sufficient dioorth for this entropy
lower bound to be achievable via a restricted type of queigh sis label requests (mem-
bership queries).

Overall, the challenge here is to understand, to as largetanteas possible, how
much benefit we get from having access to the prior, and wleagémeral form of
improvements we can expect in the query complexity givemitiformation are.
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