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Speech technology
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Adult literacy rate by country, 2016
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Speech applications

Speech to text/speech recognition - dictation etc.
Text to speech - reading out aloud

Keyword spotting - “"Hey Alexa/Portal”

Speaker identification - is it your voice?

Language identification

Speech translation




Overview

e Traditional speech recognition

e Self-supervised learning for speech processing
e wav2vec 2.0
o Cross-lingual training
« Completely unsupervised speech recognition



Traditional speech recognition



Speech recognition

| ike Dblack tea  with milk




Traditional automatic speech recognition (ASR)

Transcription W

A

W* = arg max p(W|X) Acoustic model

Language model
F
X

W=* = arg mma/,xp(F‘W)p(W) Decoder

Feature representation




Traditional automatic speech recognition (ASR)

e Represent words as sequences of phonemes
e hello = h eh | ow

e Distinct units of sound to distinguish words



Traditional automatic speech recognition (ASR)

Transcription W

W* = arg mv[a/pr(W\X)

W* = arg mv‘;}X%:p(FIQ)p(Q\W)p(W) Decoder p(F|Q)

Feature representation
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Traditional automatic speech recognition (ASR)

Transcription W

Pronunciation model p(Q\W)
W* = arg mv[a/pr(W\X)

W = argmax > p(F|Q)p(QIW)p(W) Decoder e pFlQ)
Q

Language model p(W)

]
Focus of this talk :
|
|
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Feature representation

e Typical sample rates for speech: 8KHz, 1T6KHz.
e Traditionally: build spectrogram
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Spectrogram

e Small window, e.g., 20ms of waveform
« Compute FFT and take magnitude
o Describes frequency content in local window

“Hello world”

e dl l0g |FFT(X)]?

20ms Frequency
1 Frame
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Spectrogram

« Concatenate frames from adjacent windows to form a spectrogram
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Selt-supervised speech
representation learning



Training speech recognition models

| ike Dblack tea with milk

e Train on 1,000s of hours of transcribed data
for good systems.
e Many languages, dialects, domains etc.

15



Supervised machine learning
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potential train/test mismatch

Need to annotate lots of datal
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Supervised machine learning
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potential train/test mismatch
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Supervised machine learning
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Learning good representations of audio data
from unlabeled audio
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wav2vec 2.0

Latent speech Z
representations

CNN

raw waveform X
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e Masked prediction with transformet, bi-
directional contextualized representations
(similar to BERT).

e But predict what? Learn an inventory of
speech units with vector quantization via
Gumbel softmax.

e Learning task: Joint VQ & context
representation learning.

e Contrast true quantized latent with
distractor latents.



wav2vec 2.0

Context
representations

ﬂk

Transformer

Quantized
representations Q

Latent speech Z
representations

Masked

CNN

raw waveform X

e Masked prediction with transformet, bi-
directional contextualized representations

(similar to BERT).

e But

predict what? Learn an inventory of

speech units with vector quantization via
Gumbel softmax.

® Lea
ﬁep

rning task: Joint VQ & context

resentation learning.

e Contrast true quantized latent with
distractor latents.



wav2vec 2.0

Contrastive loss
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Objective
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Masking
e Sample starting points for masks without replacement, then expand to 10 time-steps (1
time-step is 25ms but 10ms stride)

e Spans can overlap

e Fora 15ssample, ~49% of the time-steps masked with an average span length of ~300ms

Context C
representations § } 3 3 1
Transformer
n R i —
o ] ] ] = =
Latent speech = ! { ! ﬂn
representations
Mask span start
CNN

Masked time-step

Unmasked time-step

raw waveform X




FIne-tuning

e Add asingle linear projection on top into target vocab and train with CTC loss with a
low learning rate (CNN encoder is not trained).

e Use modified SpecAugment in latent space to prevent early overfitting

e Uses wav2letter decoder with the official 4gram LM and Transformer LM



Results
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RGSLI ‘tS 10 min labeled data

High resource Low resource setup
(Librispeech 960h labeled) (Librispeech 10min - 100h labeled)
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Resu ‘tS 10 min labeled data
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Word error rate on test-other
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Results

Effects of model size and amount of unlabeled data
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Results

Effects of model size and amount of unlabeled data
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Examples (10 min labeled data)

HYP (no LM): she SESED and LUCHMAN GAIVE A SENT won by her GENTAL argument
HYP (w/ LM): she ceased and LUCAN gave assent won by her gentle argument
REF: she ceased and lakshman gave assent won by her gentle argument

HYP (no LM): but NOT WITH STANDING this boris EMBRAED him in a QUIAT FRENDLY
way and CISED him THRE times

HYP (w/ LM): but NOT WITHSTANDING this boris embraced him in a quiet friendly way
and kissed him three times

REF: but notwithstanding this boris embraced him in a quiet friendly way and kissed him
three times




wav2vec on Hugging Face

e Hugging Face is a popular NLP model zoo

e Hugging Face community fine-tuned our models to do speech recognition in
73 languages.

° Hugging Face

The Wav2Vec?2 fine-tuning sprint has come to an end.

It's amazing to see the incredible progress made by the
community.

Here are the final stats |3

‘«380 active participants

9179 fine-tuned ASR models for 73 languages
90 $users have uploaded at least one model Y

[1/3]
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Pre-training and self-training

e Self-training very successful in speech recognition: generate pseudo-labels

Supervised model



Pre-training and self-training

e Self-training very successful in speech recognition: generate pseudo-labels
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Pre-training and self-training

e Self-training very successful in speech recognition: generate pseudo-labels

Supervised model
| like tea /
| What time is it?

St st o

Hello !




Pre-training and self-training

e Self-training very successful in speech recognition: generate pseudo-labels

Supervised model
| like tea /
| What time is it?
ello!

kst s ot
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Semi-Supervised model
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XLSR: cross lingual speech
representation learning with wav2vec



Why cross-lingual self-supervised learning

o Little labeled data -> little unlabeled data

e Leverage unlabeled data from high-resource languages

e To improve performance on low-resource languages

e One model for each of the 6500 languages, for each domain? No.

e Instead: one pertained model for all languages



XLSR: cross lingual speech representation learning with wav2vec
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XLSR: Results - cross-lingual transter

Cross-lingual transfter = Train data from high-resource languages benefits low-resource
languages.

CommonVoice results:

40
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XLSR: Results - multilingual fine-tuning

Multilingual finetuning leads to one model for all languages with little loss in performance



XLSR: Results - multilingual fine-tuning

Multilingual finetuning leads to one model for all languages with little loss in performance

CommonVoice results:
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XLSR: Analysis of discrete latent speech representations

PCA visualization of latent discrete representations from the multilingual codebook

Similar languages tend to share discrete tokens and thus cluster together
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Unsupervised Speech Recognition



Unsupervised speech recognition

e Entirely remove need for labeled data
e Unsupervised machine translation works*, what about speech?

e Key problem: what are the units in the speech audio?

41



wav2vec Unsupervised: Key ideas

e Learn good representations of speech audio
e Unsupervised segmentation of the speech audio into phonemic units

e Learn mapping between speech segments and phonemes using adversarial
learning

42



wav2vec Unsupervised
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wav2vec Unsupervised

-

Unlabeled speech audio

\

Step 1: Learn speech
representations

> <wav2vec ZD
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wav2vec Unsupervised

Step 2: k-means cluster

Step 1: Learn speech representations
4 ) representations .
Unlabeled speech audio o O o©
o © Oo ©
> <Wav2vec QD » %0 o o 4
@) © (o) © o ©
o © ° o ©
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wav2vec Unsupervised

Step 2: k-means cluster Step 3: Segment into
Step 1: Learn speech representations phonemic units
4 ) representations .
Unlabeled speech audio o O o© 5 5 5 5 5
o0 O : : gmny :
o ® o OOOO 10 0000 0000eeeo:
o © o ©°

43



wav2vec Unsupervised

Step 2: k-means cluster Step 3: Segment into
Step 1: Learn speech representations phonemic units
4 ) representations .
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wav2vec Unsupervised
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wav2vec Unsupervised
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Simple segmentation
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Text data pre-processing

he
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Unlabeled text
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Text data pre-processing

N
Unlabeled text
\_ Y,
he spoke soothingly
Phonemize
hh 1y s ow Kk s uw dh thng | 1y
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Text data pre-processing
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Silence insertion
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GAN Inputs

Unlabeled phonemized text
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Generator / Discriminator

e Generator: 1 layer CNN with 90k parameters

w2v features frozen
e Discriminator: 3 layer CNN

e Traintime: 12-15h on a single V100

47

Context
representations

Quantized
representations Q

Latent speech 2
representations

raw waveform X

Transformer

CNN




Training details

e Unsupervised metric for early stopping, hyper-parameter selection

e Self-training after GAN training (HMM and fine-tuning w2v)
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Comparison to prior unsupervised work

Phoneme error rate
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Comparison to best supervised systems

Amount of labeled data used

960 hrs.+ E=1hr.
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Other languages

I Supervised (Pratap et al. '20) . wav2vec-U + ST

30

22.5

15

WER

7.5

German Dutch French Spanish ltalian Portuguese

MLS benchmark, wav2vec-U used only 100h of unlabeled data but there is up to 2k hours for some languages.
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PER

Low-resource languages

" Feretal. '17 B Riviere et al. '20
Conneau et al. '21 - wav2vec-U
50
37.5
25
12.5 .
0

Tatar Kyrgyz

*wav2vec-U uses much less speech audio than prior work:
1.8h vs. 17h for Kyrgyz, 4.6h vs. 17h for Tatar
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24.75
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Supervised (Besacier et al. '15)
wav2vec-U + ST

33

16.5

8.25

Swabhili



Discussion

e Very lightweight approach (except for wav2vec 2.0)
e Why does it work? Good audio features are main driver of performance
e Phonemizer still required

e Segment construction
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Conclusion

e Pre-training for speech works very well in both low-resource and high-resource setup.
e Cross-lingual training improves low-resource languages.

e Enable speech models with very little or even no labeled training data

e Make speech technology more ubiquitous and robust

e (Code and models are available in the fairseq GitHub repo + Hugging Face.
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