
291K
Deep Learning for Machine Translation

Basic Neural Networks
Lei Li
UCSB

10/4/2021

1

• MT as a ML problem
• Basic Neural Net Layers

– Single artificial neuron, Word Embedding, Feed-forward, Softmax,
Positional Embedding

– Universal approximation
• Model Training

– Risk Minimization and Maximum Likelihood Estimation
• Stochastic Optimization methods

– SGD and Backpropogation
– Adaptive gradient methods: Adagrad, Adam

Outline

2

• A computer program is said to learn from experience E
with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as
measured by P, improves with experience E”

– [Tom Mitchell, Machine Learning, 1997]

What is Machine Learning?

3

• To find a function f: x -> y
– Classification: label y is categorical
– Regression: label y is continuous numerical

• Example:
– Image classification
‣ Input space: x in is h x h pixels (rgb), so it is a tensor of h x h x 3.
‣ Output space: y is {1..10} in Cifar-10, or {1..1000} in ImageNet.

– Text-to-Image generation
‣ Input: x is a sentence in , V is vocabulary, L is length

‣ Output: y is

Rh×h×3

VL

Rh×h×3

Task T

4

• Text classification: sentence (or document) => label
– Sentiment prediction
– Intent classification
– NLI: natural language inference, logical relation of two sentences

• Sequence Generation/Structured Prediction: Given an input, to
predict a sequence of labels
– Machine Translation
– Dialog response generation
– Named entity recognition

• Sentence Retrieval/Matching
– Comparing similarity of two sequences

Formulation of NLP Tasks

5

• Supervised Learning: if pairs of (x, y) are given
• Unsupervised Learning: if only x are given, but not y
• Semi-supervised Learning: both paired data and raw

data
• Self-supervised Learning:

– use raw data but construct supervision signals from the data
itself

– e.g. to predict neighboring pixel values for an image
– e.g. to predict neighboring words for a sentence

Experience E

6

• Offline/batch Learning:
– All data are available at training time
– At inference time: fix the model and predict

• Online Learning:
– Experience data is collected one (or one mini-batch) at a time (can be either labeled or

unlabeled)
– Incrementally train and update the model, and make predictions on the fly with current and

changing model
– e.g. predicting ads click on search engine

• Reinforcement Learning:
– A system (agent) is interacting with an environment (or other agents) by making an action
– Experience data (reward) is collected from environment.
– The system learns to maximize the total accumulative rewards.
– e.g. Train a system to play chess

How Experience is Collected?

7

• Multi-task learning
– one system/model to learn multiple tasks simultaneously, with shared or

separate Experience, with different performance measures
– e.g. training a model that can detect human face and cat face at the same

time
• Pre-training & Fine-tuning

– Pre-training stage: A system is trained with one task, usually with very
large easily available data

– Fine-tuning stage: it is trained on another task of interest, with different
(often smaller) data

– e.g. training an image classification model on ImageNet, then finetune on
object detection dataset.

Learning w/ various Number of Tasks

8

• Input (Source)
– discrete sequence in source language, Vs

• Output (Target)
– discrete sequence in target langauge, Vt

• Experience E
– Supervised: parallel corpus, e.g. English-Chinese parallel pairs
– Unsupervised: monolingual corpus, e.g. to learn MT with only Tamil text and English text, but no

Eng-Tamil pairs
– Semi-supervised: both

• Number of languages involved
– Bilingual versus Multilingual MT
– Notice: it can be multilingual parallel data, or multilingual monolingual data

• Measure P
– Human evaluation metric, or Automatic Metric (e.g. BLEU), see previous lecture

Machine Translation as a Machine Learning Task

9

• Deep learning is a particular kind of machine learning
• that achieves great power and flexibility by

representing the world as a nested hierarchy of
concepts,

• with each concept defined in relation to simpler
concepts, and more abstract representations
computed in terms of less abstract ones.

What is Deep Learning

10

Ian Goodfellow and Yoshua Bengio and Aaron Courville.
Deep Learning, 2016

• Given a labeled dataset {(xn, yn)}, how to train a model
that maps from x —> y

• Idea: develop a complex model using massive basic
simple units

Neural Networks

11

12

Inspired by a biological neuron

Image credit:
http://cs231n.github.io/neural-networks-1/

13

A single Artificial Neuron

x1

x2

x3

∑

w1

w2

w3

input
weight Transfer

function
Activation
function σ

y

Input:
Weight:
Output:

x ∈ ℝd

w ∈ ℝd, b ∈ ℝ
y = σ(w ⋅ x + b)

14

Activation functions
Activation function is nonlinear

tanh(x) =
e2x − 1
e2x + 1

sigmoid(x) =
1

1 + e−x

15

Activation functions

relu(x) = max(0,x) Leaky Relu

GELU(x) = 0.5x (1 + tanh (2/π(x + 0.044715x3)))

16

Softmax

Useful for modeling
probability

(in classification task)

softmax(x)i =
exi

∑j exj

17

Running Example: Predicting Sentiment

0
1
2

?

Given a sentence, to predict sentiment label:
positive, neural, negative

This
movie

is
great

18

Word Embedding: Discrete Input to Continuous Representation

This
movie

is
great

Vocabulary
a -> 1
is -> 8

this -> 25
that -> 26

great -> 532
movie -> 876

…

25
876

8
532

Lookup table
(id-to-vector)

how large is
the lookup

table?
V·d

Typical:
V=30k
d=100

19

Single-Layer Neural Net

great

For simplicity: start from single word input
Input:
Weight:
Output:

 representing probabilities of
positive, neutral, and negative labels
The prediction is chosen by

x ∈ ℝd

w ∈ ℝd, b ∈ ℝ
o = Softmax(w ⋅ x + b) ∈ ℝ3

o1, o2, o3

y = argmax
i

oi
x1 x2 x3

o1

x4

o2 o3

1

• also known as multilayer
perceptron

Parameters

x ∈ ℝd

h1 = σ(w1 ⋅ x + b1) ∈ ℝd1

h2 = σ(w2 ⋅ h1 + b2) ∈ ℝd2

o = Softmax(w3 ⋅ h2 + b3) ∈ ℝ3

θ = {w1, b1, w2, b2, w3, b3}

Multi-layer Feed-forward Neural Net

20

x1 x2 x3

o1

x4

o2 o3

h1 h2 h3 h4 h5

• Pooling Layer
– Element-wise operation to

cmpress variable length vectors
into a fixed-size vector

– Average pooling

– Max pooling

hnext =
1
L ∑

i

hi

hnext
j = max

i
hi,j

Sentence with Variable Length

21

This movie is great

FFN

Pooling

Linear&Softmax

Emb

• The same word appearing at different position in a
sentence may have different function/semantics

• The movie is great <—> movie is the great <—>
great the is movie ?

• Map position labels to embedding

 PEpos,2i = sin(
pos

10002i/d
)

PEpos,2i+1 = cos(
pos

10002i/d
)

Order Matters — Positional Embedding

22

This movie is great
 1 2 3 4

+ + + +

• The whole network
represents a
function

• The parameter set

f(x; θ) : V* → ℝ3

θ = {emb, w1, w2, . . . }

23

Full Model

This movie is great

FFN

Pooling

Linear&Softmax

Emb

Pos

• What is the representation power of NN?
• Theorem: Feedforward neural network with at least

one hidden layer (with many units) can approximate
any Borel measurable function to arbitrary accuracy.
[Hornik et al 1989]

• But not without hidden layer!

Universal Approximation

24

• Given data
• A function f as defined by a neural network (can be

generalized to other model)
• Find the best parameter to fit the data
• How to define best fit?

– Several principled approaches

D = {(x1, y1), (x2, y2), …, (xN, yN)}

θ

Training a Model

25

• For a function , and a data distribution
• Define (expected) risk function

 is the loss function/distance defined on predicted and actual outcomes
• Empirical risk:

i.e. expected risk under empirical distribution that puts 1/N probability mass on each
data sample

• Under ERM framework,

f(x; θ) (x, y) ∼ P

R(θ) = ∫ ℓ(f(x; θ), y)dP

ℓ(̂y, y)

Re(θ) =
1
N ∑

n

ℓ(f(xn; θ), yn)

̂θ ← argmin
θ

Re(θ)

Empirical Risk Minimization

26

• ERM provides a very generic way to define and find best-fit
parameters

•

• Many ways to define loss function
• Commonly used:

–
Cross-entropy for classification: , y is one-hot vector

– Square loss for regression:

Re(θ) =
1
N ∑

n

ℓ(f(xn; θ), yn)

ℓ(f, y)

ℓ(f, y) = − ∑
j

yj log fj

ℓ(f, y) =
1
2

| f − y |2
2

Empirical Risk Minimization

27

• Cross-entropy

• Average number of bits needed to represent message in q,
while the actual message is distributed in p

• OR. roughly the information gap between p and q + (some
const)

• Minimizing cross-entropy == diminishing the information gap

•

• Ideal case ==> 1.0

𝐻(𝑝, 𝑞) = − ∑
𝑘

𝑝𝑘log𝑞𝑘

𝐻(𝑦𝑖, 𝑓(𝑥𝑖)) = − ∑
𝑘

𝑦𝑖,𝑘log𝑓(𝑥𝑖)𝑘 = − log𝑓(𝑥𝑖)𝑦𝑖

𝑓(𝑥𝑖)𝑦𝑖

Cross Entropy (CE)

28

0.2
0.3
0.5

0
1
0

f(xn; θ) yn

• The whole network
represents a function

• The parameter set

f(x; θ) : V* → ℝ3

θ = {emb, w1, w2, . . . }
θ ← argmin

θ
Re(θ)

= −
1
N ∑

n
∑

j

yn,j log f(xn; θ)

29

Minimizing cross-entropy

This movie is great

FFN

Pooling

Linear&Softmax

Emb

Pos

f(x; θ)

• Consider f as a conditional distribution of y given x
• Given

• To find a that best describe data, i.e. defines a
conditional distribution under which the data is most
probable

D = {(x1, y1), (x2, y2), …, (xN, yN)}
θ θ

̂θ ← argmax log L(θ)

L(θ) = ∏
n

P(f(xn; θ) = yn |xn)

Alternatively: Maximum Likelihood Estimation

30

• For the simple neural model

•

̂θ ← argmax log L(θ)

L(θ) = ∏
n

P(f(xn; θ) = yn |xn) = ∏
n

∏
j

f(xn; θ)yn,j
j

MLE Example

31

0.2
0.3
0.5

0
1
0

f(xn; θ) yn

• Discussion: Is minimizing cross-entropy equivalent to
maximizing likelihood?

– Under what condition?

Risk minimization and MLE

32

• Given a risk function, how to estimate the optimal
parameter for a model?

• Stochastic optimization algorithms
– for large-scale data

θ* = argmin
1
N

N

∑
n=1

ℓ(f(xn; θ), yn)

Learning the Model

33

• Consider a generic function minimization problem

• Optimal condition:

• In general, no closed-form solution for the equation.
• Iterative update algorithm

• so that

• How to find

min
x

f(x) where f : ℝd → ℝ

∇f |x = 0, where i-th element of ∇f |x is
∂f
∂xi

xt+1 ← xt + Δ
f(xt+1) ≪ f(xt)

Δ

Optimization

34

•

• Theorem: if f is twice-differentiable and has continuous
derivatives around x, for any small-enough , there is

, where

is the Hessian at z which lies on the line connecting and

• First-order and second-order Taylor approximation result in
gradient descent and Newton’s method

f(x + Δx) = f(x) + ΔxT ∇f |x +
1
2

ΔxT ∇2f |x Δx + ⋯

Δx

f(x + Δx) = f(x) + ΔxT ∇f |x +
1
2

ΔxT ∇2f |z Δx ∇2f |z

x
x + Δx

Taylor approximation

35

•

• To make

•

• Update rule:

• is a hyper-parameter to control the learning rate

f(xt + Δx) ≈ f(xt) + ΔxT ∇f |xt

ΔxT ∇f |xt
 smallest

⇒ Δx in the opposite direction of ∇f |xt
 i.e. Δx = − ∇f |xt

xt+1 = xt − η∇f |xt

η

Gradient Descent

36

• Gradient descent requires calculating over full data.

•

• Instead of full gradient, evaluate and update on
random minibatch of data samples Bt

•

θt+1 = θt −
η
N

N

∑
n=1

∇θℓ(f(xn; θt), yn)

θt+1 = θt −
η

|Bt | ∑
n∈Bt

∇θℓ(f(xn; θt), yn)

Stochastic Gradient Descent

37

SGD: Illustration

38[credit: gif from 3blue1brown]

•

• Let gradient , Hessian

• Let

• updated on stochastic minibatch for large data

f(xt + Δx) ≈ f(xt) + ΔxT ∇f |xt
+

1
2

ΔxT ∇2f |xt
Δx

gt = ∇f |xt
Ht = ∇2f |xt

∂f(xt + Δx)
∂Δx

= 0

xt+1 = xt − η ⋅ H−1
t ⋅ gt

Newton’s Method

39

• Under some condition (Lipschitz continuous), GD

converges with , or to achieve error within

•
SGD converges with

• Newton’s method has better convergence, but higher
per-iteration computation cost.

O(
1
T

) O(
1
ϵ

)

ϵ

O(
1

T
)

Convergence Rate versus Computation Cost

40

• Forward and back-propagation
• Suppose y=f(x), z=g(y), therefore z=g(f(x))

• Use the chain rule,

• For a neural net and its loss
• First compute gradient with respect to last layer
• then using chain-rule to back propagate to second last,

and so on

∇g(f(x)) |x = (∇f |x)T ⋅ ∇g |y

ℓ(θ)

Computing Gradient for Neural Net

41

• , where is the gradient

• Adaptive step-size for each dimension of parameters
• Adaptive gradients

–
AdaGrad: , where accumulative second

moments

–
Adam: ,

 where momentum

θt+1 = θt − η ⋅ gt gt
η

θt+1 = θt −
η
vt

⊙ gt vt =
t

∑
j=1

g2
j

θt+1 = θt −
η
vt

⊙ mt

mt = β ⋅ mt−1 + (1 − β) ⋅ gt

vt = γvt−1 + (1 − γ)g2
t

Accelerate SGD

42

• Pytorch
• Tensorflow
• PaddlePaddle
• Define the computation graph of a model

– Already provide a library of basic layers
– along with automatic gradient calculation
– with many loss functions

Neural Network Framework

43

from torch import nn

class TextClassificationModel(nn.Module):

 def __init__(self, vocab_size, embed_dim, num_class):
 super(TextClassificationModel, self).__init__()
 self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=True)
 self.fc = nn.Linear(embed_dim, num_class)
 self.init_weights()

 def init_weights(self):
 initrange = 0.5
 self.embedding.weight.data.uniform_(-initrange, initrange)
 self.fc.weight.data.uniform_(-initrange, initrange)
 self.fc.bias.data.zero_()

 def forward(self, text, offsets):
 embedded = self.embedding(text, offsets)
 return self.fc(embedded)

Simple Text Classification in Pytorch

44https://github.com/pytorch/tutorials/blob/master/beginner_source/text_sentiment_ngrams_tutorial.py

https://github.com/pytorch/tutorials/blob/master/beginner_source/text_sentiment_ngrams_tutorial.py

• Gradient clipping
– avoid explode/overflow

torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)

Practical Trick

45

• Chap 6 of DL book.
Reading

46

