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Abstract

We study the problem of active learning in a stream-basdthgetllowing the
distribution of the examples to change over time. We proveeufounds on
the number of prediction mistakes and number of label rdques established
disagreement-based active learning algorithms, both énrélalizable case and
under Tsybakov noise. We further prove minimax lower boundshis problem.

1 Introduction

Most existing analyses of active learning are based on.dnassumption on the data. In this work,
we assume the data are independent, but we allow the distrifuiom which the data are drawn to
shift over time, while the target concept remains fixed. Wesader this problem in a stream-based
selective sampling model, and are interested in two questtithe number of mistakes the algorithm
makes on the firsi’ examples in the stream, and the number of label requestsaatherfirstT
examples in the stream.

In particular, we study scenarios in which the distributioay drift within a fixed totally bounded
family of distributions. Unlike previous models of distution drift [Bar92, CMEDV10], the mini-
max number of mistakes (or excess number of mistakes, indlsy sase) can bsublinearin the
number of samples.

We specifically study the classic CAL active learning sggtfCAL94] in this context, and bound
the number of mistakes and label requests the algorithm sriakbe realizable case, under condi-
tions on the concept space and the family of possible digtdbs. We also exhibit lower bounds
on these quantities that match our upper bounds in certaiescalMe further study a noise-robust
variant of CAL, and analyze its number of mistakes and nurobkabel requests in noisy scenarios
where the noise distribution remains fixed over time but tlegimal distribution onX’ may shift.

In particular, we upper bound these quantities under Tsyakoise conditions [MT99]. We also
prove minimax lower bounds under these same conditionagththere is a gap between our upper
and lower bounds.

2 Definition and Notations

As in the usual statistical learning problem, there is addath Borel spacé’, called the instance
space, and a sét of measurable classifieis : X — {—1,+1}, called the concept space. We
additionally have a spade of distributions onX’, called the distribution space. Throughout, we
suppose that the VC dimension©f denotedi below, is finite.

Foranyu;, pe € D, let||uy — p2|| = sup 4 11 (A) — p2(A) denote the total variation pseudo-distance
betweenu; andus, where the sefl in the sup ranges over all measurable subsetstofFor any
e > 0, let D, denote a minimat-cover of D, meaning thaD. C D andVu; € D, Jus € D, s.t.
|41 — p2|| < €, and thad, has minimal possible siz®, | among all subsets @ with this property.

In the learning problem, there is an unobservable sequendistabutionsD;, D, ..., with each
D, € D, and an unobservable time-independent regular conditibstaibution, which we represent



by a function; : X — [0, 1]. Based on these quantities, wefet= {(X;, Y;)}72, denote an infinite
sequence of independent random variables, suchvthaf; ~ D;, and the conditional distribution
of Y; given X, satisfiesve € X,P(Y; = +1|X; = z) = n(z). Thus, the joint distribution of
(X, Y:) is specified by the paifD;,n), and the distribution of£ is specified by the collection
{D,}2, along withn. We also denote byg, = {(X1,Y1),(X2,Y2),...,(Xy,Y;)} the firstt
such labeled examples. Note that theonditional distribution is time-independent, since we ar
restricting ourselves to discussing drifting marginatrdisitions on’, rather than drifting concepts.
Concept drift is an important and interesting topic, butdgdind the scope of our present discussion.

In the active learning protocol, at each timethe algorithm is presented with the valixg, and

is required to predict a labél, € {—1,+1}; then after making this prediction, it may optionally
request to observe the true label valje as a means of book-keeping, if the algorithm requests a
labelY; on roundt, we define); = 1, and otherwis&); = 0.

We are primarily interested in two quantities. The fitgtr = >, 1 [Yt o+ Yt} is the cumulative

number of mistakes up to tim&. The second quantity of interesf; = ZtT:1 @, is the total
number of labels requested up to tirfie In particular, we will study the expectations of these

quantities: My = E {MT} andQr = E [QT} We are particularly interested in the asymptotic

dependence afr and My — M; onT, whereM} = infjcc E {ZL I[h(X};) # Yt]}. We refer

to Qr as the expected number of label requests, and'to— M as the expected excess number
of mistakes. For any distributioR on X', we defineerp(h) = Exp[n(X)I[h(X) = 1]+ (1 —
n(X))I[A(X) = +1]], the probability ofn making a mistake foX ~ P andY with conditional
probability of being+1 equaln(X). Note that, abbreviatingr;(h) = erp, (h) = P(h(X:) # Y2),

we haveM = infpec Zthl ery(h).

Scenarios in which botV/r — M andQr areo(T) (i.e., sublinear) are considered desirable, as
these represent cases in which we do “learn” the proper wayddict labels, while asymptoti-
cally using far fewer labels than passive learning. Oncabdishing conditions under which this is
possible, we may then further explore the trade-off betvikese two quantities.

We will additionally make use of the following notions. F&f C C, let diam(V) =
suph’ge‘/Dt({x 2 h(z) # g(x)}). Forh : X — {—1,41}, érge(h) = ﬁzizseru(h),
and for finiteS C X' x {~1,+1}, ér(h; S) = 17 X, )es LIM(z) # y]. Also letC[S] = {h € C:
ér(h; S) = 0}. Finally, for a distributionP on X andr > 0, defineBp(h,r) = {g € C : P(x :
h(z) # g(x)) <r}.

2.1 Assumptions

In addition to the assumption of independence of Hevariables and that < oo, each result
below is stated under various additional assumptions. Téakest such assumption is tHats

totally boundedin the following sense. For eaeh> 0, let D, denote a minimal subset &f such

thatvD € D, 3D’ € D, s.t. ||D — D'|| < e: that is, a minimak-cover ofD. We say thab is totally

bounded if it satisfies the following assumption.

Assumptiorl. Ve > 0, |D¢| < oco.

In some of the results below, we will be interested in deg\8pecific rates of convergence. Doing so
requires us to make stronger assumptions abBdtien mere total boundedness. We will specifically
consider the following condition, in whichy m € [0, co) are constants.

Assumptior2. Ve > 0, |D| < c-e ™.

For an example of a clags satisfying the total boundedness assumption, congider[0, 1], and
let D be the collection of distributions that have uniformly daobus density function with respect
to the Lebesgue measure ah with modulus of continuity at most some valwée) for each value
of e > 0, wherew(¢) is a fixed real-valued function withm,_,o w(e) = 0.

As a more concrete example, whe(e) = Le for someL € (0, co), this corresponds to the family
of Lipschitz continuous density functions with Lipschitarstant at mosL. In this case, we have
|D¢| < O (e~™), satisfying Assumption 2.



3 Related Work

We discuss active learning under distribution drift, witkefi target concept. There are several
branches of the literature that are highly relevant to timsluding domain adaptation [MMRQ9,
MMRO08], online learning [Lit88], learning with concept &iriand empirical processes for indepen-
dent but not identically distributed data [vdGO00].

Streamed-based Active Learning with a Fixed Distribution [DKMO09] show that a certain mod-
ified perceptron-like active learning algorithm can achiavmistake boun®(dlog(7")) and query
boundO(dlog(T)), when learning a linear separator under a uniform distidbutn the unit sphere,
in the realizable case. [DGS10] also analyze the probleraarhing linear separators under a uni-

form distribution, but allowing Tsybakov noise. They findtwith Q7 = O (da% TT) queries,

it is possible to achieve an expected excess number of resfdk — M = O (ds+ . 7ave ).

At this time, we know of no work studying the number of mistaled queries achievable by active
learning in a stream-based setting where the distributiay change over time.

Stream-based Passive Learning with a Drifting Distribution  There has been work on learning
with a drifting distribution and fixed target, in the contexXtpassive learning. [Bar92, BL97] study
the problem of learning a subset of a domain from randomlyeh@xamples when the probability
distribution of the examples changes slowly but continueilroughout the learning process; they
give upper and lower bounds on the best achievable probabflimisclassification after a given
number of examples. They consider learning problems infwvhichanging environment is modeled
by a slowly changing distribution on the product space. Thsvable drift is restricted by ensuring
that consecutive probability distributions are close taltgariation distance. However, this assump-
tion allows for certain malicious choices of distributicegsiences, which shift the probability mass
into smaller and smaller regions where the algorithm is tage of the target’s behavior, so that
the number of mistakes grows linearly in the number of samjplehe worst case. More recently,
[FM97] have investigated learning when the distributioarfjes as a linear function of time. They
present algorithms that estimate the error of functionsigisnowledge of this linear drift.

4 Active Learning in the Realizable Case

Throughout this section, suppo€es a fixed concept space and € C is a fixed target function:
that is,er;(h*) = 0. The family of scenarios in which this is true are often otilely referred
to as therealizable caseWe begin our analysis by studying this realizable caseusec# greatly
simplifies the analysis, laying bare the core ideas in plamnf We will discuss more general
scenarios, in whichr;(h*) > 0, in later sections, where we find that essentially the satineiptes
apply there as in this initial realizable-case analysis.

We will be particularly interested in the performance of tb#owing simple algorithm, due to
[CAL94], typically referred to as CAL after its discoverem®he version presented here is specified in
terms of a passive learning subroutinédmapping any sequence of labeled examples to a classifier).
In it, we use the notatioDIS(V) = {x € X : 3h,g € V s.t. h(z) # g(x)}, also used below.

CAL )

1.t <+ 0, Qg « 0, and lethg = A(0)

2. Do

3. t+t+1

4. PredictV; = hi—1(Xy)

5 If yeg?ﬁl} %ger(h, Q1 U{(Xt,y)}) =0

6. Request, let Q; = Q; 1 U {(X+,Y3)}

7. Elselety! = argmin minér(h; Q;—1 U {(X:,y)}), and letQ; «+ Q: 1 U {(X:, YY)}
ye{—1,+1} heC

8. Leth; = .A(Qt)

Below, we letA; ;¢ denote the one-inclusion graph prediction strategy of [H@VSpecifically,
the passive learning algorithi, ;  is specified as follows. For a sequence of data poings X+t



the one-inclusion graph is a graph, where each vertex reptea distinct labeling d@f that can be
realized by some classifier i@, and two vertices are adjacent if and only if their corresiog
labelings fori/ differ by exactly one label. We use the one-inclusion grapldfine a classifier
based ori training points as follows. Givenlabeled data point§ = {(x1,v1), ..., (2, v:)}, and
one test pointr;,; we are asked to predict a label for, we first construct theinokesion graph
onU = {z1,...,x:+1}; we then orient the graph (give each edge a unique diredtica)vay that
minimizes the maximum out-degree, and breaks ties in a watyghnvariant to permutations of the
order of points iri/; after orienting the graph in this way, we examine the subkeértices whose
corresponding labeling @f is consistent withC; if there is only one such vertex, then we predict for
z¢+1 the corresponding label from that vertex; otherwise, if¢hegre two such vertices, then they are
adjacent in the one-inclusion graph, and we choose the eveedovhich the edge is directed and
use the label for,, in the corresponding labeling of as our prediction for the label af. ;. See
[HLW94] and subsequent work for detailed studies of the ambdsion graph prediction strategy.

4.1 Learning with a Fixed Distribution
We begin the discussion with the simplest case: namely, Wihes 1.

Definition 1. [Han07, Han11] Define the disagreement coefficientbtinder a distributionP as
Op(e) = sup P (DIS(Bp(h*,1))) /7.
r>€
Theorem 1. For any distribution P on X, if D = {P}, then running CAL withA

Ai1c achieves expected mistake bouhd = O (dlog(T)) and expected query bour@r
O (0p(er)dlog(T)), for ex = dlog(T)/T.

For completeness, the proof is included in the supplememasérials.

4.2 Learning with a Drifting Distribution

We now generalize the above results to any sequence ofaditmis from a totally bounded space
D. Throughout this section, 16 (e) = suppcp Op(€).

First, we prove a basic result stating that CAL can achievahbdireear number of mistakes, and
under conditions on the disagreement coefficient, also ngals number of queries.

Theorem 2. If D is totally bounded (Assumption 1), then CAL (wittany empirical risk minimiza-
tion algorithm) achieves an expected mistake bolMfid = o(T"), and iffp(e) = o(1/¢), then CAL
makes an expected number of queties = o(T).

Proof. As mentioned, given thatrg, ,(h*) = 0, we have that} in Step 7 must equal*(X;),
so that the invariantrg, (h*) = 0 is maintained for alt by induction. In particular, this implies
Q; = Z, forall t.

Fix anye > 0, and enumerate the elementdifso thatD. = { P, P, ..., Pp,|}. For eacht € N,
let k(t) = argmin,<p_| [P — D], breaking ties arbitrarily. Let

=[5 on (3) = ()]

For eachi < |D.|, if k(¢) = ¢ for infinitely manyt € N, then letT; denote the smallest value Bf
such thaf{t < T : k(t) = i}| = L(e). If k(¢t) = i only finitely many times, then I€f; denote the
largest index for which k(t) = 4, or T; = 1 if no such index exists.

Let T = max;<p,| T; andV, = C[Z1,]. We have that/t > T, diam;(V;) < diamy)(Ve) + €.

For each, let £; be a sequence di(e) i.i.d. pairs(X,Y) with X ~ P, andY = h*(X), and let
V; = C[L;]. ThenVt > T,

E [diamy ;) (Vo)) < E [diamgy (Vi) ]+ Y, I1Ds=Pao || < B [diamy) (Vi) +L(e)e.
s<T;:k(s)=k(t)

By classic results in the theory of PAC learning [AB99, Vap8®d our choice ofL(¢), V¢t >
Te, E [diamy ) (Vi )] < Ve



Combining the above arguments,

[Z diam; (C[Z;-1])

T T
ST+ Y Efdiamy (V)] <Te+ el + Y E[diamy (Ve)]
t=Tc+1 t=Tc+1
T
< Te + €l + L(E)ET + Z E [diamk(t)(vk(t))]
t=Te+1
<T.+ €T + L(e)eT + /€T

Let ez be any nonincreasing sequencenl) such thatl <« 7., < T. Since|D.| < oo for all
e > 0, we must haver — 0. Thus, noting thalim._,o L(¢)e = 0, we have

T
E > diam,(C[Z,-1])| < Tep + exT + L(er)erT + /erT < T. (1)
t=1

The result onM; now follows by noting that for anﬁt_1 € C[2Z:-1] has ert(ﬁt_l) <
diamt((C[Zt_l]), SO

T
MT =E [Z ery (]Alt_1>
t=1
Similarly, forr > 0, we have

P(Request;) = E [P(X; € DIS(C[Z:-1])|Z:-1)] < E[P(X; € DIS(C[Z:—1] U Bp,(h*,7)))]
< E[0p(r) - max {diam; (C[Z;-1]), r}] < Op(r) - 7 + Op(r) - E [diam, (C[Z,1])] .

<T.

T
<E lz diam;(C[Z;-1])

Letting rr = T7'E {ZL diamt((C[Zt_l})}, we see thatr — 0 by (1), and sincép(e) =
o(1/¢), we also havéy (rr)rr — 0, so thaty (rp)rrT < T. ThereforeQr equals

= QGD(TT)~T’T'T < T. O

ZIP’ Request;) < Oy (rr)-ro-T+0p(rr)- lz diamy (C[Z;_1])
t=1

We can also state a more specific result in the case when weshawe more detailed information
on the sizes of the finite covers Bf

Theorem 3. If Assumption 2 is satisfied, then CAL (withany empirical risk minimization algo-
rithm) achieves an expected mistake bod and expected number of queri@g such thatVl =

0 (Tm%dﬁ log? T) andQr = O (HD (er) T71 d7+ log? T), whereer = (d/T)7 .
Proof. Fix ¢ > 0, enumerateD. = {P,P,...,Pp,}, and for eacht € N, let k(t) =

<k<|D. — Py||. Let{X}}$2, be a sequence of independent samples, With- Py,
andz; = {(X],h*(X1)),..., (X],h*(X})}. Then

T T
E | diam(C[2;1])| <E lz diam, (C[Z
t=1 t=1

T
<E [Z diam,(C[Z]_,])
t=1

The classic convergence rates results from PAC learnin@pPABap82] imply

T
. dlogt
ZE [dlamPk(t) [2{-4]) Z o ( i<tk O) k(t)}|)

t=1

T
+ Z Dt — Prs)ll
t=

T
+ €T <> E[diamp,, (C[Z{_,])] + 2¢T.
t=1

T [T/ID.]
O(dlogT) - Z{Nk(l oy < O(dlogT) - (D[ - >~ 4 < O (dDe] log*(T)) .

u=1



Thus,>"/_, E [diam;(C[Z,_1])] < O (dD,|log*(T) + €T) < O (d- e ™ log?(T) + €T).
Takinge = (T'/d)” =1, this isO (dﬁ+1 ST log2(T)). We therefore have

T T
Mr<E|Y sup er(h)| <E|Y diam(C[Z,_1])| <O (dmlﬂ T log®(T ))
t=1 heClZe—1] t=1
Similarly, lettinger = (d/T) =1, Qr is at most

E | > Dy(DIS(C[2;-1])

T

Z (DIS (Bp, (h* maX{dlamt((C[Zt—lbv€T})))]

<E lz Op (er) - max {diam;(C[Z;_1]), er}

S E lz 9]1)) (ET) . diamt((C[Zt,l])

t=1

+ 6p (ET) Ter <O (9]1) (GT) . dﬁ STt IOgQ(T)) .0

We can additionally construct a lower bound for this scanas follows. Supposg contains a full
infinite binary tree for which all classifiers in the tree agm some point. That is, there is a set of
points{xz, : b € {0,1}*, k € N} such that, fob; = 0 andVby, bs, ... € {0,1}, 3h € C such that
h(x@w,,...b,_,)) = bj for j > 2. For instance, this is the case for linear separators (ared atber
natural “geometric” concept spaces).

Theorem 4. For any C as above, for any active learning algorithm a setD satsifying Assump-
tion 2, atarget functiom* € C, and a sequence of distributiof®; } 7, in D such that the achieved

m

Mz andQr satisfyMy = Q (T#+1), and My = O (T7+1) = Qr = Q (T#+).

The proof is analogous to that of Theorem 9 below, and is ther@mitted for brevity.

5 Learning with Noise

In this section, we extend the above analysis to allow faouertypes of noise conditions commonly
studied in the literature. For this, we will need to study asaeeobust variant of CAL, below
referred to as Agnostic CAL (or ACAL). We prove upper boundbkiaved by ACAL, as well as
(non-matching) minimax lower bounds.

5.1 Noise Conditions

The following assumption may be referred to agrictly benign noiseondition, which essentially
says the model is specified correctly in théte C, and though the labels may be stochastic, they
are not completely random, but rather each is slightly hiaseard theh* label.

Assumptior8. h* = sign(n — 1/2) € C andvx,n(x) # 1/2.

A particularly interesting special case of Assumption 3iigeg by Tsybakov’s noise conditions,
which essentially control how common it is to haygalues close td /2. Formally:

Assumptiordt. 7 satisfies Assumption 3 and for some- 0 anda > 0,

YVt > 0,P(n(z) —1/2] < t) < c-t*.

In the setting of shifting distributions, we will be inteted in conditions for which the above as-
sumptions are satisifed simultaneously for all distribng inD. We formalize this in the following.

Assumptiorb. Assumption 4 is satisfied for &l € D, with the same: and« values.

5.2 Agnostic CAL
The following algorithm is essentially taken from [DHMO7ahil1], adapted here for this stream-

based setting. Itis based on a subroutineARN(L, Q) =  argmin  €r(h; Q) if minér(h; £) =
heC:ér(h;L£)=0 heC

0, and otherwise EARN(L, Q) = &



ACAL ]
1.t 0,L; < 0, Oy + 0, leth; be any element of
2. Do
3 tet+1
4. PredictV; = hy_ 1(Xy)
5. Foreachy € {—1,+1}, leth® = LEARN(L;_1, Qs 1)
6. Ifeithery hash(-¥) = @ or
er(hY) L1 U Q1) — (AW L1 U Qp1) > E41(Li—1, Qr—1)
7. Ly Ly U{(Xe,y)}, Q< Qi1
8. Else Request;, and letl; + L; 1, Q¢ + Qi1 U{(X¢, Y3)}

9. Leth, = LEARN(Ly, Q;)
10. Iftis a power o2
11, L+ 0,9+ 0

The algorithm is expressed in terms of a functiég(ﬁ, Q), defined as follows. Leb; be
a nonincreasing sequence of values(inl). Let &,&,... denote a sequence of indepen-
dent Uniform({—1,41}) random variables, also independent from the data. WoC C,

let Ry(V) = Supy, pyev m3momeT Somestiosst1) 11 &m + (11(Xm) = ha(Xm)), Dy(V) =
SUDp, hyeV T3 T0T Somealions-) 11 |11 (Xm) = ha(Xm)|, U(V,6) = 12Ry(V) +
34,/ Dy (V) E22/0) | T52In(327/9) - Nlso, for any finite sete, @ C X x Y, letC[L] = {h €
C:é(h; L) =0}, Cle; £,Q) = {h € C[L] : ér(h; LU Q) — mingecye ér(g; LU Q) < e}. Then
defineUy (e, 6; £, Q) = Uy (Cyi(e; £, Q),0), and (lettingZ, = {j € Z : 27 > €})

&L, Q) = inf {6 >0:Vj e Ze,g}é% Ut (€, 0)10g(t) 3 £, Q) < 2j_4} )

5.3 Learning with a Fixed Distribution
The following results essentially follow from [Han11], gded to this stream-based setting.

Theorem 5. For any strictly benign(P, 77) if22 < 6 < 2-%/i, ACAL achieves an expected
excess number of mistak@gr — M: = o(T), and if 0p(e) = o(1/e), then ACAL makes an
expected number of queri€s = o(T)

Theorem 6. For any (P,n) satisfying Assumption 4, i = {P} ACAL achieves an expected
excess number of mistakégy — M*% = O (dai2 T log ( ) 4y [esMl s, 21). and

) ZUOg(T | 5 9t )
whereep = T =42,

Corollary 1. For any (P,n) satisfying Assumption 4, i = {P} andd; = 27" in ACAL, the
algorithm achieves an expected number of mistakesand expected number of queri@s- such

that, forey = T~ 532, My — Mz = O (da+2 -Tu+2> andQr = (ap(eT) d=3= -Ta+2).

5uog<T>J

an expected number of queri€s- = O (ep(eT) . detr . Tats log (éu o
og

5.4 Learning with a Drifting Distribution

We can now state our results concerning ACAL, which are gmale to Theorems 2 and 3 proved
earlier for CAL in the realizable case.

Theorem 7. If D is totally bounded (Assumption 1) andsatisfies Assumption 3, then ACAL with
§; = 27" achieves an excess expected mistake bauad— M} = o(T), and if additionally
Op(e) = o(1/€), then ACAL makes an expected number of quépies= o(T).

The proof of Theorem 7 essentially follows from a combinatid the reasoning for Theorem 2 and
Theorem 8 below. Its proof is omitted.

Theorem 8. If Assumptions 2 and 5 are satisfied, then ACAL achieves agctegh excess num-

at2)m
ber of mistakes\ir — M3 = O (T(afz?(mﬁ) log ( ) + ZUOg(T” 5;2¢ ) and an expected
) ey, 2’) whereey =

5Llog<T>J

oa+2)(m+1)—a
number of querie§); = O <9D(€T)T @Fm+D Jog (% )
og

T (a+2)(m+1> i



The proof of this result is in many ways similar to that givdioee for the realizable case, and is
included among the supplemental materials.

We immediately have the following corollary for a specificsequence.

Corollary 2. Withé; = 2% in ACAL, the algorithm achieves expected number of mistakesd
expected number of queri€sy such that, fore; = T~ @ 6D,

(a+2)m+1 (a+2)(m+1)—a

My — M} = 9] (T(afz)(mﬂ)) andQr = O (QD(eT) T @r)(miD )

Just as in the realizable case, we can also state a minimax lmund for this noisy setting.

Theorem 9. For any C as in Theorem 4, for any active learning algoriththa setD satisfying
Assumption 2, a conditional distributiop such that Assumption 5 is satisfied, and a sequence of
distributions{D;}1_, in D such that theMr and Qr achieved by the learning algorithm satisfy

My — Mz =Q (Tjir> and My — Mz = O (Tﬁ%) — Or =0 (T%)

The proof is included in the supplemental material.

6 Querying before Predicting

One interesting alternative to the above framework is tovathe learner to make a label request
beforemaking its label predictions. From a practical perspectiies may be more desirable and
in many cases quite realistic. From a theoretical persgedainalysis of this alternative framework
essentially separates out the mistakes due to over-conédeom the mistakes due to recognized
uncertainty. In some sense, this is related to the KWIK motidarning of [LLWO08].

Analyzing the above procedures in this alternative modelbgi several interesting details. Specif-
ically, consider the following natural modifications to thlBove procedures. We refer to the algo-
rithm LAC as the same sequence of steps as CAL, except with&temoved, and an additional
step added after Step 8 as follows. In the case that we rexglige label’;, we predicty;, and oth-

erwise we predicﬁt(Xt). Similarly, we define the algorithm ALAC as having the samgusmce of
steps as ACAL, except with Step 4 removed, and an additidapladded after Step 11 as follows.

In the case that we requested the lalielwe predicty;, and otherwise we prediéxt(Xt).

The analysis of the number of queries made by LAC in thisrsgttemains essentially unchanged.
However, if we consider running LAC in the realizable cabentthe total number of mistakes in the
entire sequence will beera As above, for any example for which LAC does not requestabell
every classifier in the version space agrees with the tangetibn’s label, and therefore the inferred
label will be correct. For any example that LAC requests #iel of, in the setting where queries
are madéeforepredictions, we simply use the label itself as our predittap that LAC certainly
does not make a mistake in this case.

On the other hand, the the analysis of ALAC in this alterratietting when we have noisy labels
can be far more subtle. In particular, because the versiaces only guaranteed to contain the best
classifierwith high confidencehere is still a small probability of making a predictiorattdisagrees
with the best classifigi* on each round that we do not request a label. So controllimgtimber of
mistakes in this setting comes down to controlling the pbdiig of removing h* from the version
space. However, this confidence parameter appears in thesisraf the number of queries, so that
we have a natural trade-off between the number of mistakésrennumber of label requests.

Formally, for any given nonincreasing sequengén (0, 1), under Assumptions 2 and 5, ALAC

achieves an expected excess number of mistakes— M; < ZZLE;(T)J 4,2, and an expected
~ (a+2)(m+1)—a

number of queriex)r = O (QD(eT) T @FmTD log( 1 ) + 3 Hoa™)] 61-21'), where

9 1og(T)]
er = T~ @F@F0, In particular, given any nondecreasing sequeltg we can set thig; se-
guence to maintaiddr — My < M forall T



7 Discussion

What is not implied by the results above is any sortrafie-off between the number of mistakes
and the number of queries. Intuitively, such a trade-offulth@xist; however, as CAL lacks any
parameter to adjust the behavior with respect to this trdfjé-seems we need a different approach
to address that question. In the batch setting, the anasogoestion is the trade-off between the
number of label requests and the number of unlabeled exanmgleded. In the realizable case,
that trade-off is tightly characterized by Dasguptsditting indexanalysis [Das05]. It would be
interesting to determine whether the splitting index tigltharacterizes the mistakes-vs-queries
trade-off in this stream-based setting as well.

In the batch setting, in which unlabeled examples are censitifree, and performance is only mea-
sured as a function of the number of label requests, [BHV&EHound that there is an important
distinction between theerifiablelabel complexity and thanverifiablelabel complexity. In partic-
ular, while the former is sometimes no better than passiamnlieg, the latter can always provide
improvements for VC classes. Is there such a thing as uralglgfiperformance measures in the
stream-based setting? To be concrete, we have the follosgpeg problem. Is there a method for
every VC class that achievéXlog(7T')) mistakes and(7") queries in the realizable case?
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A Proof of Theorem 1

Proof of Theorem 1First note that, by the assumption théter,(h*) = 0, with probability 1 we
have thatvt, @, = Z;. Thus, since the stated bound dfy- for the one-inclusion graph algorithm
has been established when using the true sequence of labelethlesz, [HLW94], it must hold
here as well.

The remainder of the proof focuses on the bound)en This proof is essentially based on a related
proof of [Han11], but reformulated for this stream-basedigio

Let V; denote the set of classifiekse C with ér(h; Q;) = 0 (with V = C). Classic results from

statistical learning theory [Vap82, BEHW89] imply that for> d, with probability at least — 9,

log(2e(t — 1)/d) + log(4/9)
t—1 ’

diamy (Vi) < cd (2)

for some universal constaate (1, 00).

In particular, ford < ¢ < T, since the probability CAL requests the labgis P(X; € DIS(V;_1)),
(2) implies that this probability satisfies

P (X, €DIS(V;_1)) < P (Xt € DIS (Bp (h*,cdlog@e(t - 121‘? + 10g(4/5))>) )

Cdlog(Qe(t —1)/d) +1log(4/6)
t—1

< 0p (dlog(T)/T) +6.

Takingé = d/(t — 1), this implies

P (X, € DIS(Vi_)) < 6p (dlog(T)T) 2ca’BEL =D/,

t—1
Thus, forT > d,
T T-1
9 log(8et/d
Qr=S"P(X, eDIS(WVi 1)) <d+1+ 3 6p (dlog(T)/T) 2ca" 2L/ D)
t=1 t=d+1

T
1
<d+1+4+6p(dlog(T)/T)2cdlog(8eT/d) / ;dt
d

=d+ 14 0p (dlog(T)/T) 2cdlog(8eT'/d) log(T/d).

B Proof of Theorem 8

The following lemma is similar to a result proven by [Han1ddsed on the work of [Kol06], except
here we have adapted the result to the present setting withgatg distributions. The proof is
essentially identical to the proof of the original resul{ldan11], and is therefore omitted here.

10



Lemma 1. [Hanll] Suppose; satisfies Assumption 3. For everyc N, on an eventt; with
P(E;) >1—68;,Vt € {20 +1,...,2¢71}, lettingt(i) =t — 2,

o ér(h*;Li—1) =0,

o VheCs.tér(h;Li_y) =0andér(h; Lo_1 U Q1) —6r(h*; Li—1 U Q1) < &_1(L4—1,Qs_1),

we haveeryi g1 (h) — €rgip1,—1(R") < Qét—l(ﬁt—la Qi—1),
a+1

leg(t(i)/éi)> o
t(7) ’

e if Assumption 5 is satisifed,_;(£;_1, Q;_1) < K - <

for some(c, ar)-dependent constait € (1, 0).

We can now prove Theorem 8.

Proof of Theorem 8Fix anyi € N, and we will focus on bounding the expected excess number of
mistakes and expected number of queries for the valae§2’ + 1,...,2i71}. The result will then
follow from this simply by summing this over valueso& log(T).

The predictions fot € {2" +1,...,2""!} are made by.,_1. Lemma 1 implies that with proba-
bility at leastl — 4;, everyt € {2¢ +1,...,2""!} hasVh € C[L;_1] with ér(h; L,—1 U Q1) —
ér(h*; L1 UQy—1) < &i—1(L4-1, Q1—1) (and therefore in particular far;_1)

- ) atl
s=2i+1
< Ky -t - (dlog(t/6;)) 5 @®)
for some finite constark’; .
Fix some value: > 0, and enumerate the elementsinf = { Py, P, ..., Pp_ }. Then letD. ; =

€D : k = argmin, . P — , breaking ties arbitrarily in thergmin. This induces a
PeD:k in;p,| [|1P; — P}, breaking ti bitrarily in th in. This ind
(Voronoi) partition{D. , : k¥ < |D¢|} of D.

Rewriting (3) in terms of this partition, we have

De|

Yoo > en(h) —en(h) < Ky ()75 - (dlog(t/6))
k=1se{2"+1,...,t—1}:
Ds€De i

This means that, for any < |D.|, we have

(erp, (h) —erp, (h")) - |{s IS {2i +1,...,t—1}:Ds € DE,kH

< K- (t)#z (dlog(t/;)) +2¢|{s € {2"+1,....,t =1} : Dy € D1 }|.

Abbreviating byk(s) the value oft < |D.| with D, € D, j, we have that
ery(h) —ery(h")
< 2e+erp,, (h) — erp, ., (h*)
2 |{s € {2+ 1,...,t =1} : k(s) = k(t)}| + K1 - (£) 7= - (dlog(t/5))
max {1, [{se {2+ 1,...,t — 1} : k(s) = k(®)}|}
2K, - ()77 - (dlog(t/:))
(s € {2 +1,.. t}:k(s) = k(D))

< 2e+

<de+ 4

11



Applying (4) simultaneously for all € {2¢ + 1,...,2¢+1} for h = h,_,, we have

) llog(T)]
My — My <4eT+ Y 25+
=0

Llog(T) ] |De| [{te{21+1,....27+1 }:

_1
2K, - Ta+2 -log(T) (d1og(T/d10g(T)))) Z Z
= k=1

[log(T))
<4eT+ > 25+

=0

u=1

2Ky - T2 -log(T) (dlog(T/d|105(7)))) log® (2T)|D|.

= O | €T + e T2 dlog® (T) 10g(1/6 10

Takinge =T~ @) G Ty , this shows that

(a+2)m+1

My — M = O | T@0#0 dlog®(T) 10g(1/8 1eg(1))) +

We can boundQr in a similar fashion as follows.

that with probability at least — 4;, for everyt €

1
2K, t a2 dlog(t/d|10g(t)))
e, 1 A (s)=k(n]] WE have

P(requestyy[L;—1, Q1)

<P (Xt € DIS ({h € C[L_1] : 6r(h; Lom1 U Qur) — 6r(h*; Loo1 U Qs_1) < &,

<P (X, €DIS ({h € C:ery(h) —ery(h*) < &}))

[log(T)

o)+ D, 2

=0

[log (T

Fix any < log(T).

k(t)=Fk}| 1

u

> a2
=0

Lemma 1 implies

{20 +1,...,27F1), letting &, = 4e +

<P(x,enis({neC: Alr:hx) £ 0 @) < Kz &7 }))

<9D(éa+1)-K3-é;%,

where the third inequality above is due to Assumption 5.

Applying this simultaneously to all < log(T) andt € {2¢ +1,..

e+T~ a+2

[log(T")] log(T) ] De| [{te{2'+1,....2"  }ek(t)=k}|

Qr< > 602 +9D( ““) Kadlog(T/dj1og(y) )

=0
Llog )]

< X a2eh (FF77) - K5 - d10g(1/3piog(r) 108*(T) -

Llog(T)J

=0 k=1 u=1

(L1, Q0)})

., 2111 we have, forer =

(max {e, T

T + D |TEFDEFD ( T )ail
em _|_ p (a+2)(a+1)
D |

=0 Z 82" + 0p (_““) log(l/éLlog(T)J)logQ(T) . (eﬁlT + (mﬁrlTﬁz)

: atl o adl
Takinge = e, =T @@+, we have
[log(7")]

=0

12

(a+2)(m+1D)—a

Qr=0| > &2 +0p(er)log(1/10gr))) log(T) - T rm0meD

Li1,Qr1)



C Proof of Theorem 9

Proof of Theorem 9Fix anyT € N, and any particular active learning algorith#1 We construct
a set of distributions tailored for these, as follows. ket= (a + 1)/a. Lete = T~ z-iFm,

M = T7i=1 = ¢™/% andK = T=+m-1 = T /M.

Inductively define a sequengé; }7° , as follows. Leth; = 0, b, = 1. For any integek > 3, given
thatvalues 0by, b, ..., bx—1,7m3,...,Mk—1, D3,... Dx_1,andXy, Xo, ..., X(,_3)x have already
been defined, it is known [Han11] that for any active learnahgprithm (possibly randomized)
there exists a valug, such that, for the distributio®;, with Dy, ({zp, ts....bp_1}) = /e =1—
Dy ({xp, }), there is a label distribution, (z) = P(Y = 1|X = z) havingn(xp,) = 1 and
inducing h*(zp, bs....0,_,) = br, Which also satisfies Tsybakov noise with parameteand o

ber) =3 (1 + (2bg — 1)6%). Furthermore, [Han11]

.....

shows that thi$;, can be chosen so that, for some = Q (e%*2), after observing any number

fewer thanN random labeled observatioQX,Y") with X = x4, 4, b, if h,, is the algorithm'’s

hypothesis, thetE[er(h,) — er(h*)] > ¢, where the error rate is evaluated undgrand Dy. In
particular, this means that if the unlabeled samples atelilited according td;, then with any
fewer thanV label requests, the expected excess error rate will beggribaine. But this also means
that with any fewer thaf2(e 1/~ N) = Q(ex ~2) = Q(K) unlabeled examples sampled according
to Dy, the expected excess error rate will be greater than

Thus, to define the valué, given the already-defined valués,bo,...,bx_1, We consider
Xh—3)k+1r X(k—3)K+21 -+ X(k—2)K I.d. Dy, independent from the otheX, ..., X3k
variables, and consider the valuesbgfandn; mentioned above, but defined for the active learn-
ing algorithm that feeds the streal, X, ..., X(,_3)x into A before feeding in the samples from
Dy,. Thus, in this perspective, theag, Xo, ..., X(,_3)x random variables, and their labels (which
A may request), are considerigdernal random variables in this active learning algorithm we have
defined. This completes the inductive definition.

Now for the original learning problem we are interested ie, take as our fixed label distribution
ann with n(zp,) = 1 andvk > 2, (b, by, 06 1) = T(Tby bs....br_, ) @and defined arbitrariliy
elsewhere. Thus, for aniy, this satisfies Tsybakov noise with the giveanda parameters.

We define the familyD of distributions aq Ds, , Dy, ..., D4} for M = Tzwm=1 = ¢~ ™/% as
above. Since thesB; are each separated by distance exactly, D satisfies the constraint on its
cover sizes.

The sequence of data points will be thg, X5, ..., X7 sequence defined above, and the corre-
sponding sequence of distributions Has = Dy = .-+ = D = D3, D41 = Dgyo = -+ =
Doy = Dy, and so on, up tGD(M_l)KH = D(]M—I)K-&-Z =.--Dp = DI\,[+2.

Now applying the stated result of [Han11] used in the debnitof the sequence, for any <
t < min{e"'/*N, K}, and anyk < M, denoting by ;1 the classifier produced by after

processing:K + t — 1 examples from this strearf, {eerKH(EkKH,l)} —erp, .. (h*) > e=
T~ 2eFm—T,

Sincemin{¢~'/*N, K} = Q(K), the expected excess number of mistakes is

M-1 K
My — M’;: = E E E |:eerK+t (th-‘rt—l)} - eerK+t(h*)
k=0 t=1
M—1 min{efl/”N,K} M—1 min{e’l/*"N,K}

=3
k=0

:Q(M.K.e)zﬂ(M.(T/M).T—M%):Q(T;;%)

E |:eer,K+t(l/:Lk'K+t71):| — CI'Dp gy (h*) > Z Z €
k=0 t=1

t=1
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Similarly, applying the stated result of [Han11] regardthg number of samples of labels for the
point =, »,.... 5., 10 achieve excess errerbeing larger thanV, we see that in order to achieve

this My — My =0 (T721ﬁ;111), we need that at least some constant fraction of thidsseg-
ments receive an expected number of quefiéd’), so that we will need); = Q(M - N) =

2k+m—2

0 (Tz~+m—1). 0
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