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Active Learning with
a Drifting Distrib: Model

« Scenario:

- Unobservable seq. of distrib.s D, D5, ...with each D; € D

- Unobservable time-indep. regular cond. distrib. represent by fn

n:X —[0,1]

- Z ={(X,Y1)}:2, : an infinite seq. of indep. r.v.,s.t., Vi, Xi ~ Dy

and cond. distrib. Of VY, given X, satisfies
Ve e X, P(Yy = +1|X; = x) = n(x)

« Active learning protocol

At each time 1, alg is presented with X;, and is required to
predict a label Y; € {—1,+1}, then it may optionally request o see
true label value Y,

« Interested in cumulative #mistakes up to time T and total
#labels requested up to time T



Distrib. [?2
Space
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Definition and Notations

Instance space X = R"
Distribution space D of distributions on X
Concept space C of classifiers h: X ->{-1,1}
- Assume C has VC dimension vc < o
D;: Data distrib. on X at t
Unknown target fn h*: true labeling fn
Erry (h) = Pyup, [N(X) # h*(x)]
In realizable case, h* in C and err.(h*) = 0.
Forv C C, diami(V) = sup;, ,cy De({x : h(x) # g(x)})



Def: disagreement coefficient, tvd

* The disagreement coefficient of h* under a distri. P on X,
is define as, (r > 0)

Op(e) = sup,~. P(DIS(Bp(h*,r)))/r.
DIS(V)={x e X :3h,g €V s.t. h(x) # g(x)}
Bp(h,7) ={g€ C:P(x:h(zx)#g(x)) <r}

 Total variation distance of probability measures P and Q

on a sigma-algebra G of subsets of the sample space is
defined via

1P — Q|| = supaeg|P(A) — Q(A)]



Assumptions

Independence of the X, variables
Vc-dim < o
Assumption 1 (totally bounded) : D is totally bounded
(i.e. satisfies Ve > 0,|D.| < o0)
- For each € >0, D, denote a minimal subset of D s.t.
VD € D,3D" € D s.t.|D — D'|| < ¢ (i.e. a minimal e-cover of D)
Assumption 2 (poly-covers)

Ve>0,|D| <c-e™
where c¢,m > O are constants.



Realizable-case Active Learning

CAL

CAL A
1.t~ 0, Qo « 0, and let hog = A()
2. Do

Qi—1 U{(X¢,y)}).and let Qp — Q; 1 U {( X,

3. t—t+1
4. Predict Y; = hy—1(X4)
5. Ifye{malvil}rglelgel(h Qi1 U{(X¢,y)}) =
6. Request Y. let Q; = Q,_ 1 U {(Xt,Yt)}
7. ElseletY/ = argmin miner(h; Q

) ye{—1,+1} heC
8. Lethy = argminpeccer(h; Qy)

Y{);
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Sublinear Result: Realizable Case

Theorem. If D is totally bounded, then CAL,

achieves an expected mistake bound My = o(T)

And if 0p(e) = o(1/€), then CAL makes an E[#queries]
Qr = o(T)

[Proof Sketch]:

Partition D into buckets of diam < eps.

Pick a time T_eps past all indices from finite buckets
and all the infinite bucket has at least

L) = [£ (din 2L+ 4]



Number of Mistakes

Alternative scenario:

- Let P, be in bucket i

- Swap the L(g) samples for bucket i with L(€) samples from P,
- L(€) large enough so E[diam(V)]ternative < Sqri{eps}.

- Note: E[dlam(V)] < E[diam(v)]al‘rer‘na’rive + Sl"mL(z»:) t values| |P—' - D—ﬂ |
<Je+ L(e)*e.

So E[diam] ->0as T -> o
- E[#mistake] < 23;1 Eldiam(V;-1)]
- Since E[diam(V,_1)] — 0,3,_, E[diam(V;_1)] = o(T)



Number of Queries

« E[#queries] = Zle P(make query)

« P(make query) = E[P(DIS(V;.1))]

E0(r) max{diam,r}] < 0(r)E|diam|+ 0(r) - r

+ Letrp =43, Eldiamy(Vi_1)]
then 7+ — 0 and

El#queries]< 0(rp) 3.1, E[diam,(Vi—1)] + 0(rp)rp = 0(rp)rp(T 4 1)

e O(e)=0(1/e)=>0(rp)rr — 0 =>0(rp)rp (T + 1) = o(T)



Explicit Bound: Realizable Case

Theorem. If poly-covers assumption is satisfied (|Dc| < (1/¢)™)
then CAL achieves an expected mistake bound 57, and
E[#queries] Qr such that

Mr =0 (Tmﬁl 4t log? T»
QT =0 (61} (GT) Tmﬂj‘l dmh‘l 10g2 T)

where er = (d/T) 7+

[Proof Sketch]

Fix any € >0, and enumerate D, = { P\, P>,---, Pp_|}

For tin N, let K(t) be the index k of the closest P, € D, to D;.

Alternative data sequence:

Let {X/}°, beindep., withX; ~ P

This way all samples corresp. to distrib.s in a given bucket all came from same distri.
Let V', be the corresponding version spaces.




E[#mistakes]< E[Zt 1 dza’mPK(t)( )] + Zt 1 ”Dt PK(t) ||
< Zt_l [dzampK(t)( )] + €T
ClGSSlC PAC bound => E[dlamPK(t)( < O<‘|{Z<t ;l{l(OZ%iK(t)}’D

]
(#pr'evnous dlSTr‘lb s in D,;'s bucket)
T
S0 > [dza’mPK(t)( )] < O(dlogT) Zt 1 T{i<t: K(z) K(t)7Y]
<0 (dlog T)|De| 0, & < O(d|D|logX(T))
(each bucket has at r?wos’r T samples)

So E[#mistakes] < O(d(2)™ log*(T) + €T)
Takee = (T/d)~ 7T fo get the stated theorem.

To bound E[#quer'les] again it is
< BISL, DUDIS(Vi))] < BISE, 0e) max{diam, (Vi 1, )}
< 0(e)E[Y,, diamy(Vi—1)] + 6(e)eT

just showed this s< O (d(L)™1og®(T) + O(€)eT)
So

O(0(e)d (L) " log*(T) + 0(e)eT)
Again, taking ¢ — (7/q)” 71 gives the stated result.




Learning with Noise
Noise conditions

Strictly benign noise condition:

h* =sign(n —1/2) € C' and Va,n(z) # 1/2
Special case: Tsybakov's noise conditions
n satisfies strictly benign noise condition and for some ¢ > 0 and
a0, vt > 0, P(|n(z) —1/2| <t) < c-t®

P(h(z) # h*(x)) < ¢ (er(h) — er(h*))

Unif Tsybakov assumption: Tsybakov Assumption is satisfied for
all p € D with the same c and a values.



Agnostic CAL [DHM]

ACAL )

1. t—0,L; — 0, Q; — (), let h; be any element of C

2. Do

3. t—t+1

4. PredictY; = hy—1(X})

5. Foreachy e {—1,4+1},let h(¥) = LEARN(L¢—1 U {(2+,y)}, Qr—1)
6. Ifeither y has h(™¥) = @ or

eﬁf(h(_y); Li1UQi—1)— él‘(h(y); Li1UQi—1)> ét—l(ct—la Q1)
Ly— Ly 1 U {(Xt,y)}. Qp — Qi1
Else Request Y;, and let £; — L;—1, Qr +— Qi—1 U {(X:,Y:)}
0. Let ht o LEARN(L:t, Qt)
10. If ¢ is a power of 2

Based on subroutine: LEARN(L, Q) =  argmin  ér(h; Q) if minér(h; £) =
heC:er(h;L)=0 heC
0, and otherwise LEARN(L, Q) = &.
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Tsybakov Noise: Sublinear Results
& Explicit Bound

Theorem. If Dis totally bounded and n satisfies strictly benign
noise condition, then ACAL achieves an excess expected mistake
bound My — My = o(T)

and if additionally 6n(¢) = o(1/¢), then ACAL makes an expected
number of queries Qr = o(T)

Theorem. If poly-covers Assumption and Unif Tsybakov assumption
are satisfied, then ACAL achieves an expected excess number of mistakes
ACAL achieves expected #mistakes M and expected #queries Qr
such that, for ey = T~ @ @D
(a+2)m+1 )

MT — M; = O (T(a+2)(m+1)

(a+2)(m+1)—




Outline

* Convex Losses in Active Learning
(Joint work with Steve Hanneke)
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Negative Results for AL with
Convex Losses [AISTATS'10]

Fn class Foffns: f: X — R
Loss fni: R — [0,00)
Interested in convex nonincreasing loss

Exponential

Data distri. D stillon X x -1, +1
Risk Ri(f) = E[l(f(x)Y)] for (X,Y) ~ Dxy

L (x) =e

X

Question: How many labels needed
to find f € F with Rl(f) — inffe}“ Rl(f) < €7

We'll study "Bounded Noise” Scenario where |
3f € Fst. P(Y =sign(f(z))|r) > ¢ for some ¢ >1/2 |

|
Hinge I(x) =max{1-x, O}

These are easy for active learning under O-1 loss.
Now let us see about under convex losses.



F={filx)=x—t:te R} Dx =Uniform(0,4z)

Slope-one Linear fns. Corresponds to “threshold” classifiers when we
take signs. e.g. would be intervals if has used quadratic fns instead.

Noisy and far
from boundary

+ ++++ + +++++++++++H - et - O OO

0 r*t 2z 4z
Minimizer of R ‘ Y /
Increasing fn of v Distant “noisy” region

Calculus + convexity R;(f;) — Ry(fir) > c(t — t*)?
Let v, be the v that would make t* = t estimating a Bernouli}
)

More calculus => (t — t%)? > (v; — vy« )? mean requires Q(1/¢
So Ri(f:) — Ri(fir) <e=>(v; —v+)? < ce samples




Definition: Surrogate Losses

[BIMO6]: For ny in [0,1], define
[*(no) = inf.er(nol(z) + (1 —no)l(—2))
. lt(ﬂo) — ?nfze.R:z(2n0—.1)§O(7701(z) + (]- - 770)1(_2))
- Loss | is classification-calibrated if, for every nyin [0,1]1\{1/2},
. L 12 (no) > 1" (o) N
Calibration means: fn with minimal surrogate loss => fn with minimal err
I* (n(X)): minimum value of conditional-risk at X s.t.
. sign(h(X)) # sign (n(X) —1/2)
I*(n1(X)): minimum conditional I-risk at X, s.t. E[l*(n(X))] = inf;, R;(h)

« Y-transform of a loss fn:

-BJMO6 defined a loss-dependent function ¥ to convert excess
surrogate risk bounds into excess error rate bounds, specifically,

(er(h) — er(h*))*/ W ((er(h) — er(h*))/ 1+ < Ry(h) — Ri(h*)
*  Modulus of convexity:

0(e) = max{(f(z) + f(y))/2f((x +y)/2) : |z —y| > €}

supposed(e) > €P



Alg: A modification on ACAL

stream-based

ACAL ]
1. t—0,L; — 0, Q; — (), let h; be any element of C
2. Do
3. t— 1 —I—Al X RL(h(—Y), Q) - R, (h, Q) » é,(Qﬂ
4.  Predict Yy = hy—1(Xy)
5. Foreachy e {—1,+1}, let h(¥) = LEARN(L Tt,Y)}, Qi—1)
6. Ifeithery has h"¥%) = g or

x(hY); Lo U Qu—q) — ér(hW); L4 U Qi—1)]> Eem1(Lim1, Qi)
7. Li— L 1 U WA, y) 5 Y — Y
8. Else Request Y;,and let £; — L4, Q; — Q-1 U{(X¢, Y2)}
0. Let hy = LEARN(ﬁt, Qt) LEARN(L, Q) = }
10.  If ¢ 1s a power of 2 argming i e or 1 (=0 RI(E, Q)
11. Li— 0,09, <0

Based on subroutine: LEARN(L, Q) = argmin [er(h; Q))if minér(h; £) =

heC:ér(h:L)=0 heC
0, and otherwise LEARN(L, Q) = &.
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Can we do it efficiently ?
General Results

* Ingeneral, we have results on how many labels are
required to obtain a given excess error rate with this
method, for general classification calibrated losses.

* Generdlly, if &, denotes the solution of

~ . 2—-2/p
t=0 (ea\y(el—a))

for € in terms of T, then

E[excess #mistakes] = O, «

E[#queries] =0 (Zle 9(6?)6?)

e.g., when | is squared loss = (1-x)?, W(x) = x?, p= 2




Can we do it efficiently ?
(Streamed-based, just for one distri.)

* Theorem. If loss is square loss, under surrogate loss
assumption, optimal fn is in fn class, fn class is VC
subgraph, satisifying Tsybkov noise with exponent

» o/(1-a0), alg A" has excess #mis’rake S (/)=

# T2 o
E[excess #mistake] = O( s E[excess #mistake] sublingar
E[#queries] = O(6(T== ) - if 8= 0(1/¢),

[Proof Sketch] By BTMO6 analysus, \_E[#queries] sublinear.

« Ift= (6%(11 =ay)?” 2/Ppolylog(log 1/€) then excess err rate < ¢.
This is sample complexity ot passive learning with surrogate loss.

« E excess error under 0-1 loss
SOIV@ fOr' 1. €o¢w(1i€1—a) — T

« Get current excess error rate (as fn of t, bound on excess error
rate, excess mistake = pr(make mistake but optimal fn doesn't)

give excess err




Proof Sketch (cont.) @

If the loss is squared loss, fill in all the value, we get

T = l—a
Yoo (§) T =T
How to convert excess error to Pr(make a query)

use Tsybakov noise condition

Take (%)m, raise to the power of a, get diameter

relate that to Pr(in DIS) by multiplying with 6 (the disagreement
coefficient, taking an argument)

do that get 23:1 ‘9(75%)(%)ﬁ < Q(T%) Z?:l t2ma =1"2-a
plug in the bound on the diameter
If O is o(1/¢), this is sublinear




Thanks!



