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Machine learning has changed the way we approach many applications in computer science, and has enabled us to
approach many applications of computer science that were not previously possible: for instance, webpage classifica-
tion, image retrieval, and natural language question answering. However, there are some applications that escape the
traditional approach to machine learning and require new insights to extend the benefits of machine learning to these
applications. One of my interests is in advancing the set of possible applications by extending the current formalism
for machine learning: for example, settings where the concept to be learned changes over time, settings where it is pos-
sible to gain further benefits by interacting with an expert,and settings where we have access to a sequence of related
learning problems and wish to get improvements from that relatedness. In particular, one common thread throughout
much of my work is the use ofinteraction to gain improvements in performance compared to standard non-interactive
protocols. For instance, I have a series of papers on theactive learning setting, in which a learning algorithm is able to
request the target label of selected instances sequentially, and the goal is to learn an accurate classifier using a number
of label requests smaller than the number of random samples that would be required to achieve the same accuracy. I
also have work on the problem ofproperty testing based on this protocol, which finds that the sample complexity of
testing with this active testing approach is often superiorto that of passive testing, and is a more realistic model of
interaction for practice than the membership query model. Another of my interests is in applying the techniques of
theoretical machine learning to other areas such as algorithmic economics.

1 Machine Learning over Time (NIPS 2011, JMLR submission)

One setting in which active learning can be quite useful is when data are presented to the learner in a stream, and for
each example the algorithm is required to make a label prediction, and then may optionally request the true label of
the example. We are then interested in both the number of prediction mistakes and the number of labels the algorithm
requests. Most existing analyses of active learning are based on an i.i.d. assumption on the data; but in many stream-
based learning scenarios, either the distribution of the data or the target concept drifts over time.

In a paper published at NIPS 2011, I studied a variant of stream-based learning in which the examples are inde-
pendent, but the distribution from which the data are drawn can change over time (while the target function and noise
conditions remain fixed), as long as it remains in a (possiblyunknown) totally bounded family of distributions (e.g.,
smooth densities). Surprisingly, even with this drifting distribution, both the number of extra mistakes compared to
the best function in hindsight (i.e., regret), and the number of label requests, can often besublinear in the number of
examples observed. This means that it ispossible to learn the target function in this scenario, and furthermore that
active learning provides a significant advantage in terms ofthe number of label requests, compared to passive learning
(which requests all of the labels). I further characterizedthe rates of growth of the number of mistakes and the number
of label requests, for a particular active learning algorithm designed for this setting, as a function of the complexities
of the concept space, noise conditions, and class of possible distributions. Interestingly, I also obtained minimax lower
bounds on these quantities that match these upper bounds in certain cases, indicating a sense of optimality for this
method.

The above work left open the question of a drifting target concept. To bridge this gap, my recent work (joint with
Steve Hanneke and Varun Kanade) studies the problem of active learning (and passive learning) with a drifting target
concept. As a concrete model, consider a statistical learning setting, in which data arrive i.i.d. in a stream, and for
each data point the learner is required to predict a label forthe data point at that time, and then optionally request the
true (target) label of that point. We are then interested in making a small number of queries and mistakes (including
mistakes on unqueried labels) as a function of the number of points processed so far at any given time. The target
labels are generated from a function known to reside in a given concept space, and at each time the target function
is allowed to change by a distanceǫ (that is, the probability the new target function disagreeswith the old target

∗Carnegie Mellon University, Computer Science Department. Email: liuy@cs.cmu.edu.

1



function on a random sample is at mostǫ). The recent work of (Crammer, et al) studies this problem inthe context
of passive learning of linear separators. In this theoretical study, we have broadened the scope of that work, to other
concept spaces and distributions, improving the guarantees on performance, establishing lower bounds on achievable
performance, and extending the framework to study the number of labels requested by an active learning algorithm
while maintaining the performance guarantees establishedfor passive learning. In particular, we proved bounds on the
number of queries and mistakes made by a particular algorithm, as a function ofǫ, the VC dimension of the concept
space, and the number of time steps so far. We also consideredvariants of this in whichǫ is also allowed to change
over time, and then the bounds on the number of mistakes and queries should depend on the sequence ofǫ values.

There are many other possible extensions of this model that Iplan to explore in the near future; for instance, I am
particularly interested in considering noise in the concept drift setting, considering the problem of simultaneouslydrift-
ing target concept and data distribution, considering a stronger model in which the target concept is drifting according
to an unobservable but potentially learnable Markov process, and considering a setting where the interpretation of the
features is changing over time.

2 Transfer Learning (COLT 2011, Machine Learning Journal)

Some of my work (joint with Steve Hanneke) showed that, in a Bayesian learning setting, knowledge of the prior dis-
tribution of the target concept can provide strong benefits in the context of active learning. However, direct knowledge
of the target’s distribution may be too strong a requirementfor many realistic scenarios. Fortunately, we can remove
this assumption if we are tasked with a sequence of learning problems. Specifically, we explore a “transfer learning”
setting, in which a sequence of target concepts are sampled independently with an unknown distribution from a known
family. We then study the total number of label requests required to learn all targets to an arbitrary specified expected
accuracy (by self-verifying algorithms), focusing on the asymptotics in the number of tasks and the desired accuracy.

The main result of this work is that, as the number of tasks grows large, we can obtain an average number of
label requests per task equal to the expected number of labelrequests for learning with direct access to the target’s
distribution. Thus, we effectively replace the direct access to the distribution mentioned above with indirect accessvia
a small number of labeled examples from each of a sequence of learning problems. In particular, when combined with
the result mentioned above for Bayesian active learning, wefind that there are quantifiable benefits from applying this
method in the context of self-verifying active learning.

Our technique involves estimating the target’s distribution, which poses a challenge since we have only indirect
access to the sequence of target functions via a small numberof labeled examples from each learning problem. The
key insight driving our approach is that the distribution ofthe target concept is identifiable from the joint distribution
over a number of random labeled data points equal the VC dimension of the concept space. This is not necessarily
the case for the joint distribution over any smaller number of points. This observation, and the study of estimating the
target’s distribution from labeled examples in general, may also be of independent interest.

In recent follow-up work, we have further studied this technique, and can now bound therate of convergence of
this estimate of the prior, as a function of the number of tasks observed so far, and the number of labeled samples per
task. This rate has implications for quantifying the precise benefits of transfer learning, compared to learning each
task independently.

3 Efficient Active Learning with a Surrogate Loss (AISTATS 2010, Submis-
sion to the Annals of Statistics)

Much of the recent progress in studying the sample complexity of active learning with noise has made use of algorithms
which have excessively high running times. This is because they perform optimizations of empirical error rates,
measured in terms of the 0-1 loss, which for many hypothesis classes are known to be NP-Hard. In passive learning,
practical learning algorithms circumvent these computational barriers by replacing the 0-1 loss with a convexsurrogate
loss function. One can then show that, under certain conditions, having small risk under the surrogate loss implies
small error rate under the 0-1 loss as well. This has become the dominant paradigm in modern approaches to machine
learning, such as AdaBoost, Support Vector Machines, Logistic Regression, and many others.
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Given this fact, it only makes sense to make use of surrogate losses in active learning as well, to circumvent the
computational barriers in that case as well. In recent work,we develop an approach to active learning with surrogate
losses, which is both computationally efficient and provides provable reductions in sample complexity compared to
passive learning.

Interestingly, we find that the naı̈ve approach of designing an active learning algorithm thatdirectly optimizes
the surrogate loss does not lead to improved sample complexity guarantees compared to passive learning. However,
we then develop more subtle methods, which make use of the surrogate loss in internally-constructed optimization
problems, but do not necessarily optimize the surrogate risk overall, and yet provably converge in error rate (measured
under 0-1 loss) at a rate often faster than possible by known passive methods that use the given surrogate loss.

4 Active Testing (FOCS 2012)

One of the motivations for property testing of boolean functions is the idea that testing can serve as a preprocessing
step before learning. However, while most of the work in property testing has focused on the Membership Query
model (i.e., the ability to query functions on arbitrary points), there have been several convincing experimental studies
showing that membership queries are not realistic for most machine learning problems: for instance, image recog-
nition, medical diagnosis, handwritten digit recognition, etc. The crux of the problem is that algorithms based on
membership queries tend to query highly ambiguous points, which appear unnatural or bizarre to the human oracle.

As a result, the machine learning community has largely abandoned the Membership Query model, returning to
the classic model of learning from random samples. But sincerandom samples are often highly redundant in their
information content, there has more recently been renewed interest in adding interaction into the learning process, in
the form of “Active Learning”. The idea is that we get a pool ofrandom unlabeled examples, and the algorithm can
request the label of any example in the pool. The hope is that,by carefully choosing only the informative examples,
we can reduce the number of labels necessary for learning. Soactive learning does not suffer the “strange examples”
issues faced by learning with membership queries. In this work, we bring this well-studied model in learning to the
domain of testing. In particular, we assume that as in activelearning, our algorithm can make a polynomial number of
draws of unlabeled examples from the underlying distribution D, and then can make a small number of label queries
but only over the unlabeled examples drawn. The unlabeled examples are viewed as cheap, whereas label queries are
viewed as expensive.

We show that for a number of important properties, testing can still yield substantial benefits in this setting. This
includes testing unions of intervals, testing linear separators, and testing various assumptions used in semisupervised
learning. For example, we show that testing unions ofd intervals can be done withO(1) label requests in our setting,
whereas it is known to requireΩ(

√
d) labeled examples for passive testing (where the algorithm must pay for labels

on all examples drawn from D) andΩ(d) for learning. In fact, our results for testing unions of intervals also yield
improvements on prior work in both the membership query model (where any point in the domain can be queried) and
the passive testing model as well. In the case of testing linear separators inRn, we show that both active and passive
testing can be done withO(

√
n) queries, substantially less than theΩ(n) needed for learning. We also show a general

combination result that any disjoint union of testable properties remains testable in the active testing model, a feature
that does not hold for passive testing.

In addition to these specific results, we also develop a general notion of the testing dimension of a given property
with respect to a given distribution. We show this dimensioncharacterizes (up to constant factors) the intrinsic number
of label requests needed to test that property; we do this forboth the active and passive testing models. We then
use this dimension to prove a number of lower bounds. For instance, interestingly, one case where we show active
testing does not help is for dictator functions, where we give Ω(log(n)) lower bounds that match the upper bounds
for learning this class. In particular, this implies that any class that contains dictator functions and is not so large as
to contain almost all functions, requires at leastΩ(log(n)) queries to test in the active and passive models, including
decision trees, functions of low Fourier degree, juntas, DNFs, etc.

Our results show that testing can be a powerful tool in realistic models for learning, and further that active testing
exhibits an interesting and rich structure. Our work in addition develops new characterizations of common function
classes that may be of independent interest.
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5 Online Allocation and Pricing with Economies of Scale (STOC 2014 sub-
mission)

Allocating multiple goods to customers in a way that maximizes some desired objective is a fundamental part of
Algorithmic Mechanism Design. In recent joint work with Avrim Blum and Yishay Mansour, I consider the problem
of offline and online allocation of goods that have economiesof scale, or decreasing marginal cost per item for the
seller. In particular, we analyze the case where customers have unit-demand and arrive one at a time with valuations
on items, sampled iid from some unknown underlying distribution over valuations. Our strategy operates by using an
initial sample to learn enough about the distribution to determine how best to allocate to future customers, together
with an analysis of structural properties of optimal solutions that allow for uniform convergence analysis. We show,
for instance, if customers have{0, 1} valuations over items, and the goal of the allocator is to give each customer an
item he or she values, we can efficiently produce such an allocation with cost at most a constant factor greater than
the minimum over such allocations in hindsight, so long as the marginal costs do not decrease too rapidly. We also
give a bicriteria approximation to social welfare for the case of more general valuation functions when the allocator
is budget constrained. The techniques involved in proving that optimization on the small initial sample of customers
have implications for near-optimal performance on a largerpopulation of customers are heavily rooted in the theory
of machine learning, including results on uniform concentration based on the VC dimension and related quantities.

6 Concluding Remarks

The above topics give some of the overall flavor of my work. I amcurrently working to advance the state-of-the-
art in machine learning in several areas. In active learning, I am working to extend the current approaches to make
them more robust to noise, computationally efficient, and provably optimal. In property testing, I am pursuing the
largely-unexplored topic of testing properties of real-valued functions; I am also working to extend the active and
passive testing frameworks and results to the tolerant testing framework, and to establish formal connections between
learning and testing. As mentioned, although many machine learning applications involve change over time, the vast
majority of the techniques in the literature require a static learning environment; to bridge this gap, I am working on
learning with a changing target concept, a drifting data distribution, and changing interpretations of the features over
time. In the area of transfer learning, I am working to extendmy existing results to the setting of real-valued functions,
to further characterize the rates of convergence, and to allow dependence among the learning tasks. In the area of
algorithmic economics, I am currently studying the generalproblem of mechanism design with customer valuations
that have an unknown distribution, which is estimable, and achieving optimal performance in an online allocation
setting; I am also interested in extending this setting to allow the distribution of customer valuations to drift over
time. In the future, I plan to continue pushing the frontiersof theoretical machine learning, identifying new directions
that require significant advancement to become practicallyuseful, and advancing those areas via deeper theoretical
investigations; ultimately, the aim is to enable new applications of machine learning that are not approachable with the
current techniques.
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