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Property Testing

Instance space X = R" (Distri D over X)
Tested function f : X->{0,1}

A property P of Boolean fn is a subset
of all Boolean fns h : X -> {-1,1} (e.g [tf)

dist(f, P):zmingJ c p P ~plf(x) #g(x)]

Standard Type of query: membership
query
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Property Testing

If fEP should accept w/ prob = 2/3
If dist(f,P)>e should reject w/ prob = 2/3

* E.g. Union of d Intervals
O----++++-——-+++++++++-——-++-—-F++--- - 1

- UINT, ? Yes! UINT, ? Depend on €

- Model selection: testing can tell us how
big d need to be close to target

(double and guess, d = 2, 4, 8, 16, ....)
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Property Testing and Learning :
Motivation

* What is Property Testing for ?
- Quickly tell if the right fn class to use
- Estimate complexity of fn without
actually learning

 Want to do it with fewer
queries than learning
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Standard Model uses

Membership Query

Results of Testing basic Boolean fns using MQ_.
 Constant QC for UINTd, dictator, Itf,

Class of functions Number of Queries Reference
singletons and monomials O(1/e€) IPRS02)
s-term monotone DNF O(s?/e) |IPRS02)

k-Juntas O(k?/e), Q(k) [FKR ' 04],[CGO6]

decision lists O(1/€?) IDLM*07]

size-s decision trees, size-s branck!wr **D(s?/e?) IDLM*07]

s-term DNF, size-s Boolean formulae (log S / log log s) ﬂDLl\"I+O7]

s-sparse polynomials over GF(2) g4 / ‘ Q(\/_ IDLM*07]

size-s Boolean circuits O(s® / €) IDLM*07]

functions with Fourier degree < d 0(2%4/€2), Q(/d) IDLM*07]

linear threshold functions poly(1/e) IMORSO07]
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Membership Query is Unrealistic
for Machine Learning Problems

Recognizing cat/dog ? MQ gives ...

Is this a dog
or a cat?
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Membership Query is Unrealistic
for Machine Learning Problems

eyl

a random orthogonal direction
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Passive : Waste Too Many Queries

- ’&‘

* Passive Model (sample from D)

query samples exist inNATURE; but quite
wasteful (many examples uninformative)

* ML people move on

- Can we SAVE #queries ?
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A

AcTive Learning

Active Testing

The NEW! Model of
Property Testing
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Property Tester

* Definition. An s-sample, g-query € -tester

for P over the distribution D is a

randomized algorithm A that draws §
samples from D, sequentially queries for
the value of f on q of those samples, and

ther
1. Accepts w.p. at least 2/3 when f € P

2. Rejects w.p. at least 2/3 when
dist,(f,P)> €
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Active Tester

* Definition. A randomized algorithm is a g-
query active e-tester for P C R"->{0, 1} of
over D if it is a poly(n)-sample, g-query
e-tester for P over D.
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Active Property Testing

» Testing as preprocessing step of learning

* Need an example? where Active testing

- get same QC saving as MQ
- better in QC than Passive

- need fewer queries than Learning

* Union of d Intervals, active testing help!
0-—==t+++----t+++++ttto-mmmtt oot 1
- Testing tells how big d need to be close to target

- #Label: Active Testing need O(1), Passive Testing
need O(./d), Active Learning need O(d)
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Qutline

* Qur Results of Various Classes

* Testing Disjoint Unions of Testable
Properties

* General Testing Dimension
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NEW !!

Our Result
| |ActiveTesting | Passive Testing

Union of d Intervals ©(d)
Union of d Thresh const
Dictator O©(log n)
Linear Threshold Fn - ©(n)
Cluster Assumption Q(VN) O©(N)

v Passive-like on ’res’ring‘Dic’ra’ror‘
’

MQ-like < T - Passive-like

™
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Testing Unions of Intervals

O U AU S S W S 1

* Theorem. Testing UINTd in the active
testing model can be done using O(1/¢€3)

queries. If uniform distribution, we need
only O(~/d/¢€%) unlabeled egs.

 Proof Idea:

- Noise Sensitivity:=Pr[two close pts label diff]

- all UINTd have low NS whereas all fns far from
this class have noticeably larger NS

- a tester that est noise sensitivity of input fn.
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Testing Unions of Intervals (cont.)

* Definition: Fix 0 >0. The local 0 -noise
sensitivity of fn f: [0, 1]->{0, 1} at x € [0;
1] iSNS;(f,z) = Pry~se[f(z) # f(y)] . The noise

ensmw’ry of FisNS;(f)= Pr [f(x)# [(y)]

roposition: Fix 0 >0. Le’r F [O 1] -> {0,1}

e a union of d intervals. NS5(f) < dO.

emma: Fix 0= €2/(32d). Let f: [O, 1]
-> {0, 1} be a fn with noise sensitivity
bounded by NSs(f) <do (1 + € /4 ). Then
f is € -close to a ynian.of d intervals. .



/~ UNION OF INTERVALS TESTER( f, d, ¢ ) I

2
. 8 € —3
Parameters: 0 = 557, 7 = O(e77).

I. Forroundsi=1,....,r,

.1 Draw z € [0, 1] uniformly at random.

1.2 Draw samples until we obtain y € (z — J,x + 9).

1.3 Set Z; = 1{f(z) # f(y)].
\_ 2 Acceptiff 13°Z; < dd(1+ §). W,
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Testing Unions of Intervals (cont.)

* Theorem. Testing UINTd in the active
testing model can be done using O(1/¢€3)

queries. If uniform distribution, we need
only O(~/d/¢€%) unlabeled egs.
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Testing Linear Threshold Fns

* Theorem. We can efficiently test LTFs
under the Gaussian distribution with
O(«/n) labeled examples in both active

and passive testing models. We have
lower bounds of Q (n'/3) for active

testing and Q («/n) on #labels needed
for passive testing.

* Learn Itf need Omega(n) under Gaussian
So testing is better than learning in this case.
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Testing Linear Threshold Fns (cont.)

* Definition: Hermite polynomials : hy(x) = 1, h,(x) =
X; hy(x) = 1/42(x2 -1),...,

- complete orthogonal basis under <f,g> =
E [f(x)g(x)], where E, over std Gaussian distrib

* For any S in N, define Hg = [T, hg, ()
- Hermite coefficient of f: Rn -> R corresponding
to Sis f(5) = (f.Hs) = Ea[f(x)Hs(x)]

- Hermite decomposition of f:f(z) = Y g f(S)Hs ()
The degree of the coefficient f(S)is|S|: =", S;
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Testing Linear Threshold Fns (cont.)

* Lemma: There is an explicit continuous fn
W: R->R w/bounded derivative |||, < 1
and peak value W (0) = 2 s.1. every ltf

T

f:Rn -> {1, -1} satisfies >, f(e:))? = W(E.f)
Also, every fn g : R"-> {-1, 1} that satisfies
}Z:zzl (7((2)2 - U"(EI‘(_T/)’ <4 € ; IS &€ —CIOSQ 'l'O be “'F

* Lemma: For any fn f : R" -> R, we have

S fle)? = Eaylf(@)f(y) (z,9)], <X ¥>= 20 2y
Is the standard vector dot product.
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Testing Linear Threshold Fns
(cont.)

The U-statistic (of order 2) with symmetric
kernel function g: R" X R" -> R is

1
T ; ;
Uzt . a™) = ( 2) Y glat.ad)

1<i<5<m

/" LTF TESTER( f, €)
Parameters: 7 = y/4nlog(4n/e?), m = 8007 /e + 32/€.

|. Draw z!, 2%, .. .. ™ independently at random from R"™.

J J

Query f(z'), f(z?),..., f(a™).

Set i = & Y f(a).

Setv = (7;“)_1 D it f(@)f(2?) (a,27) - 1[|{z",27)| < 7].
Accept iff [ — W (1) < 2¢%.
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Qutline

e Our Results of Various Classes

* Testing Disjoint Unions of Testable
Properties
* General Testing Dimension

© Liu Yang 2011
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Testing Disjoint Unions of

Testable Properties

* Combine a collection of properties P; via
their disjoint union.

* Theorem. Given properties Pl,...,PN, it each
Pi is testable over Di w/ q( &) queries &
U( € ) unlabeled samples, then their disjoint
union P is testable over the combined

distribution D with O(q( & /2) (log3 1/ €))
queries and O(U( € /2) (N/ € log® 1/ €))
unlabeled samples.
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Qutline

e Our Results of Various Classes

* Testing Disjoint Unions of Testable
Properties

* General Testing Dimension
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Why a General Theory ?

* These are only a few among
many possible testing problems

 We dont want to solve each S5
problem one-at-a-time E

* It will be good have some general theory:
distinguish easily-ftestable vs hard-to-test
problems
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General Testing Dim

* Testing dim characterize (up to
constant factors) the intrinsic #label
requests needed to test the given
property w.r.t. the given distribution

* All our lower bounds are proved via

testing dim
M

b ié:ci',ygg!!jg
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Minimax Argument

* miny max; P(Alg mistaken) = max, min,,
P(Alg mistaken)

* wolg, M= M+ (l-a) ', me M,n &€ 11,

* Let m, ' be induced distributions on
labels of S. ds(ma)=(1/2) > |rs(y) —7s(y)

: ye{0,1}/5l
» For a given T, vl

minaP(Alg makes mistakelS)< 1-distg(m, )
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Passive Testing Dim

* Define d largest q in N, s.t.

passive

sup sup Pr (dg(m,7n’') >1/4)<1/4
welly ' ell, S~D1

* Theorem: Sample Complexity of passive
testing is O(d

Dassive) .
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Coarse Active Testing Dim

* Define d as the largest g in N, s.t.

coarse

sup sup Pr (dg(m,n’) > 1/4) <1/n?
melly ' ell, S~D1

* Theorem: If d_ .. = O(1) the active
testing of P can be done with O(1)
queries, and if d = wW(l) then it
cannot.

coarse

© Liu Yang 2011
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N | o
s+ Active Testing Dim

e Fair(m,m’,U): distri. of labeled (y; 1): w.p.% choose
v~y l= 1; w.p.% choose y~m',, |= 0.

 err*(H; P): err of optimal fn in H w.r.t data drawn
from distri. P over labeled egs.

* Given u=poly(n) unlabeled egs, d

qin N s.t
sup sup Pr (err™(DT,, Fair(m,n",U)) < 1/4) < 1/4
rellp ' ell, U~D"

* Theorem: Active testing w/ failure prob 1/8
using u unlabeled egs needs Q(d (W) label

(u): largest

active

active

queries; can be done w/ O(u) unlabeled egs and
O(dacﬂve(u)) label qU%”LiiQ\&ngzoll 31




Testing Dim: A Powerful Notion

* We use testing dimension to prove LBs for
testing union of intervals and ltfs.

* Lemma A. Let ne N, " €N_. Fix U X to be a
set of allowable queries. Suppose any S ~ U,
lwith S| = g, there is a set E; - R9 (possibly
empty) satisfying m¢(Ec)<2-9/5%.1.

ts(y) < §7s(y) foreveryy e RY\ Es
Then any c]r—query Tester has large prob of
making mistake.
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Application: Dictator fns

* Theorem: Active testing of dictatorships
under the uniform distribution requires (log n)

queries. This holds even for distinguishing
dictators from random functions.

* Any class that contains dictator functions
requires (log n) queries to test in the active
model, including decision trees, functions of
low Fourier degree, juntas, DNFs, efc.
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Application: Dictator fns (cont.)

e 1 and 11’ uniform over dictator fns &over all boolean fns
* S: a set of q vectors in {0,1}" : a qxn boolean matrix.
* ¢((S),....c(S) : the cols of this matrix

rs(y) = 1t € [n] : ai(S) =yj

n and mh(y) = 27

* Set S of q vectors chosen unif indep at random from
{0, 1}". For any vy in {0, 13", E[# cols of S equal to yl = n2-9.

Cols are drawn indep. at random, 100 O 0)
by Chernoff bounds: o o 0100 0
Pr [ﬂ's(!/) > %2—‘1] < e (5)m279/3 - g—n27? IR 0
Now apply Lemma A. 000 1 0

000 Ol



Application: LTFs

* Theorem. For LTFs under the standard n-crl&iw
Gaussian distrib, d, ... = 2((n/logn)”?) and
active QC = Q((n/logn)/3).

- m: distrib over LTFs obtained by choosing
w~N(O, I . ) and outputting f(x) = sgn(wex).
- 11': uniform distrib over all functions.

- Obtain d, .. :bound tvd(distrib of Xw//n, N(O, I,.)).
- Obtain active QC: similar to dictator LB but rely on
strong concentration bounds on spectrum of random

matrices |
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Open Problem

* Matching Ib/ub for active testing LTF: 4/n
* Tolerant Testing € /2 vs. € (UINTd, LTF)
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Thanks !
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