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Outline!

• Active Learning with a Drifting 
Distribution ([Yang11 NIPS]) 
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Active Learning with  

a Drifting Distrib: Model 
•  Scenario:  
     - Unobservable seq. of distrib.s                   with each  
     - Unobservable time-indep. regular cond. distrib. represent by fn 

     -                               : an infinite seq. of indep. r. v., s.t.,        
and cond. distrib. Of Yt given Xt satisfies 
 
•  Active learning protocol 
     At each time t, alg is presented with Xt, and is required to 
predict a label                     , then it may optionally request to see 
true label value Yt 
 
•  Interested in cumulative #mistakes up to time T and total 

#labels requested up to time T 
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Definition and Notations 
•  Instance space X = Rn  
•  Distribution space     of distributions on X 
•  Concept space C of classifiers h: X -> {-1,1} 
       - Assume C has VC dimension vc < ∞ 
•  Dt: Data distrib. on X at t  
•  Unknown target fn h*: true labeling fn 
•  Errt (h) = Px~Dt [h(x) ≠ h*(x)] 
•  In realizable case, h* in C and errt(h*) = 0. 
•  For         ,  
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Def: disagreement coefficient, tvd !

•  The disagreement coefficient of h* under a distri. P on X, 
is define as, (r > 0) 

 

•  Total variation distance of probability measures P and Q 
on a sigma-algebra     of subsets of the sample space is 
defined via 
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Assumptions!
•  Independence of the Xt variables  
•  Vc-dim < ∞ 
•  Assumption 1 (totally bounded) :       is totally bounded  
     (i.e. satisfies                            ) 
      - For each ε > 0,       denote a minimal subset of      s.t.  

                           s.t.                      (i.e. a minimal ε-cover of     ) 
•  Assumption 2 (poly-covers)  

where c,m ≥ 0 are constants. 



Realizable-case Active Learning 
CAL!
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Sublinear Result: Realizable Case 
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Theorem. If    is totally bounded, then CAL, 
achieves an expected mistake bound 
And if                    , then CAL makes an E[#queries]  
 

[Proof Sketch]: 
Partition D into buckets of diam < eps.  
Pick a time T_eps past all indices from finite buckets  
and all the infinite bucket has at least  
 



Number of Mistakes 
•  Alternative scenario: 
    - Let Pi be in bucket i 
    - Swap the L(ε) samples for bucket i with L(ε) samples from Pi 

    - L(ε) large enough so E[diam(V)]alternative < sqrt{eps}. 

    - Note: E[diam(V)] ≤ E[diam(V)]alternative + sumL(ε) t values||P_i – D_t||                        
< √ε + L(ε)*ε. 
      So E[diam] -> 0 as T -> ∞ 
    - E[#mistake] 
    - Since 



Number of Queries 
 

•  E[#queries] 
•  P(make query) = E[P(DIS(Vt-1))] 

•  Let  
then            and  

     E[#queries] 
                                                   
•                                                => 



Explicit Bound: Realizable Case 
 

© Liu Yang 2012  12 

Theorem. If poly-covers assumption is satisfied (                  ) 
then CAL achieves an expected mistake bound       and 
E[#queries]      such that 
 
 
 
where  

[Proof Sketch] 
Fix any ε >0, and enumerate   
For t in N, let K(t) be the index k of the closest              to Dt.  
Alternative data sequence:   
Let                 be indep., with  
This way all samples corresp. to distrib.s in a given bucket all came from same distri.  
Let V’t be the corresponding version spaces.  



E[#mistakes] 
 
 
Classic PAC bound =>  
 
                                                               (#previous distrib.s in Dt's bucket) 
So  
 
 
    (each bucket has at most T samples) 
So E[#mistakes]  
Take                          to get the stated theorem.  
 
To bound E[#queries], again it is  
 
 
 
                                            just showed this is  
So  
 
Again, taking                          gives the stated result.  
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Learning with Noise 
Noise conditions 

 
 
•  Strictly benign noise condition: 
 
•  Special case: Tsybakov's noise conditions  
•  η satisfies strictly benign noise condition and for some c > 0 and 

α≥0, 

•  Unif Tsybakov assumption: Tsybakov Assumption is satisfied for 
all           with the same c and α values. 
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and 



Agnostic CAL [DHM] 
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Based on subroutine: 



Tsybakov Noise: Sublinear Results 
& Explicit Bound 

Theorem. If    is totally bounded and η satisfies strictly benign 
noise condition, then ACAL achieves an excess expected mistake 
bound  
and if additionally                    , then ACAL makes an expected 
number of queries  
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Theorem. If poly-covers Assumption and Unif Tsybakov assumption  
are satisfied, then ACAL achieves an expected excess number of mistakes 
ACAL achieves expected #mistakes     and expected #queries  
such that, for 
 
 
 



Outline!

•  Convex Losses in Active Learning!
   (Joint work with Steve Hanneke) 
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Negative Results for AL with 
Convex Losses [AISTATS’10] 

 
Fn class  
Loss fn 
Interested in convex nonincreasing loss 

Hinge l(x) =max{1-x, 0} 

Data distri. D still on  
Risk  

Exponential 
l(x) =e-x  

Question: How many labels needed  
to find  

These are easy for active learning under 0-1 loss.  
Now let us see about under convex losses.  

We’ll study “Bounded Noise” Scenario where  
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t* t 

Noisy and far  
from boundary 

Minimizer of Rl  
Increasing fn of ν Distant “noisy” region 

Calculus + convexity =>  
Let νt be the ν that would make t* = t  
More calculus =>   
So                        =>                   

estimating a Bernouli  
mean requires Ω(1/ε)  
samples 

Slope-one Linear fns. Corresponds to “threshold” classifiers when we  
take signs. e.g. would be intervals if has used quadratic fns instead. 
 



Definition: Surrogate Losses 

•  Ψ-transform of a loss fn:  
     -BJM06 defined a loss-dependent function Ψ to convert excess  
surrogate risk bounds into excess error rate bounds, specifically,  

•  Modulus of convexity:  
 
     suppose 
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[BJM06]: For η0 in [0,1], define  

•  Loss l is classification-calibrated if, for every η0 in [0,1]\{1/2}, 
 
  
                    : minimum value of conditional-risk at X s.t.  
                  
                   : minimum conditional l-risk at X, s.t.  
                                                                      

Calibration means: fn with minimal surrogate loss => fn with minimal err 
 
 



Alg: A modification on ACAL 
stream-based 
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Based on subroutine: 

RL(h(-y), Q) – RL (h(y) , Q) > Êl(Q) 

LEARN(L, Q) =  
argminf in F; er_L (f)=0 Rl(f; Q) 



Can we do it efficiently ? 
General Results  

•  In general, we have results on how many labels are 
required to obtain a given excess error rate with this 
method, for general classification calibrated losses.  

•  Generally, if εt denotes the solution of  

    for ε in terms of t, then 
    E[excess #mistakes] =   
    E[#queries] = 
    e.g., when l is squared loss = (1-x)2,  ψ(x) = x2, p= 2 
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Can we do it efficiently ? 
(Streamed-based, just for one distri.) 

•  Theorem. If loss is square loss, under surrogate loss 
assumption, optimal fn is in fn class, fn class is VC 
subgraph, satisifying Tsybkov noise with exponent  

•  α/(1-α), alg A’ has excess #mistake  
    E[excess #mistake] = Õ(        ) 
    E[#queries] = Õ(                    ) 
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E[excess #mistake] sublinear 
- if θ = o(1/ε),  
E[#queries] sublinear. [Proof Sketch] By BJM06 analysis,  

•  If                                                         then excess err rate < ε. 
This is sample complexity of passive learning with surrogate loss. 

•  Ε excess error under 0-1 loss  
    Solve for t  
•  Get current excess error rate (as fn of t, bound on excess error 

rate, excess mistake = pr(make mistake but optimal fn doesn't) 
    give excess err  



Proof Sketch (cont.) 
•  If the loss is squared loss, fill in all the value, we get  

•  How to convert excess error to Pr(make a query) 
•  use Tsybakov noise condition  

•  Take           , raise to the power of α, get diameter 
•  relate that to Pr(in DIS) by multiplying with θ (the disagreement 

coefficient, taking an argument) 
•  do that get 
•  plug in the bound on the diameter  
•  If θ is o(1/ε), this is sublinear  
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Thanks!  
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