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Abstract—One motivation for property testing of boolean
functions is the idea that testing can provide a fast preprocess-
ing step before learning. However, in most machine learning
applications, it is not possible to request for labels of arbitrary
examples constructed by an algorithm. Instead, the dominant
query paradigm in applied machine learning, called active
learning, is one where the algorithm may query for labels, but
only on points in a given (polynomial-sized) unlabeled sample,
drawn from some underlying distribution D. In this work, we
bring this well-studied model to the domain of testing.

We develop both general results for this active testing model
as well as efficient testing algorithms for several important
properties for learning, demonstrating that testing can still
yield substantial benefits in this restricted setting. For example,
we show that testing unions of d intervals can be done with
O(1) label requests in our setting, whereas it is known to
require Ω(d) labeled examples for learning (and Ω(

√
d) for

passive testing [22] where the algorithm must pay for every
example drawn from D). In fact, our results for testing unions
of intervals also yield improvements on prior work in both
the classic query model (where any point in the domain can
be queried) and the passive testing model as well. For the
problem of testing linear separators in Rn over the Gaussian
distribution, we show that both active and passive testing can
be done with O(

√
n) queries, substantially less than the Ω(n)

needed for learning, with near-matching lower bounds. We also
present a general combination result in this model for building
testable properties out of others, which we then use to provide
testers for a number of assumptions used in semi-supervised
learning.

In addition to the above results, we also develop a general
notion of the testing dimension of a given property with respect
to a given distribution, that we show characterizes (up to
constant factors) the intrinsic number of label requests needed
to test that property. We develop such notions for both the
active and passive testing models. We then use these dimensions
to prove a number of lower bounds, including for linear
separators and the class of dictator functions.
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tions, Linear threshold functions, Unions of intervals

I. INTRODUCTION

Property testing and machine learning have many natural
connections. In property testing, given black-box access
to an unknown boolean function f , one would like with
few queries to distinguish the case that f has some given
property P (belongs to the class of functions P) from the
case that f is far from any function having that property.

In machine learning one would like to find a good ap-
proximation g of f , typically under the assumption that f
belongs to a given class P . This connection is in fact a
natural motivation for property testing: to cheaply determine
whether learning with a given hypothesis class is worth-
while [19], [26]. If the labeling of examples is expensive,
or if a learning algorithm is computationally expensive to
run, or if one is deciding from what source to purchase
one’s data, performing a cheap test in advance could be a
substantial savings. Indeed, query-efficient testers have been
designed for many common function classes considered in
machine learning including linear threshold functions [25],
juntas [18], [7], DNF formulas [16], and decision trees [16].
(See Ron’s survey [26] for much more on the connection
between learning and property testing.)

However, there is a disconnect between the most com-
monly used property-testing and machine learning models.
Most property-testing algorithms rely on the ability to query
functions on arbitrary points of their choosing. On the other
hand, most machine learning problems unfortunately do not
allow one to perform queries on fictitious examples con-
structed by an algorithm. Consider, for instance, a scenario
such as machine learning for medical diagnosis. Given a
large database of patients with each patient described by
various features (height, age, family history, smoker or not,
etc.), one would like to learn a function that predicts from
these features whether or not a patient has a given medical
condition (diabetes, for example). To perform this learning
task, the researchers can run a (typically expensive) medical
test on any of the patients to determine if the patient has the
medical condition. However, researchers cannot ask whether
the patient would still have the disease were the values of
some of his features changed! Moreover, researchers cannot
make up a feature vector out of whole cloth and ask if
that feature vector has the disease. As another example,
in classifying documents by topic, selecting an existing
document on the web and asking a labeler “Is this about
sports or business?” may be perfectly reasonable. However,
the typical representation of a document in a machine
learning sytem is as a vector of word-counts in Rn (a
“bag of words”, without any information about the order
in which they appear in the document). Thus, modifying



some existing vector, or creating a new one from scratch,
would not produce an object that we could expect a human
labeler to easily classify. The key issue is that for most
problems in machine learning, the example and the label
are in fact both functions of some underlying more complex
object. Even for problems where this issue does not occur,
such as classifying handwritten digits into the numerals they
represent, queries can be problematic because the space of
reasonable pixel images is a very sparse subset of the entire
domain. Indeed, now-classic experiments on membership-
query learning for digit recognition ran into exactly this
problem, leading to poor results [5]. In this case, the problem
is that the distribution one cares about (the distribution of
natural handwritten digits) is not one that the algorithm can
easily construct new examples from.

As a result of these issues, the dominant query paradigm
in machine learning in recent years is not one where the
algorithm can make arbitrary queries, but instead is a weaker
model known as active learning [28], [12], [29], [13], [2],
[6], [10], [20], [15], [23]. In active learning, there is an
underlying distribution D over unlabeled examples (say the
distribution of documents on the web, represented as vectors
over word-counts) that we assume can be sampled from
cheaply: we assume the algorithm may obtain a polynomial
number of samples from D. Then, the algorithm may ask an
oracle for labels (these oracle calls are viewed as expensive),
but only on points in its sample. The goal of the active learn-
ing algorithm is to produce an accurate hypothesis while
requesting as few labels as possible, ideally substantially
fewer than in passive learning where every example drawn
from D is labeled by the oracle.

In this work, we bridge this gap between testing and
learning by developing and analyzing a model of testing
that parallels active learning, which we call active testing.
As in active learning, we assume that our algorithm is
given a polynomial number of unlabeled examples from the
underlying distribution D and can then make label queries,
but only over the points in its sample. From a small number
of such queries, the algorithm must then answer whether
the function has the given property, or is far, with respect
to D, from any function having that property (see Section
II for formal definitions). We show that even with this
restriction, we can still efficiently test important properties
for machine learning including unions of intervals, linear
separators, and a number of properties considered in semi-
supervised learning. Moreover, these testers reveal important
structural characteristics of these classes. We additionally
develop a notion of testing dimension that characterizes the
number of examples needed to test a given property over
a given distribution, much like notions of dimension in
machine learning. We do this for both the active testing
model and the weaker passive testing model [19], [22] in
which the algorithm must query every example it draws from
D. In fact, as part of our analysis, we also develop improved

algorithms for several important classes for the passive
testing model as well. Overall, our results demonstrate that
active testing exhibits a rich structure and strengthens the
connection between testing and learning.

A. Our Results and Structure of this Paper

After formally defining the active testing model in Section
II, we begin in Section III by presenting an active tester
for the class of unions of d intervals on the line. This
tester requires only a constant number of label requests
(independent of d) and applies for any (even unknown)
distribution D. Additionally, when D is the uniform distri-
bution, our tester requires only O(

√
d) unlabeled samples,

immediately yielding an O(
√
d)-sample passive tester in this

case. The best prior result for this class applied only to
the relaxed problem of distinguishing a union of d intervals
from functions ε-far from a union of d/ε intervals, over the
uniform distribution (using O(1) queries in the arbitrary-
query model and O(

√
d) samples in the passive-testing

model) [22].
In Section IV we consider the problem of testing linear

threshold functions in Rn. For this problem we show that
both active and passive testing can be done with O(

√
n) la-

beled examples over the Gaussian distribution, substantially
less than the Ω(n) labeled examples needed for learning
(even over the Gaussian distribution [24]). The key challenge
here is that estimating a statistic due to Matulef et al. [25]—
which can be done with O(1) queries if arbitrary queries are
allowed [25]—would require Θ(n) samples if done from
independent pairs of random examples in the natural way.
We overcome this obstacle by re-using non-independent
pairs of examples in the estimation. At a technical level, this
result uses the fact that even though typical values of (x ·y)2

are fairly large, for any boolean function f it will be the case
that for “most” values y, the quantity (Ex[f(x)x·y])2 is quite
small—which can be shown via a Fourier decomposition of
f . This in turn allows one to show strong concentration via a
theorem of Arcones [1] on the concentration of U-statistics.

In Section V we show that any disjoint union of a
polynomial number of testable properties remains testable
in the active testing model, allowing one to build testable
properties out of simpler components; this can then be used
to provide label-efficient testers for several properties used
in semi-supervised learning.

Finally, in Section VI we consider notions of intrinsic
dimension for testing. Such notions of dimension (e.g., VC
dimension [30], SQ dimension [8], Rademacher complexity
[4]) have been particularly effective in determining sample
complexity for learning. Y. Mansour and G. Kalai (personal
communication, see also [21]) posed the question of whether
comparable notions of dimension might exist for testing. In
this work we answer in the affirmative, for both active and
passive testing models, and use these notions of dimension
to obtain a number of lower bounds. Notably, we show that



Ω(log n) queries are needed to distinguish dictator functions
from random functions in both models1 as well as lower
bounds of Ω̃(n1/3) and Ω̃(

√
n) for active and passive testing

(respectively) of linear threshold functions.
Due to space limitations, a number of proofs have been

omitted from this extended abstract. See the full version of
this paper [3] for omitted proofs and a detailed discussion
of the relation of active testing to other testing models.

II. THE ACTIVE PROPERTY TESTING MODEL

A property P of boolean functions is simply a subset of all
boolean functions. We will also refer to properties as classes
of functions. The distance of a function f to the property
P with respect to a distribution D over the domain of the
function is distD(f,P) := ming∈P Prx∼D[f(x) 6= g(x)]. A
tester for P is a randomized algorithm that must distinguish
(with high probability) between functions in P and functions
that are far from P . In the standard property testing model
introduced by Rubinfeld and Sudan [27], a tester is allowed
to query the value of the function on any input in order to
make this decision. We consider instead a model in which
we add restrictions to the possible queries:

Definition II.1 (Property tester). An s-sample, q-query
ε-tester for P over the distribution D is a randomized
algorithm A that draws a sample S of size s from D, queries
for the value of f on q points of S, and then

1) Accepts w.p. at least 2
3 when f ∈ P , and

2) Rejects w.p. at least 2
3 when distD(f,P) ≥ ε.

We will use the terms “label request” and “query” in-
terchangeably. Definition II.1 coincides with the standard
definition of property testing when the number of samples
is unlimited and the distribution’s support covers the entire
domain. In the other extreme case where we fix q = s,
our definition then corresponds to the passive testing model
of Goldreich, Goldwasser, and Ron [19], where the inputs
queried by the tester are sampled from the distribution.
Finally, by setting s to be polynomial in an appropriate
measure of the input domain or property P , we obtain the
active testing model that is the focus of this paper:

Definition II.2 (Active tester). A randomized algorithm is
a q-query active ε-tester for P ⊆ {0, 1}n → {0, 1} over D
if it is a poly(n)-sample, q-query ε-tester for P over D.2

In some cases, the domain of our functions is not {0, 1}n.
In those cases, we require s to be polynomial in some other
appropriate measure of complexity of the domain or property
P that we specify explicitly. Note that in Definition II.1,

1Building on this analysis, Noga Alon (personal communication) has
recently developed a stronger Ω(k logn) lower bound for the active testing
dimension of juntas via use of the Kim-Vu polynomial method.

2We emphasize that the name active tester is chosen to reflect the
connection with active learning. It is not meant to imply that this model of
testing is somehow “more active” than the standard property testing model.

since we do not have direct membership query access (at
arbitrary points), our tester must accept w.p. at least 2

3 when
f is such that distD(f,P) = 0, even if f does not satisfy
P over the entire input space. See the full version of this
paper [3] for a comparison of active testing to other testing
models.

III. TESTING UNIONS OF INTERVALS

The function f : [0, 1] → {0, 1} is a union of d
intervals if there are at most d non-overlapping intervals
[`1, u1], . . . , [`d, ud] such that f(x) = 1 iff `i ≤ x ≤ ui
for some i ∈ [d]. The VC dimension of this class is 2d, so
learning a union of d intervals requires Ω(d) queries. Kearns
and Ron [22] showed that under the uniform distribution,
the relaxed problem of distinguishing unions of d intervals
from functions that are ε-far from unions of d/ε intervals can
be done with a constant number of queries in the standard
arbitrary-query testing model, and with O(

√
d) samples in

the passive testing model (suppressing dependence on ε).
Here, we show that the non-relaxed problem of distin-

guishing unions of d intervals from functions ε-far from
unions of d intervals can be done with a constant number
of label requests in the active testing model, for any (even
unknown) distribution D. Specifically, we prove that we
can test unions of d intervals in the active testing model
using only O(1/ε4) label requests from a set of poly(d, 1/ε)
unlabeled examples. Furthermore, over the uniform distribu-
tion, we need a total of only O(

√
d/ε5) unlabeled examples,

which immediately implies an O(
√
d/ε5) sample bound for

passive testing. Note that Kearns and Ron [22] show that
Ω(
√
d) examples are required to test unions of intervals over

the uniform distribution in the passive testing model, so this
latter result, as a function of d, is tight.

Theorem III.1. For any (known or unknown) distribution
D, testing unions of d intervals in the active testing model
can be done using only O(1/ε4) queries. In the case of
the uniform distribution, we further need only O(

√
d/ε5)

unlabeled examples.

We prove Theorem III.1 by beginning with the case
that the underlying distribution is uniform over [0, 1], and
afterwards show how to generalize to arbitrary distributions.
Our tester is based on showing that unions of intervals have
a noise sensitivity characterization.

Definition III.2. Fix δ > 0. The local δ-noise sensitivity of
the function f : [0, 1]→ {0, 1} at x ∈ [0, 1] is NSδ(f, x) =
Pry∼δx[f(x) 6= f(y)], where y ∼δ x represents a draw of y
uniform in (x− δ, x+ δ)∩ [0, 1]. The noise sensitivity of f
is

NSδ(f) = Pr
x,y∼δx

[f(x) 6= f(y)]

or, equivalently, NSδ(f) = ExNSδ(f, x).



A simple argument shows that unions of d intervals have
(relatively) low noise sensitivity:

Proposition III.3. Fix δ > 0 and let f : [0, 1]→ {0, 1} be
a union of d intervals. Then NSδ(f) ≤ dδ.

Proof sketch: Draw x ∈ [0, 1] uniformly at random and
y ∼δ x. The inequality f(x) 6= f(y) can only hold when
a boundary b ∈ [0, 1] of one of the d intervals in f lies in
between x and y. For any point b ∈ [0, 1], the probability
that x < b < y or y < b < x is at most δ

2 , and there are
at most 2d boundaries of intervals in f , so the proposition
follows from the union bound.

The key to the tester is showing that the converse of the
above statement is approximately true as well: for δ small
enough, every function that has noise sensitivity not much
larger than dδ is close to being a union of d intervals. (Full
proof in the full version [3]).

Lemma III.4. Fix δ = ε2

32d . Let f : [0, 1] → {0, 1} be a
function with noise sensitivity bounded by NSδ(f) ≤ dδ(1+
ε
4 ). Then f is ε-close to a union of d intervals.

Proof outline: The proof proceeds in two steps. First,
we show that so long as f has low noise-sensitivity, it can be
“locally self-corrected” to a function g : [0, 1]→ {0, 1} that
is ε

2 -close to f and is a union of at most d(1 + ε
4 ) intervals.

We then show that g – and every other function that is a
union of at most d(1 + ε

4 ) intervals – is ε
2 -close to a union

of d intervals.
To construct the function g, we consider a smoothed func-

tion fδ : [0, 1] → [0, 1] obtained by taking the convolution
of f and a uniform kernel of width 2δ. We define τ to be
some appropriately small parameter. When fδ(x) ≤ τ , then
this means that nearly all the points in the δ-neighborhood
of x have the value 0 in f , so we set g(x) = 0. Similarly,
when fδ(x) ≥ 1− τ , then we set g(x) = 1. (This procedure
removes any “local noise” that might be present in f .) This
leaves all the points x where τ < fδ(x) < 1 − τ . Let us
call these points undefined. For each such point x we take
the largest value y ≤ x that is defined and set g(x) = g(y).
The key technical part of the proof involves showing that
the construction described above yields a function g that is
ε
2 -close to f and that is a union of d(1+ ε

4 ) intervals. Due to
space constraints, we defer the argument to the full version
of this paper [3].

The noise sensitivity characterization of unions of inter-
vals obtained by Proposition III.3 and Lemma III.4 suggest
a natural approach for building a tester: design an algorithm
that estimates the noise sensitivity of the input function and
accepts iff this noise sensitivity is small enough. This is
indeed what we do:

UNION OF INTERVALS TESTER( f , d, ε )
Parameters: δ = ε2

32d , r = O(ε−4).
1) For rounds i = 1, . . . , r,

1.1 Draw x ∈ [0, 1] uniformly at random.
1.2 Draw samples until we obtain y ∈ (x−δ, x+

δ).
1.3 Set Zi = 1[f(x) 6= f(y)].

2) Accept iff 1
r

∑
Zi ≤ dδ(1 + ε

8 ).

The algorithm makes 2r = O(ε−4) queries to the func-
tion. Since a draw in Step 1.2 is in the desired range
with probability 2δ, the number of samples drawn by the
algorithm is a random variable with very tight concentration
around r(1 + 1

2δ ) = O(d/ε6). The draw in Step 1.2 also
corresponds to choosing y ∼δ x. As a result, the probability
that f(x) 6= f(y) in a given round is exactly NSδ(f), and the
average 1

r

∑
Zi is an unbiased estimate of the noise sensi-

tivity of f . By Proposition III.3, Lemma III.4, and Chernoff
bounds, the algorithm therefore errs with probability less
than 1

3 provided that r > c · 1/(dδε2) = c · 32/ε4 for some
suitably large constant c.

Improved unlabeled sample complexity: Notice that by
changing Steps 1.1-1.2 slightly to pick the first pair (x, y)
such that |x − y| < δ, we immediately improve the unla-
beled sample complexity to O(

√
d/ε5) without affecting the

analysis. In particular, this procedure is equivalent to picking
x ∈ [0, 1] then y ∼δ x.3 As a result, up to poly(1/ε) terms,
we also strengthen the passive testing bounds of Kearns and
Ron [22] which only distinguish the case that f is a union
of d intervals from the case that f is ε-far from the class
of unions of d/ε intervals. (Their results use O(

√
d/ε1.5)

examples.) Kearns and Ron [22] show that Ω(
√
d) examples

are necessary for passive testing, so in terms of d this is
optimal.

Active testing over arbitrary distributions: We now con-
sider the case that examples are drawn from some arbitrary
distribution D. First, let us consider the easier case that
D is known. In that case, we can reduce the problem of
testing over general distributions to that of testing over the
uniform distribution on [0, 1] by using the CDF of D. In
particular, given point x, define px = Pry∼D[y ≤ x]. So,
for x drawn from D, px is uniform in [0, 1].4 As a result
we can just replace Step 1.2 in the tester with sampling
until we obtain y such that py ∈ (px − δ, px + δ). Now,
suppose D is not known. In that case, we do not know
the px and py values exactly. However, we can use the
fact that the VC-dimension of the class of initial intervals
on the line equals 1 to uniformly estimate all such values
from a polynomial-sized unlabeled sample. In particular,
O(1/γ2) unlabeled examples are sufficient so that with high
probability, every point x has property that the estimate p̂x
of px computed with respect to the sample (the fraction of

3Except for events of O(δ) probability mass at the boundary.
4We are assuming here that D is continuous and has a pdf. If D has

point masses, then instead define pL
x = Pry [y < x] and pU

x = Pry [y ≤ x]
and select px uniformly in [pL

x , p
U
x ].



points in the sample that are ≤ x) will be within γ of the
correct px value [9]. If we define N̂Sδ(f) to be the noise-
sensitivity of f computed using these estimates, then we get
δ−γ
δ+γNSδ−γ(f) ≤ N̂Sδ(f) ≤ δ+γ

δ−γNSδ+γ(f). This implies
that γ = O(εδ) is sufficient so that the noise-sensitivity
estimates are sufficiently accurate for the procedure to work
as before.

Putting these results together, we have Theorem III.1.

IV. TESTING LINEAR THRESHOLD FUNCTIONS

A boolean function f : Rn → {0, 1} is a linear
threshold function (LTF) if there exist n + 1 real-valued
parameters w1, . . . , wn, θ such that for each x ∈ Rn, we
have f(x) = sgn(w1x1 + · · ·wnxn − θ). The main result
of this section is that under the Gaussian distribution, it is
possible to efficiently test whether a function is a linear
threshold function in the active and passive testing models
with substantially fewer labeled examples than needed for
learning, along with near-matching lower bounds.

Theorem IV.1. We can efficiently test linear threshold
functions under the Gaussian distribution with O(

√
n log n)

labeled examples in both active and passive testing models.

Theorem IV.2. No (even computationally inefficient) algo-
rithm can test linear threshold functions under the Gaussian
distribution with õ(n1/3) labeled examples for active testing
or õ(

√
n) labeled examples for passive testing.

Note that the class of linear threshold functions requires
Ω(n) labeled examples for learning, even over the Gaussian
distribution [24]. Linear threshold functions can be tested
with a constant number of queries in the standard (arbitrary
query) property testing model [25].

The starting point for the upper bound in Theorem IV.1
is a characterization lemma of linear threshold functions in
terms of a certain self-correlation statistic. To be precise, in
Lemma IV.4 we are scaling so that each coordinate is drawn
independently from N (0, 1)—so a typical example will have
length Θ(

√
n).

Definition IV.3. The self-correlation coefficient of the func-
tion f : Rn → R is ρ(f) := Ex,y[f(x)f(y) 〈x, y〉].

Lemma IV.4 (Matulef et al. [25]). There is an explicit
continuous function W : R → R with bounded derivative
‖W ′‖∞ ≤ 1 and peak value W (0) = 2

π such that every
linear threshold function f : Rn → {−1, 1} satisfies ρ(f) =
W (Exf). Moreover, every function g : Rn → {−1, 1} that
satisfies |ρ(g)−W (Exg)| ≤ 4ε3, is ε-close to being a linear
threshold function.

Lemma IV.4 suggests a natural approach to testing for
linear threshold functions from random examples: simply
estimate the self-correlation coefficient of Definition IV.3 by
repeatedly drawing pairs of labeled examples (xi, yi) from

the Gaussian distribution in Rn and computing the empir-
ical average of the quantities f(xi)f(yi) 〈xi, yi〉 observed.
The problem with this approach, however, is that the dot-
product 〈xi, yi〉 will typically have magnitude Θ(

√
n) (one

can view it as essentially the result of an n step random
walk). Therefore to estimate the self-correlation coefficient
to accuracy O(1) via independent random samples in this
way would require Ω(n) labeled examples. This is of course
not very useful, since it is the same as the number of labeled
examples needed to learn an LTF.

We will be able to achieve an improved bound, how-
ever, using the following idea: rather than averaging over
independent pairs (x, y), we will draw a smaller sam-
ple and average over all (non-independent) pairs within
the sample. That is, we request q random labeled ex-
amples x1, . . . , xq , and now estimate ρ(f) by comput-
ing

(
q
2

)−1∑
i<j f(xi)f(xj) 〈xi, xj〉. Of course, the terms

in the summation are no longer independent. However,
they satisfy the property that even though the quantity
f(x)f(y) 〈x, y〉 is typically large, for most values y, the
quantity Ex[f(x)f(y) 〈x, y〉] is small. (This can be shown
via a Fourier decomposition of the function f .) This, to-
gether with additional truncation of the quantity in question,
will allow us to apply a Bernstein-type inequality for U-
statistics due to Arcones [1] in order to achieve the desired
concentration.

The resulting LTF TESTER is given in Figure 1. This
algorithm has two advantages. First, it is a valid tester
in both the active and passive property testing models
since the q inputs queried by the algorithm are all drawn
independently at random from the standard n-dimensional
Gaussian distribution. Second, the algorithm itself is very
simple. As in many cases with property testing, however,
the analysis of this algorithm is more challenging.

LTF TESTER( f , ε )
Parameters: τ =

√
4n log(4n/ε3), m =

800τ/ε3 + 32/ε6.
1) Draw x1, x2, . . . , xm independently at random

from Rn.
2) Query f(x1), f(x2), . . . , f(xm).
3) Set µ̃ = 1

m

∑m
i=1 f(xi).

4) Set ρ̃ =
(
m
2

)−1∑
i 6=j f(xi)f(xj)

〈
xi, xj

〉
·

1[
∣∣〈xi, xj〉∣∣ ≤ τ ].

5) Accept iff |ρ̃−W (µ̃)| ≤ 2ε3.

Figure 1. LTF TESTER

Given Lemma IV.4, as noted above, the key challenge in
the proof of correctness of the LTF TESTER is controlling
the error of the estimate ρ̃ of ρ(f) in Step 4, which we
do with concentration of measure results for U-statistics.
The U-statistic (of order 2) with symmetric kernel function



g : Rn × Rn → R is

Uqg (x1, . . . , xq) :=
(
q

2

)−1 ∑
1≤i<j≤q

g(xi, xj).

U-statistics are unbiased estimators of the expectation of
their kernel function and, even more importantly, when
the kernel function is “well-behaved”, the tails of their
distributions satisfy strong concentration. In our case, the
thresholded kernel function

g(x, y) =

{
f(x)f(y) 〈x, y〉 | 〈x, y〉 | ≤ τ
0 otherwise

allows us to apply Arcones’ theorem.

Lemma IV.5 (Arcones [1]). For a symmetric function h :
Rn ×Rn → R, let Σ2 = Ex[Ey[h(x, y)]2]− Ex,y[h(x, y)]2,
let b = ‖h − Eh‖∞, and let Uq(h) be a random variable
obtained by drawing x1, . . . , xq independently at random
and setting Uq(h) =

(
q
2

)−1∑
i<j h(xi, xj). Then for every

t > 0,

Pr[|Uq(h)− Eh| > t] ≤ 4 exp
(

qt2

8Σ2 + 100bt

)
.

One final task before proving Theorem IV.1 is to relate
the self-correlation coefficient ρ(f) with the function g(x, y)
(to which we will apply Arcones’ theorem). This relation
is given in Lemma IV.6 below, whose proof is in the full
version of this paper [3].

Lemma IV.6. Let g be defined as above with τ =√
4n log(4n/ε3). Then |Eg − ρ| ≤ 1

2ε
3.

Using the above, we can now give the desired guarantee
for LTF TESTER.

Proof of Theorem IV.1: Consider the LTF-TESTER
algorithm. When the estimates µ̃ and ρ̃ satisfy

|µ̃− Ef | ≤ ε3 and |ρ̃− E[f(x)f(y) 〈x, y〉]| ≤ ε3,

Lemma IV.4 guarantees that the algorithm correctly distin-
guishes LTFs from functions that are far from LTFs. To com-
plete the proof, we must therefore show that the estimates
are within the specified error bounds with probability at least
2/3.

The values f(x1), . . . , f(xm) are independent {−1, 1}-
valued random variables. By Hoeffding’s inequality,

Pr[|µ̃− Ef | ≤ ε3] ≥ 1− 2e−ε
6m/2 = 1− 2e−O(

√
n).

The estimate ρ̃ is a U-statistic with kernel g∗ as defined
above. This kernel satisfies

‖g∗ − Eg∗‖∞ ≤ 2‖g∗‖∞ = 2
√

4n log(4n/ε3)

and

Σ2 ≤ Ey
[
Ex[g∗(x, y)]2

]
= Ey

[
Ex[f(x)f(y) 〈x, y〉1[|〈x, y〉| ≤ τ ]]2

]
.

For any two functions φ, ψ : Rn → R, when
ψ is {0, 1}-valued the Cauchy-Schwarz inequality im-
plies that Ex[φ(x)ψ(x)]2 ≤ Ex[φ(x)]Ex[φ(x)ψ(x)2] =
Ex[φ(x)]Ex[φ(x)ψ(x)] and so Ex[φ(x)ψ(x)] ≤ Ex[φ(x)].
Applying this inequality to the expression for Σ2 gives

Σ2 ≤ Ey
[
Ex[f(x)f(y) 〈x, y〉]2

]
= Ey

[( n∑
i=1

f(y)yiEx[f(x)xi]
)2]

=
∑
i,j

f̂(ei)f̂(ej)Ey[yiyj ] =
n∑
i=1

f̂(ei)2.

By Parseval’s identity, we have
∑
i f̂(ei)2 ≤ ‖f̂‖22 =

‖f‖22 = 1. Lemmas IV.6 and IV.5 imply that

Pr[|ρ̃− Eg| ≤ ε3] = Pr[|ρ̃− Eg∗| ≤ 1
2ε

3]

≥ 1− 4e
− mt2

8+200
√
n log(4n/ε3)t ≥ 11

12 .

The union bound completes the proof of correctness.
It is natural to ask whether we can further improve the

query complexity of the tester for linear threshold functions
by using U-statistics of higher order. The lower bound
in Theorem IV.2 shows that this—or any other possible
active or passive testing approach—cannot yield a query
complexity sub-polynomial in n. We defer the discussion
of this lower bound to Section VI, where we will use the
notion of testing dimension to establish the bound.

V. TESTING DISJOINT UNIONS OF TESTABLE
PROPERTIES

We now show that active testing has the feature that a
disjoint union of a polynomial number of testable properties
is testable, with a number of queries that is independent
of the size of the union; this feature does not hold for
passive testing. In addition to providing insight into the
distinction between the two models, this fact will be useful
in our analysis of semi-supervised learning-based properties
mentioned below and discussed more fully in [3].

Specifically, given properties P1, . . . ,PN over domains
X1, . . . , XN , define their disjoint union P over domain X =
{(i, x) : i ∈ [N ], x ∈ Xi} to be the set of functions f such
that f(i, x) = fi(x) for some fi ∈ Pi. In addition, for
any distribution D over X , define Di to be the conditional
distribution over Xi when the first component is i. If each
Pi is testable over Di then P is testable over D with only
small overhead in the number of queries:

Theorem V.1. Given properties P1, . . . ,PN , if each Pi
is testable over Di with q(ε) queries and U(ε) unlabeled
samples, then their disjoint union P is testable over the
combined distribution D with O(q(ε/2) · (log3 1

ε )) queries
and O(U(ε/2) · (Nε log3 1

ε )) unlabeled samples.

Proof: Let p = (p1, . . . , pN ) denote the mixing weights
for distribution D; that is, a random draw from D can be



viewed as selecting i from distribution p and then selecting
x from Di. We are given that each Pi is testable with failure
probability 1/3 using using q(ε) queries and U(ε) unlabeled
samples. By repetition, this implies that each is testable with
failure probability δ using qδ(ε) = O(q(ε) log(1/δ)) queries
and Uδ(ε) = O(U(ε) log(1/δ)) unlabeled samples, where
we will set δ = ε2. We now test property P as follows:

For ε′ = 1/2, 1/4, 1/8, . . . , ε/2 do:
Repeat O( ε

′

ε log(1/ε)) times:
1) Choose a random (i, x) from D.
2) Sample until either Uδ(ε′) samples have been
drawn from Di or (8N/ε)Uδ(ε′) samples total
have been drawn from D, whichever comes first.

3) In the former case, run the tester for property
Pi with parameter ε′, making qδ(ε′) queries. If
the tester rejects, then reject.

If all runs have accepted, then accept.

A straightforward calculation shows that the number of
queries and samples is as desired. Furthermore, if indeed
f ∈ P then each call to a tester rejects with probability
at most δ so the overall failure probability is at most
(δ/ε) log2(1/ε) < 1/3. Thus, it suffices to analyze the case
that distD(f,P) ≥ ε.

If distD(f,P) ≥ ε then
∑
i:pi≥ε/(4N) pi·distDi(fi,Pi) ≥

3ε/4. Moreover, for indices i such that pi ≥ ε/(4N), with
high probability Step 2 draws Uδ(ε′) samples, so we may
assume for such indices the tester for Pi is indeed run in Step
3. Let I = {i : pi ≥ ε/(4N) and distDi(fi,Pi) ≥ ε/2}.
Thus, we have∑

i∈I pi · distDi(fi,Pi) ≥ ε/4.

Let Iε′ = {i ∈ I : distDi(fi,Pi) ∈ [ε′, 2ε′]}. Bucketing the
above summation by values ε′ in this way implies that for
some value ε′ ∈ {ε/2, ε, 2ε, . . . , 1/2}, we have:∑

i∈Iε′
pi ≥ ε/(8ε′ log(1/ε)).

This in turn implies that with probability at least 2/3, the
run of the algorithm for this value of ε′ will find such an i
and reject, as desired.

As a simple example, consider Pi to contain just the
constant functions 1 and 0. In this case, P is equivalent
to what is often called the “cluster assumption,” used in
semi-supervised and active learning [11], [14], that if data
lies in some number of clearly identifiable clusters, then all
points in the same cluster should have the same label. Here,
each Pi individually is easily testable (even passively) with
O(1/ε) labeled samples, so Theorem V.1 implies the cluster
assumption is testable with poly(1/ε) queries.5 However,
it is not hard to see that passive testing with poly(1/ε)

5Since the Pi are so simple in this case, one can actually test with only
O(1/ε) queries.

samples is not possible and in fact requires Ω(
√
N/ε)

labeled examples.6

We build on this to produce testers for other properties
often used in semi-supervised learning. In particular, one
common assumption used (often called the margin or low-
density assumption) is that there should be some large
margin γ of separation between the positive and negative
regions (but without assuming the target is necessarily a
linear threshold function). Here, we give a tester for this
property, which uses a tester for the cluster property as a
subroutine, along with analysis of an appropriate weighted
graph defined over the data. Specifically, we prove the
following result (See the full paper [3] for definitions and
analysis).

Theorem V.2. For any γ, γ′ = γ(1 − 1/c) for constant
c > 1, for data in the unit ball in Rd for constant d, we
can distinguish the case that Df has margin γ from the
case that Df is ε-far from margin γ′ using Active Testing
with O(1/(γ2dε2)) unlabeled examples and O(1/ε) label
requests.

VI. GENERAL TESTING DIMENSIONS

The previous sections have discussed upper and lower
bounds for a variety of classes. Here, we define notions
of testing dimension for passive and active testing that
characterize (up to constant factors) the number of labels
needed for testing to succeed, in the corresponding testing
protocols. These will be distribution-specific notions (like
SQ dimension [8] or Rademacher complexity [4] in learn-
ing), so let us fix some distribution D over the instance space
X , and furthermore fix some value ε defining our goal. I.e.,
our goal is to distinguish the case that distD(f,P) = 0 from
the case distD(f,P) ≥ ε.

For a given set S of unlabeled points, and a distribution
π over boolean functions, define πS to be the distribution
over labelings of S induced by π. That is, for y ∈ {0, 1}|S|
let πS(y) = Prf∼π[f(S) = y]. We now use this to define
a distance between distributions. Specifically, given a set
of unlabeled points S and two distributions π and π′ over
boolean functions, define

dS(π, π′) = (1/2)
∑

y∈{0,1}|S|
|πS(y)− π′S(y)|,

to be the variation distance between π and π′ induced by S.
Finally, let Π0 be the set of all distributions π over functions
in P , and let set Πε be the set of all distributions π′ in which
a 1 − o(1) probability mass is over functions at least ε-far
from P .

6Specifically, suppose region 1 has 1−2ε probability mass with f1 ∈ P1,
and suppose the other regions equally share the remaining 2ε probability
mass and either (a) are each pure but random (so f ∈ P) or (b) are each
50/50 (so f is ε-far from P). Distinguishing these cases requires seeing at
least two points with the same index i 6= 1, yielding the Ω(

√
N/ε) bound.



We are now ready to formulate our notions of dimension.
Each is based on defining an associated testing game and
showing that the minimax value can be characterized in a
natural way. There is also an interesting connection between
the passive testing dimension and VC-dimension, which we
present below. All proofs not presented here appear in the
full version [3].

A. Passive Testing Dimension

Definition VI.1. Define the passive testing dimension,
dpassive = dpassive(P, D), as the largest q ∈ N such that,

sup
π∈Π0

sup
π′∈Πε

Pr
S∼Dq

(dS(π, π′) > 1/4) ≤ 1/4.

That is, there exist distributions π ∈ Π0 and π′ ∈ Πε such
that a random set S of dpassive examples has a reasonable
probability (at least 3/4) of having the property that one
cannot reliably distinguish a random function from π versus
a random function from π′ from just the labels of S.
From the definition it is fairly immediate that Ω(dpassive)
examples are necessary for passive testing; in fact, one can
show that O(dpassive) are sufficient as well.

Theorem VI.2. The sample complexity of passive testing
property P over distribution D is Θ(dpassive(P, D)).

Connections to VC dimension: This notion of dimen-
sion brings out an interesting connection between learning
and testing. In particular, consider the special case that we
simply wish to distinguish functions in P from truly random
functions, so π′ is the uniform distribution over all functions
(this is indeed the form used by our lower bound results
and many lower bounds in property testing). In that case,
the passive testing dimension becomes the largest q such
that for some (multi)set F of functions fi ∈ P , a typical
sample S of size q would have all 2q possible labelings occur
approximately the same number of times over the functions
fi ∈ F . In contrast, the VC-dimension of P is the largest
q such that for some sample S of size q, each of the 2q

possible labelings occurs at least once. Notice there is a kind
of reversal of quantifiers here: in a distributional version of
VC-dimension where one would like a “typical” set S to be
shattered, the functions that induce the 2q labelings could
be different from sample to sample. However, for the testing
dimension, the set F must be fixed in advance. That is the
reason that it is possible for a tester to output “no” even
though the labels observed are still consistent with some
function in P .

B. Active Testing Dimension

For the case of active testing, there are two complications.
First, the algorithms can examine their entire poly(n)-sized
unlabeled sample before deciding which points to query, and
secondly they may in principle determine the next query
based on the responses to the previous ones (even though
all our algorithmic results do not require this feature). If we

merely want to distinguish those properties that are actively
testable with O(1) queries from those that are not, then the
second complication disappears and the first is simplified as
well, and the following coarse notion of dimension suffices.

Definition VI.3. Define the coarse active testing dimension,
dcoarse = dcoarse(P, D), as the largest q ∈ N such that,

sup
π∈Π0

sup
π′∈Πε

Pr
S∼Dq

(dS(π, π′) > 1/4) ≤ 1/nq.

Theorem VI.4. If dcoarse(P, D) = O(1) then active testing
of P over D can be done with O(1) queries, and if
dcoarse(P, D) = ω(1) then it cannot.

To achieve a more fine-grained characterization of active
testing we consider a slightly more involved quantity, as
follows. First, recall that given an unlabeled sample U
and distribution π over functions, we define πU as the
induced distribution over labelings of U . We can view
this as a distribution over unlabeled examples in {0, 1}|U |.
Now, given two distributions over functions π, π′, define
Fair(π, π′, U) to be the distribution over labeled examples
(y, `) defined as: with probability 1/2 choose y ∼ πU , ` = 1
and with probability 1/2 choose y ∼ π′U , ` = 0. Thus, for
a given unlabeled sample U , the sets Π0 and Πε define a
class of fair distributions over labeled examples. The active
testing dimension, roughly, asks how well this class can
be approximated by the class of low-depth decision trees.
Specifically, let DTk denote the class of decision trees of
depth at most k. The active testing dimension for a given
number u of allowed unlabeled examples is as follows:

Definition VI.5. Given a number u = poly(n) of allowed
unlabeled examples, we define the active testing dimension,
dactive(u) = dactive(P, D, u), as the largest q ∈ N such that

sup
π∈Π0

sup
π′∈Πε

Pr
U∼Du

(err∗(DTq,Fair(π, π′, U)) < 1/4) ≤ 1/4,

where err∗(H,P ) is the error of the optimal function in H
with respect to data drawn from distribution P over labeled
examples.

Theorem VI.6. Active testing of property P over dis-
tribution D with failure probability 1

8 using u unlabeled
examples requires Ω(dactive(P, D, u)) label queries, and
furthermore can be done with O(u) unlabeled examples and
O(dactive(P, D, u)) label queries.

We now use these notions of dimension to prove lower
bounds for testing several properties. To do so, we will use
the following lemma, a generalization of a lemma widely
used for proving lower bounds in property testing [17,
Lem. 8.3]. (See [3] for a proof).

Lemma VI.7. Let π and π′ be two distributions on functions
X → R. Fix U ⊆ X to be a set of allowable queries.
Suppose that for any S ⊆ U , |S| = q, there is a set ES ⊆ Rq



(possibly empty) satisfying πS(ES) ≤ 1
52−q such that

πS(y) < 6
5π
′
S(y) for every y ∈ Rq \ ES .

Then err∗(DTq,Fair(π, π′, U)) > 1/4.

C. Application: Dictator functions

We prove here that active testing of dictatorships over the
uniform distribution requires Ω(log n) queries by proving a
Ω(log n) lower bound on dactive(u) for any u = poly(n);
in fact, this result holds even for the specific choice of π′ as
random noise (the uniform distribution over all functions).

Theorem VI.8. Active testing of dictatorships under the
uniform distribution requires Ω(log n) queries. This holds
even for distinguishing dictators from random functions.

Proof: Define π and π′ to be uniform distributions
over the dictator functions and over all boolean functions,
respectively. In particular, π is the distribution obtained by
choosing i ∈ [n] uniformly at random and returning the
function f : {0, 1}n → {0, 1} defined by f(x) = xi. Fix S
to be a set of q vectors in {0, 1}n. This set can be viewed as
a q × n boolean-valued matrix. We write c1(S), . . . , cn(S)
to represent the columns of this matrix. For any y ∈ {0, 1}q ,

πS(y) =
|{i ∈ [n] : ci(S) = y}|

n
and π′S(y) = 2−q.

By Lemma VI.7, to prove that dactive ≥ 1
2 log n, it suffices

to show that when q < 1
2 log n and U is a set of nc

vectors chosen uniformly and independently at random from
{0, 1}n, then with probability at least 3

4 , every set S ⊆ U of
size |S| = q and every y ∈ {0, 1}q satisfy πS(y) ≤ 6

52−q .
(This is like a stronger version of dcoarse where dS(π, π′)
is replaced with an L∞ distance.)

Consider a set S of q vectors chosen uniformly and
independently at random from {0, 1}n. For any vector y ∈
{0, 1}q , the expected number of columns of S that are equal
to y is n2−q. Since the columns are drawn independently at
random, Chernoff bounds imply that

Pr
[
πS(y) > 6

52−q
]
≤ e−( 1

5 )2n2−q/3 < e−
1
75n2−q .

By the union bound, the probability that there exists a vector
y ∈ {0, 1}q such that more than 6

5n2−q columns of S are
equal to y is at most 2qe−

1
75n2−q . Furthermore, when U is

defined as above, we can apply the union bound once again
over all subsets S ⊆ U of size |S| = q to obtain Pr[∃S, y :
πS(y) > 6

52−q] < ncq · 2q · e− 1
75n2−q . When q ≤ 1

2 log n,
this probability is bounded above by e

c
2 log2 n+ 1

2 logn− 1
75
√
n,

which is less than 1
4 when n is large enough, as we wanted

to show.

D. Application: LTFs

The testing dimension also lets us prove the lower bounds
in Theorem IV.1 regarding the query complexity for testing

linear threshold functions. Specifically, those bounds follow
directly from the following result.

Theorem VI.9. For linear threshold functions under the
standard n-dimensional Gaussian distribution, dpassive =
Ω(
√
n/ log(n)) and dactive = Ω((n/ log(n))1/3).

Let us give a brief overview of the strategies used to
obtain the dpassive and dactive bounds. The complete proofs
for both results, as well as a simpler proof that dcoarse =
Ω((n/ log n)1/3), can be found in the full version [3].

For both results, we set π to be a distribution over LTFs
obtained by choosing w ∼ N (0, In×n) and outputting
f(x) = sgn(w · x). Set π′ to be the uniform distribution
over all functions—i.e., for any x ∈ Rn, the value of f(x)
is uniformly drawn from {0, 1} and is independent of the
value of f on other inputs.

To bound dpassive, we bound the total variation distance
between the distribution of Xw/

√
n given X , and a normal

N (0, In×n). If this distance is small, then so must be
the distance between the distribution of sgn(Xw) and the
uniform distribution over label sequences. In fact, we show
this is the case for a broad family of product distributions,
characterized by a condition on the moments of the coordi-
nate projections.

Our strategy for bounding dactive is very similar to the one
we used to prove the lower bound on the query complexity
for testing dictator functions in the last section. Again,
we want to apply Lemma VI.7. Specifically, we want to
show that when q ≤ o((n/ log(n))1/3) and U is a set
of nc vectors drawn independently from the n-dimensional
standard Gaussian distribution, then with probability at least
3
4 , every set S ⊆ U of size |S| = q and almost all x ∈ Rq ,
we have πS(x) ≤ 6

52−q . The difference between this case
and the lower bound for dictator functions is that we now
rely on strong concentration bounds on the spectrum of
random matrices [31] to obtain the desired inequality.

VII. CONCLUSIONS

In this work we develop and analyze a model of property
testing that parallels the active learning model in machine
learning, in which queries are restricted to be selected
from a given (polynomially) large unlabeled sample. We
demonstrate that a number of important properties for
machine learning can be efficiently tested in this setting
with substantially fewer queries than needed to learn. We
additionally give a combination result allowing one to build
testable properties out of others, as well as develop notions
of intrinsic testing dimension that characterize the number
of queries needed to test, and which we then use to prove
a number of lower bounds. One open problem is that for
testing linear separators, for the active testing model we
have an Õ(

√
n) upper bound and an Ω̃(n1/3) lower bound.

It would be very exciting if the upper bound could be
improved, but either way it would be interesting to close



that gap. Additionally, testing of linear separators over more
general distributions would be quite interesting.
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