Active Testing

Liu Yang

Joint work with Nina Balcan, Eric Blais and Avrim Blum

© Liu Yang 2011

Property Testing

- Instance space X = Rⁿ (Distri D over X)
- Tested function f : X->{0,1}
- A property P of Boolean fn is a subset of all Boolean fns h : X -> {-1,1} (e.g ltf)
- dist_D(f, P):=min_{g $\in P$} P_{x~D}[f(x) \neq g(x)]
- Standard Type of query: membership query

Property Testing

If f \in P should accept w/ prob \ge 2/3

If dist(f,P)> ϵ should reject w/ prob $\geq 2/3$

- E.g. Union of d Intervals
 0---+++++++++++++----1
 - UINT₄ ? Yes! UINT₃ ? Depend on ε

Model selection: testing can tell us how big d need to be close to target
(double and guess, d = 2, 4, 8, 16,)

Property Testing and Learning : Motivation

- What is Property Testing for ?
 - Quickly tell if the right fn class to use
 - Estimate complexity of fn without actually learning

Want to do it with fewer queries than learning

Standard Model uses Membership Query

- Results of Testing basic Boolean fns using MQ:
- Constant QC for UINTd, dictator, ltf, ...

Number of Queries	Reference
$O(1/\epsilon)$	[PRS02]
$ ilde{O}(s^2/\epsilon)$	[PRS02]
$ ilde{O}(k^2/\epsilon),\Omega(k)$	$[FKR^+04], [CG06]$
$\tilde{O}(1/\epsilon^2)$	$[DLM^+07]$
$ ilde{O}(s^4/\epsilon^2)$	$[DLM^+07]$
$\Omega(\log s / \log \log s)$	$[DLM^+07]$
$ ilde{O}(s^4/\epsilon^2), ilde{\Omega}(\sqrt{s})$	$[DLM^+07]$
$ ilde{O}(s^6/\epsilon^2)$	$[DLM^+07]$
$\tilde{O}(2^{6d}/\epsilon^2), \tilde{\Omega}(\sqrt{d})$	$[DLM^+07]$
$\operatorname{poly}(1/\epsilon)$	[MORS07]
	$\begin{array}{c} O(1/\epsilon) \\ \tilde{O}(s^2/\epsilon) \\ \tilde{O}(k^2/\epsilon), \Omega(k) \\ \bullet \tilde{O}(1/\epsilon^2) \\ \bullet \tilde{O}(s^4/\epsilon^2) \\ \Omega(\log s/\log \log s) \\ \tilde{O}(s^4/\epsilon^2), \tilde{\Omega}(\sqrt{s}) \end{array}$

Membership Query is Unrealistic for Machine Learning Problems

Recognizing cat/dog ? MQ gives ...

Membership Query is Unrealistic for Machine Learning Problems

7

Passive : Waste Too Many Queries

• ML people move on

- Passive Model (sample from D) query samples exist in NATURE; but quite wasteful (many examples uninformative)
- Can we **SAVE** #queries ?

© Liu Yang 2011

Active Testing

The NEW! Model of Property Testing

Property Tester

- Definition. An s-sample, q-query *E*-tester for P over the distribution D is a randomized algorithm A that draws s samples from D, sequentially queries for the value of f on q of those samples, and then expensive
 - 1. Accepts w.p. at least 2/3 when $f \in P$
 - 2. Rejects w.p. at least 2/3 when dist_D(f,P)> ε

Active Tester

 Definition. A randomized algorithm is a qquery active ε-tester for P ⊆ Rⁿ->{0, 1} of over D if it is a poly(n)-sample, q-query ε-tester for P over D.

Active Property Testing

- Testing as preprocessing step of learning
- Need an example? where Active testing
 - get same QC saving as MQ
 - better in QC than Passive
 - need fewer queries than Learning
 - Union of d Intervals, active testing help!
 - Testing tells how big d need to be close to target
 - #Label: Active Testing need O(1), Passive Testing

12

need $\Theta(\sqrt{d})$, Active Learning need $\Theta(d)$ © Liu Yang 2011

Outline

- Our Results of Various Classes
- Testing Disjoint Unions of Testable Properties
- General Testing Dimension

Our Result

	Active Testing	Passive Testing	Active Learning	
Union of d Intervals	O(1)	Θ(√d)	Θ(d)	
Union of d Thresh	O(1)	Θ(√d)	const	
Dictator	Θ(log n)	Θ(log n)	Θ(log n)	
Linear Threshold Fn	O(√n)	Õ(√n)	Θ(n)	
Cluster Assumption	O(1)	Ω(V N)	Θ(N)	
Passive-like on testing Dictator MQ-like Passive-like				
© Liu Yang 2011 14				

- Proof Idea:
 - Noise Sensitivity:=Pr[two close pts label diff]
 - all UINTd have low NS whereas all fns far from this class have noticeably larger NS

15

- a tester that est noise sensitivity of input fn. © Liu Yang 2011

Testing Unions of Intervals (cont.)

• **Definition:** Fix $\delta > 0$. The local δ -noise sensitivity of fn f: $[0, 1] \rightarrow \{0, 1\}$ at $x \in [0;$ 1] $isNS_{\delta}(f,x) = Pr_{y \sim_{\delta} x}[f(x) \neq f(y)]$. The noise easy sensitivity of f is $\mathbb{NS}_{\delta}(f) = \Pr_{x,y \sim sx}[f(x) \neq f(y)]$ **Proposition:** Fix $\delta > 0$. Let $f: [0, 1] \rightarrow \{0, 1\}$ hard be a union of d intervals. $NS_{\delta}(f) \leq d\delta$. • Lemma: Fix $\delta = \epsilon^2/(32d)$. Let f : [0, 1]-> {0, 1} be a fn with noise sensitivity bounded by NS_{δ}(f) $\leq d\delta(1 + \varepsilon/4)$. Then f is ε -close to a union 201 f d intervals. 16

Testing Unions of Intervals (cont.)

Theorem. Testing UINTd in the active testing model can be done using O(1/ε³) queries. If uniform distribution, we need only O(√d/ε⁵) unlabeled egs.

Testing Linear Threshold Fns

- Theorem. We can efficiently test LTFs under the Gaussian distribution with $\tilde{O}(\sqrt{n})$ labeled examples in both active and passive testing models. We have lower bounds of $\tilde{\Omega}$ (n^{1/3}) for active testing and $\tilde{\Omega}$ (\sqrt{n}) on #labels needed for passive testing.
- Learn ltf need Omega(n) under Gaussian
 So testing is better than learning in this case.

Testing Linear Threshold Fns (cont.)

- Definition: Hermite polynomials : h₀(x) = 1, h₁(x) = x; h₂(x) = 1/√2(x² -1),...,
 - complete orthogonal basis under <f,g> = E_x[f(x)g(x)], where E_x over std Gaussian distrib
- For any S in Nⁿ, define $H_S = \prod_{i=1}^n h_{S_i}(x_i)$
 - Hermite coefficient of f: Rn -> R corresponding to S is $\hat{f}(S) = \langle f, H_S \rangle = \mathbb{E}_x[f(x)H_S(x)]$
 - Hermite decomposition of $f: f(x) = \sum_{S \in \mathbb{N}^n} \hat{f}(S) H_S(x)$ The degree of the coefficient $\hat{f}(S)$ is $|S| := \sum_{i=1}^n S_i$

Testing Linear Threshold Fns (cont.)

- Lemma: There is an explicit continuous fn W: R->R w/bounded derivative |||W'||_∞ ≤ 1 and peak value W(0) = ²/_π s.t. every ltf f : Rn -> {1, -1} satisfies ∑ⁿ_{i=1} f(e_i)² = W(E_xf) Also, every fn g : Rⁿ-> {-1, 1} that satisfies |∑ⁿ_{i=1} ĝ(e_i)² - W(E_xg)| ≤4 ε ; is ε -close to be ltf.
- Lemma: For any fn f : $\mathbb{R}^n \to \mathbb{R}$, we have $\sum_{i=1}^n \hat{f}(e_i)^2 = \mathbb{E}_{x,y}[f(x)f(y)\langle x, y\rangle], \langle x, y\rangle = \sum_{i=1}^n x_i y_i$ is the standard vector dot product. © Liu Yang 2011 21

Testing Linear Threshold Fns (cont.)

The U-statistic (of order 2) with symmetric kernel function $g : R^n \times R^n \rightarrow R$ is

$$U_g^m(x^1, \dots, x^m) := \binom{m}{2}^{-1} \sum_{1 \le i < j \le m} g(x^i, x^j)$$

Parameters: $\tau = \sqrt{4n \log(4n/\epsilon^3)}, m = 800\tau/\epsilon^3 + 32/\epsilon^6$. 1. Draw x^1, x^2, \dots, x^m independently at random from \mathbb{R}^n . 2. Query $f(x^1), f(x^2), \dots, f(x^m)$. 3. Set $\tilde{\mu} = \frac{1}{m} \sum_{i=1}^m f(x^i)$. 4. Set $\tilde{\nu} = {m \choose 2}^{-1} \sum_{i \neq j} f(x^i) f(x^j) \langle x^i, x^j \rangle \cdot \mathbf{1}[|\langle x^i, x^j \rangle| \leq \tau]$. 5. Accept iff $|\tilde{\nu} - W(\tilde{\mu})| \leq 2\epsilon^3$.

Outline

- Our Results of Various Classes
- Testing Disjoint Unions of Testable Properties
- General Testing Dimension

Testing Disjoint Unions of Testable Properties

 Combine a collection of properties P_i via their disjoint union.

• Theorem. Given properties P1,...,PN, if each Pi is testable over Di w/ q(ε) queries & U(ε) unlabeled samples, then their disjoint union P is testable over the combined distribution D with O(q(ε /2) (log³ 1/ ε)) queries and O(U(ε /2) (N/ ε log³ 1/ ε)) unlabeled samples.

Outline

- Our Results of Various Classes
- Testing Disjoint Unions of Testable Properties
- General Testing Dimension

Why a General Theory ?

- These are only a few among many possible testing problems
- We don't want to solve each problem one-at-a-time

• It will be good have some general theory: distinguish easily-testable vs hard-to-test problems

General Testing Dim

- Testing dim characterize (up to constant factors) the intrinsic #label requests needed to test the given property w.r.t. the given distribution
- All our lower bounds are proved via testing dim

Minimax Argument

- min_{Alg}max_f P(Alg mistaken) = max_{π0}min_{Alg}
 P(Alg mistaken)
- wolg, $\pi_0 = \alpha \pi + (1 \alpha) \pi'$, $\pi \in \Pi_0, \pi' \in \Pi_{\varepsilon}$
- Let π_S , π'_S be induced distributions on labels of S. $d_S(\pi, \pi') = (1/2) \sum |\pi_S(y) - \pi'_S(y)|$
- For a given π_0 , min_{Alg}P(Alg makes mistake|S) $\leq 1 - \text{dist}_S(\pi, \pi')$

• Define d_{passive} largest q in N, s.t.

13

 $\sup_{\pi \in \Pi_0} \sup_{\pi' \in \Pi_{\epsilon}} \Pr_{S \sim D^q}(\mathbf{d}_S(\pi, \pi') > 1/4) \le 1/4$

• Theorem: Sample Complexity of passive testing is $\Theta(d_{passive})$.

Coarse Active Testing Dim

• Define d_{coarse} as the largest q in N, s.t.

 $\sup_{\pi \in \Pi_0} \sup_{\pi' \in \Pi_{\epsilon}} \Pr_{S \sim D^q}(\mathbf{d}_S(\pi, \pi') > 1/4) \le 1/n^q.$

• Theorem: If $d_{coarse} = O(1)$ the active testing of P can be done with O(1) queries, and if $d_{coarse} = \omega(1)$ then it cannot.

Active Testing Dim

- Fair(π,π',U): distri. of labeled (y; l): w.p.½ choose $\gamma^{-}\pi_{U}$, l= 1; w.p.½ choose $\gamma^{-}\pi'_{U}$, l= 0.
- err*(H; P): err of optimal fn in H w.r.t data drawn from distri. P over labeled egs.
- Given u=poly(n) unlabeled egs, d_{active}(u): largest
 q in N s.t.

 $\sup_{\pi \in \Pi_0} \sup_{\pi' \in \Pi_{\epsilon}} \Pr_{U \sim D^u}(\operatorname{err}^*(\operatorname{DT}_q, \operatorname{Fair}(\pi, \pi', U)) < 1/4) \le 1/4$

• Theorem: Active testing w/ failure prob 1/8 using u unlabeled egs needs $\Omega(d_{active}(u))$ label queries; can be done w/ O(u) unlabeled egs and $O(d_{active}(u))$ label queries_{ng 2011} 31

Testing Dim: A Powerful Notion

- We use testing dimension to prove LBs for testing union of intervals and ltfs.
- Lemma A. Let π∈ Π₀, π' ∈ Πε. Fix U⊆ X to be a set of allowable queries. Suppose any S U,
 [with S] = q, there is a set Es Rq (possibly empty) satisfying πs(Es)≤2-q/5 s.t.

 $\pi_S(y) < \frac{6}{5}\pi'_S(y)$ for every $y \in \mathbb{R}^q \setminus E_S$ Then any q-query tester nas large" prob of making mistake.

Application: Dictator fns

- Theorem: Active testing of dictatorships under the uniform distribution requires (log n) queries. This holds even for distinguishing dictators from random functions.
- Any class that contains dictator functions requires (log n) queries to test in the active model, including decision trees, functions of low Fourier degree, juntas, DNFs, etc.

Application: Dictator fns (cont.)

- π and π' uniform over dictator fns & over all boolean fns
- S: a set of q vectors in {0,1}ⁿ : a qxn boolean matrix.
 c₁(S),...,c_n(S) : the cols of this matrix

$$\pi_S(y) = \frac{|\{i \in [n] : c_i(S) = y\}|}{n} \quad \text{and} \quad \pi'_S(y) = 2^{-q}.$$

• Set S of q vectors chosen unif indep at random from $\{0, 1\}^n$. For any y in $\{0, 1\}^n$, E[# cols of S equal to y] = n2^{-q} Cols are drawn indep. at random, by Chernoff bounds: 1 0 \mathbf{O}

 \mathbf{O}

0 1

 $\mathbf{0}$

0 0 1

$$\Pr\left[\pi_S(y) > \frac{6}{5}2^{-q}\right] \le e^{-(\frac{1}{5})^2 n 2^{-q}/3} < e^{-\frac{1}{75}n 2^{-q}}$$

Now apply Lemma A.

© Liu Yang 2011

Application: LTFs

- Theorem. For LTFs under the standard n-dim Gaussian distrib, $d_{passive} = \Omega((n/logn)^{1/2})$ and active QC = $\Omega((n/logn)^{1/3})$.
- π : distrib over LTFs obtained by choosing w~N(0, I_{nxn}) and outputting f(x) = sgn(w•x). - π ': uniform distrib over all functions.

- Obtain $d_{passive}$:bound tvd(distrib of Xw//n, N(O, I_{nxn})). - Obtain active QC: similar to dictator LB but rely on strong concentration bounds on spectrum of random matrices

Open Problem

- Matching lb/ub for active testing LTF: \sqrt{n}
- Tolerant Testing ε /2 vs. ε (UINTd, LTF)

Thanks !