291K

Deep Learning for Machine Translation
Basic Neural Networks

Lel LI

UCSB
10/4/2021



Outline

« MT as a ML problem

» Basic Neural Net Layers

— Single artificial neuron, Word Embedding, Feed-forward, Softmax,
Positional Embedding

— Universal approximation
* Model Training

— Risk Minimization and Maximum Likelihood Estimation

» Stochastic Optimization methods

— SGD and Backpropogation
— Adaptive gradient methods: Adagrad, Adam



What is Machine Learning?

* A computer program is said to learn from experience E
with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as
measured by P, improves with experience E”

— [Tom Mitchell, Machine Learning, 1997]




Task T

* To find a function f: x ->y

— Classification: label y is categorical
— Regression: label y Is continuous numerical

* Example:

— Image classification

- Input space: x in R™"™3 is h x h pixels (rgb), so it is a tensor of h x h x 3.

> Output space: y is {1..10} in Cifar-10, or {1..1000} in ImageNet.
— Text-to-Image generation

> |nput: X IS a sentence In VE Vis vocabulary, L is length

- Output: y is R



Formulation of NLP Tasks

 Text classification: sentence (or document) => label

— Sentiment prediction
— Intent classification
— NLI: natural language inference, logical relation of two sentences

» Sequence Generation/Structured Prediction: Given an input, to
predict a sequence of labels

— Machine Translation
— Dialog response generation
— Named entity recognition

» Sentence Retrieval/Matching
— Comparing similarity of two sequences



Experience E
» Supervised Learning: if pairs of (X, y) are given
* Unsupervised Learning: if only x are given, but not y

» Semi-supervised Learning: both paired data and raw
data

» Self-supervised Learning:

— use raw data but construct supervision signals from the data
itself

— e.g. to predict neighboring pixel values for an image
— e.g. to predict neighboring words for a sentence




How Experience is Collected?
 Offline/batch Learning:

— All data are avalilable at training time
— At inference time: fix the model and predict

* Online Learning:

— EXxperience data is collected one (or one mini-batch) at a time (can be either labeled or
unlabeled)

— Incrementally train and update the model, and make predictions on the fly with current and
changing model

— e.g. predicting ads click on search engine

» Reinforcement Learning:
— A system (agent) is interacting with an environment (or other agents) by making an action
— Experience data (reward) is collected from environment.
— The system learns to maximize the total accumulative rewards.
— e.qg. Train a system to play chess




Learning w/ various Number of Tasks

» Multi-task learning

— one system/model to learn multiple tasks simultaneously, with shared or
separate Experience, with different performance measures

— e.g. training a model that can detect human face and cat face at the same
time
* Pre-training & Fine-tuning
— Pre-training stage: A system is trained with one task, usually with very
large easily available data

— Fine-tuning stage: it is trained on another task of interest, with different
(often smaller) data

— e.g. training an image classification model on ImageNet, then finetune on
object detection dataset.




Machine Translation as a Machine Learning Task

* Input (Source)

— discrete sequence In source language, Vs
» QOutput (Target)

— discrete sequence Iin target langauge, Vi

* Experience E

— Supervised: parallel corpus, e.g. English-Chinese parallel pairs

— Unsupervised: monolingual corpus, e.g. to learn MT with only Tamil text and English text, but no
Eng-Tamil pairs

— Semi-supervised: both
 Number of languages involved

— Bilingual versus Multilingual MT

— Notice: it can be multilingual parallel data, or multilingual monolingual data
 Measure P

— Human evaluation metric, or Automatic Metric (e.g. BLEU), see previous lecture



What is Deep Learning

* Deep learning is a particular kind of machine learning

» that achieves great power and flexibility by
representing the world as a nested hierarchy of
concepts,

» with each concept defined in relation to simpler
concepts, and more abstract representations
computed in terms of less abstract ones.

lan Goodfellow and Yoshua Bengio and Aaron Courville.
Deep Learning, 2016

10



Neural Networks

» Given a labeled dataset {(xn, yn)}, how to train a model

that maps from x —>vy

 |dea: develop a complex model using massive basic
simple units

11



Inspired by a biological neuron

Impulses carried
toward cell body

branches
dendrites \ of axon
2 [
, axon
axon \_J‘& ,
nucleus — o ‘ : terminals
_ 7 S e s e _2
74y, " iImpulses carried \?\

away from cell body
cell body

Image credit:
http://cs231n.github.io/neural-networks-1/



A single Artificial Neuron

INnput |
° \\,IV:IQ ht
@ W2
W3
o

Transfer
function

Activation
function o

—

Input: x € R¢
Weight: w € R4, b € R
Output: y = o(w - x + b)

13



Activation functions

Activation function is nonlinear

sigmoid(x) =

14



Activation functions

GELU(x) = 0.5x (1 + tanh (\/2/71()6 + O.O44715x3)>>

relu(x) = max(0,x) Leaky Relu

relu gelu

Leaky RelLU: y=0.01x
’,

15



Softmax

e

x.
3

Useful for modeling
probability

(In classification task)

softmax(x), =

16



Running Example: Predicting Sentiment

Given a sentence, to predict sentiment label:
positive, neural, negative

This 0
- 2
movie :

::> 1

1S 5

great

17



Word Embedding: Discrete Input to Continuous Representation

Vocabulary L_OOkup table how large Is
Q> 1 (Id-to-vector) the lookup

‘ table?
S -> 8 / V-d

This this -> 25 Typical
movie ) 876 — '
s > that->26 ‘;’> =30k
great -> 532 12100

great movie -> 876 932 \

I | S ) S

18



Single-Laver Neural Net

For simplicity: start from single word input
Input: x € R¢

Weight: w € R4 b € R

Output: 0 = Softmax(w - x + b) € R’
01, 05, 05 representing probabilities of

positive, neutral, and negative labels
The prediction is chosen by

l

19



Multi-layver Feed-forward Neural Net

 also known as multilayer
perceptron

x € RY

h, = o(w; - x + b;) € R%

h, = o(w, - h; + b,) € R%

o = Softmax(w, - h, + b;y) € R’

Parameters
H — {Wl’ bl’ Wz, bz, W3, b3}




Sentence with Variable Lenqgth

* Pooling Layer Linear&Softmax

— Element-wise operation to
cmpress variable length vectors

Into a fixed-size vector Pooling
— Average pooling
|
prext — h. FFN

— Max pooling 'ﬁ
hj{fzext — max hi,j Emb I:I I:I I:I I:I
i This movie is great

21



sentence may have different function/semantics

* The movie Is great <—> movie Is the great <—>
great the is movie ?

* Map position labels to embedding

PE. . = sin(—— )
pOS,Zl looozl/d

PE .. 1 = cos(ﬂ)
pos,2i+1 1 O()Ozi/d

1ti gt ik

. E——
- T
T O———
I —
I
S
- |
I S
]
i

|
|

|
|

u|||i||||| ]
i
I

¥

!
. lilli

10

iy
LS

I|I!l il
fﬁﬂ,
.

I||H
el

|I n
ik
nliik

r ]

kT
1

” gy

m

B
“ J8
|

uonIsod

z 22



Full Model

 The whole network
represents a
function

fx;0) : V¥ - R’
* [he parameter set

0= {emb,w,w,,...




Universal Approximation

* What is the representation power of NN?

 Theorem: Feedforward neural network with at least
one hidden layer (with many units) can approximate

any Borel measurable function to arbitrary accuracy.
[Hornik et al 1989]

* But not without hidden layer!

24



Training a Model

- Givendata D = {(x{, y1), (X9, ¥5), «--» (Xpn5 YN }

* A function f as defined by a neural network (can be
generalized to other model)

» Find the best parameter @ to fit the data

* How to define best fit?
— Several principled approaches

25



Empirical Risk Minimization

» For a function f(x; 8), and a data distribution (x, y) ~ P
» Define (expected) risk function

R(0) = [f (f(x; 0), y)dP

£ (y,V) is the loss function/distance defined on predicted and actual outcomes
* Empirical risk:

R.(0) = % 2 £(fx:0),y,)

l.e. expected risk under empirical distribution that puts 1/N probability mass on each
data sample

. Under ERM framework, 6 « argmin R ,(0)
(0

26



Empirical Risk Minimization

 ERM provides a very generic way to define and find best-fit
parameters

 R(0) = %zn: £ (%5 0), y,)

- Many ways to define loss function £(f, y)
 Commonly used;:

Cross-entropy for classification: Z(f,y) = — Z y;logf; y is one-hot vector
J

1
_ Square loss for regression: £(f,y) = > | f— \%

27



Cross Entropy (CE

_ Cross-entropy H p, Z pilogg,

* Average number of bits needed to represent message in q,
while the actual message is distributed in p

* OR. roughly the information gap between p and q + (some
const)

* Minimizing cross-entropy == diminishing the information gap

. ldeal case ==> 1.0

f(x,;0) Y,
0.2 0
0.3 1
0.5 0

28



Minimizing cross-entropy f(x; 0)

* [he whole network
represents a function

fx;0) : V¥ - R’
* [he parameter set

9 — {emb, Wl’WZ’ .« . e }
0 — argm@in R ,(0)

I P
BERRY, 2 Z Ynjl0g f(x,;; 0) oS
noj Emb




Alternatively: Maximum Likelihood Estimation
» Consider f as a conditional distribution of y given x

» Given D = {(x1, 1), (X2, ¥5), -, (Xpnn YN) |

 To find a @ that best describe data, i.e. @ defines a

conditional distribution under which the data i1Is most
probable

0 «— argmax log L(6)
L©) = | | P(fx,: 0) = y,|x,)

30



MLE Example

* For the simple neural model

0 « argmax log L(6)
1O = [TP¢x:0 = vl %) = [T [T 0
n " F

flx,; 0) Vo

0.2 0
0.3 1
0.5 0



Risk minimization and MLE

» Discussion: Is minimizing cross-entropy equivalent to
maximizing likelihood”?
— Under what condition?

32



Learning the Model

» Glven a risk function, how to estimate the optimal
parameter for a model?

o0+ = argminl i (f(x,;0),y,)
N o n n

» Stochastic optimization algorithms
— for large-scale data

33



Optimization
» Consider a generic function minimization problem
min f(x) where f : RY - R
X

of

. Optimal condition: Vf| = 0, where i-th element of Vf| is .
x.

l
* |n general, no closed-form solution for the equation.

* |terative update algorithm
X1 < X+ A

- so that f(x,, ) < f(x,)
e How to find A



Taylor approximation

|
. f(x+ Ax) = f(x) + AxTVf|x + EAxTV2f|xAx 1 ...

 Theorem: If f Is twice-differentiable and has continuous
derivatives around x, for any small-enough Ax, there is

I
flx+ Ax) = flx) + Ax" Vf|_+ EAxTVZflex, where V°f|_

IS the Hessian at z which lies on the line connecting x and
X+ Ax

* First-order and second-order Taylor approximation result in
gradient descent and Newton's method

35



Gradient Descent
 flx, + Ax) ® fix) + AxT VS|,

. To make AxTVflx smallest
. = Ax in the opposite direction of Vf| i.e. Ax = — Vf|
. Update rule: x,, | = x, —n Vf|

* 17 IS @ hyper-parameter to control the learning rate

36



Stochastic Gradient Descent

» Gradient descent requires calculating over full data.

. Ht+1 =0, — — Z ng(f( ,0,), Y

* Instead of full gradlent, evaluate and update on
random minibatch of data samples Bt

N Vol (f4,:6),5,)

neb,

|Bt|

37



10N

W

wid
(O
-
wid
7y
=

SGD

[credit: gif from 3blue1brown]




Newton’s Method

I
S+ Ax) & fix) + AxT VS|, + EAxTVZflxtAx

. Let gradient g, = Vflx , Hesslan Ht — VZflx
t df(x, + Ax)
0AX

=0

, Le

_ —1
Xep] =X — N - Hy - g
» updated on stochastic minibatch for large data

39



Convergence Rate versus Computation Cost
» Under some condition (Lipschitz continuous), GD

1 1

converges with O(?), or O(—) to achieve error within
€

€

|
~ SGD converges with O(——)

VT

* Newton's method has better convergence, but higher
per-iteration computation cost.

40



Computing Gradient for Neural Net

* Forward and back-propagation
» Suppose y=f(x), z=g(y), therefore z=g(f(x))

. Use the chain rule, Vg(fix))| = (Vf] )" - Vg [,

» For a neural net and its loss £(6)

* First compute gradient with respect to last layer

* then using chain-rule to back propagate to second last,
and so on

41



Accelerate SGD

+ 0., =0,—n-g, where g, is the gradient

» Adaptive step-size 1 for each dimension of parameters
* Adaptive gradients

[
~ AdaGrad: 0,1 =0, — \77 © g, where v, = Z gj2 accumulative second
[ o
j=1
moments
Adam: Ht_l_l — Ht — r] @ mt,

— ﬁ
where momentumm, =f-m,_, + (1 —p) - g,

vy =yv_ + (1 = V)gtz

42



Neural Network Framework

* Pytorch
 Tensorflow

 PaddlePaddle

* Define the computation graph of a model
— Already provide a library of basic layers
— along with automatic gradient calculation
— with many loss functions

43



Simple Text Classification in Pytorch

from torch import nn

class TextClassificationModel (nn.Module):

def 1nit (self, vocab size, embed dim, num class):
super (TextClassificationModel, self). 1nit ()
self.embedding = nn.EmbeddingBag(vocab size, embed dim, sparse=True)
self.fc = nn.Linear(embed dim, num class)
self.init weights()

def init weights(self):
initrange = 0.5
self.embedding.weight.data.uniform (-initrange, initrange)
self.fc.weight.data.uniform (-initrange, initrange)
self.fc.bias.data.zero ()

def forward(self, text, offsets):
embedded = self.embedding(text, offsets)
return self.fc(embedded)

https://github.com/pytorch/tutorials/blob/master/beginner_source/text_sentiment _ngrams_tutorial.py



https://github.com/pytorch/tutorials/blob/master/beginner_source/text_sentiment_ngrams_tutorial.py

Practical Trick
» Gradient clipping

— avoid explode/overflow

torch.nn.utils.clip grad norm (model.parameters(), 0.1)

45



» Chap 6 of DL book.

Readinc

46



