Self-supervised learning for speech processing

Facebook Al Research

Alexei Baevski

Alexis Conneau

Steffen Schneider

Henry Zhou

Abdelrahman Mohamed

Anuroop Sriram

Naman Goyal

Wei-Ning Hsu

Michael Auli

Kritika Singh

Yatharth Saraf

Geoffrey Zweig

Qiantong Xu

Tatiana Likhomanenko

Paden Tomasello

Ronan Collobert

Gabriel Synnaeve

Speech technology

Video captioning

Home devices

Mobile devices

Adult literacy rate by country, 2016

Speech applications

- Speech to text/speech recognition dictation etc.
- Text to speech reading out aloud
- Keyword spotting "Hey Alexa/Portal"
- Speaker identification is it your voice?
- Language identification
- Speech translation

Overview

- Traditional speech recognition
- Self-supervised learning for speech processing
 - wav2vec 2.0
 - Cross-lingual training
 - Completely unsupervised speech recognition

Traditional speech recognition

Speech recognition

with like black milk tea

- Represent words as sequences of phonemes
- hello = h eh l ow
- Distinct units of sound to distinguish words

Feature representation

- Typical sample rates for speech: 8KHz, 16KHz.
- Traditionally: build spectrogram

Spectrogram

- Small window, e.g., 20ms of waveform
 - Compute FFT and take magnitude
 - Describes frequency content in local window

Spectrogram

Concatenate frames from adjacent windows to form a spectrogram

Self-supervised speech representation learning

Training speech recognition models

l like black tea with milk

- Train on 1,000s of hours of transcribed data for good systems.
- Many languages, dialects, domains etc.

Supervised machine learning

cat

potential train/test mismatch

Need to annotate lots of data!

Supervised machine learning

Need to annotate lots of data!

Supervised machine learning

Learning good representations of audio data from unlabeled audio

Speech recognition

I like tea

Ich mag Tee 0.1 Speech translation 0.5 -0.9 Pre-trained model

Audio event detection

wav2vec 2.0

- Masked prediction with transformer, bidirectional contextualized representations (similar to BERT).
- But predict what? Learn an inventory of speech units with vector quantization via Gumbel softmax.
- Learning task: Joint VQ & context representation learning.
- Contrast true quantized latent with distractor latents.

wav2vec 2.0

- Masked prediction with transformer, bidirectional contextualized representations (similar to BERT).
- But predict what? Learn an inventory of speech units with vector quantization via Gumbel softmax.
- Learning task: Joint VQ & context representation learning.
- Contrast true quantized latent with distractor latents.

wav2vec 2.0

- Masked prediction with transformer, bidirectional contextualized representations (similar to BERT).
- But predict what? Learn an inventory of speech units with vector quantization via Gumbel softmax.
- Learning task: Joint VQ & context representation learning.
- Contrast true quantized latent with distractor latents.

Objective

Codebook diversity penalty to encourage more codes to be used

Masking

- Sample starting points for masks without replacement, then expand to 10 time-steps (1 time-step is 25ms but 10ms stride)
- Spans can overlap
- For a 15s sample, ~49% of the time-steps masked with an average span length of ~300ms

Fine-tuning

- Add a single linear projection on top into target vocab and train with CTC loss with a low learning rate (CNN encoder is not trained).
- Use modified SpecAugment in latent space to prevent early overfitting
- Uses wav2letter decoder with the official 4gram LM and Transformer LM

High resource (Librispeech 960h labeled)

- ContextNet (supervised)
- Noisy Student (60k-h unlabeled)
- wav2vec (60k-h unlabeled)

High resource (Librispeech 960h labeled)

- ContextNet (supervised)
- Noisy Student (60k-h unlabeled)
 - wav2vec (60k-h unlabeled)

Effects of model size and amount of unlabeled data

Effects of model size and amount of unlabeled data

Effects of model size and amount of unlabeled data

Examples (10 min labeled data)

HYP (no LM): she SESED and LUCHMAN GAIVE A SENT won by her GENTAL argument

HYP (w/LM): she ceased and LUCAN gave assent won by her gentle argument

REF: she ceased and lakshman gave assent won by her gentle argument

HYP (no LM): but NOT WITH STANDING this boris EMBRAED him in a QUIAT FRENDLY way and CISED him THRE times

HYP (w/LM): but NOT WITHSTANDING this boris embraced him in a quiet friendly way and kissed him three times

REF: but notwithstanding this boris embraced him in a quiet friendly way and kissed him three times

wav2vec on Hugging Face

- Hugging Face is a popular NLP model zoo
- Hugging Face community fine-tuned our models to do speech recognition in 73 languages.

Self-training very successful in speech recognition: generate pseudo-labels

Supervised model

Self-training very successful in speech recognition: generate pseudo-labels

Self-training very successful in speech recognition: generate pseudo-labels

Self-training very successful in speech recognition: generate pseudo-labels

XLSR: cross lingual speech representation learning with wav2vec

Why cross-lingual self-supervised learning

- Little labeled data -> little unlabeled data
- Leverage unlabeled data from high-resource languages
- To improve performance on low-resource languages
- One model for each of the 6500 languages, for each domain? No.
- Instead: one pertained model for all languages

XLSR: cross lingual speech representation learning with wav2vec

XLSR: Results - cross-lingual transfer

Cross-lingual transfer = Train data from high-resource languages benefits low-resource languages.

CommonVoice results:

XLSR: Results - multilingual fine-tuning

Multilingual finetuning leads to one model for all languages with little loss in performance

XLSR: Results - multilingual fine-tuning

Multilingual finetuning leads to one model for all languages with little loss in performance

CommonVoice results:

XLSR: Analysis of discrete latent speech representations

PCA visualization of latent discrete representations from the multilingual codebook

Similar languages tend to share discrete tokens and thus cluster together


```
Tokpisin

Kăzakh

Lao

Cebuano

Kurmanji

Georgian

Turkish

Tagalog

Swahili

Zulu

Haitian

Pashto

Tamil
```

Unsupervised Speech Recognition

Unsupervised speech recognition

- Entirely remove need for labeled data
- Unsupervised machine translation works*, what about speech?
- Key problem: what are the units in the speech audio?

wav2vec Unsupervised: Key ideas

- Learn good representations of speech audio
- Unsupervised segmentation of the speech audio into phonemic units
- Learn mapping between speech segments and phonemes using adversarial learning

Step 3: Segment into phonemic units

Simple segmentation

Text data pre-processing

he spoke soothingly

Text data pre-processing

he spoke soothingly

Phonemize

hh iy s ow k s uw dh ih ng l iy

Text data pre-processing

		he	spoke	soothingly	
Phonemize					
Silence insertion	sil	hh iy	s ow k	s uw dh ih ng I iy	sil

GAN inputs

Generator / Discriminator

- Generator: 1 layer CNN with 90k parameters w2v features frozen
- Discriminator: 3 layer CNN
- Train time: 12-15h on a single V100

Training details

- Unsupervised metric for early stopping, hyper-parameter selection
- Self-training after GAN training (HMM and fine-tuning w2v)

Comparison to prior unsupervised work

Phoneme error rate

Comparison to best supervised systems

Amount of labeled data used

Other languages

MLS benchmark, wav2vec-U used only 100h of unlabeled data but there is up to 2k hours for some languages.

Low-resource languages

Discussion

- Very lightweight approach (except for wav2vec 2.0)
- Why does it work? Good audio features are main driver of performance
- Phonemizer still required
- Segment construction

Conclusion

- Pre-training for speech works very well in both low-resource and high-resource setup.
- Cross-lingual training improves low-resource languages.
- Enable speech models with very little or even no labeled training data
- Make speech technology more ubiquitous and robust
- Code and models are available in the fairseq GitHub repo + Hugging Face.

Thank you

Alexei Baevski

Alexis Conneau

Steffen Schneider

Henry Zhou

Abdelrahman Mohamed

Anuroop Sriram

Naman Goyal

Wei-Ning Hsu

Michael Auli

Kritika Singh

Yatharth Saraf

Geoffrey Zweig

Qiantong Xu

Tatiana Likhomanenko

Paden Tomasello

Ronan Collobert

Gabriel Synnaeve