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Natural signals are redundant

Correlation of adjacent pixels

Efficient coding hypothesis (Attneave, 1954; Barlow, 1961; et al):

Sensory systems encode only non-redundant structurel
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Why code efficiently?

Information bottleneck of sensory coding:

e restrictions on information flow rate

— channel capacity of sensory nerves
— computational bottleneck
— 5 x 105 — 40 — 50 bits/sec
e facilitate pattern recognition
— independent features are more informative
— better sensory codes could simply further processing

e other ideas

— efficient energy use
— faster processing time

How do we use this hypothesis to predict sensory codes?




A simple example: efficient coding of a single input

(a) e inputs follow distribution of sensory

environment

p(c)

e encode so that output levels are used
with equal frequency

!
- | (b)
o : | e cach response state has equal area
% B (= equal probability)
g p—
e | 1 , e continuum limit is cumulative pdf of
-1 0 +1 +2 input distribution
Contrast Al /T For y = g(c)
(from Atick, 1992)
How to set sensitivity? L / P(cdd
ymaaj C

e too high = response saturated
e too low = range under utilized




Testing the theory: Laugin, 1981

Laughlin, 1981:

e predict response of fly LMC (large monopolar cells)
— interneuron in compound eye
e output is graded potential

l 10mV
10~

50ms
i i e collect natural scenes to estimate
o { stimulus pdf
S
; s e predict contrast response function
§ sumuleitive = fly LMC transmits information
» = probabili - .
§ PisRanely efficiently
g
What about complex sensory
patterns?
T 1T 1 B
-1.0 0 +10

contrast AI/T




V1 receptive fields are consistent with effcient coding theory

2D Receptive Field

2D Gabor Function
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V1 receptive fields are well-fit by 2D Gabor functions

1987).1

(Jones and Palmer

Does this yield an efficient code?ll

9

O ogoo?

Michael S. Lewicki, Carnegie Mellon University, Oct, 21 2002



Coding images with pixels (Daugman, 1988)

Lena histogram of pixel values
Entropy = 7.57

High entropy means high redundacny =- a very inefficient code




Recoding with Gabor functions (Daugman, 1988)

Pixel entropy= 7.57 bits Recoding with 2D Gabor functions
Filter output entropy = 2.55 bits.

Can these codes be predicted?




Sparse coding of natural images (Olshausen and Field, 1996)

nature scene visual input  units receptive fields
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Adapt population of receptive fields to

e accurately encode an ensembe of natural images
e maximizing the sparseness of the output, i.e. minimizing entropy.
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Theory predicts entire population of receptive fields

(Lewicki and Olshausen, 1999)
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Population of receptive fields.
(black = inhibitory; white = exicitatory)l

Overlayed response property schematics.k
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Algorithm selects best of many possible sensory codes

Learned
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1999) Theoretical perspective:

(Lewicki and Olshausen,
Not edge “detectors” but an efficient way to describe natural, complex images.
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Efficient coding of natural sounds



Efficient coding: focus on coding waveform directly

Goal:

Predict optimal transformation of acoutsic waveform
from statistics of the acoustic environment.




Why encode sound by frequency?
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A simple model of waveform encoding

Data consists of waveform segments sampled randomly from a sound ensemble:

Filterbank model: How do derive the filter shapes h;(t)
that optimize coding efficiency?

a; (t)

]
8
=
|
"y
S
S

Model only describes signals within the
window of analysis.




Information theoretic viewpoint

Use Shannon's source coding theorm.

L=BIX)] = Y pla)log——

p(x)
= Dgkr(pllq) + H(p)

If model density g(x) equals true density p(x) then Dy = 0.
= q(x) gives lower bound on average code length.

greater coding efficiency < more learned structure
Principle
Good codes capture the statistical distribution of sensory patterns.

How do we descibe the distribution?




Describing signals with a simple statistical model

Goal is to encode the data to desired precision

X = @181+ G280+ ---+arsy+¢€

= As-+te€

Can solve for S in the no noise case

§ = A 1x

Want algorithm to choose optimal A (i.e. the basis matrix).




Algorithm for deriving efficient codes

Learning objective:
maximize coding efficiency

= maximize P(x|A) over A (basis for
analysis window, or filter shapes).

Probability of pattern ensemble is:

P(x1,%s, s xn|A) = [ P(x/A)
k

To obtain P(x|A) marginalize over s:

P(x|A) = /dsP(x\A,s)P(s)

P(s)
| det A |

Using independent component analysis
(ICA) to optimize A:

%,
T—
AA < AA aAlogP(x]A)
= —A(zs’ 1),

where z = (log P(s))’. Use
P(s;) ~ ExPwr(s;|p, 0, 5;).

This learning rule:

e learns features that capture the most
structure

e optimizes the efficiency of the code




Modeling Non-Gaussian distributions with ICA

p=2 p=4

e Typical coeff. distributions of
natural signals are
non-Gaussian.

e Independent component
analysis (ICA) describes the
statistical distribution of

i e non-Gaussian distributions

e The distribution is fit by
optimizing the filter shapes.

e Unlike PCA, vectors are not
restricted to be orthogonal.

e This permits a much better
description of the actual
distribution of natural signals.




Modeling Non-Gaussian distributions with ICA

p=2 p=4

e Typical coeff. distributions of
natural signals are
non-Gaussian.

e Independent component
analysis (ICA) describes the
statistical distribution of

5 non-Gaussian distributions

e The distribution is fit by
optimizing the filter shapes.

e Unlike PCA, vectors are not
restricted to be orthogonal.

e This permits a much better
description of the actual
distribution of natural signals.




Efficient coding of natural sounds: Learning procedure

To derive the filters:

e select sound segments randomly from sound ensemble
e optimize filter shapes to maximize coding efficiency

What sounds should we use?

What are auditory systems adapted for? We used the following sound ensembles:

e localization / environmental sounds? e non-harmonic environmental sounds

e communication / vocalizations? (e.g. footsteps, stream sounds, etc.)

e animal vocalizations (rainforest
mammals, e.g chirping, screeching,
cries, etc.)

e specific tasks, e.g sound
discrimination?

e speech (samples from 100 male and
female speakers from the TIMIT
corpus)




Results of adapting filters to different sound classes

Efficient filters for environmental sounds:

N T AYA e AVAYAS
— )

Efficient filters for animal vocalizations:

e Each result shows only a subset

e Auditory nerve filters best match
those derived from environmental
sounds and speech

e learning movie
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A combined ensemble: env. sounds and vocalizations

Efficient filters for combined

NAVAAYAVAAYITITIVS
A~ = I =i
=~
et -
o
- A

Efficient filters for speech:

Can vary along the continuum by changing relative proportion, best match is 2:1
= speech is well-matched to the auditory code




Can decorrelating models also explain data?

Redundancy reduction models that adapt weights to decorrelate output activies
assume a Gaussian model:

x ~ N(x|p,0)

Under this model, the filters can be derived with principal component analysis.

PCs of Environmental Sounds: Corresponding Power Spectra:

VIS L b
A S AW W NN
ikt RN,

= just decorrelating the outputs does
not yield time-frequency localized filters.




Why doesn’t PCA work?

Check assumptions:
x = As and x ~ N (x|u, o)
= distribution of s should also be Gaussian.

Actual distribution of filter coefficients:

BB
Je L




Efficient coding of sparse noise

earned sparse noise filters:

Efficient filters are delta functions that represent
different time points in the analysis window.

...but what about the auditory system?




Auditory filters estimated by reverse correlation

X(t)| Linear y(t) static Z(t) | stochastic | S(t)
System nonlinearity pulse gen.

Cat auditory “revcor” filters:

pat 5
ime (ms)

1
t

deBoer and deJongh, 1978 Carney and Yin, 1988




Revcor filter predictions of auditory nerve response
st S A A AN WS VMW A g otim s is white noise

e histogram: measured
auditory nerve response

e smooth curve:
predicted response

Azsoaiaﬁ \ \ Conclusion:

MHSEC
‘JWWU Shape and
25958 SPIKES “ . . .

IN25s8 cveLes. ' dIStrIbUtlon Of revcor
CYCLE LENGTH 82 MSEC. .
filters account for a

;:} 4 large part of the

auditory sensory code.
(from de Boer and de Jongh, 1978).

We want to match more
than just individual filters:

How do we
characterize the
population?
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Schematic time-frequency distributions

Fourier typical wavelet

frequency

time time
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Tiling trends follow power law
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Does equalization of power explain these data?

Average power spectra: Equal power across frequency bands:
: . . . .
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Comparison to auditory population code

Cat auditory nerves

20t V Evans, 1975
Rhode and Smith, 1985
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2 5|
o
—
(@4
21 vV
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characteristic frequency (kHz)
Filter sharpness characterizes how

bandwidth changes as a function of
frequency

Q10d8 = fe/ w1048

10+

Q10dB

Derived filters

20}
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'+ vocalizations
‘o’ speech
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Summary

Information theory and efficient coding:

e can be used to derive optimal codes for different pattern classes.

e explains important properties of sensory codes in both the auditory and visual
system.

e gives insight into how our sensory systems are adapted to the natural
environment.

Caveats

e Codes can only be derived within a small window
e Does not explain non-linear aspects of coding

e Models do not capture higher order structure




Coding natural sounds with spikes



Addressing some limitations of the current theory

The current model assumes the sound waveform is dividing into blocks:

amplitude

time

Problems with block coding:

e signal structure is arbitrarily aligned

e code depends on block alignment
e difficult to encode non-periodic structure, e.g. rapid onsets




An efficient, shift-invariant model

The signal is modeled by a sum of events plus noise:

2(t) = s11(t — 1)+ - + spbar(t — Tar) - €(t) .

The events ¢,,(t):

e can be placed at arbitrary time points 7,

e are scaled by coefficients s,,




Solution after optimization: 105 dB SNR
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Time shifting
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