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Machine learning has changed the way we approach many appfis in computer science, and has enabled us to
approach many applications of computer science that werprawiously possible: for instance, webpage classifica-
tion, image retrieval, and natural language question ansgieHowever, there are some applications that escape the
traditional approach to machine learning and require naighis to extend the benefits of machine learning to these
applications. One of my interests is in advancing the sebséjble applications by extending the current formalism
for machine learning: for example, settings where the cpttoebe learned changes over time, settings where itis pos-
sible to gain further benefits by interacting with an expanid settings where we have access to a sequence of related
learning problems and wish to get improvements from thatteelness. In particular, one common thread throughout
much of my work is the use dhteraction to gain improvements in performance compared to standardneractive
protocols. For instance, | have a series of papers oadtinee |earning setting, in which a learning algorithm is able to
request the target label of selected instances sequgngiall the goal is to learn an accurate classifier using a numbe
of label requests smaller than the number of random santpdésvbuld be required to achieve the same accuracy. |
also have work on the problem pfoperty testing based on this protocol, which finds that the sample compi@fit
testing with this active testing approach is often supenahat of passive testing, and is a more realistic model of
interaction for practice than the membership query modelotAer of my interests is in applying the techniques of
theoretical machine learning to other areas such as digaGteconomics.

1 Machine Learning over Time (NIPS 2011, JMLR submission)

One setting in which active learning can be quite useful ismvtiata are presented to the learner in a stream, and for
each example the algorithm is required to make a label piedjcand then may optionally request the true label of
the example. We are then interested in both the number ofgtidmistakes and the number of labels the algorithm
requests. Most existing analyses of active learning arecbas an i.i.d. assumption on the data; but in many stream-
based learning scenarios, either the distribution of thia dathe target concept drifts over time.

In a paper published at NIPS 2011, | studied a variant of streased learning in which the examples are inde-
pendent, but the distribution from which the data are drammahange over time (while the target function and noise
conditions remain fixed), as long as it remains in a (possibknown) totally bounded family of distributions (e.g.,
smooth densities). Surprisingly, even with this driftingtdbution, both the number of extra mistakes compared to
the best function in hindsight (i.e., regret), and the nundidabel requests, can often beblinear in the number of
examples observed. This means that ipéssible to learn the target function in this scenario, and furthemtbat
active learning provides a significant advantage in termte@humber of label requests, compared to passive learning
(which requests all of the labels). | further characterittedrates of growth of the number of mistakes and the number
of label requests, for a particular active learning aldwnitdesigned for this setting, as a function of the complesiti
of the concept space, noise conditions, and class of pesdigitibutions. Interestingly, | also obtained minimawéy
bounds on these quantities that match these upper bound@stainccases, indicating a sense of optimality for this
method.

The above work left open the question of a drifting targetosgt. To bridge this gap, my recent work (joint with
Steve Hanneke and Varun Kanade) studies the problem okdetivning (and passive learning) with a drifting target
concept. As a concrete model, consider a statistical legreetting, in which data arrive i.i.d. in a stream, and for
each data point the learner is required to predict a labehfodata point at that time, and then optionally request the
true (target) label of that point. We are then interested &kimg a small number of queries and mistakes (including
mistakes on unqueried labels) as a function of the numbepioitp processed so far at any given time. The target
labels are generated from a function known to reside in angé@cept space, and at each time the target function
is allowed to change by a distanedthat is, the probability the new target function disagregth the old target
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function on a random sample is at mekt The recent work of (Crammer, et al) studies this problerth@context
of passive learning of linear separators. In this thecaéstudy, we have broadened the scope of that work, to other
concept spaces and distributions, improving the guaramegerformance, establishing lower bounds on achievable
performance, and extending the framework to study the nummiblkabels requested by an active learning algorithm
while maintaining the performance guarantees establiirgzhssive learning. In particular, we proved bounds on the
number of queries and mistakes made by a particular algoyiéts a function o€, the VC dimension of the concept
space, and the number of time steps so far. We also considanieats of this in whicke is also allowed to change
over time, and then the bounds on the number of mistakes ariegishould depend on the sequencevalues.

There are many other possible extensions of this model {ilanlto explore in the near future; for instance, | am
particularly interested in considering noise in the comdeift setting, considering the problem of simultaneoudfyt-
ing target concept and data distribution, consideringangier model in which the target concept is drifting accagdin
to an unobservable but potentially learnable Markov precasd considering a setting where the interpretation of the
features is changing over time.

2 Transfer Learning (COLT 2011, Machine Learning Journal)

Some of my work (joint with Steve Hanneke) showed that, in geB&n learning setting, knowledge of the prior dis-
tribution of the target concept can provide strong benefiteé context of active learning. However, direct knowledge
of the target’s distribution may be too strong a requirenfenmany realistic scenarios. Fortunately, we can remove
this assumption if we are tasked with a sequence of learmolgigms. Specifically, we explore a “transfer learning”
setting, in which a sequence of target concepts are samqulegéndently with an unknown distribution from a known
family. We then study the total number of label requestsiredito learn all targets to an arbitrary specified expected
accuracy (by self-verifying algorithms), focusing on tlsgmptotics in the number of tasks and the desired accuracy.

The main result of this work is that, as the number of tasksvgriarge, we can obtain an average number of
label requests per task equal to the expected number of ladpeésts for learning with direct access to the target’s
distribution. Thus, we effectively replace the direct act the distribution mentioned above with indirect acetss
a small number of labeled examples from each of a sequeneamiihg problems. In particular, when combined with
the result mentioned above for Bayesian active learnindjmwiethat there are quantifiable benefits from applying this
method in the context of self-verifying active learning.

Our technique involves estimating the target’s distrimtiwhich poses a challenge since we have only indirect
access to the sequence of target functions via a small nuofttetneled examples from each learning problem. The
key insight driving our approach is that the distributiortlod target concept is identifiable from the joint distributi
over a number of random labeled data points equal the VC diioerof the concept space. This is not necessarily
the case for the joint distribution over any smaller numifgraints. This observation, and the study of estimating the
target’s distribution from labeled examples in generaly mao be of independent interest.

In recent follow-up work, we have further studied this teicjue, and can now bound thate of convergence of
this estimate of the prior, as a function of the number ofdasthserved so far, and the number of labeled samples per
task. This rate has implications for quantifying the predignefits of transfer learning, compared to learning each
task independently.

3 Efficient Active Learning with a Surrogate Loss (AISTATS 2010, Submis
sion to the Annals of Statistics)

Much of the recent progress in studying the sample compglekgctive learning with noise has made use of algorithms
which have excessively high running times. This is becahsg perform optimizations of empirical error rates,
measured in terms of the 0-1 loss, which for many hypothdagses are known to be NP-Hard. In passive learning,
practical learning algorithms circumvent these compateti barriers by replacing the 0-1 loss with a consarxogate

loss function. One can then show that, under certain camdifihaving small risk under the surrogate loss implies
small error rate under the 0-1 loss as well. This has becoemédminant paradigm in modern approaches to machine
learning, such as AdaBoost, Support Vector Machines, ltisgiegression, and many others.



Given this fact, it only makes sense to make use of surrogasest in active learning as well, to circumvent the
computational barriers in that case as well. In recent waekdevelop an approach to active learning with surrogate
losses, which is both computationally efficient and progigeovable reductions in sample complexity compared to
passive learning.

Interestingly, we find that the & approach of designing an active learning algorithm thiactly optimizes
the surrogate loss does not lead to improved sample corbplgxarantees compared to passive learning. However,
we then develop more subtle methods, which make use of thegaie loss in internally-constructed optimization
problems, but do not necessarily optimize the surrogakeosisrall, and yet provably converge in error rate (measured
under 0-1 loss) at a rate often faster than possible by kn@ssiye methods that use the given surrogate loss.

4 Active Testing (FOCS 2012)

One of the motivations for property testing of boolean fiortd is the idea that testing can serve as a preprocessing
step before learning. However, while most of the work in by testing has focused on the Membership Query
model (i.e., the ability to query functions on arbitrary s, there have been several convincing experimentailestud
showing that membership queries are not realistic for masthime learning problems: for instance, image recog-
nition, medical diagnosis, handwritten digit recogniti@tic. The crux of the problem is that algorithms based on
membership queries tend to query highly ambiguous poirtig;iwappear unnatural or bizarre to the human oracle.

As a result, the machine learning community has largely abaed the Membership Query model, returning to
the classic model of learning from random samples. But siandom samples are often highly redundant in their
information content, there has more recently been renemtedeist in adding interaction into the learning process, in
the form of “Active Learning”. The idea is that we get a poolrahdom unlabeled examples, and the algorithm can
request the label of any example in the pool. The hope is lyatarefully choosing only the informative examples,
we can reduce the number of labels necessary for learningcti@ learning does not suffer the “strange examples”
issues faced by learning with membership queries. In thikwee bring this well-studied model in learning to the
domain of testing. In particular, we assume that as in atdi@ming, our algorithm can make a polynomial number of
draws of unlabeled examples from the underlying distrdou®, and then can make a small number of label queries
but only over the unlabeled examples drawn. The unlabelathples are viewed as cheap, whereas label queries are
viewed as expensive.

We show that for a number of important properties, testingstdl yield substantial benefits in this setting. This
includes testing unions of intervals, testing linear sefmas, and testing various assumptions used in semisgpervi
learning. For example, we show that testing uniong oftervals can be done wit (1) label requests in our setting,
whereas it is known to requi®(+/d) labeled examples for passive testing (where the algorithust pay for labels
on all examples drawn from D) arfd(d) for learning. In fact, our results for testing unions of mvs also yield
improvements on prior work in both the membership query rmfwlieere any point in the domain can be queried) and
the passive testing model as well. In the case of testingdiseparators iR", we show that both active and passive
testing can be done with(/n) queries, substantially less than fé:) needed for learning. We also show a general
combination result that any disjoint union of testable mips remains testable in the active testing model, affeatu
that does not hold for passive testing.

In addition to these specific results, we also develop a génetion of the testing dimension of a given property
with respect to a given distribution. We show this dimensibaracterizes (up to constant factors) the intrinsic numbe
of label requests needed to test that property; we do thisdthn the active and passive testing models. We then
use this dimension to prove a number of lower bounds. Foam#, interestingly, one case where we show active
testing does not help is for dictator functions, where we§i¥log(n)) lower bounds that match the upper bounds
for learning this class. In particular, this implies thay atass that contains dictator functions and is not so lagge a
to contain almost all functions, requires at le@$tog(n)) queries to test in the active and passive models, including
decision trees, functions of low Fourier degree, juntasFBNetc.

Our results show that testing can be a powerful tool in réalisodels for learning, and further that active testing
exhibits an interesting and rich structure. Our work in #ddidevelops new characterizations of common function
classes that may be of independent interest.



5 Online Allocation and Pricing with Economies of Scale (STOC 2014 sub-
mission)

Allocating multiple goods to customers in a way that maxesizome desired objective is a fundamental part of
Algorithmic Mechanism Design. In recent joint work with Awr Blum and Yishay Mansour, | consider the problem
of offline and online allocation of goods that have economiescale, or decreasing marginal cost per item for the
seller. In particular, we analyze the case where custonas tinit-demand and arrive one at a time with valuations
on items, sampled iid from some unknown underlying distidouover valuations. Our strategy operates by using an
initial sample to learn enough about the distribution teed®ine how best to allocate to future customers, together
with an analysis of structural properties of optimal sauos that allow for uniform convergence analysis. We show,
for instance, if customers hay@, 1} valuations over items, and the goal of the allocator is te giach customer an
item he or she values, we can efficiently produce such anatltotwith cost at most a constant factor greater than
the minimum over such allocations in hindsight, so long &srttarginal costs do not decrease too rapidly. We also
give a bicriteria approximation to social welfare for theseaf more general valuation functions when the allocator
is budget constrained. The techniques involved in provireg optimization on the small initial sample of customers
have implications for near-optimal performance on a lapmggulation of customers are heavily rooted in the theory
of machine learning, including results on uniform concatidn based on the VC dimension and related quantities.

6 Concluding Remarks

The above topics give some of the overall flavor of my work. | @mrently working to advance the state-of-the-
art in machine learning in several areas. In active leagriagn working to extend the current approaches to make
them more robust to noise, computationally efficient, aral/gbly optimal. In property testing, | am pursuing the
largely-unexplored topic of testing properties of redisea functions; | am also working to extend the active and
passive testing frameworks and results to the tolerarihgefamework, and to establish formal connections between
learning and testing. As mentioned, although many macleiaing applications involve change over time, the vast
majority of the techniques in the literature require a stkgarning environment; to bridge this gap, | am working on
learning with a changing target concept, a drifting dat#rithistion, and changing interpretations of the featuresrov
time. In the area of transfer learning, | am working to extemdexisting results to the setting of real-valued functjons
to further characterize the rates of convergence, and eavalependence among the learning tasks. In the area of
algorithmic economics, | am currently studying the genprablem of mechanism design with customer valuations
that have an unknown distribution, which is estimable, actiieving optimal performance in an online allocation
setting; | am also interested in extending this setting towathe distribution of customer valuations to drift over
time. In the future, | plan to continue pushing the frontiefsheoretical machine learning, identifying new direno
that require significant advancement to become practicsgful, and advancing those areas via deeper theoretical
investigations; ultimately, the aim is to enable new agtians of machine learning that are not approachable with th
current techniques.



